Controlled assembly of artificial protein-protein complexes via DNA duplex formation.
Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J
2015-03-18
DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.
Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis
Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad
2017-01-01
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186
Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.
Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad
2017-01-01
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Nanoparticle-protein complexes mimicking corona formation in ocular environment.
Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun
2016-12-01
Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D
2017-12-01
Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control
Halter, David; Collart, Martine A.; Panasenko, Olesya O.
2014-01-01
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968
Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control.
VanPelt, Jamie; Page, Richard C
2017-02-01
The CHIP:Hsp70 complex stands at the crossroads of the cellular protein quality control system. Hsp70 facilitates active refolding of misfolded client proteins, while CHIP directs ubiquitination of misfolded client proteins bound to Hsp70. The direct competition between CHIP and Hsp70 for the fate of misfolded proteins leads to the question: how does the CHIP:Hsp70 complex execute triage decisions that direct misfolded proteins for either refolding or degradation? The current body of literature points toward action of the CHIP:Hsp70 complex as an information processor that takes inputs in the form of client folding state, dynamics, and posttranslational modifications, then outputs either refolded or ubiquitinated client proteins. Herein we examine the CHIP:Hsp70 complex beginning with the structure and function of CHIP and Hsp70, followed by an examination of recent studies of the interactions and dynamics of the CHIP:Hsp70 complex. Copyright © 2016 Elsevier B.V. All rights reserved.
Porter, Morwenna Y; Xie, Keqiang; Pozharski, Edwin; Koelle, Michael R; Martemyanov, Kirill A
2010-12-24
Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.
Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex
NASA Technical Reports Server (NTRS)
2003-01-01
Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.
Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V
2013-08-01
Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.
Ukleja, Marta; Valpuesta, José María; Dziembowski, Andrzej; Cuellar, Jorge
2016-10-01
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery. © 2016 WILEY Periodicals, Inc.
Description and control of dissociation channels in gas-phase protein complexes
NASA Astrophysics Data System (ADS)
Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare
2016-08-01
Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.
Shavkunov, Alexander S.; Wildburger, Norelle C.; Nenov, Miroslav N.; James, Thomas F.; Buzhdygan, Tetyana P.; Panova-Elektronova, Neli I.; Green, Thomas A.; Veselenak, Ronald L.; Bourne, Nigel; Laezza, Fernanda
2013-01-01
The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na+ (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na+ currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions. PMID:23640885
Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Minjung; Shin, Jaekyoon, E-mail: jkshin@med.skku.ac.kr
2011-09-16
Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described.more » In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.« less
Crucial HSP70 co–chaperone complex unlocks metazoan protein disaggregation
Nillegoda, Nadinath B.; Kirstein, Janine; Szlachcic, Anna; Berynskyy, Mykhaylo; Stank, Antonia; Stengel, Florian; Arnsburg, Kristin; Gao, Xuechao; Scior, Annika; Aebersold, Ruedi; Guilbride, D. Lys; Wade, Rebecca C.; Morimoto, Richard I.; Mayer, Matthias P.; Bukau, Bernd
2016-01-01
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states1,2. Healthy metazoan cells effectively eliminate intracellular protein aggregates3,4, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems5,6, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro4,7. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control. PMID:26245380
Ren, Jun; Zhou, Wei; Wang, Jianxin
2014-01-01
Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945
Peculiarities of hemoglobin interaction with serum proteins of mice with Ehrlich carcinoma.
Sitdikova, S M; Amandzholov, B S; Serebryakova, M V; Zhdanovich, M Yu; Kiselevskii, M V; Donenko, F V
2006-05-01
In male C57Bl/6 mice with transplanted Ehrlich carcinoma, hemoglobin forms a complex with serum proteins characterized by a molecular weight of about 300 kDa. The complex incorporates proteins weighing 100, 68, 65, and 15 kDa identified by MALDI-TOF mass spectrometry as haptoglobin, serum albumin, gi/26341396 nameless protein Mus musculus, and alpha-hemoglobin, respectively. This complex can possess biological activity and contribute to the control of tumor growth.
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
Inobe, Tomonao; Nukina, Nobuyuki
2016-07-01
Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Uhart, Marina; Flores, Gabriel; Bustos, Diego M.
2016-01-01
Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976
The ubiquitin conjugating enzyme UbcH7, controls cell migration
USDA-ARS?s Scientific Manuscript database
Post translational modification by ubiquitination can target proteins for degradation, allow the interaction of proteins to form complexes or direct relocalization of proteins to different subcellular compartments. As such, ubiquitin controls a variety of essential cellular processes. Previously we ...
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Fisher, Susan H; Wray, Lewis V
2008-01-22
The Bacillus subtilis GlnR repressor controls gene expression in response to nitrogen availability. Because all GlnR-regulated genes are expressed constitutively in mutants lacking glutamine synthetase (GS), GS is required for repression by GlnR. Feedback-inhibited GS (FBI-GS) was shown to activate GlnR DNA binding with an in vitro electophoretic mobility shift assay (EMSA). The activation of GlnR DNA binding by GS in these experiments depended on the feedback inhibitor glutamine and did not occur with mutant GS proteins defective in regulating GlnR activity in vivo. Although stable GS-GlnR-DNA ternary complexes were not observed in the EMSA experiments, cross-linking experiments showed that a protein-protein interaction occurs between GlnR and FBI-GS. This interaction was reduced in the absence of the feedback inhibitor glutamine and with mutant GS proteins. Because FBI-GS significantly reduced the dissociation rate of the GlnR-DNA complexes, the stability of these complexes is enhanced by FBI-GS. These results argue that FBI-GS acts as a chaperone that activates GlnR DNA binding through a transient protein-protein interaction that stabilizes GlnR-DNA complexes. GS was shown to control the activity of the B. subtilis nitrogen transcription factor TnrA by forming a stable complex between FBI-GS and TnrA that inhibits TnrA DNA binding. Thus, B. subtilis GS is an enzyme with dual catalytic and regulatory functions that uses distinct mechanisms to control the activity of two different transcription factors.
Barber, K G; Kitts, D D; Townsley, P M; Smith, D S
1988-01-01
This paper provides evidence for a protein component which appears to be involved in the seasonal resistance of small shore crabs, Hemigrapsus oregonesis and Hemigrapsus nudus to saxitoxin, a principle neurotoxin involved in paralytic shellfish poisoning (PSP). This unique protein complex was isolated and partially purified by ion exchange chromatography using DEAE-cellulose from visceral tissue extracts of resistant crabs. The complex was absent in control crabs that were sensitive to saxitoxin. In addition, the protein complex was induced in the crab after acute administration of low doses of saxitoxin. Results indicate that the protein complex is acidic in nature and has an apparent mol. wt of 145,000.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity
Lasker, Keren; Ahrens, Daniel G.; Eckart, Michael R.
2017-01-01
ABSTRACT Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment. PMID:28246363
Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.
Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi
2015-01-01
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.
Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric
2013-06-11
Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha
Jones, Victor A. S.
2017-01-01
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. PMID:28174248
Na, Hong; Laver, John D.; Jeon, Jouhyun; Singh, Fateh; Ancevicius, Kristin; Fan, Yujie; Cao, Wen Xi; Nie, Kun; Yang, Zhenglin; Luo, Hua; Wang, Miranda; Rissland, Olivia; Westwood, J. Timothy; Kim, Philip M.; Smibert, Craig A.; Lipshitz, Howard D.; Sidhu, Sachdev S.
2016-01-01
Post-transcriptional regulation of mRNAs plays an essential role in the control of gene expression. mRNAs are regulated in ribonucleoprotein (RNP) complexes by RNA-binding proteins (RBPs) along with associated protein and noncoding RNA (ncRNA) cofactors. A global understanding of post-transcriptional control in any cell type requires identification of the components of all of its RNP complexes. We have previously shown that these complexes can be purified by immunoprecipitation using anti-RBP synthetic antibodies produced by phage display. To develop the large number of synthetic antibodies required for a global analysis of RNP complex composition, we have established a pipeline that combines (i) a computationally aided strategy for design of antigens located outside of annotated domains, (ii) high-throughput antigen expression and purification in Escherichia coli, and (iii) high-throughput antibody selection and screening. Using this pipeline, we have produced 279 antibodies against 61 different protein components of Drosophila melanogaster RNPs. Together with those produced in our low-throughput efforts, we have a panel of 311 antibodies for 67 RNP complex proteins. Tests of a subset of our antibodies demonstrated that 89% immunoprecipitate their endogenous target from embryo lysate. This panel of antibodies will serve as a resource for global studies of RNP complexes in Drosophila. Furthermore, our high-throughput pipeline permits efficient production of synthetic antibodies against any large set of proteins. PMID:26847261
SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins.
Koch, C A; Anderson, D; Moran, M F; Ellis, C; Pawson, T
1991-05-03
Src homology (SH) regions 2 and 3 are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor protein-tyrosine kinases, including phospholipase C-gamma, Ras GTPase (guanosine triphosphatase)-activating protein, and Src-like tyrosine kinases. The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides, implicated in normal signaling and cellular transformation. Tyrosine phosphorylation acts as a switch to induce the binding of SH2 domains, thereby mediating the formation of heteromeric protein complexes at or near the plasma membrane. The formation of these complexes is likely to control the activation of signal transduction pathways by tyrosine kinases. The SH3 domain is a distinct motif that, together with SH2, may modulate interactions with the cytoskeleton and membrane. Some signaling and transforming proteins contain SH2 and SH3 domains unattached to any known catalytic element. These noncatalytic proteins may serve as adaptors to link tyrosine kinases to specific target proteins. These observations suggest that SH2 and SH3 domains participate in the control of intracellular responses to growth factor stimulation.
Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini
2016-08-01
To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rajesh Kumar; Palm, Gottfried J.; Panjikar, Santosh
2007-04-01
Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. Inmore » the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer.« less
Structural symmetry and protein function.
Goodsell, D S; Olson, A J
2000-01-01
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
Kaminska, Izabela; Bohlen, Johann; Mackowski, Sebastian; Tinnefeld, Philip; Acuna, Guillermo P
2018-02-27
In this contribution, we fabricate hybrid constructs based on a natural light-harvesting complex, peridinin-chlorophyll a-protein, coupled to dimer optical antennas self-assembled with the help of the DNA origami technique. This approach enables controlled positioning of individual complexes at the hotspot of the optical antennas based on large, colloidal gold and silver nanoparticles. Our approach allows us to selectively excite the different pigments present in the harvesting complex, reaching a fluorescence enhancement of 500-fold. This work expands the range of self-assembled functional hybrid constructs for harvesting sunlight and can be further developed for other pigment-proteins and proteins.
The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.
Makeyev, Aleksandr V; Liebhaber, Stephen A
2002-01-01
The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration. PMID:12003487
The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.
Makeyev, Aleksandr V; Liebhaber, Stephen A
2002-03-01
The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration.
Wieczorek, Andrew S; Martin, Vincent J J
2012-12-15
The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.
NASA Astrophysics Data System (ADS)
Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.
2015-02-01
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
Pinske, Constanze; Jaroschinsky, Monique; Sawers, R Gary
2013-06-01
The membrane-associated formate hydrogenlyase (FHL) complex of bacteria like Escherichia coli is responsible for the disproportionation of formic acid into the gaseous products carbon dioxide and dihydrogen. It comprises minimally seven proteins including FdhF and HycE, the catalytic subunits of formate dehydrogenase H and hydrogenase 3, respectively. Four proteins of the FHL complex have iron-sulphur cluster ([Fe-S]) cofactors. Biosynthesis of [Fe-S] is principally catalysed by the Isc or Suf systems and each comprises proteins for assembly and for delivery of [Fe-S]. This study demonstrates that the Isc system is essential for biosynthesis of an active FHL complex. In the absence of the IscU assembly protein no hydrogen production or activity of FHL subcomponents was detected. A deletion of the iscU gene also resulted in reduced intracellular formate levels partially due to impaired synthesis of pyruvate formate-lyase, which is dependent on the [Fe-S]-containing regulator FNR. This caused reduced expression of the formate-inducible fdhF gene. The A-type carrier (ATC) proteins IscA and ErpA probably deliver [Fe-S] to specific apoprotein components of the FHL complex because mutants lacking either protein exhibited strongly reduced hydrogen production. Neither ATC protein could compensate for the lack of the other, suggesting that they had independent roles in [Fe-S] delivery to complex components. Together, the data indicate that the Isc system modulates FHL complex biosynthesis directly by provision of [Fe-S] as well as indirectly by influencing gene expression through the delivery of [Fe-S] to key regulators and enzymes that ultimately control the generation and oxidation of formate.
Protein and Signaling Networks in Vertebrate Photoreceptor Cells
Koch, Karl-Wilhelm; Dell’Orco, Daniele
2015-01-01
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments. PMID:26635520
Protein quality control in organelles - AAA/FtsH story.
Janska, Hanna; Kwasniak, Malgorzata; Szczepanowska, Joanna
2013-02-01
This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.
The binary protein-protein interaction landscape of Escherichia coli
Rajagopala, Seesandra V.; Vlasblom, James; Arnold, Roland; Franca-Koh, Jonathan; Pakala, Suman B.; Phanse, Sadhna; Ceol, Arnaud; Häuser, Roman; Siszler, Gabriella; Wuchty, Stefan; Emili, Andrew; Babu, Mohan; Aloy, Patrick; Pieper, Rembert; Uetz, Peter
2014-01-01
Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (~70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, approximately doubling the number of known binary PPIs in E. coli. Integration of binary PPIs and genetic interactions revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that could be mapped within multi-protein complexes were informative regarding internal topology and indicated that interactions within complexes are significantly more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily significant model microbe. PMID:24561554
Evolution of an ancient protein function involved in organized multicellularity in animals.
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-07
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.
Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex
Elbediwy, Ahmed; Zihni, Ceniz; Terry, Stephen J.; Clark, Peter
2012-01-01
Epithelial cell–cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell–cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin–capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics. PMID:22891260
MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha.
Jones, Victor A S; Dolan, Liam
2017-04-15
The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. Mp WIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced Mp WIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. © 2017. Published by The Company of Biologists Ltd.
RNA regulatory networks diversified through curvature of the PUF protein scaffold
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; ...
2015-09-14
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
RNA regulatory networks diversified through curvature of the PUF protein scaffold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.
Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less
Non-interacting surface solvation and dynamics in protein-protein interactions.
Visscher, Koen M; Kastritis, Panagiotis L; Bonvin, Alexandre M J J
2015-03-01
Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein-protein binding, even for simple lock-and-key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein-protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein-protein surfaces. We compare properties of the interface, rim, and non-interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non-interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non-interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein-protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein-protein complexes from unintended protein-protein interactions. © 2014 Wiley Periodicals, Inc.
Ran1 functions to control the Cdc10/Sct1 complex through Puc1.
Caligiuri, M; Connolly, T; Beach, D
1997-01-01
We have undertaken a biochemical analysis of the regulation of the G1/S-phase transition and commitment to the cell cycle in the fission yeast Schizosaccharomyces pombe. The execution of Start requires the activity of the Cdc2 protein kinase and the Sct1/Cdc10 transcription complex. Progression through G1 also requires the Ran1 protein kinase whose inactivation leads to activation of the meiotic pathway under conditions normally inhibitory to this process. We have found that in addition to Cdc2, Sct1/Cdc10 complex formation requires Ran1. We demonstrate that the Puc1 cyclin associates with Ran1 and Cdc10 in vivo and that the Ran1 protein kinase functions to control the association between Puc1 and Cdc10. In addition, we present evidence that the phosphorylation state of Cdc10 is altered upon inactivation of Ran1. These results provide biochemical evidence that demonstrate one mechanism by which the Ran1 protein kinase serves to control cell fate through Cdc10 and Puc1. Images PMID:9201720
Investigation of the pH-dependence of dye-doped protein-protein interactions.
Nudelman, Roman; Gloukhikh, Ekaterina; Rekun, Antonina; Richter, Shachar
2016-11-01
Proteins can dramatically change their conformation under environmental conditions such as temperature and pH. In this context, Glycoprotein's conformational determination is challenging. This is due to the variety of domains which contain rich chemical characters existing within this complex. Here we demonstrate a new, straightforward and efficient technique that uses the pH-dependent properties of dyes-doped Pig Gastric Mucin (PGM) for predicting and controlling protein-protein interaction and conformation. We utilize the PGM as natural host matrix which is capable of dynamically changing its conformational shape and adsorbing hydrophobic and hydrophilic dyes under different pH conditions and investigate and control the fluorescent properties of these composites in solution. It is shown at various pH conditions, a large variety of light emission from these complexes such as red, green and white is obtained. This phenomenon is explained by pH-dependent protein folding and protein-protein interactions that induce different emission spectra which are mediated and controlled by means of dye-dye interactions and surrounding environment. This process is used to form the technologically challenging white light-emitting liquid or solid coating for LED devices. © 2016 The Protein Society.
Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.
Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej
2017-10-01
Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.
X-ray structure of the mammalian GIRK2-βγ G-protein complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whorton, Matthew R.; MacKinnon, Roderick
2013-07-30
G-protein-gated inward rectifier K + (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K + channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K + channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation thatmore » is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with ‘membrane delimited’ activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP 2) and intracellular Na + ions participate in multi-ligand regulation of GIRK channels.« less
A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA.
Yagasaki, H; Adachi, D; Oda, T; Garcia-Higuera, I; Tetteh, N; D'Andrea, A D; Futaki, M; Asano, S; Yamashita, T
2001-12-15
Fanconi anemia (FA) is an autosomal recessive disease with congenital anomalies, bone marrow failure, and susceptibility to leukemia. Patient cells show chromosome instability and hypersensitivity to DNA cross-linking agents. At least 8 complementation groups (A-G) have been identified and 6 FA genes (for subtypes A, C, D2, E, F, and G) have been cloned. Increasing evidence indicates that a protein complex assembly of multiple FA proteins, including FANCA and FANCG, plays a crucial role in the FA pathway. Previously, it was reported that FANCA was phosphorylated in lymphoblasts from normal controls, whereas the phosphorylation was defective in those derived from patients with FA of multiple complementation groups. The present study examined phosphorylation of FANCA ectopically expressed in FANCA(-) cells. Several patient-derived mutations abrogated in vivo phosphorylation of FANCA in this system, suggesting that FANCA phosphorylation is associated with its function. In vitro phosphorylation studies indicated that a physiologic protein kinase for FANCA (FANCA-PK) forms a complex with the substrate. Furthermore, at least a part of FANCA-PK as well as phosphorylated FANCA were included in the FANCA/FANCG complex. Thus, FANCA-PK appears to be another component of the FA protein complex and may regulate function of FANCA. FANCA-PK was characterized as a cytoplasmic serine kinase sensitive to wortmannin. Identification of the protein kinase is expected to elucidate regulatory mechanisms that control the FA pathway.
Jab1 Mediates Protein Degradation of Rad9/Rad1/Hus1 Checkpoint Complex
Huang, Jin; Yuan, Honglin; Lu, Chongyuan; Liu, Ximeng; Cao, Xu; Wan, Mei
2009-01-01
Summary The Rad1-Rad9-Hus1 (9-1-1) complex serves a dual role as a DNA-damage sensor in checkpoint signaling and as a mediator in DNA repair pathway. However, the intercellular mechanisms that regulate 9-1-1 complex are poorly understood. Jab1, the fifth component of the COP9 signalosome complex, plays a central role in the degradation of multiple proteins and is emerging as an important regulator in cancer development. Here, we tested the hypothesis that Jab1 controls the protein stability of the 9-1-1 complex via the proteosome pathway. We provide evidence that Jab1 physically associates with the 9-1-1 complex. This association is mediated through direct interaction between Jab1 and Rad1, one of the subunits of 9-1-1 complex. Importantly, Jab1 causes the translocation of the 9-1-1 complex from the nucleus to the cytoplasm, mediating rapid degradation of the 9-1-1 complex via 26S proteasome. Furthermore, Jab1 significantly suppresses checkpoint signaling activation, DNA synthesis recovery from blockage and cell viability after replication stresses such as UV exposure, γ radiation and hydroxyurea treatment. These results suggest that Jab1 is an important regulator for 9-1-1 protein stability control in cells, which may provide novel information on the involvement of Jab1 in checkpoint and DNA repair signaling in response to DNA damage. PMID:17583730
The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.
Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise
2016-08-31
Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.
DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K+ Channels.
Kurokawa, Tatsuki; Kiyonaka, Shigeki; Nakata, Eiji; Endo, Masayuki; Koyama, Shohei; Mori, Emiko; Tran, Nam Ha; Dinh, Huyen; Suzuki, Yuki; Hidaka, Kumi; Kawata, Masaaki; Sato, Chikara; Sugiyama, Hiroshi; Morii, Takashi; Mori, Yasuo
2018-03-01
In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K + channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K + channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore
NASA Astrophysics Data System (ADS)
Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.
2017-08-01
We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.
Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore.
Wells, Craig C; Melnikov, Dmitriy V; Gracheva, Maria E
2017-08-07
We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.
Re-visiting protein-centric two-tier classification of existing DNA-protein complexes
2012-01-01
Background Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. Results On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Conclusions Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA-binding proteins. Further analysis of these complexes can aid in developing algorithms for identifying DNA-binding proteins and their family members from mere sequence information. PMID:22800292
Re-visiting protein-centric two-tier classification of existing DNA-protein complexes.
Malhotra, Sony; Sowdhamini, Ramanathan
2012-07-16
Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA-binding proteins. Further analysis of these complexes can aid in developing algorithms for identifying DNA-binding proteins and their family members from mere sequence information.
Schubert, Axel; Stenstam, Anna; Beenken, Wichard J. D.; Herek, Jennifer L.; Cogdell, Richard; Pullerits, Tõnu; Sundström, Villy
2004-01-01
Controlled ensemble formation of protein-surfactant systems provides a fundamental concept for the realization of nanoscale devices with self-organizing capability. In this context, spectroscopic monitoring of pigment-containing proteins yields detailed structural information. Here we have studied the association behavior of the bacterial light-harvesting protein LH2 from Rhodobacter spheroides in an n,n-dimethyldodecylamine-n-oxide/water environment. Time-resolved studies of the excitation annihilation yielded information about aggregate sizes and packing of the protein complexes therein. The results are compared to transmission electron microscopy images of instantaneously frozen samples. Our data indicate the manifestation of different phases, which are discussed with respect to the thermodynamic equilibrium in ternary protein-surfactant-water systems. Accordingly, by varying the concentration the formation of different types of aggregates can be controlled. Conditions for the appearance of isolated LH2 complexes are defined. PMID:15041674
Spatiotemporal Regulation of the Anaphase-Promoting Complex in Mitosis
Sivakumar, Sushama; Gorbsky, Gary J
2015-01-01
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events. PMID:25604195
Tian, Shuang; Li, Xiu-Li; Shi, Mei; Yao, Yuan-Qing; Li, Li-Wen; Xin, Xiao-Yan
2011-02-01
PTEN (phosphatase and tensin homologue deleted on chromosome ten)/PI3K (phosphatidylinositol 3-kinase)/Akt/mTOR (mammalian target of rapamycin) signaling pathway, which is commonly dysregulated in a broad array of human malignancies, controls the assembly of eukaryotic translation initiation factor 4F (eIF4F) complex through regulation of eIF4E binding proteins (4E-BPs) phosphorylation. And accumulated data over the past two decades implicated eIF4F complex as one of the promising targets for anticancer therapy. It has been confirmed that the translation initiation of mRNA coding for hypoxia-inducible factor-1α (HIF-1α) and survivin, which had been considered as the two major determinants of tumor radiosensitivity, are both controlled by eIF4F complex. Also, eIF4F complex controls the expression of VEGF and bFGF, the two well-known pro-angiogenic factors involved in developing radioresistance. Therefore eIF4F complex plays a pivotal role in regulation of radiosensitivity. In this article, we postulate that cell-permeable, phosphorylation-defective 4E-BP fusion proteins, which could be prepared by substituting the mTOR recognition motif located in N-terminal of 4E-BPs with protein transduction domain from HIV-1 TAT, HSV-1 VP22 or PTD4, could not only inhibit tumor growth but also enhance tumor response to radiation therapy through disruption of eIF4F complex assembly. In our opinion, the recombinant fusion proteins are superior to mTOR inhibitors for they do not cause immunosuppression, do not lead to Akt activation, and could be easily prepared by prokaryotic expression. If the hypothesis was proved to be practical, the cell-permeable, phosphorylation-defective 4E-BP fusion proteins would be widely used in clinical settings to improve tumor response to radiotherapy in the near future. Copyright © 2010 Elsevier Ltd. All rights reserved.
ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.
Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W
2015-10-23
The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.
Signaling complexes of voltage-gated calcium channels
Turner, Ray W; Anderson, Dustin
2011-01-01
Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880
Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo
2012-01-01
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.
2015-02-01
The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less
Evolution of an ancient protein function involved in organized multicellularity in animals
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-01
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169
Stephan, Raiko; Gohl, Christina; Fleige, Astrid; Klämbt, Christian; Bogdan, Sven
2011-01-01
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE. PMID:21900504
Bombardier, Jeffrey P.; Eskin, Julian A.; Jaiswal, Richa; Corrêa, Ivan R.; Xu, Ming-Qun; Goode, Bruce L.; Gelles, Jeff
2015-01-01
Precise control of actin filament length is essential to many cellular processes. Formins processively elongate filaments, whereas capping protein (CP) binds to barbed ends and arrests polymerization. While genetic and biochemical evidence has indicated that these two proteins function antagonistically, the mechanism underlying the antagonism has remained unresolved. Here we use multi-wavelength single-molecule fluorescence microscopy to observe the fully reversible formation of a long-lived ‘decision complex' in which a CP dimer and a dimer of the formin mDia1 simultaneously bind the barbed end. Further, mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex. Quantitative kinetic analysis reveals that the CP-mDia1 antagonism that we observe in vitro occurs through the decision complex. Our observations suggest new molecular mechanisms for the control of actin filament length and for the capture of filament barbed ends in cells. PMID:26566078
Stein, Colleen S; Jadiya, Pooja; Zhang, Xiaoming; McLendon, Jared M; Abouassaly, Gabrielle M; Witmer, Nathan H; Anderson, Ethan J; Elrod, John W; Boudreau, Ryan L
2018-06-26
Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca 2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca 2+ . Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca 2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L
1999-11-01
Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.
Complex of simian virus 40 large-T antigen and host 53,000-molecular-weight protein in monkey cells.
Harlow, E; Pim, D C; Crawford, L V
1981-01-01
Mouse cells transformed by simian virus 40 (SV40) have been shown to contain a complex of the virus-coded large-T antigen with a host 53,000-molecular-weight (53K) protein. Initial attempts to detect a similar complex in lytically infected cells were unsuccessful, and it therefore seemed that the complex might be peculiar to transformed or abortively transformed nonpermissive cells. Immunoprecipitation of [32P]phosphate-labeled extracts of SV40-infected CV-1 African green monkey kidney cells with antibodies specific for large-T or the 53K protein revealed that the large-T-53K protein complex was formed during lytic infections. Only a minor fraction of the large-T present was associated with 53K protein, and large-T and the 53K host protein cosedimented during centrifugation through sucrose gradients. We used monospecific sera and monoclonal antibodies to study the rate of synthesis and phosphorylation of the 53K protein during lytic infections. Infection of CV-1 cells with SV40 increased the rate of synthesis of the 53K protein fivefold over that in mock-infected cells. At the same time, the rate of phosphorylation of the 53K protein increased more than 30-fold compared with control cultures. Monkey cells transformed by UV-irradiated SV40 (Gluzman et al., J. Virol. 22:256-266, 1977) also contained the large-T-53K protein complex. The formation of the complex is therefore not a peculiarity of SV40-transformed rodent cells but is a common feature of SV40 infections. Images PMID:6163871
Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel
2003-08-01
Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.
Collinet, B; Friberg, A; Brooks, M A; van den Elzen, T; Henriot, V; Dziembowski, A; Graille, M; Durand, D; Leulliot, N; Saint André, C; Lazar, N; Sattler, M; Séraphin, B; van Tilbeurgh, H
2011-08-01
Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest. Even in cases where milligram-scale quantities of purified complex of interest become available, there is still no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more components of the complex is frequently required to improve solubility, yield or the ability to crystallize the sample. Subsequent characterization of these constructs may be performed by solution techniques such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify 'well behaved' complexes. Herein, we recount our experiences gained at protein production and complex assembly during the European 3D Repertoire project (3DR). The goal of this consortium was to obtain structural information on multi-protein complexes from yeast by combining crystallography, electron microscopy, NMR and in silico modeling methods. We present here representative set case studies of complexes that were produced and analyzed within the 3DR project. Our experience provides useful insight into strategies that are more generally applicable for structural analysis of protein complexes. Copyright © 2011 Elsevier Inc. All rights reserved.
Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development
Singer, Ruth; Atar, Shimshi; Atias, Osnat; Oron, Efrat; Segal, Daniel; Hirsch, Joel A.; Tuller, Tamir; Orian, Amir; Chamovitz, Daniel A.
2014-01-01
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health. PMID:25106867
Cardone, Antonio; Pant, Harish; Hassan, Sergio A.
2013-01-01
Weak and ultra-weak protein-protein association play a role in molecular recognition, and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized based on binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed. PMID:24044772
Jagannathan, Radhika; Schimizzi, Gregory V; Zhang, Kun; Loza, Andrew J; Yabuta, Norikazu; Nojima, Hitoshi; Longmore, Gregory D
2016-10-15
The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. Copyright © 2016 Jagannathan et al.
Jagannathan, Radhika; Schimizzi, Gregory V.; Zhang, Kun; Loza, Andrew J.; Yabuta, Norikazu; Nojima, Hitoshi
2016-01-01
The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed. PMID:27457617
Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.
Nakada, Daisuke; Hirano, Yukinori; Sugimoto, Katsunori
2004-11-01
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.
Ashmore, Tom; Fernandez, Bernadette O; Branco-Price, Cristina; West, James A; Cowburn, Andrew S; Heather, Lisa C; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J
2014-01-01
Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics. PMID:25172947
ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor
Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.
2015-01-01
The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707
Polar auxin transport: controlling where and how much
NASA Technical Reports Server (NTRS)
Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)
2001-01-01
Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.
Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu
2017-05-01
WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu
2005-06-17
Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less
Electron transport and light-harvesting switches in cyanobacteria
Mullineaux, Conrad W.
2014-01-01
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787
Ramachandran, Anup; Ceaser, Erin; Darley-Usmar, Victor M.
2004-01-01
The mechanisms of nitric oxide (NO) signaling include binding to the iron centers in soluble guanylate cyclase and cytochrome c oxidase and posttranslational modification of proteins by S-nitrosation. Low levels of NO control mitochondrial number in cells, but little is known of the impact of chronic exposure to high levels of NO on mitochondrial function in endothelial cells. The focus of this study is the interaction of NO with mitochondrial respiratory complexes in cell culture and the effect this has on iron homeostasis. We demonstrate that chronic exposure of endothelial cells to NO decreased activity and protein levels of complexes I, II, and IV, whereas citrate synthase and ATP synthase were unaffected. Inhibition of these respiratory complexes was accompanied by an increase in cellular S-nitrosothiol levels, modification of cysteines residues, and an increase in the labile iron pool. The NO-dependent increase in the free iron pool and inhibition of complex II was prevented by inhibition of mitochondrial protein synthesis, consistent with a major contribution of the organelle to iron homeostasis. In addition, inhibition of mitochondrial protein synthesis was associated with an increase in heat shock protein 60 levels, which may be an additional mechanism leading to preservation of complex II activity. PMID:14691259
Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda
2012-04-01
Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.
Phosphorylation of the IDP KID Modulates Affinity for KIX by Increasing the Lifetime of the Complex.
Dahal, Liza; Shammas, Sarah L; Clarke, Jane
2017-12-19
Intrinsically disordered proteins (IDPs) are known to undergo a range of posttranslational modifications, but by what mechanism do such modifications affect the binding of an IDP to its partner protein? We investigate this question using one such IDP, the kinase inducible domain (KID) of the transcription factor CREB, which interacts with the KIX domain of CREB-binding protein upon phosphorylation. As with many other IDPs, KID undergoes coupled folding and binding to form α-helical structure upon interacting with KIX. This single site phosphorylation plays an important role in the control of transcriptional activation in vivo. Here we show that, contrary to expectation, phosphorylation has no effect on association rates-unphosphorylated KID binds just as rapidly as pKID, the phosphorylated form-but rather, acts by increasing the lifetime of the complex. We propose that by controlling the lifetime of the bound complex of pKID:KIX via altering the dissociation rate, phosphorylation can facilitate effective control of transcription regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Emerging players in the initiation of eukaryotic DNA replication
2012-01-01
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression. PMID:23075259
Liu, Shiwei; Liu, Yihui; Zhao, Jiawei; Cai, Shitao; Qian, Hongmei; Zuo, Kaijing; Zhao, Lingxia; Zhang, Lida
2017-04-01
Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome-wide rice protein-protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non-transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein-protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain-mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet-based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2-11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Poulomi; Madden, Jill A.; Sen, Nivedita
2013-02-15
4-Vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied.more » Postnatal day (PND) 4 rat ovaries were cultured in control media ± 1) VCD (30 μM) for 2–8 days; 2) VCD (30 μM) for 2 days, followed by incubation in control media for 4 days (acute VCD exposure); or 3) LY294002 (20 μM) for 6 days. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P < 0.05) after 6 days of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P < 0.05) relative to control after 6 days of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P < 0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P < 0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. - Highlights: ► GSTM protein increases in response to ovarian VCD exposure. ► VCD increases Ask1 mRNA at the onset of follicle loss. ► Ovarian GSTM binds more ASK1 protein during VCD-induced ovotoxicity. ► PI3K regulates ovarian GSTM protein.« less
Optical switches for remote and noninvasive control of cell signaling.
Gorostiza, Pau; Isacoff, Ehud Y
2008-10-17
Although the identity and interactions of signaling proteins have been studied in great detail, the complexity of signaling networks cannot be fully understood without elucidating the timing and location of activity of individual proteins. To do this, one needs a means for detecting and controlling specific signaling events. An attractive approach is to use light, both to report on and control signaling proteins in cells, because light can probe cells in real time with minimal damage. Although optical detection of signaling events has been successful for some time, the development of the means for optical control has accelerated only recently. Of particular interest is the development of chemically engineered proteins that are directly sensitive to light.
Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes.
Rajaratnam, Rajathees; Martin, Elisabeth K; Dörr, Markus; Harms, Klaus; Casini, Angela; Meggers, Eric
2015-08-17
Controlling the relative and absolute configuration of octahedral metal complexes constitutes a key challenge that needs to be overcome in order to fully exploit the structural properties of octahedral metal complexes for applications in the fields of catalysis, materials sciences, and life sciences. Herein, we describe the application of a proline-based chiral tridentate ligand to decisively control the coordination mode of an octahedral rhodium(III) complex. We demonstrate the mirror-like relationship of synthesized enantiomers and differences between diastereomers. Further, we demonstrate, using the established pyridocarbazole pharmacophore ligand as part of the organometallic complexes, the importance of the relative and absolute stereochemistry at the metal toward chiral environments like protein kinases. Protein kinase profiling and inhibition data confirm that the proline-based enantiopure rhodium(III) complexes, despite having all of the same constitution, differ strongly in their selectivity properties despite their unmistakably mutual origin. Moreover, two exemplary compounds have been shown to induce different toxic effects in an ex vivo rat liver model.
Song, Mi-Ryoung; Sun, Yunfu; Bryson, Ami; Gill, Gordon N.; Evans, Sylvia M.; Pfaff, Samuel L.
2009-01-01
Summary LIM transcription factors bind to nuclear LIM interactor (Ldb/NLI/Clim) in specific ratios to form higher-order complexes that regulate gene expression. Here we examined how the dosage of LIM homeodomain proteins Isl1 and Isl2 and LIM-only protein Lmo4 influences the assembly and function of complexes involved in the generation of spinal motor neurons (MNs) and V2a interneurons (INs). Reducing the levels of Islet proteins using a graded series of mutations favored V2a IN differentiation at the expense of MN formation. Although LIM-only proteins (LMOs) are predicted to antagonize the function of Islet proteins, we found that the presence or absence of Lmo4 had little influence on MN or V2a IN specification. We did find, however, that the loss of MNs resulting from reduced Islet levels was rescued by eliminating Lmo4, unmasking a functional interaction between these proteins. Our findings demonstrate that MN and V2a IN fates are specified by distinct complexes that are sensitive to the relative stoichiometries of the constituent factors and we present a model to explain how LIM domain proteins modulate these complexes and, thereby, this binary-cell-fate decision. PMID:19666821
Protein-protein interaction networks (PPI) and complex diseases
Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram
2014-01-01
The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094
Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J
2017-01-01
Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.
Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok
2014-01-01
Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.
An inhibitor of eIF2 activity in the sRNA pool of eukaryotic cells.
Centrella, Michael; Porter, David L; McCarthy, Thomas L
2011-08-15
Eukaryotic protein synthesis is a multi-step and highly controlled process that includes an early initiation complex containing eukaryotic initiation factor 2 (eIF2), GTP, and methionine-charged initiator methionyl-tRNA (met-tRNAi). During studies to reconstruct formation of the ternary complex containing these molecules, we detected a potent inhibitor in low molecular mass RNA (sRNA) preparations of eukaryotic tRNA. The ternary complex inhibitor (TCI) was retained in the total sRNA pool after met-tRNAi was charged by aminoacyl tRNA synthetase, co-eluted with sRNA by size exclusion chromatography, but resolved from met-tRNAi by ion exchange chromatography. The adverse effect of TCI was not overcome by high GTP or magnesium omission and was independent of GTP regeneration. Rather, TCI suppressed the rate of ternary complex formation, and disrupted protein synthesis and the accumulation of heavy polymeric ribosomes in reticulocyte lysates in vitro. Lastly, a component or components in ribosome depleted cell lysate significantly reversed TCI activity. Since assembly of the met-tRNAi/eIF2/GTP ternary complex is integral to protein synthesis, awareness of TCI is important to avoid confusion in studies of translation initiation. A clear definition of TCI may also allow a better appreciation of physiologic or pathologic situations, factors, and events that control protein synthesis in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.
A G protein alpha null mutation confers prolificacy potential in maize
Urano, Daisuke; Jackson, David; Jones, Alan M.
2015-05-06
Plasticity in plant development is controlled by environmental signals through largely unknown signalling networks. Signalling coupled by the heterotrimeric G protein complex underlies various developmental pathways in plants. The morphology of two plastic developmental pathways, root system architecture and female inflorescence formation, was quantitatively assessed in a mutant compact plant 2 (ct2) lacking the alpha subunit of the heterotrimeric G protein complex in maize. The ct2 mutant partially compensated for a reduced shoot height by increased total leaf number, and had far more ears, even in the presence of pollination signals. Lastly, the maize heterotrimeric G protein complex is importantmore » in some plastic developmental traits in maize. In particular, the maize Gα subunit is required to dampen the overproduction of female inflorescences.« less
Cranberry Proanthocyanidins - Protein complexes for macrophage activation.
Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D
2017-09-20
In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas the PAC-HEL complex had already reached the maximum IL-2 expression. Cranberry PAC may increase the rate of endocytosis of HEL and subsequent expression of IL-2 by the T-cell hybridomas. These results suggest that PAC-protein complexes modulate aspects of innate and acquired immune responses in macrophages.
Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development.
Singer, Ruth; Atar, Shimshi; Atias, Osnat; Oron, Efrat; Segal, Daniel; Hirsch, Joel A; Tuller, Tamir; Orian, Amir; Chamovitz, Daniel A
2014-09-01
The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.
Isono, Erika; Kalinowska, Kamila
2017-12-01
To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
A complex solution to a sexual dilemma.
Kuwabara, Patricia E
2007-07-01
The C. elegans male sex-determining protein, FEM-1, has been identified as a substrate recognition subunit of a Cullin-2 ubiquitin ligase complex. This complex controls the level of TRA-1A, a Ci/Gli homolog and master regulator of sex determination, by ubiquitin-mediated proteolysis.
Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong
2012-08-01
Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.
Wang, Peng; Grimm, Bernhard
2015-12-01
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
Dubey, Neelima; Hoffman, Jessica F.; Schuebel, Kornel; Yuan, Qiaoping; Martinez, Pedro E.; Nieman, Lynnette K.; Rubinow, David R.; Schmidt, Peter J.; Goldman, David
2016-01-01
Clinical evidence suggests that mood and behavioral symptoms in Premenstrual Dysphoric Disorder (PMDD), a common, recently recognized, psychiatric condition among women, reflect abnormal responsivity to ovarian steroids. This differential sensitivity could be due to an unrecognized aspect of hormonal signaling or a difference in cellular response. In this study, lymphoblastoid cell line cultures (LCLs) from women with PMDD and asymptomatic Controls were compared via whole transcriptome sequencing (RNA-seq) during untreated (ovarian steroid-free) conditions and following hormone treatment. The women with PMDD manifested ovarian steroid-triggered behavioral sensitivity during a hormone suppression and add-back clinical trial, and Controls did not, leading us to hypothesize that women with PMDD might differ in their cellular response to ovarian steroids. In untreated LCLs, our results overall suggest a divergence between mRNA (e.g., gene transcription) and protein (e.g., RNA translation in proteins) for the same genes. Pathway analysis of the LCL transcriptome revealed, among others, over-expression of ESC/E(Z) complex genes (an ovarian steroid-regulated gene silencing complex) in untreated LCLs from women with PMDD, with more than half of these genes over-expressed as compared to Controls, and with significant effects for MTF2, PHF19, and SIRT1 (p<0.05). RNA and protein expression of the 13 ESC/E(Z) complex genes were individually quantitated. This pattern of increased ESC/E(Z) mRNA expression was confirmed in a larger cohort by qRT-PCR. In contrast, protein expression of ESC/E(Z) genes was decreased in untreated PMDD LCLs with MTF2, PHF19, and SIRT1 all significantly decreased (p<0.05). Finally, mRNA expression of several ESC/E(Z) complex genes were increased by progesterone in Controls only, and decreased by estradiol in PMDD LCLs. These findings demonstrate that LCLs from women with PMDD manifest a cellular difference in ESC/E(Z) complex function both in the untreated condition and in response to ovarian hormones. Dysregulation of ESC/E(Z) complex function could contribute to PMDD. PMID:28044059
Mapping monomeric threading to protein-protein structure prediction.
Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang
2013-03-25
The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD <2.5 Å by SPRING is 134% and 167% higher than these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.
The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.
Yoon, Mee-Sup
2017-10-27
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.
Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae.
Cruz, Diana P; Huertas, Mónica G; Lozano, Marcela; Zárate, Lina; Zambrano, María Mercedes
2012-07-09
Klebsiella pneumoniae can be found in environmental habitats as well as in hospital settings where it is commonly associated with nosocomial infections. One of the factors that contribute to virulence is its capacity to form biofilms on diverse biotic and abiotic surfaces. The second messenger Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a ubiquitous signal in bacteria that controls biofilm formation as well as several other cellular processes. The cellular levels of this messenger are controlled by c-di-GMP synthesis and degradation catalyzed by diguanylate cyclase (DGC) and phophodiesterase (PDE) enzymes, respectively. Many bacteria contain multiple copies of these proteins with diverse organizational structure that highlight the complex regulatory mechanisms of this signaling network. This work was undertaken to identify DGCs and PDEs and analyze the domain structure of these proteins in K. pneumoniae. A search for conserved GGDEF and EAL domains in three sequenced K. pneumoniae genomes showed that there were multiple copies of GGDEF and EAL containing proteins. Both single domain and hybrid GGDEF proteins were identified: 21 in K. pneumoniae Kp342, 18 in K. pneumoniae MGH 78578 and 17 in K. pneumoniae NTUH-K2044. The majority had only the GGDEF domain, most with the GGEEF motif, and hybrid proteins containing both GGDEF and EAL domains were also found. The I site for allosteric control was identified only in single GGDEF domain proteins and not in hybrid proteins. EAL-only proteins, containing either intact or degenerate domains, were also identified: 15 in Kp342, 15 in MGH 78578 and 10 in NTUH-K2044. Several input sensory domains and transmembrane segments were identified, which together indicate complex regulatory circuits that in many cases can be membrane associated. The comparative analysis of proteins containing GGDEF/EAL domains in K. pneumoniae showed that most copies were shared among the three strains and that some were unique to a particular strain. The multiplicity of these proteins and the diversity of structural characteristics suggest that the c-di-GMP network in this enteric bacterium is highly complex and reflects the importance of having diverse mechanisms to control cellular processes in environments as diverse as soils or plants and clinical settings.
Aranda-Orgillés, Beatriz; Rutschow, Désirée; Zeller, Raphael; Karagiannidis, Antonios I.; Köhler, Andrea; Chen, Changwei; Wilson, Timothy; Krause, Sven; Roepcke, Stefan; Lilley, David; Schneider, Rainer; Schweiger, Susann
2011-01-01
We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells. PMID:21930711
Chojnacka, Magdalena; Gornicka, Agnieszka; Oeljeklaus, Silke; Warscheid, Bettina; Chacinska, Agnieszka
2015-06-12
The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Law, Kelsey B.; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O.; Moser, Ann; Brumell, John H.; Braverman, Nancy
2017-01-01
ABSTRACT Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs. PMID:28521612
Law, Kelsey B; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O; Moser, Ann; Brumell, John H; Braverman, Nancy; Kim, Peter K
2017-05-04
Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.
Structure of a Complete Mediator-RNA Polymerase II Pre-Initiation Complex.
Robinson, Philip J; Trnka, Michael J; Bushnell, David A; Davis, Ralph E; Mattei, Pierre-Jean; Burlingame, Alma L; Kornberg, Roger D
2016-09-08
A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular control of brain size: Regulators of neural stem cell life, death and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Bertrand; Hermanson, Ola, E-mail: ola.hermanson@ki.se
2010-05-01
The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas membersmore » of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.« less
Shen, Xi; Do, Huong; Li, Yongjian; Chung, Woo-Hyun; Tomasz, Maria; de Winter, Johan P.; Xia, Bing; Elledge, Stephen J.; Wang, Weidong; Li, Lei
2009-01-01
Summary Fanconi anemia (FA) is characterized by cellular hypersensivity to DNA crosslinking agents, but how the Fanconi pathway protects cells from DNA crosslinks and whether FA proteins act directly on crosslinks remains unclear. We developed a chromatin-IP-based strategy termed eChIP and detected association of multiple FA proteins with DNA crosslinks in vivo. Inter-dependence analyses revealed that crosslink-specific enrichment of various FA proteins is controlled by distinct mechanisms. BRCA-related FA proteins (BRCA2, FANCJ/BACH1, and FANCN/PALB2), but not FA core and I/D2 complexes, require replication for their crosslink association. FANCD2, but not FANCJ and FANCN, requires the FA core complex for its recruitment. FA core complex requires nucleotide excision repair proteins XPA and XPC for its association. Consistent with the distinct recruitment mechanism, recombination-independent crosslink repair was inversely affected in cells deficient of FANC-core versus BRCA-related FA proteins. Thus, FA proteins participate in distinct DNA damage response mechanisms governed by DNA replication status. PMID:19748364
Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel
2015-09-18
Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.
Insights into the Specificity of Lysine Acetyltransferases
Tucker, Alex C.; Taylor, Keenan C.; Rank, Katherine C.; ...
2014-11-07
Reversible lysine acetylation by protein acetyltransferases is a conserved regulatory mechanism that controls diverse cellular pathways. Gcn5-related N-acetyltransferases (GNATs), named after their founding member, are found in all domains of life. GNATs are known for their role as histone acetyltransferases, but non-histone bacterial protein acetytransferases have been identified. Only structures of GNAT complexes with short histone peptide substrates are available in databases. Given the biological importance of this modification and the abundance of lysine in polypeptides, how specificity is attained for larger protein substrates is central to understanding acetyl-lysine-regulated networks. In this paper, we report the structure of a GNATmore » in complex with a globular protein substrate solved to 1.9 Å. GNAT binds the protein substrate with extensive surface interactions distinct from those reported for GNAT-peptide complexes. Finally, our data reveal determinants needed for the recognition of a protein substrate and provide insight into the specificity of GNATs.« less
The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation
Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.
1998-01-01
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045
Ice Shaping Properties, Similar to That of Antifreeze Proteins, of a Zirconium Acetate Complex
Deville, Sylvain; Viazzi, Céline; Leloup, Jérôme; Lasalle, Audrey; Guizard, Christian; Maire, Eric; Adrien, Jérôme; Gremillard, Laurent
2011-01-01
The control of the growth morphologies of ice crystals is a critical issue in fields as diverse as biomineralization, medicine, biology, civil or food engineering. Such control can be achieved through the ice-shaping properties of specific compounds. The development of synthetic ice-shaping compounds is inspired by the natural occurrence of such properties exhibited by antifreeze proteins. We reveal how a particular zirconium acetate complex is exhibiting ice-shaping properties very similar to that of antifreeze proteins, albeit being a radically different compound. We use these properties as a bioinspired approach to template unique faceted pores in cellular materials. These results suggest that ice-structuring properties are not exclusive to long organic molecules and should broaden the field of investigations and applications of such substances. PMID:22028886
Santini, Emanuela; Huynh, Thu N.; Klann, Eric
2018-01-01
The complexity of memory formation and its persistence is a phenomenon that has been studied intensely for centuries. Memory exists in many forms and is stored in various brain regions. Generally speaking, memories are reorganized into broadly distributed cortical networks over time through systems level consolidation. At the cellular level, storage of information is believed to initially occur via altered synaptic strength by processes such as long-term potentiation (LTP). New protein synthesis is required for long-lasting synaptic plasticity as well as for the formation of long-term memory. The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of cap-dependent protein synthesis and is required for numerous forms of long-lasting synaptic plasticity and long-term memory. As such, the study of mTORC1 and protein factors that control translation initiation and elongation have enhanced our understanding of how the process of protein synthesis is regulated during memory formation. Herein we will discuss the molecular mechanisms that regulate protein synthesis as well as pharmacological and genetic manipulations that demonstrate the requirement for proper translational control in long-lasting synaptic plasticity and long-term memory formation. PMID:24484700
Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores.
Ananth, Adithya; Genua, María; Aissaoui, Nesrine; Díaz, Leire; Eisele, Nico B; Frey, Steffen; Dekker, Cees; Richter, Ralf P; Görlich, Dirk
2018-05-01
The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How actin network dynamics control the onset of actin-based motility
Kawska, Agnieszka; Carvalho, Kévin; Manzi, John; Boujemaa-Paterski, Rajaa; Blanchoin, Laurent; Martiel, Jean-Louis; Sykes, Cécile
2012-01-01
Cells use their dynamic actin network to control their mechanics and motility. These networks are made of branched actin filaments generated by the Arp2/3 complex. Here we study under which conditions the microscopic organization of branched actin networks builds up a sufficient stress to trigger sustained motility. In our experimental setup, dynamic actin networks or “gels” are grown on a hard bead in a controlled minimal protein system containing actin monomers, profilin, the Arp2/3 complex and capping protein. We vary protein concentrations and follow experimentally and through simulations the shape and mechanical properties of the actin gel growing around beads. Actin gel morphology is controlled by elementary steps including “primer” contact, growth of the network, entanglement, mechanical interaction and force production. We show that varying the biochemical orchestration of these steps can lead to the loss of network cohesion and the lack of effective force production. We propose a predictive phase diagram of actin gel fate as a function of protein concentrations. This work unveils how, in growing actin networks, a tight biochemical and physical coupling smoothens initial primer-caused heterogeneities and governs force buildup and cell motility. PMID:22908255
DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes.
Meyer, Rebecca; Faesen, Alex; Vogel, Katrin; Jeganathan, Sadasivam; Musacchio, Andrea; Niemeyer, Christof M
2015-06-10
Large supramolecular protein complexes, such as the molecular machinery involved in gene regulation, cell signaling, or cell division, are key in all fundamental processes of life. Detailed elucidation of structure and dynamics of such complexes can be achieved by reverse-engineering parts of the complexes in order to probe their interactions with distinctive binding partners in vitro. The exploitation of DNA nanostructures to mimic partially assembled supramolecular protein complexes in which the presence and state of two or more proteins are decisive for binding of additional building blocks is reported here. To this end, four-way DNA Holliday junction motifs bearing a fluorescein and a biotin tag, for tracking and affinity capture, respectively, are site-specifically functionalized with centromeric protein (CENP) C and CENP-T. The latter serves as baits for binding of the so-called KMN component, thereby mimicking early stages of the assembly of kinetochores, structures that mediate and control the attachment of microtubules to chromosomes in the spindle apparatus. Results from pull-down experiments are consistent with the hypothesis that CENP-C and CENP-T may bind cooperatively to the KMN network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nuclear pore complex tethers to the cytoskeleton.
Goldberg, Martin W
2017-08-01
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed. Copyright © 2017. Published by Elsevier Ltd.
The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.
Mehta, Anil
2007-11-01
This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.
One-plasmid tunable coexpression for mycobacterial protein–protein interaction studies
Chang, Yong; Mead, David; Dhodda, Vinay; Brumm, Phil; Fox, Brian G
2009-01-01
A single plasmid that allows controlled coexpression has been developed for use in mycobacteria. The tetracycline inducible promoter, PtetO, was used to provide tetracycline-dependent induction of one gene, while the Psmyc, Pimyc, or Phsp promoters were used to provide three different levels of constitutive expression of a second gene. The functions of these four individual promoters were established using green fluorescent protein (GFP) and a newly identified red fluorescence inducible protein from Geobacillus sterothermophilus strain G1.13 (RFIP) as reporters. The tandem use of GFP and RFIP as reporter genes allowed optimization of the tunable coexpression in Mycobacterium smegmatis; either time at a fixed inducer concentration or changes in inducer concentration could be used to control the protein:protein ratio. This single vector system was used to coexpress the two-protein Mycobacterium tuberculosis stearoyl-CoA Δ9 desaturase complex (integral membrane desaturase Rv3229c and NADPH oxidoreductase Rv3230c) in M. smegmatis. The catalytic activity was found to increase in a manner corresponding to increasing the level of Rv3230c relative to a fixed level of Rv3229c. This system, which can yield finely tuned coexpression of the fatty acid desaturase complex in mycobacteria, may be useful for study of other multicomponent complexes. Furthermore, the tunable coexpression strategy used herein should also be applicable in other species with minor modifications. PMID:19760663
Oh, Sunhee; Lee, Hee-Kyung; Rojas, Clemencia M.
2017-01-01
Plants have complex and adaptive innate immune responses against pathogen infections. Stomata are key entry points for many plant pathogens. Both pathogens and plants regulate stomatal aperture for pathogen entry and defense, respectively. Not all plant proteins involved in stomatal aperture regulation have been identified. Here, we report GENERAL CONTROL NONREPRESSIBLE4 (GCN4), an AAA+-ATPase family protein, as one of the key proteins regulating stomatal aperture during biotic and abiotic stress. Silencing of GCN4 in Nicotiana benthamiana and Arabidopsis thaliana compromises host and nonhost disease resistance due to open stomata during pathogen infection. AtGCN4 overexpression plants have reduced H+-ATPase activity, stomata that are less responsive to pathogen virulence factors such as coronatine (phytotoxin produced by the bacterium Pseudomonas syringae) or fusicoccin (a fungal toxin produced by the fungus Fusicoccum amygdali), reduced pathogen entry, and enhanced drought tolerance. This study also demonstrates that AtGCN4 interacts with RIN4 and 14-3-3 proteins and suggests that GCN4 degrades RIN4 and 14-3-3 proteins via a proteasome-mediated pathway and thereby reduces the activity of the plasma membrane H+-ATPase complex, thus reducing proton pump activity to close stomata. PMID:28855332
The super elongation complex (SEC) and MLL in development and disease
Smith, Edwin; Lin, Chengqi; Shilatifard, Ali
2011-01-01
Transcriptional regulation at the level of elongation is vital for the control of gene expression and metazoan development. The mixed lineage leukemia (MLL) protein and its Drosophila homolog, Trithorax, which exist within COMPASS (complex of proteins associated with Set1)-like complexes, are master regulators of development. They are required for proper homeotic gene expression, in part through methylation of histone H3 on Lys 4. In humans, the MLL gene is involved in a large number of chromosomal translocations that create chimeric proteins, fusing the N terminus of MLL to several proteins that share little sequence similarity. Several frequent translocation partners of MLL were found recently to coexist in a super elongation complex (SEC) that includes known transcription elongation factors such as eleven-nineteen lysine-rich leukemia (ELL) and P-TEFb. Importantly, the SEC is required for HOX gene expression in leukemic cells, suggesting that chromosomal translocations involving MLL could lead to the overexpression of HOX and other genes through the involvement of the SEC. Here, we review the normal developmental roles of MLL and the SEC, and how MLL fusion proteins can mediate leukemogenesis. PMID:21460034
Kastritis, Panagiotis L; Rodrigues, João P G L M; Folkers, Gert E; Boelens, Rolf; Bonvin, Alexandre M J J
2014-07-15
Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions. Copyright © 2014. Published by Elsevier Ltd.
Blood coagulation reactions on nanoscale membrane surfaces
NASA Astrophysics Data System (ADS)
Pureza, Vincent S.
Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.
Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.
McCarthy, Alex J; Lindsay, Jodi A
2013-10-01
Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samanta, Sudipta; Mukherjee, Sanchita
2017-10-01
The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.
Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin
2014-01-01
Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.
Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex
Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B.
2016-01-01
Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer–promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and “bridging” proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior–posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. PMID:26715665
A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.
Lin, Yu Hsuan; Pratt, Matthew R
2014-04-14
One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi
Rodríguez-Romero, J.; Franceschetti, M.; Bueno, E.; Sesma, A.
2015-01-01
Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs. PMID:25514925
Akude, Eli; Zherebitskaya, Elena; Chowdhury, Subir K Roy; Smith, Darrell R; Dobrowsky, Rick T; Fernyhough, Paul
2011-01-01
Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome. Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS). Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control. Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.
Georgieva, Katya; Röding, Anja; Büchel, Claudia
2009-09-15
The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.
BLOC-1 Interacts with BLOC-2 and the AP-3 Complex to Facilitate Protein Trafficking on Endosomes
Di Pietro, Santiago M.; Falcón-Pérez, Juan M.; Tenza, Danièle; Setty, Subba R.G.; Marks, Michael S.; Raposo, Graça
2006-01-01
The adaptor protein (AP)-3 complex is a component of the cellular machinery that controls protein sorting from endosomes to lysosomes and specialized related organelles such as melanosomes. Mutations in an AP-3 subunit underlie a form of Hermansky-Pudlak syndrome (HPS), a disorder characterized by abnormalities in lysosome-related organelles. HPS in humans can also be caused by mutations in genes encoding subunits of three complexes of unclear function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2, and -3. Here, we report that BLOC-1 interacts physically and functionally with AP-3 to facilitate the trafficking of a known AP-3 cargo, CD63, and of tyrosinase-related protein 1 (Tyrp1), a melanosomal membrane protein previously thought to traffic only independently of AP-3. BLOC-1 also interacts with BLOC-2 to facilitate Tyrp1 trafficking by a mechanism apparently independent of AP-3 function. Both BLOC-1 and -2 localize mainly to early endosome-associated tubules as determined by immunoelectron microscopy. These findings support the idea that BLOC-1 and -2 represent hitherto unknown components of the endosomal protein trafficking machinery. PMID:16837549
Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125
Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity?
Maj, Mary C; Raha, Sandeep; Myint, Tomoko; Robinson, Brian H
2004-01-01
We had previously suggested that phosphorylation of proteins by mitochondrial kinases regulate the activity of NADH/CoQ oxidoreductase. Initial data showed that pyruvate dehydrogenase kinase (PDK) and cAMP-dependent protein kinase A (PKA) phosphorylate mitochondrial membrane proteins. Upon phosphorylation with crude PDK, mitochondria appeared to be deficient in NADH/cytochrome c reductase activity associated with increased superoxide production. Conversely, phosphorylation by PKA resulted in increased NADH/cytochrome c reductase activity and decreased superoxide formation. Current data confirms PKA involvement in regulating Complex I activity through phosphorylation of an 18 kDa subunit. Beef heart NADH/ cytochrome c reductase activity increases to 150% of control upon incubation with PKA and ATP-gamma-S. We have cloned the four human isoforms of PDK and purified beef heart Complex I. Incubation of mitochondria with PDK isoforms and ATP did not alter Complex I activity or superoxide production. Radiolabeling of mitochondria and purified Complex I with PDK failed to reveal phosphorylated proteins.
Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.
2016-01-01
Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443
Adsorption of protein GlnB of Herbaspirillum seropedicae on Si(111) investigated by AFM and XPS.
Lubambo, A F; Benelli, E M; Klein, J; Schreiner, W; Camargo, P C
2006-01-01
The protein GlnB-Hs (GlnB of Herbaspirillum seropedicae) in diazotroph micro-organisms signalizes levels of nitrogen, carbon, and energy for a series of proteins involved in the regulation of expression and control of the activity of nitrogenase complex that converts atmospheric nitrogen in ammonia, resulting in biological nitrogen fixation. Its structure has already been determined by X-ray diffraction, revealing a trimer of (36 kDa) with lateral cavities having hydrophilic boundaries. The interactions of GlnB-Hs with the well-known Si(111) surface were investigated for different incubation times, protein concentrations in initial solution, deposition conditions, and substrate initial state. The protein solution was deposited on Si(111) and dried under controlled conditions. An atomic force microscope operating in dynamic mode shows images of circular, linear, and more complex donut-shaped protein arrangement, and also filament types of organization, which vary from a few nanometers to micrometers. Apparently, the filament formation was favored because of protein surface polarity when in contact with the silicon surface, following some specific orientation. The spin-coating technique was successfully used to obtain more uniform surface covering.
Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B
2013-05-01
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights.
2013-01-01
Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 kDa) levels were lower in EAE samples with advanced disease relative to controls, while an MBP fragment (12. 4kDa), likely due to calpain digestion, was increased in EAE relative to controls. The appearance of MBP in mitochondrially enriched fractions is due to tissue freezing and storage, as MBP was not found associated with mitochondria obtained from fresh tissue. Conclusions SELDI mass spectrometry can be employed to explore the proteome of a complex tissue (brain) and obtain protein profiles of differentially expressed proteins from protein fractions. Appropriate homogenization protocols and protein fractionation using anion exchange beads can be employed to reduce sample complexity without introducing significant additional variation into the SELDI mass spectra beyond that inherent in the SELDI- MS method itself. SELDI-MS coupled with principal component analysis and hierarchical cluster analysis provides protein patterns that can clearly distinguish the disease state from controls. However, identification of individual differentially expressed proteins requires a separate purification of the proteins of interest by polyacrylamide electrophoresis prior to trypsin digestion and peptide mass fingerprint analysis, and unambiguous identification of differentially expressed proteins can be difficult if protein bands consist of several proteins with similar molecular weights. PMID:23635033
Cyclin A and the retinoblastoma gene product complex with a common transcription factor.
Bandara, L R; Adamczewski, J P; Hunt, T; La Thangue, N B
1991-07-18
The retinoblastoma gene (Rb) product is a negative regulator of cellular proliferation, an effect that could be mediated in part at the transcriptional level through its ability to complex with the sequence-specific transcription factor DRTF1. This interaction is modulated by adenovirus E1a, which sequesters the Rb protein and several other cellular proteins, including cyclin A, a molecule that undergoes cyclical accumulation and destruction during each cell cycle and which is required for cell cycle progression. Cyclin A, which also complexes with DRTF1, facilitates the efficient assembly of the Rb protein into the complex. This suggests a role for cyclin A in regulating transcription and defines a transcription factor through which molecules that regulate the cell cycle in a negative fashion, such as Rb, and in a positive fashion, such as cyclin A, interact. Mutant loss-of-function Rb alleles, which occur in a variety of tumour cells, also fail to complex with E1a and large T antigen. Here we report on a naturally occurring loss-of-function Rb allele encoding a protein that fails to complex with DRTF1. This might explain how mutation in the Rb gene prevents negative growth control.
Dancheck, Barbara; Ragusa, Michael J.; Allaire, Marc; Nairn, Angus C.; Page, Rebecca; Peti, Wolfgang
2011-01-01
Regulation of the major ser/thr phosphatase Protein Phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes, and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry and small angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and Inhibitor-2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1:spinophilin:I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1:spinophilin and PP1:I2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1:I2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multi-functional PP1 holoenzymes. PMID:21218781
Kolossov, Vladimir L; Kopetz, Karen J; Rebeiz, Constantin A
2003-08-01
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.
Protein and gene model inference based on statistical modeling in k-partite graphs.
Gerster, Sarah; Qeli, Ermir; Ahrens, Christian H; Bühlmann, Peter
2010-07-06
One of the major goals of proteomics is the comprehensive and accurate description of a proteome. Shotgun proteomics, the method of choice for the analysis of complex protein mixtures, requires that experimentally observed peptides are mapped back to the proteins they were derived from. This process is also known as protein inference. We present Markovian Inference of Proteins and Gene Models (MIPGEM), a statistical model based on clearly stated assumptions to address the problem of protein and gene model inference for shotgun proteomics data. In particular, we are dealing with dependencies among peptides and proteins using a Markovian assumption on k-partite graphs. We are also addressing the problems of shared peptides and ambiguous proteins by scoring the encoding gene models. Empirical results on two control datasets with synthetic mixtures of proteins and on complex protein samples of Saccharomyces cerevisiae, Drosophila melanogaster, and Arabidopsis thaliana suggest that the results with MIPGEM are competitive with existing tools for protein inference.
Wang, W; Zhang, W; Jiang, R; Luan, Y
2010-05-01
It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.
Gaude, H; Aznar, N; Delay, A; Bres, A; Buchet-Poyau, K; Caillat, C; Vigouroux, A; Rogon, C; Woods, A; Vanacker, J-M; Höhfeld, J; Perret, C; Meyer, P; Billaud, M; Forcet, C
2012-03-22
LKB1 is a tumor suppressor that is constitutionally mutated in a cancer-prone condition, called Peutz-Jeghers syndrome, as well as somatically inactivated in a sizeable fraction of lung and cervical neoplasms. The LKB1 gene encodes a serine/threonine kinase that associates with the pseudokinase STRAD (STE-20-related pseudokinase) and the scaffolding protein MO25, the formation of this heterotrimeric complex promotes allosteric activation of LKB1. We have previously reported that the molecular chaperone heat shock protein 90 (Hsp90) binds to and stabilizes LKB1. Combining pharmacological studies and RNA interference approaches, we now provide evidence that the co-chaperone Cdc37 participates to the regulation of LKB1 stability. It is known that the Hsp90-Cdc37 complex recognizes a surface within the N-terminal catalytic lobe of client protein kinases. In agreement with this finding, we found that the chaperones Hsp90 and Cdc37 interact with an LKB1 isoform that differs in the C-terminal region, but not with a novel LKB1 variant that lacks a portion of the kinase N-terminal lobe domain. Reconstitution of the two complexes LKB1-STRAD and LKB1-Hsp90-Cdc37 with recombinant proteins revealed that the former is catalytically active whereas the latter is inactive. Furthermore, consistent with a documented repressor function of Hsp90, LKB1 kinase activity was transiently stimulated upon dissociation of Hsp90. Finally, disruption of the LKB1-Hsp90 complex favors the recruitment of both Hsp/Hsc70 and the U-box dependent E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein) that triggers LKB1 degradation. Taken together, our results establish that the Hsp90-Cdc37 complex controls both the stability and activity of the LKB1 kinase. This study further shows that two chaperone complexes with antagonizing activities, Hsp90-Cdc37 and Hsp/Hsc70-CHIP, finely control the cellular level of LKB1 protein.
Lalev, A I; Abeyrathne, P D; Nazar, R N
2000-09-08
The interdependency of steps in the processing of pre-rRNA in Schizosaccharomyces pombe suggests that RNA processing, at least in part, acts as a quality control mechanism which helps assure that only functional RNA is incorporated into mature ribosomes. To determine further the role of the transcribed spacer regions in rRNA processing and to detect interactions which underlie the interdependencies, the ITS1 sequence was examined for its ability to form ribonucleoprotein complexes with cellular proteins. When incubated with protein extract, the spacer formed a specific large RNP. This complex was stable to fractionation by agarose or polyacrylamide gel electrophoresis. Modification exclusion analyses indicated that the proteins interact with a helical domain which is conserved in the internal transcribed spacers. Mutagenic analyses confirmed an interaction with this sequence and indicated that this domain is critical to the efficient maturation of the precursor RNA. The protein constituents, purified by affinity chromatography using the ITS1 sequence, retained an ability to form stable RNP. Protein analyses of gel purified complex, prepared with affinity-purified proteins, indicated at least 20 protein components ranging in size from 20-200 kDa. Peptide mapping by Maldi-Toff mass spectroscopy identified eight hypothetical RNA binding proteins which included four different RNA-binding motifs. Another protein was putatively identified as a pseudouridylate synthase. Additional RNA constituents were not detected. The significance of this complex with respect to rRNA maturation and interdependence in rRNA processing is discussed. Copyright 2000 Academic Press.
Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling
Parker, Lewan; Shaw, Christopher S.; Stepto, Nigel K.; Levinger, Itamar
2017-01-01
Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis. PMID:28529499
Membrane curvature and its generation by BAR proteins
Mim, Carsten; Unger, Vinzenz M
2012-01-01
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040
Crystallization of bi-functional ligand protein complexes.
Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano
2013-06-01
Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Aileen F.; Sen, Nivedita; Sipes, I. Glenn
2010-09-01
The occupational chemical 4-vinylcyclohexene diepoxide (VCD) selectively destroys ovarian small pre-antral follicles in rats and mice via apoptosis. Detoxification of VCD can occur through glutathione conjugation, catalyzed by glutathione S-transferase (GST) enzymes. Further, GST class pi (GSTp) can negatively regulate JNK activity through protein:protein interactions in extra-ovarian tissues. Dissociation of this protein complex in the face of chemical exposure releases the inhibition of pro-apoptotic JNK. Increased JNK activity during VCD-induced ovotoxicity has been shown in isolated ovarian small pre-antral follicles following in vivo dosing of rats (80 mg/kg/day; 15 days, i.p.). The present study investigated the pattern of ovarian GSTpmore » expression during VCD exposure. Additionally, the effect of VCD on an ovarian GSTp:JNK protein complex was investigated. PND4 F344 rat ovaries were incubated in control medium {+-} VCD (30 {mu}M) for 2-8 days. VCD increased ovarian GSTp mRNA (P < 0.05) relative to control on d4-d8; whereas GSTp protein was increased (P < 0.05) on d6-d8. A GSTp:JNK protein complex was detected by immunoprecipitation and Western blotting in ovarian tissues. Relative to control, the amount of GSTp-bound JNK was increased (P = 0.09), while unbound JNK was decreased (P < 0.05) on d6 of VCD exposure. The VCD-induced decrease in unbound JNK was preceded by a decrease in phosphorylated c-Jun which occurred on d4. These findings are in support of a possible dual protective role for GSTp in the rat ovary, consisting of metabolism of VCD and inhibition of JNK-initiated apoptosis.« less
A Viral Pilot for HCMV Navigation?
Adler, Barbara
2015-07-15
gH/gL virion envelope glycoprotein complexes of herpesviruses serve as entry complexes and mediate viral cell tropism. By binding additional viral proteins, gH/gL forms multimeric complexes which bind to specific host cell receptors. Both Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) express alternative multimeric gH/gL complexes. Relative amounts of these alternative complexes in the viral envelope determine which host cells are preferentially infected. Host cells of EBV can modulate the gH/gL complex complement of progeny viruses by cell type-dependent degradation of one of the associating proteins. Host cells of HCMV modulate the tropism of their virus progenies by releasing or not releasing virus populations with a specific gH/gL complex complement out of a heterogeneous pool of virions. The group of Jeremy Kamil has recently shown that the HCMV ER-resident protein UL148 controls integration of one of the HCMV gH/gL complexes into virions and thus creates a pool of virions which can be routed by different host cells. This first mechanistic insight into regulation of the gH/gL complex complement of HCMV progenies presents UL148 as a pilot candidate for HCMV navigation in its infected host.
Wang, Zhibiao; Ru, Licong; Baekelandt, Alexandra; Goossens, Alain; Xu, Ran; Zhu, Zhengge; Inzé, Dirk; Li, Yunhai
2018-01-01
Organ size control is of particular importance for developmental biology and agriculture, but the mechanisms underlying organ size regulation remain elusive in plants. Meristemoids, which possess stem cell-like properties, have been recognized to play important roles in leaf growth. We have recently reported that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3) promotes meristemoid proliferation and regulates organ size by influencing the stability of the transcriptional regulators PEAPODs (PPDs). Here we demonstrate that KIX8 and KIX9, which function as adaptors for the corepressor TOPLESS and PPD, are novel substrates of SAP. SAP interacts with KIX8/9 and modulates their protein stability. Further results show that SAP acts in a common pathway with KIX8/9 and PPD to control organ growth by regulating meristemoid cell proliferation. Thus, these findings reveal a molecular mechanism by which SAP targets the KIX-PPD repressor complex for degradation to regulate meristemoid cell proliferation and organ size. PMID:29401459
DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex.
Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees
2018-03-02
The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize artificial NPC mimics that allows controlling the type and copy number of FG-Nups. We constructed 34 nm-wide 3D DNA origami rings and attached different numbers of NSP1, a model yeast FG-Nup, or NSP1-S, a hydrophilic mutant. Using (cryo) electron microscopy, we find that NSP1 forms denser cohesive networks inside the ring compared to NSP1-S. Consistent with this, the measured ionic conductance is lower for NSP1 than for NSP1-S. Molecular dynamics simulations reveal spatially varying protein densities and conductances in good agreement with the experiments. Our technique provides an experimental platform for deciphering the collective behavior of IDPs with full control of their type and position.
2018-01-01
Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles. PMID:29518071
Holland, David O; Johnson, Margaret E
2018-03-01
Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles.
STRIPAK complexes: structure, biological function, and involvement in human diseases.
Hwang, Juyeon; Pallas, David C
2014-02-01
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture
Ding, Zhao-Ying; Huang, Yu-Cheng; Lee, Myong-Chol; Tseng, Min-Jen; Chi, Ya-Hui
2017-01-01
Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture. PMID:28716842
Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan
2016-01-01
The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734
Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.
Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil
2007-11-28
The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.
Maple, Jodi; Møller, Simon G
2007-10-01
Plastid division represents a fundamental biological process essential for plant development; however, the molecular basis of symmetric plastid division is unclear. AtMinE1 plays a pivotal role in selection of the plastid division site in concert with AtMinD1. AtMinE1 localises to discrete foci in chloroplasts and interacts with AtMinD1, which shows a similar localisation pattern. Here, we investigate the importance of Min protein complex formation during the chloroplast division process. Dissection of the assembly of the Min protein complex and determination of the interdependency of complex assembly and localisation in planta allow us to present a model of the molecular basis of selection of the division site in plastids. Moreover, functional analysis of AtMinE1 in bacteria demonstrates the level of functional conservation and divergence of the plastidic MinE proteins.
Kazi, Abid A; Pruznak, Anne M; Frost, Robert A; Lang, Charles H
2011-02-01
Sepsis-induced muscle atrophy is produced in part by decreased protein synthesis mediated by inhibition of mTOR (mammalian target of rapamycin). The present study tests the hypothesis that alteration of specific protein-protein interactions within the mTORC1 (mTOR complex 1) contributes to the decreased mTOR activity observed after cecal ligation and puncture in rats. Sepsis decreased in vivo translational efficiency in gastrocnemius and reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein (BP) 1, S6 kinase (S6K) 1, and mTOR, compared with time-matched pair-fed controls. Sepsis decreased T246-phosphorylated PRAS40 (proline-rich Akt substrate 40) and reciprocally increased S792-phosphorylated raptor (regulatory associated protein of mTOR). Despite these phosphorylation changes, sepsis did not alter PRAS40 binding to raptor. The amount of the mTOR-raptor complex did not differ between groups. In contrast, the binding and retention of both 4E-BP1 and S6K1 to raptor were increased, and, conversely, the binding of raptor with eIF3 was decreased in sepsis. These changes in mTORC1 in the basal state were associated with enhanced 5'-AMP activated kinase activity. Acute in vivo leucine stimulation increased muscle protein synthesis in control, but not septic rats. This muscle leucine resistance was associated with coordinated changes in raptor-eIF3 binding and 4E-BP1 phosphorylation. Overall, our data suggest the sepsis-induced decrease in muscle protein synthesis may be mediated by the inability of 4E-BP1 and S6K1 to be phosphorylated and released from mTORC1 as well as the decreased recruitment of eIF3 necessary for a functional 48S complex. These data provide additional mechanistic insight into the molecular mechanisms by which sepsis impairs both basal protein synthesis and the anabolic response to the nutrient signal leucine in skeletal muscle.
Wilson, Fiona A; Orellana, Renán A; Suryawan, Agus; Nguyen, Hanh V; Jeyapalan, Asumthia S; Frank, Jason; Davis, Teresa A
2008-07-01
Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.
Wilson, Fiona A.; Orellana, Renán A.; Suryawan, Agus; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Frank, Jason; Davis, Teresa A.
2008-01-01
Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7–10 days of pST (150 μg·kg−1·day−1) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 μU/ml), 2) fed control (25 μU/ml), and 3) fed pST-treated (50 μU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1·eIF4E complex association and increased active eIF4E·eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation. PMID:18460595
The balance of protein expression and degradation: an ESCRTs point of view.
Babst, Markus; Odorizzi, Greg
2013-08-01
Endosomal sorting complexes required for transport (ESCRTs) execute the biogenesis of late endosomal multivesicular bodies (MVBs). The ESCRT pathway has traditionally been viewed as a means by which transmembrane proteins are degraded in vacuoles/lysosomes. More recent studies aimed at understanding the broader functions of ESCRTs have uncovered unexpected links with pathways that control cellular metabolism. Central to this communication is TORC1, the kinase complex that controls many of the catabolic and anabolic systems. The connection between TORC1 activity and ESCRTs allows cells to quickly adapt to the stress of nutrient limitations until the longer-term autophagic pathway is activated. Increasing evidence also points to ESCRTs regulating RNA interference (RNAi) pathways that control translation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Identification of protein–protein interfaces by decreased amide proton solvent accessibility
Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.
1998-01-01
Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Kostic, N.M.
1988-07-27
This study introduces binuclear transition-metal complexes as reagents for selective covalent cross-linking of proteins. Incubation of horse cytochrome c (designated cyt) with Rh{sub 2}(OAc){sub 4} under mild conditions yields the diprotein complex, Rh{sub 2}(OAc){sub 4}(cyt){sub 2}, whose composition is established by size-exclusion chromatography, uv-vis spectroscopy, and {sup 1}H NMR spectroscopy. The protein molecules are coordinated to the Rh atoms via the imidazole (Im) rings of their His 33 residues, as shown by uv difference and {sup 1}H NMR spectroscopy, by the pH effect on the complex formation, and by the control experiments with tuna cytochrome c. The diprotein complex ismore » stable under ordinary conditions, and yet it can be cleaved, and the native protein recovered, by treatment with a suitable strong nucleophile. Spectroscopic and electrochemical measurements show that the structural and redox properties of cytochrome c are not perturbed significantly by cross-linking. Comparison between Rh{sub 2}(OAc){sub 4}(Im){sub 2} and Rh{sub 2}(OAc){sub 4}(cyt){sub 2} shows that the complex containing small ligands is not an entirely realistic model of the complex containing proteins. In particular, the enhanced stability of the latter toward hydrolysis may be due to steric bulk of the protein ligands and to hydrogen bonds that amino acid side chains may form with the inorganic link. Some of the findings of this study may pertain to the mechanism of antitumor action of the Rh{sub 2}(RCOO){sub 4} complexes. 86 refs., 2 tabs.« less
Zhang, Genyi; Maladen, Michelle; Campanella, Osvaldo H; Hamaker, Bruce R
2010-08-25
The self-assembly of a ternary complex, which is formed through heating and cooling of a mixture of amylose (1.0 mg/mL), whey protein isolate (50 μg/mL), and free fatty acids (FFAs, 250 μg/mL) was investigated. High-performance size-exclusion chromatography-multi-angle laser light scattering (HPSEC-MALLS) analysis showed that the complex is a water-soluble supramolecule (Mw = 6-7 × 10(6)), with a radius of gyration of 20-100 nm, indicating a nanoscale complex. Experimental results using 1-monostearyl-rac-glycerol (MSG) or cetyl alcohol that is similar to FFA in structure (except the headgroup) indicate that FFAs are the bridge between thermodynamically incompatible amylose and protein molecules and their functional carboxyl group is essential to the formation of the complex. Additionally, the effects of pH and salt treatments suggest that electrostatic interactions between negatively charged carboxyl groups of FFAs and polyionic protein are the foundation for the self-assembly of the complex. The fact that FFA is one important component in the self-assembled complex with an estimated molar ratio of 6:1:192 (amylose/protein/FFA, ∼4-5% FFA) demonstrates that it might be used as a nanocarrier for the controlled release of lipophilic functional materials to maintain their stability, bioactivity, and more importantly water solubility.
Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon
2015-06-15
A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and dynamics of thylakoids in land plants.
Pribil, Mathias; Labs, Mathias; Leister, Dario
2014-05-01
Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.
Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Maye, M; Zhang, Y
We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.
Yu, Haiqing; Lu, Joann J.; Rao, Wei
2016-01-01
Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122
Minamikawa, Mai F; Koyano, Ruriko; Kikuchi, Shinji; Koba, Takato; Sassa, Hidenori
2014-01-01
Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.
Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.
Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian
2006-07-01
The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.
CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock
Lamouroux, Annie; Chélot, Elisabeth; Rouyer, François
2012-01-01
Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK (CLK)/CYCLE (CYC) transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3) is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations. PMID:22879814
Dynamic protein assembly by programmable DNA strand displacement.
Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred
2018-04-01
Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.
Dynamic protein assembly by programmable DNA strand displacement
NASA Astrophysics Data System (ADS)
Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred
2018-03-01
Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.
The actin cytoskeleton may control the polar distribution of an auxin transport protein
NASA Technical Reports Server (NTRS)
Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)
2000-01-01
The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.
The actin cytoskeleton may control the polar distribution of an auxin transport protein.
Muday, G K; Hu, S; Brady, S R
2000-06-01
The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.
Hacisuleyman, Aysima; Erman, Burak
2017-01-01
It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system.
Inostroza-Brito, Karla E; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H; Monge-Marcet, Amàlia; Ferreira, Daniela S; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system
NASA Astrophysics Data System (ADS)
Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation
Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Lucia, Maria Dell’Anna; Dell, Giulia 'Omo; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Giulia, Maria Rizzo; Gurtner, Aymone; Piaggio, Giulia
2017-01-01
Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation. PMID:27793050
Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R
2015-02-01
To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.
Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J
2006-07-26
The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.
Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD.
White, Courtney L; Kitich, Aleksandar; Gober, James W
2010-05-01
In Caulobacter crescentus, intact cables of the actin homologue, MreB, are required for the proper spatial positioning of MurG which catalyses the final step in peptidoglycan precursor synthesis. Similarly, in the periplasm, MreC controls the spatial orientation of the penicillin binding proteins and a lytic transglycosylase. We have now found that MreB cables are required for the organization of several other cytosolic murein biosynthetic enzymes such as MraY, MurB, MurC, MurE and MurF. We also show these proteins adopt a subcellular pattern of localization comparable to MurG, suggesting the existence of cytoskeletal-dependent interactions. Through extensive two-hybrid analyses, we have now generated a comprehensive interaction map of components of the bacterial morphogenetic complex. In the cytosol, this complex contains both murein biosynthetic enzymes and morphogenetic proteins, including RodA, RodZ and MreD. We show that the integral membrane protein, MreD, is essential for lateral peptidoglycan synthesis, interacts with the precursor synthesizing enzymes MurG and MraY, and additionally, determines MreB localization. Our results suggest that the interdependent localization of MreB and MreD functions to spatially organize a complex of peptidoglycan precursor synthesis proteins, which is required for propagation of a uniform cell shape and catalytically efficient peptidoglycan synthesis.
NASA Astrophysics Data System (ADS)
Katz, Aline; Saenz-Méndez, Patricia; Cousido-Siah, Alexandra; Podjarny, Alberto D.; Ventura, Oscar N.
2012-11-01
Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions (Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.
Formosa, Luke E; Hofer, Annette; Tischner, Christin; Wenz, Tina; Ryan, Michael T
2016-01-01
In higher eukaryotes, the mitochondrial electron transport chain consists of five multi-subunit membrane complexes responsible for the generation of cellular ATP. Of these, four complexes are under dual genetic control as they contain subunits encoded by both the mitochondrial and nuclear genomes, thereby adding another layer of complexity to the puzzle of respiratory complex biogenesis. These subunits must be synthesized and assembled in a coordinated manner in order to ensure correct biogenesis of different respiratory complexes. Here, we describe techniques to (1) specifically radiolabel proteins encoded by mtDNA to monitor the rate of synthesis using pulse labeling methods, and (2) analyze the stability, assembly, and turnover of subunits using pulse-chase methods in cultured cells and isolated mitochondria.
Super-complexes of adhesion GPCRs and neural guidance receptors
NASA Astrophysics Data System (ADS)
Jackson, Verity A.; Mehmood, Shahid; Chavent, Matthieu; Roversi, Pietro; Carrasquero, Maria; Del Toro, Daniel; Seyit-Bremer, Goenuel; Ranaivoson, Fanomezana M.; Comoletti, Davide; Sansom, Mark S. P.; Robinson, Carol V.; Klein, Rüdiger; Seiradake, Elena
2016-04-01
Latrophilin adhesion-GPCRs (Lphn1-3 or ADGRL1-3) and Unc5 cell guidance receptors (Unc5A-D) interact with FLRT proteins (FLRT1-3), thereby promoting cell adhesion and repulsion, respectively. How the three proteins interact and function simultaneously is poorly understood. We show that Unc5D interacts with FLRT2 in cis, controlling cell adhesion in response to externally presented Lphn3. The ectodomains of the three proteins bind cooperatively. Crystal structures of the ternary complex formed by the extracellular domains reveal that Lphn3 dimerizes when bound to FLRT2:Unc5, resulting in a stoichiometry of 1:1:2 (FLRT2:Unc5D:Lphn3). This 1:1:2 complex further dimerizes to form a larger `super-complex' (2:2:4), using a previously undescribed binding motif in the Unc5D TSP1 domain. Molecular dynamics simulations, point-directed mutagenesis and mass spectrometry demonstrate the stability and molecular properties of these complexes. Our data exemplify how receptors increase their functional repertoire by forming different context-dependent higher-order complexes.
Templated self-assembly of quantum dots from aqueous solution using protein scaffolds
NASA Astrophysics Data System (ADS)
Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.
2006-10-01
Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.
Chaudhuri, Ankur; Biswas, Sampa; Chakraborty, Sibani
2018-02-07
Meprins are a group of zinc metalloproteases of the astacin family which play a pivotal role in several physiological and pathologocal diseases. The inhibition of the meprins by various inhibitors, macromolecular and small molecules, is crucial in the control of several diseases. Human cystatinC, an amyloidogenic protein, is reported to be an endogenous inhibitor of meprin-α. In this computational study, we elucidate a rational model for meprinα-cystatinC complex using protein-protein docking. The complex model as well as the unbound form was evaluated by molecular dynamics simulation. A simulation study revealed higher stability of the complex owing to the presence of several interactions. Virtual alanine mutagenesis helps in identifying the hotspots on both proteins. Based on the frequency of occurrence of hotspot amino acids, it was possible to enumerate the important amino acids primarily responsible for protein stability present at the amino-terminal end of cystatin. Finally, pharmacophore elucidation carried out based on the information obtained from a series of small molecular inhibitors against meprin-α can be utilized in future for rational drug design and therapy.
Biological systems are complex. In many cases, the actions of various components are intertwined, and the effects of manipulating one component may actually be driven by that molecule’s relationship with a different component. Deciphering this kind of regulation is important for identifying the best therapeutic targets. An example of such complexity can be seen in the control
Biological systems are complex. In many cases, the actions of various components are intertwined, and the effects of manipulating one component may actually be driven by that molecule’s relationship with a different component. Deciphering this kind of regulation is important for identifying the best therapeutic targets. An example of such complexity can be seen in the control of HIV/AIDS.
Brogly, Susan B.; DiMauro, Salvatore; Van Dyke, Russell B.; Williams, Paige L.; Naini, Ali; Libutti, Daniel E.; Choi, Julia; Chung, Michelle
2011-01-01
Abstract Transplacental nucleoside analogue exposure can affect infant mitochondrial DNA (mtDNA). We evaluated mitochondria in peripheral blood mononuclear cells of children with and without clinical signs of mitochondrial dysfunction (MD) and antiretroviral (ARV) exposure. We previously identified 20 children with signs of MD (cases) among 1037 HIV-uninfected children born to HIV-infected women. We measured mtDNA copies/cell and oxidative phosphorylation (OXPHOS) NADH dehydrogenase (complex I) and cytochrome c oxidase (complex IV) protein levels and enzyme activities, determined mtDNA haplogroups and deletions in 18 of 20 cases with stored samples and in sex- and age-matched HIV-uninfected children, both ARV exposed and unexposed, (1) within 18 months of birth and (2) at the time of presentation of signs of MD. In specimens drawn within 18 months of birth, mtDNA levels were higher and OXPHOS protein levels and enzyme activities lower in cases than controls. In contrast, at the time of MD presentation, cases and ARV-exposed controls had lower mtDNA levels, 214 and 215 copies/cell, respectively, than ARV-unexposed controls, 254 copies/cell. OXPHOS protein levels and enzyme activities were lower in cases than exposed controls, and higher in cases than unexposed controls, except for complex IV activity, which was higher in cases. Haplotype H was less frequent among cases (6%) than controls (31%). No deletions were found. The long-term significance of these small but potentially important alterations should continue to be studied as these children enter adolescence and adulthood. PMID:21142587
Casañal, Ana; Zander, Ulrich; Muñoz, Cristina; Dupeux, Florine; Luque, Irene; Botella, Miguel Angel; Schwab, Wilfried; Valpuesta, Victoriano; Marquez, José A.
2013-01-01
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates. PMID:24133217
Immersion freezing of ice nucleation active protein complexes
NASA Astrophysics Data System (ADS)
Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.
2013-06-01
Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached to the outer membrane of intact bacteria or membrane fragments, (c) the temperature range in which heterogeneous droplet freezing occurs, and the fraction of droplets being able to freeze, both depend on the actual number of INA protein complexes present in the droplet ensemble, and (d) possible artifacts suspected to occur in connection with the drop freezing method, i.e., the method frequently used by biologist for quantifying ice nucleation behaviour, are of minor importance, at least for substances such as P. syringae, which induce freezing at comparably high temperatures. The last statement implies that for single ice nucleation entities such as INA protein complexes, it is the number of entities present in the droplet population, and the entities' nucleation rate, which control the freezing behaviour of the droplet population. Quantities such as ice active surface site density are not suitable in this context. The results obtained in this study allow a different perspective on the quantification of the immersion freezing behaviour of bacterial ice nucleation.
Direct Maximization of Protein Identifications from Tandem Mass Spectra*
Spivak, Marina; Weston, Jason; Tomazela, Daniela; MacCoss, Michael J.; Noble, William Stafford
2012-01-01
The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins. In contrast, we formulate the protein identification problem as a single optimization problem, which we solve using machine learning methods. This approach is motivated by the observation that the peptide and protein level tasks are cooperative, and the solution to each can be improved by using information about the solution to the other. The resulting algorithm directly controls the relevant error rate, can incorporate a wide variety of evidence and, for complex samples, provides 18–34% more protein identifications than the current state of the art approaches. PMID:22052992
Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul
2016-06-09
As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.
Assembly of the Human Signal Recognition Particle
NASA Astrophysics Data System (ADS)
Menichelli, Elena; Nagai, Kiyoshi
Large RNA-protein complexes (ribonucleoprotein particles or RNPs) control fundamental biological processes. Their correct assembly is essential for function and occurs by the ordered addition of proteins to the RNA. A good model system for studying RNP assembly is provided by the Signal Recognition Particle (SRP), an RNP conserved from bacteria to humans, with different degrees of complexity. Human SRP, composed of a single RNA molecule and six pro teins, is responsible for the co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum membrane. In vitro studies reveal that the SRP proteins need to be added to the RNA sequentially. If the order of addition is altered, non-native particles are formed. The sequential association of proteins causes conformational changes in the RNA, allowing binding of other proteins. The in vivo assembly is regulated by the translocation of precursors between different cellular compartments. In this chapter we review the current understanding of the human SRP assembly mechanism.
Heyman, Jefri; Polyn, Stefanie; Eekhout, Thomas; De Veylder, Lieven
2017-09-01
The endocycle represents a modified mitotic cell cycle that in plants is often coupled to cell enlargement and differentiation. Endocycle onset is controlled by activity of the Anaphase Promoting Complex/Cyclosome (APC/C), a multisubunit E3 ubiquitin ligase targeting cell-cycle factors for destruction. CELL CYCLE SWITCH52 (CCS52) proteins represent rate-limiting activator subunits of the APC/C. In Arabidopsis ( Arabidopsis thaliana ), mutations in either CCS52A1 or CCS52A2 activators result in a delayed endocycle onset, whereas their overexpression triggers increased DNA ploidy levels. Here, the relative contribution of the APC/C CCS52A1 and APC/C CCS52A2 complexes to different developmental processes was studied through analysis of their negative regulators, being the ULTRAVIOLET-B-INSENSITIVE4 protein and the DP-E2F-Like1 transcriptional repressor, respectively. Our data illustrate cooperative activity of the APC/C CCS52A1 and APC/C CCS52A2 complexes during root and trichome development, but functional interdependency during leaf development. Furthermore, we found APC/C CCS52A1 activity to control CCS52A2 expression. We conclude that interdependency of CCS52A-controlled APC/C activity is controlled in a tissue-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.
The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly.
Martinez, Natalia J; Chang, Hao-Ming; Borrajo, Jacob de Riba; Gregory, Richard I
2013-11-01
Argonaute2 (Ago2) protein and associated microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC) for target messenger RNA cleavage and post-transcriptional gene silencing. Although Ago2 is essential for RISC activity, the mechanism of RISC assembly is not well understood, and factors controlling Ago2 protein expression are largely unknown. A role for the Hsc70/Hsp90 chaperone complex in loading small RNA duplexes into the RISC has been demonstrated in cell extracts, and unloaded Ago2 is unstable and degraded by the lysosome in mammalian cells. Here we identify the co-chaperones Fkbp4 and Fkbp5 as Ago2-associated proteins in mouse embryonic stem cells. Pharmacological inhibition of this interaction using FK506 or siRNA-mediated Fkbp4/5 depletion leads to decreased Ago2 protein levels. We find FK506 treatment inhibits, whereas Fkbp4/5 overexpression promotes, miRNA-mediated stabilization of Ago2 expression. Simultaneous treatment with a lysosome inhibitor revealed the accumulation of unloaded Ago2 complexes in FK506-treated cells. We find that, consistent with unloaded miRNAs being unstable, FK506 treatment also affects miRNA abundance, particularly nascent miRNAs. Our results support a role for Fkbp4/5 in RISC assembly.
Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.
Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura
2017-01-01
Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.
Cao, Yan Jun; Wang, Qiong; Zheng, Xing Xing; Cheng, Ying; Zhang, Yan
2018-08-01
Prenatal stress (PS) exposure can cause depression-like behavior in offspring, and maladaptive responses including physiological and neurobiological changes. Glutamate neurotransmission is implicated in effects of PS and in antidepressant mechanisms; however, the mechanisms underlying its involvement remain unclear. In the synapse, the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for vesicular docking and neurotransmitter release. To explore effects of PS on the SNARE complex, pregnant rats were assigned to a control or PS group. Both male and female offspring in each group were used in this study. PS rats were exposed to restraint stress three times daily for 45 min on days 14-20 of pregnancy. In the PS offspring, the expression of the SNARE protein SNAP-25, vesicle-associated membrane protein (VAMP)-2, and Syntaxin 1a was significantly increased in the hippocampus and prefrontal cortex. These observations were associated with increased levels of proteins that chaperone SNARE complex formation, including Munc-18, α-synuclein, CSPα, complexin1, and complexin2. Immunoblotting of hippocampal and prefrontal cortex homogenates revealed significantly increased SNARE complex formation. vGluT1 protein expression was also significantly increased in the offspring. Additionally, PS was associated with increased mRNA expression of VAMP1, VAMP2, SNAP25, Syntaxin1a, and Syntaxin1b in the hippocampus and prefrontal cortex. Increased monomeric SNARE proteins, SNARE complex formation, vesicle-associated proteins, and vGluT1 may explain the increase in glutamate and its downstream excitotoxicity. These results support the hypothesis that glutamate release and vesicular glutamate transporters play a role in PS-induced depression-like behavior of rat offspring. Copyright © 2018. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Hunter, Christine
2015-01-01
Imagine a microscopic world filled with tiny motors, ratchets, switches, and pumps controlled by complex signaling and feedback systems. Now imagine that these parts can assemble themselves. This is the world presented to students in the protein structure unit of a genetic engineering course. Students learn how protein folding gives rise to the…
Systematic discovery of Xist RNA binding proteins
Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.
2015-01-01
Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Yeongseon; Choi, Won Tae; Heller, William T.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins
Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...
2017-07-27
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less
Bachmann, André; Kobler, Oliver; Kittel, Robert J; Wichmann, Carolin; Sierralta, Jimena; Sigrist, Stephan J; Gundelfinger, Eckart D; Knust, Elisabeth; Thomas, Ulrich
2010-04-28
Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.
mAKAP – A Master Scaffold for Cardiac Remodeling
Passariello, Catherine L.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.
2014-01-01
Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or ‘signalosomes’ are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2 and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy. PMID:25551320
Cartron, Pierre-François; Petit, Elise; Bellot, Grégory; Oliver, Lisa; Vallette, François M
2014-09-01
The proteins Bax and Bak are central in the execution phase of apoptosis; however, little is known about the partners involved in the control of this complex process. Here, we show that mitochondrial Bak is incorporated into a VDAC2/Mtx1/Mtx2 multi-protein complex in both resting and dying cells. VDAC2 is a porin that has previously been described as a partner of Bak while Mtx1 and Mtx2 are two proteins of the mitochondrial sorting and assembly machinery (SAM) that have been implicated in TNF-induced apoptosis. We show that, after the induction of apoptosis, Bak switches from its association with Mtx2 and VDAC2 to interact with Mtx1. Copyright © 2014 Elsevier Inc. All rights reserved.
Montoya-Durango, Diego E; Ramos, Kenneth A; Bojang, Pasano; Ruiz, Lorell; Ramos, Irma N; Ramos, Kenneth S
2016-01-25
Long Interspersed Nuclear Element-1 (L1) is an oncogenic mammalian retroelement silenced early in development via tightly controlled epigenetic mechanisms. We have previously shown that the regulatory region of human and murine L1s interact with retinoblastoma (RB) proteins to effect retroelement silencing. The present studies were conducted to identify the corepressor complex responsible for RB-mediated silencing of L1. Chromatin immunoprecipitation and silencing RNA technology were used to identify the repressor complex that silences L1 in human and murine cells. Components of the Nucleosomal and Remodeling Deacetylase (NuRD) multiprotein complex specifically enriched the L1 5'-untranslated DNA sequence in human and murine cells. Genetic ablation of RB proteins in murine cells destabilized interactions within the NuRD macromolecular complex and mediated nuclear rearrangement of Mi2-β, an ATP-dependent helicase subunit with nucleosome remodeling activity. Depletion of Mi2-β, RbAP46 and HDAC2 reduced the repressor activity of the NuRD complex and reactivated a synthetic L1 reporter in human cells. Epigenetic reactivation of L1 in RB-null cells by DNA damage was markedly enhanced compared to wild type cells. RB proteins stabilize interactions of the NuRD corepressor complex within the L1 promoter to effect L1 silencing. L1 retroelements may serve as a scaffold on which RB builds heterochromatic regions that regulate chromatin function.
Huilin Li
2017-12-09
Proteins that cleave other proteins using a molecule of water, protease complexes are exquisite macromolecular machines involved in a multitude of physiological and cellular reactions. Our structural studies shed light into the inner workings of multi-protein assemblies, and they reveal a surprisingly common strategy for controlled proteolysis employed by the two drastically different machines. Further research will facilitate rational design of drugs for treating Tb infection and Alzheimer's disease.
Kоbyli nska, L I; Havrylyuk, D Ya; Mitina, N E; Zaichenko, A S; Lesyk, R B; Zіme nkovsky, B S; Stoika, R S
2016-01-01
The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833) and doxorubicin (positive control) in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals). Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.
Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru
2016-02-26
Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.
NASA Astrophysics Data System (ADS)
Sherman, Eilon
2016-06-01
Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.
Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R
2015-10-01
Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A Viral Pilot for HCMV Navigation?
Adler, Barbara
2015-01-01
gH/gL virion envelope glycoprotein complexes of herpesviruses serve as entry complexes and mediate viral cell tropism. By binding additional viral proteins, gH/gL forms multimeric complexes which bind to specific host cell receptors. Both Epstein–Barr virus (EBV) and human cytomegalovirus (HCMV) express alternative multimeric gH/gL complexes. Relative amounts of these alternative complexes in the viral envelope determine which host cells are preferentially infected. Host cells of EBV can modulate the gH/gL complex complement of progeny viruses by cell type-dependent degradation of one of the associating proteins. Host cells of HCMV modulate the tropism of their virus progenies by releasing or not releasing virus populations with a specific gH/gL complex complement out of a heterogeneous pool of virions. The group of Jeremy Kamil has recently shown that the HCMV ER-resident protein UL148 controls integration of one of the HCMV gH/gL complexes into virions and thus creates a pool of virions which can be routed by different host cells. This first mechanistic insight into regulation of the gH/gL complex complement of HCMV progenies presents UL148 as a pilot candidate for HCMV navigation in its infected host. PMID:26184287
Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam
2017-01-01
Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.
Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan
2013-08-09
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.
Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A
2016-01-01
Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes.
Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli.
He, Xuesong; Cao, Xiaolong; He, Yan; Bhattarai, Krishna; Rogers, Janet; Hartson, Steve; Jiang, Haobo
2017-09-01
Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meeting Report: Structural Determination of Environmentally Responsive Proteins
Reinlib, Leslie
2005-01-01
The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521
Protein quality control at the inner nuclear membrane
Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J.; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D.; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O.; Knop, Michael
2015-01-01
The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression1. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER) and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by ER-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc72,3. However, little is known regarding protein quality control at the INM. Here we describe a protein degradation pathway at the INM mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi34. We report that the As complex functions together with the ubiquitin conjugating enzymes Ubc6andUbc7to degrade soluble and integral membrane proteins. Genetic evidence suggest that the Asi ubiquitin ligase defines a pathway distinct from but complementary to ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer (tFT)5, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquity ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalised integral membrane proteins, thus acting to maintain and safeguard the identity of the INM. PMID:25519137
Martos, Laura; Ramón, Luis Andrés; Oto, Julia; Fernández-Pardo, Álvaro; Bonanad, Santiago; Cid, Ana Rosa; Gruber, Andras; Griffin, John H; España, Francisco; Navarro, Silvia; Medina, Pilar
2018-04-01
Activated protein C (APC) is a major regulator of thrombin formation. Two major plasma inhibitors form complexes with APC, protein C inhibitor (PCI) and α 1 -antitrypsin (α 1 AT), and these complexes have been quantified by specific enzyme-linked immunosorbent assays (ELISAs). Also, complexes of APC with α 2 -macroglobulin (α 2 M) have been observed by immunoblotting. Here, we report an ELISA for APC:α 2 M complexes in plasma. Plasma samples were pre-treated with dithiothreitol and then with iodoacetamide. The detection range of the newly developed APC:α 2 M assay was 0.031 to 8.0 ng/mL of complexed APC. Following infusions of APC in humans and baboons, complexes of APC with α 2 M, PCI and α 1 AT were quantified. These complexes as well as circulating APC were also measured in 121 patients with a history of venous thromboembolism (VTE) and 119 matched controls. In all the in vivo experiments, α 2 M was a significant APC inhibitor. The VTE case-control study showed that VTE patients had significantly lower APC:α 2 M and APC levels than the controls ( p < 0.001). Individuals in the lowest quartile of APC:α 2 M or the lowest quartile of APC had approximately four times more VTE risk than those in the highest quartile of APC:α 2 M or of APC. The risk increased for individuals with low levels of both parameters. The APC:α 2 M assay reported here may be useful to help monitor the in vivo fate of APC in plasma. In addition, our results show that a low APC:α 2 M level is associated with increased VTE risk. Schattauer GmbH Stuttgart.
Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver
2015-05-01
During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Multiple TPR motifs characterize the Fanconi anemia FANCG protein.
Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans
2004-01-05
The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.
A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
Stacey, R Greg; Skinnider, Michael A; Scott, Nichollas E; Foster, Leonard J
2017-10-23
An organism's protein interactome, or complete network of protein-protein interactions, defines the protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein interactions. However, given the vast number of protein complexes, more scalable methods are necessary to accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct an accurate interactome. Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data. PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data, and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach, PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available at https://github.com/fosterlab/PrInCE , where usage instructions can be found. An example dataset and output are also provided for testing purposes. PrInCE is the first fast and easy-to-use data analysis pipeline that predicts interactomes and protein complexes from co-elution data. PrInCE allows researchers without bioinformatics expertise to analyze high-throughput co-elution datasets.
Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes
Wierer, Michael; Mann, Matthias
2016-01-01
High-resolution mass spectrometry (MS)-based proteomics is a powerful method for the identification of soluble protein complexes and large-scale affinity purification screens can decode entire protein interaction networks. In contrast, protein complexes residing on chromatin have been much more challenging, because they are difficult to purify and often of very low abundance. However, this is changing due to recent methodological and technological advances in proteomics. Proteins interacting with chromatin marks can directly be identified by pulldowns with synthesized histone tails containing posttranslational modifications (PTMs). Similarly, pulldowns with DNA baits harbouring single nucleotide polymorphisms or DNA modifications reveal the impact of those DNA alterations on the recruitment of transcription factors. Accurate quantitation – either isotope-based or label free – unambiguously pinpoints proteins that are significantly enriched over control pulldowns. In addition, protocols that combine classical chromatin immunoprecipitation (ChIP) methods with mass spectrometry (ChIP-MS) target gene regulatory complexes in their in-vivo context. Similar to classical ChIP, cells are crosslinked with formaldehyde and chromatin sheared by sonication or nuclease digested. ChIP-MS baits can be proteins in tagged or endogenous form, histone PTMs, or lncRNAs. Locus-specific ChIP-MS methods would allow direct purification of a single genomic locus and the proteins associated with it. There, loci can be targeted either by artificial DNA-binding sites and corresponding binding proteins or via proteins with sequence specificity such as TAL or nuclease deficient Cas9 in combination with a specific guide RNA. We predict that advances in MS technology will soon make such approaches generally applicable tools in epigenetics. PMID:27402878
Cytosolic proteins can exploit membrane localization to trigger functional assembly
2018-01-01
Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. PMID:29505559
Light-controlled intracellular transport in Caenorhabditis elegans.
Harterink, Martin; van Bergeijk, Petra; Allier, Calixte; de Haan, Bart; van den Heuvel, Sander; Hoogenraad, Casper C; Kapitein, Lukas C
2016-02-22
To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F
2000-12-01
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.
Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar
2010-02-01
Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.
PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.
Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E
2001-10-11
Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.
2017-01-01
It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins. PMID:28095404
Ziemba, Brian P.; Falke, Joseph J.
2013-01-01
Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2-D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1 to 3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2-D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both 1) individual bound lipids and 2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2-D diffusion constant. An empirical formula is developed that accurately estimates the diffusion constant and bilayer friction of a peripheral protein in terms of its number of bound lipids and its geometry of penetration into the bilayer hydrocarbon core, yielding an excellent global best fit (R2 of 0.97) to the experimental diffusion constants. Finally, the observed additivity of the frictional contributions suggests that further development of current theory describing bilayer dynamics may be needed. The present findings provide constraints that will be useful in such theory development. PMID:23701821
Ziemba, Brian P; Falke, Joseph J
2013-01-01
Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion constant and bilayer friction of a peripheral protein in terms of its number of bound lipids and its geometry of penetration into the bilayer hydrocarbon core, yielding an excellent global best fit (R(2) of 0.97) to the experimental diffusion constants. Finally, the observed additivity of the frictional contributions suggests that further development of current theory describing bilayer dynamics may be needed. The present findings provide constraints that will be useful in such theory development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Protein degradation machinery is present broadly during early development in the sea urchin.
Zazueta-Novoa, Vanesa; Wessel, Gary M
2014-07-01
Ubiquitin-dependent proteosome-mediated proteolysis is an important pathway of degradation that controls the timed destruction of cellular proteins in all tissues. All intracellular proteins and many extracellular proteins are continually being hydrolyzed to their constituent amino acids as a result of their recognition by E3 ligases for specific targeting of ubiquitination. Gustavus is a member of an ECS-type E3 ligase which interacts with Vasa, a DEAD-box RNA helicase, to regulate its localization during sea urchin embryonic development, and Gustavus mRNA accumulation is highly localized and dynamic during development. We tested if the core complex for Gustavus function was present in the embryo and if other SOCS box proteins also had restricted expression profiles that would inform future research. Expression patterns of the key members of the proteasomal function, such as the E3 core complex which interacts with Gustavus, and other E3-SOCS box proteins, are widely spread and dynamic in early development of the embryo suggesting broad core complex availability in the proteasome degradation pathway and temporal/spatial enrichments of various E3 ligase dependent targeting mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Protein degradation machinery is present broadly during early development in the sea urchin
Zazueta-Novoa, Vanesa; Wessel, Gary M.
2014-01-01
Ubiquitin-dependent proteosome-mediated proteolysis is an important pathway of degradation that controls the timed destruction of cellular proteins in all tissues. All intracellular proteins and many extracellular proteins are continually being hydrolyzed to their constituent amino acids as a result of their recognition by E3 ligases for specific targeting of ubiquitination. Gustavus is a member of an ECS-type E3 ligase which interacts with Vasa, a DEAD-box RNA helicase, to regulate its localization during sea urchin embryonic development, and Gustavus mRNA accumulation is highly localized and dynamic during development. We tested if the core complex for Gustavus function was present in the embryo and if other SOCS box proteins also had restricted expression profiles that would inform future research. Expression patterns of the key members of the proteasomal function, such as the E3 core complex which interacts with Gustavus, and other E3-SOCS box proteins, are widely spread and dynamic in early development of the embryo suggesting broad core complex availability in the proteasome degradation pathway and temporal/spatial enrichments of various E3 ligase dependent targeting mechanisms. PMID:24963879
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; ...
2015-08-20
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Control of developmentally primed erythroid genes by combinatorial co-repressor actions
Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric
2015-01-01
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974
Biasiotto, Roberta; Akusjärvi, Göran
2015-01-28
Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced viral mRNAs. Studies aimed at characterizing the interactions between the virus and the host cell RNA splicing machinery have identified three viral proteins of special significance for the control of late viral gene expression: L4-33K, L4-22K, and E4-ORF4. L4-33K is a viral alternative RNA splicing factor that controls L1 alternative splicing via an interaction with the cellular protein kinases Protein Kinase A (PKA) and DNA-dependent protein kinase (DNA-PK). L4-22K is a viral transcription factor that also has been implicated in the splicing of a subset of late viral mRNAs. E4-ORF4 is a viral protein that binds the cellular protein phosphatase IIA (PP2A) and controls Serine/Arginine (SR)-rich protein activity by inducing SR protein dephosphorylation. The L4-33K, and most likely also the L4-22K protein, are highly phosphorylated in vivo. Here we will review the function of these viral proteins in the post-transcriptional control of adenoviral gene expression and further discuss the significance of potential protein kinases phosphorylating the L4-33K and/or L4-22K proteins.
Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex.
Otsuki, T; Furukawa, Y; Ikeda, K; Endo, H; Yamashita, T; Shinohara, A; Iwamatsu, A; Ozawa, K; Liu, J M
2001-11-01
Fanconi anemia (FA) is a genetic disorder that predisposes to hematopoietic failure, birth defects and cancer. We identified an interaction between the FA protein, FANCA and brm-related gene 1 (BRG1) product. BRG1 is a subunit of the SWI/SNF complex, which remodels chromatin structure through a DNA-dependent ATPase activity. FANCA was demonstrated to associate with the endogenous SWI/SNF complex. We also found a significant increase in the molecular chaperone, glucose-regulated protein 94 (GRP94) among BRG1-associated factors isolated from a FANCA-mutant cell line, which was not seen in either a normal control cell line or the mutant line complemented by wild-type FANCA. Despite this specific difference, FANCA did not appear to be absolutely required for in vitro chromatin remodeling. Finally, we demonstrated co-localization in the nucleus between transfected FANCA and BRG1. The physiological action of FANCA on the SWI/SNF complex remains to be clarified, but our work suggests that FANCA may recruit the SWI/SNF complex to target genes, thereby enabling coupled nuclear functions such as transcription and DNA repair.
Structure of the Human Atg13-Atg101 HORMA Heterodimer: an Interaction Hub within the ULK1 Complex.
Qi, Shiqian; Kim, Do Jin; Stjepanovic, Goran; Hurley, James H
2015-10-06
The ULK1 complex, consisting of the ULK1 protein kinase itself, FIP200, Atg13, and Atg101, controls the initiation of autophagy in animals. We determined the structure of the complex of the human Atg13 HORMA (Hop1, Rev7, Mad2) domain in complex with the full-length HORMA domain-only protein Atg101. The two HORMA domains assemble with an architecture conserved in the Mad2 conformational heterodimer and the S. pombe Atg13-Atg101 HORMA complex. The WF finger motif that is essential for function in human Atg101 is sequestered in a hydrophobic pocket, suggesting that the exposure of this motif is regulated. Benzamidine molecules from the crystallization solution mark two hydrophobic pockets that are conserved in, and unique to, animals, and are suggestive of sites that could interact with other proteins. These features suggest that the activity of the animal Atg13-Atg101 subcomplex is regulated and that it is an interaction hub for multiple partners. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shi, Mei; Bennett, Teresa A; Cimino, Daniel F; Maestas, Diane C; Foutz, Terry D; Gurevich, Vsevolod V; Sklar, Larry A; Prossnitz, Eric R
2003-06-24
G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.
Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity
ERIC Educational Resources Information Center
Graff, Johannes; Koshibu, Kyoko; Jouvenceau, Anne; Dutar, Patrick; Mansuy, Isabelle M.
2010-01-01
Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and…
Liu, Zhihui; Lam, Norris; Thiele, Carol J
2015-09-29
The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.
Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes
Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena
2013-01-01
The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190
Tayama, Yoko; Kawahara, Hiroyuki; Minami, Ryosuke; Shimada, Masumi; Yokosawa, Hideyoshi
2007-12-01
The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356-5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.
Hunter, Morag R; Hesketh, Geoffrey G; Benedyk, Tomasz H; Gingras, Anne-Claude; Graham, Stephen C
2018-05-17
Multi-subunit tethering complexes control membrane fusion events in eukaryotic cells. Class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) are two such complexes, both containing the Sec1/Munc18 protein subunit VPS33A. Metazoans additionally possess VPS33B, which has considerable sequence similarity to VPS33A but does not integrate into CORVET or HOPS complexes and instead stably interacts with VIPAR. It has been recently suggested that VPS33B and VIPAR comprise two subunits of a novel multi-subunit tethering complex (named "CHEVI"), perhaps analogous in configuration to CORVET and HOPS. We utilized the BioID proximity biotinylation assay to compare and contrast the interactomes of VPS33A and VPS33B. Overall, few proteins were identified as associating with both VPS33A and VPS33B, suggesting that these proteins have distinct sub-cellular localizations. Consistent with previous reports, we observed that VPS33A was co-localized with many components of class III phosphatidylinositol 3-kinase (PI3KC3) complexes: PIK3C3, PIK3R4, NRBF2, UVRAG and RUBICON. Although VPS33A clearly co-localized with several subunits of CORVET and HOPS in this assay, no proteins with the canonical CORVET/HOPS domain architecture were found to co-localize with VPS33B. Instead, we identified that VPS33B interacts directly with CCDC22, a member of the CCC complex. CCDC22 does not co-fractionate with VPS33B and VIPAR in gel filtration of human cell lysates, suggesting that CCDC22 interacts transiently with VPS33B/VIPAR rather than forming a stable complex with these proteins in cells. We also observed that the protein complex containing VPS33B and VIPAR is considerably smaller than CORVET/HOPS, suggesting that the CHEVI complex comprises just VPS33B and VIPAR. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characterization of known protein complexes using k-connectivity and other topological measures
Gallagher, Suzanne R; Goldberg, Debra S
2015-01-01
Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183
Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*
Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.
2016-01-01
Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343
Stees, Jared R.; Hossain, Mir A.; Sunose, Tomoki; Kudo, Yasushi; Pardo, Carolina E.; Nabilsi, Nancy H.; Darst, Russell P.; Poudyal, Rosha; Igarashi, Kazuhiko; Kladde, Michael P.
2015-01-01
Enhancers and promoters assemble protein complexes that ultimately regulate the recruitment and activity of RNA polymerases. Previous work has shown that at least some enhancers form stable protein complexes, leading to the formation of enhanceosomes. We analyzed protein-DNA interactions in the murine β-globin gene locus using the methyltransferase accessibility protocol for individual templates (MAPit). The data show that a tandem Maf recognition element (MARE) in locus control region (LCR) hypersensitive site 2 (HS2) reveals a remarkably high degree of occupancy during differentiation of mouse erythroleukemia cells. Most of the other transcription factor binding sites in LCR HS2 or in the adult β-globin gene promoter regions exhibit low fractional occupancy, suggesting highly dynamic protein-DNA interactions. Targeting of an artificial zinc finger DNA-binding domain (ZF-DBD) to the HS2 tandem MARE caused a reduction in the association of MARE-binding proteins and transcription complexes at LCR HS2 and the adult βmajor-globin gene promoter but did not affect expression of the βminor-globin gene. The data demonstrate that a stable MARE-associated footprint in LCR HS2 is important for the recruitment of transcription complexes to the adult βmajor-globin gene promoter during erythroid cell differentiation. PMID:26503787
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
Defining the human deubiquitinating enzyme interaction landscape.
Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade
2009-07-23
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Trapping of the Enoyl-Acyl Carrier Protein Reductase–Acyl Carrier Protein Interaction
Tallorin, Lorillee; Finzel, Kara; Nguyen, Quynh G.; Beld, Joris; La Clair, James J.; Burkart, Michael D.
2016-01-01
An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein–protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP–triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes. PMID:26938266
Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons.
Maffie, Jonathon; Rudy, Bernardo
2008-12-01
The subthreshold-operating A-type K(+) current in neurons (I(SA)) has important roles in the regulation of neuronal excitability, the timing of action potential firing and synaptic integration and plasticity. The channels mediating this current (Kv4 channels) have been implicated in epilepsy, the control of dopamine release, and the regulation of pain plasticity. It has been proposed that Kv4 channels in neurons are ternary complexes of three types of protein: pore forming subunits of the Kv4 subfamily and two types of auxiliary subunits, the Ca(2+) binding proteins KChIPs and the dipeptidyl peptidase-like proteins (DPPLs) DPP6 (also known as DPPX) and DPP10 (4 molecules of each per channel for a total of 12 proteins in the complex). Here we consider the evidence supporting this hypothesis. Kv4 channels in many neurons are likely to be ternary complexes of these three types of protein. KChIPs and DPPLs are required to efficiently traffic Kv4 channels to the plasma membrane and regulate the functional properties of the channels. These proteins may also be important in determining the localization of the channels to specific neuronal compartments, their dynamics, and their response to neuromodulators. A surprisingly large number of additional proteins have been shown to modify Kv4 channels in heterologous expression systems, but their association with native Kv4 channels in neurons has not been properly validated. A critical consideration of the evidence suggests that it is unlikely that association of Kv4 channels with these additional proteins is widespread in the CNS. However, we cannot exclude that some of these proteins may associate with the channels transiently or in specific neurons or neuronal compartments, or that they may associate with the channels in other tissues.
NASA Technical Reports Server (NTRS)
Muday, G. K.
2000-01-01
In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.
CORUM: the comprehensive resource of mammalian protein complexes
Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner
2008-01-01
Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090
[The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9].
Gheibi, N; Asghari, H; Chegini, K G; Sahmani, M; Moghadasi, M
2016-01-01
Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.
Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet
2010-01-01
Background Previous studies suggested that dietary tannin ingestion may induce changes in mouse salivary proteins in addition to the primarily studied proline-rich proteins (PRPs). The aim of the present study was to determine the protein expression changes induced by condensed tannin intake on the fraction of mouse whole salivary proteins that are unable to form insoluble tannin-protein complexes. Two-dimensional polyacrylamide gel electrophoresis protein separation was used, followed by protein identification by mass spectrometry. Results Fifty-seven protein spots were excised from control group gels, and 21 different proteins were identified. With tannin consumption, the expression levels of one α-amylase isoform and one unidentified protein increased, whereas acidic mammalian chitinase and Muc10 decreased. Additionally, two basic spots that stained pink with Coomassie Brilliant Blue R-250 were newly observed, suggesting that some induced PRPs may remain uncomplexed or form soluble complexes with tannins. Conclusion This proteomic analysis provides evidence that other salivary proteins, in addition to tannin-precipitating proteins, are affected by tannin ingestion. Changes in the expression levels of the acidic mammalian chitinase precursor and in one of the 14 salivary α-amylase isoforms underscores the need to further investigate their role in tannin ingestion. PMID:21159160
NASA Astrophysics Data System (ADS)
Trainoff, Steven
2009-03-01
Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.
Artificially Engineered Protein Polymers.
Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D
2017-06-07
Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.
Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus.
Demarco, Ignacio A; Voss, Ty C; Booker, Cynthia F; Day, Richard N
2006-11-01
The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.
Conditional fast expression and function of multimeric TRPV5 channels using Shield-1.
Schoeber, Joost P H; van de Graaf, Stan F J; Lee, Kyu Pil; Wittgen, Hanneke G M; Hoenderop, Joost G J; Bindels, René J M
2009-01-01
A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic cell-permeant ligand (Shield-1) to mtFKBP reverses the instability, allowing conditional expression of mtFKBP-fused proteins. We adapted this strategy to study multimeric plasma membrane proteins using the ion channel TRPV5 as model protein. mtFKBP-TRPV5 forms functional ion channels and its expression can be controlled in a time- and dose-dependent fashion using Shield-1. Moreover, in the presence of Shield-1, mtFKBP-TRPV5 formed heteromultimeric channels with untagged TRPV5, which were codegraded upon washout of Shield-1, providing a strategy to study multimeric plasma membrane protein complexes without the need to destabilize all individual subunits.
Hydrogen exchange mass spectrometry of functional membrane-bound chemotaxis receptor complexes.
Koshy, Seena S; Eyles, Stephen J; Weis, Robert M; Thompson, Lynmarie K
2013-12-10
The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (∼2 Å) piston displacement of one helix of the periplasmic and transmembrane domains toward the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) measurements of global exchange of the CF demonstrate that the CF exhibits significantly slower exchange in functional complexes than in solution. Because the exchange rates in functional complexes are comparable to those of other proteins with similar structures, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system.
Hydrogen Exchange Mass Spectrometry of Functional Membrane-bound Chemotaxis Receptor Complexes
Koshy, Seena S.; Eyles, Stephen J.; Weis, Robert M.; Thompson, Lynmarie K.
2014-01-01
The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (~2 Å) piston displacement of one helix of the periplasmic and transmembrane domains towards the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen exchange mass spectrometry (HDX-MS) measurements of global exchange of CF demonstrate that CF exhibits significantly slower exchange in functional complexes than in solution. Since the exchange rates in functional complexes are comparable to that of other proteins of similar structure, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements, by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system. PMID:24274333
Rosier, Bas J. H. M.; Cremers, Glenn A. O.; Engelen, Wouter; Merkx, Maarten; Brunsveld, Luc
2017-01-01
A photocrosslinkable protein G variant was used as an adapter protein to covalently and site-specifically conjugate an antibody and an Fc-fusion protein to an oligonucleotide. This modular approach enables straightforward decoration of DNA nanostructures with complex native proteins while retaining their innate binding affinity, allowing precise control over the nanoscale spatial organization of such proteins for in vitro and in vivo biomedical applications. PMID:28617516
Jia, Da; Gomez, Timothy S; Metlagel, Zoltan; Umetani, Junko; Otwinowski, Zbyszek; Rosen, Michael K; Billadeau, Daniel D
2010-06-08
We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.
Chatel-Chaix, Laurent; Germain, Marie-Anne; Motorina, Alena; Bonneil, Éric; Thibault, Pierre; Baril, Martin; Lamarre, Daniel
2013-11-01
Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.
Chatel-Chaix, Laurent; Germain, Marie-Anne; Motorina, Alena; Bonneil, Éric; Thibault, Pierre; Baril, Martin
2013-01-01
Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production. PMID:23986595
Mediated Plastid RNA Editing in Plant Immunity
García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo
2013-01-01
Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264
Hiraga, Shin-Ichiro; Alvino, Gina M; Chang, Fujung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J; Weinreich, Michael; Raghuraman, M K; Donaldson, Anne D
2014-02-15
Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.
Directional control of WAVE2 membrane targeting by EB1 and phosphatidylinositol 3,4,5-triphosphate.
Takahashi, Kazuhide; Tanaka, Tacu; Suzuki, Katsuo
2010-03-01
Membrane targeting of WAVE2 along microtubules is mediated by a motor protein kinesin and requires Pak1, a downstream effector of Rac1. However, the mechanism by which WAVE2 targeting to the leading edge is directionally controlled remains largely unknown. Here we demonstrate that EB1, a microtubule plus-end-binding protein, constitutively associates with stathmin, a microtubule-destabilizing protein, in human breast cancer cells. Stimulation of the cells with insulin-like growth factor I (IGF-I) induced Pak1-dependent binding of the EB1-stathmin complex to microtubules that bear WAVE2 and colocalization of the complex with WAVE2 at the leading edge. Depletion of EB1 by small interfering RNA (siRNA) abrogated the IGF-I-induced WAVE2 targeting and stathmin binding to microtubules. On the other hand, chemotaxis chamber assays indicated that the IGF-I receptor (IGF-IR) was locally activated in the region facing toward IGF-I. In addition, IGF-I caused phosphatidylinositol 3-kinase (PI 3-kinase)-dependent production of phosphatidylinositol 3,4,5-triphosphate (PIP3) near activated IGF-IR and WAVE2 colocalization with it. Collectively, WAVE2-membrane targeting is directionally controlled by binding of the EB1-stathmin complex to WAVE2-bearing microtubules and by the interaction between WAVE2 and PIP3 produced near IGF-IR that is locally activated by IGF-I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; ...
2015-09-28
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Zhang, Lilin; Liu, Ningning; Ma, Xiao; Jiang, Linghuo
2013-03-01
In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Berwanger, Anja; Eyrisch, Susanne; Schuster, Inge; Helms, Volkhard; Bernhardt, Rita
2010-02-01
Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine>spermidine>putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.
Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.
Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A
2004-01-15
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.
Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe
2014-01-01
The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin–vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin–talin–vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton. PMID:24452080
Alers, Sebastian; Wesselborg, Sebastian; Stork, Björn
2014-01-01
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play. PMID:24879146
Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling
2016-01-01
Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506
Radiation damage to nucleoprotein complexes in macromolecular crystallography
Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...
2015-01-30
Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less
Ansoleaga, Belén; Garcia-Esparcia, Paula; Llorens, Franc; Hernández-Ortega, Karina; Carmona Tech, Margarita; Antonio Del Rio, José; Zerr, Inga; Ferrer, Isidro
2016-06-12
Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Regué, Laura; Sdelci, Sara; Bertran, M. Teresa; Caelles, Carme; Reverter, David; Roig, Joan
2011-01-01
The NIMA family protein kinases Nek9/Nercc1 and the highly similar Nek6 and Nek7 form a signaling module activated in mitosis, when they are involved in the control of spindle organization and function. Here we report that Nek9, the module upstream kinase, binds to DYNLL/LC8, a highly conserved protein originally described as a component of the dynein complex. LC8 is a dimer that interacts with different proteins and has been suggested to act as a dimerization hub promoting the organization and oligomerization of partially disorganized partners. We find that the interaction of LC8 with Nek9 depends on a (K/R)XTQT motif adjacent to the Nek9 C-terminal coiled coil motif, results in Nek9 multimerization, and increases the rate of Nek9 autoactivation. LC8 binding to Nek9 is regulated by Nek9 activity through the autophosphorylation of Ser944, a residue immediately N-terminal to the (K/R)XTQT motif. Remarkably, LC8 binding interferes with the interaction of Nek9 with its downstream partner Nek6 as well as with Nek6 activation, thus controlling both processes. Our work sheds light into the control of signal transduction through the module formed by Nek9 and Nek6/7 and uncovers a novel manner in which LC8 can regulate partner physiology by interfering with protein complex formation. We suggest that this and other LC8 functions can be specifically regulated by partner phosphorylation. PMID:21454704
Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna
2015-01-01
Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592
Control of electron transport routes through redox-regulated redistribution of respiratory complexes
Liu, Lu-Ning; Bryan, Samantha J.; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.
2012-01-01
In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells of the cyanobacterium Synechococcus elongatus PCC 7942 to investigate the distribution on submicron scales of two key respiratory electron donors, type-I NAD(P)H dehydrogenase (NDH-1) and succinate dehydrogenase (SDH). When cells are grown under low light, both complexes are concentrated in discrete patches in the thylakoid membranes, about 100–300 nm in diameter and containing tens to hundreds of complexes. Exposure to moderate light leads to redistribution of both NDH-1 and SDH such that they become evenly distributed within the thylakoid membranes. The effects of electron transport inhibitors indicate that redistribution of respiratory complexes is triggered by changes in the redox state of an electron carrier close to plastoquinone. Redistribution does not depend on de novo protein synthesis, and it is accompanied by a major increase in the probability that respiratory electrons are transferred to photosystem I rather than to a terminal oxidase. These results indicate that the distribution of complexes on the scale of 100–300 nm controls the partitioning of reducing power and that redistribution of electron transport complexes on these scales is a physiological mechanism to regulate the pathways of electron flow. PMID:22733774
Pauker, Maor H; Hassan, Nirit; Noy, Elad; Reicher, Barak; Barda-Saad, Mira
2012-04-24
Protein-protein interactions regulate and control many cellular functions. A multimolecular complex consisting of the adaptor proteins SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kD), Nck, and the guanine nucleotide exchange factor Vav1 is recruited to the T cell side of the interface with an antigen-presenting cell during initial T cell activation. This complex is crucial for regulation of the actin machinery, antigen recognition, and signaling in T cells. We studied the interactions between these proteins as well as the dynamics of their recruitment into a complex that governs cytoskeletal reorganization. We developed a triple-color Förster resonance energy transfer (3FRET) system to observe the dynamics of the formation of this trimolecular signaling complex in live human T cells and to follow the three molecular interactions in parallel. Using the 3FRET system, we demonstrated that dimers of Nck and Vav1 were constitutively formed independently of both T cell activation and the association between SLP-76 and Nck. After T cell receptor stimulation, SLP-76 was phosphorylated, which enabled the binding of Nck. A point mutation in the proline-rich site of Vav1, which abolishes its binding to Nck, impaired actin rearrangement, suggesting that Nck-Vav1 dimers play a critical role in regulation of the actin machinery. We suggest that these findings revise the accepted model of the formation of a complex of SLP-76, Nck, and Vav1 and demonstrate the use of 3FRET as a tool to study signal transduction in live cells.
Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul
2016-01-01
As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162
Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela
2016-01-01
To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545
Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate.
Dawes, H E; Berlin, D S; Lapidus, D M; Nusbaum, C; Davis, T L; Meyer, B J
1999-06-11
In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yingchun; Yang, Feng; Fu, Yi
Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signalingmore » pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.« less
Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K
2014-07-29
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Hsin-Hsiung; Fan, Ping; Chang, Szu-Wei; Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li
2017-03-28
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.
Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li
2017-01-01
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer. PMID:28212551
AAA-ATPases in Protein Degradation
Yedidi, Ravikiran S.; Wendler, Petra; Enenkel, Cordula
2017-01-01
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea. PMID:28676851
AAA-ATPases in Protein Degradation.
Yedidi, Ravikiran S; Wendler, Petra; Enenkel, Cordula
2017-01-01
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Quality control methodology for high-throughput protein-protein interaction screening.
Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha
2011-01-01
Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.
Koshy, Seena S; Li, Xuni; Eyles, Stephen J; Weis, Robert M; Thompson, Lynmarie K
2014-12-16
The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes.
2015-01-01
The goal of understanding mechanisms of transmembrane signaling, one of many key life processes mediated by membrane proteins, has motivated numerous studies of bacterial chemotaxis receptors. Ligand binding to the receptor causes a piston motion of an α helix in the periplasmic and transmembrane domains, but it is unclear how the signal is then propagated through the cytoplasmic domain to control the activity of the associated kinase CheA. Recent proposals suggest that signaling in the cytoplasmic domain involves opposing changes in dynamics in different subdomains. However, it has been difficult to measure dynamics within the functional system, consisting of extended arrays of receptor complexes with two other proteins, CheA and CheW. We have combined hydrogen exchange mass spectrometry with vesicle template assembly of functional complexes of the receptor cytoplasmic domain to reveal that there are significant signaling-associated changes in exchange, and these changes localize to key regions of the receptor involved in the excitation and adaptation responses. The methylation subdomain exhibits complex changes that include slower hydrogen exchange in complexes in a kinase-activating state, which may be partially consistent with proposals that this subdomain is stabilized in this state. The signaling subdomain exhibits significant protection from hydrogen exchange in complexes in a kinase-activating state, suggesting a tighter and/or larger interaction interface with CheA and CheW in this state. These first measurements of the stability of protein subdomains within functional signaling complexes demonstrate the promise of this approach for measuring functionally important protein dynamics within the various physiologically relevant states of multiprotein complexes. PMID:25420045
Cherwin, Tamara S.; Plakke, Melissa S.; Hill, Jason; Small, Brandon S.; Goetz, Breanna J.; Wheat, Christopher W.; Morehouse, Nathan I.
2017-01-01
Male ejaculates are often structurally complex, and this complexity is likely to influence key reproductive interactions between males and females. However, despite its potential evolutionary significance, the molecular underpinnings of ejaculate structural complexity have received little empirical attention. To address this knowledge gap, we sought to understand the biochemical and functional properties of the structurally complex ejaculates of Pieris rapae butterflies. Males in this species produce large ejaculates called spermatophores composed of an outer envelope, an inner matrix, and a bolus of sperm. Females are thought to benefit from the nutrition contained in the soluble inner matrix through increases in longevity and fecundity. However, the indigestible outer envelope of the spermatophore delays female remating, allowing males to monopolize paternity for longer. Here, we show that these two nonsperm-containing spermatophore regions, the inner matrix and the outer envelope, differ in their protein composition and functional properties. We also reveal how these divergent protein mixtures are separately stored in the male reproductive tract and sequentially transferred to the female reproductive tract during spermatophore assembly. Intriguingly, we discovered large quantities of female-derived proteases in both spermatophore regions shortly after mating, which may contribute to spermatophore digestion and hence, female control over remating rate. Finally, we report evidence of past selection on these spermatophore proteins and female proteases, indicating a complex evolutionary history. Our findings illustrate how structural complexity of ejaculates may allow functionally and/or spatially associated suites of proteins to respond rapidly to divergent selective pressures, such as sexual conflict or reproductive cooperation. PMID:28630352
James M. Slavicek; Nancy Hayes-Plazolles
1991-01-01
Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...
Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.
Sudhir, Putty-Reddy; Chen, Chung-Hsuan
2016-03-22
A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.
Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology
Sudhir, Putty-Reddy; Chen, Chung-Hsuan
2016-01-01
A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181
Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik
2014-11-24
Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.
NASA Astrophysics Data System (ADS)
Parola, Abraham H.; Porat, Nurith; Caiolfa, Valeria R.; Gill, David; Kiesow, Lutz A.; Weisman, Mathew; Nemschitz, S.; Yaron, Dahlia; Singer, Karen; Solomon, Ethel
1990-05-01
The role of membrane lipid-protein interactions in malignant cell transformation was examined with adenosine deaminase (ADA) as a representative membrane protein. ADA's activity changes dramatically in transformed cells and accordingly it is a malignancy marker. Yet, the mechanisms controlling its variable activity are unknown. We undertook the spectroscopic deciphering of its interactions with its lipidic environment in normal and malignant cells. ADA exists in two interconvertible forms, small (45 KD) and large (21OKD). The large form consists of two small catalytic subunits (55-ADA) and a dimeric complexing protein ADCP. The physiological role of ADCP was not known either. Our studies were carried out at three levels.: 1. Solution enzyme kinetics, 2. The interaction of 55-ADA with ADCP reconstituted in liposomes: Effect of cholesterol and 3. Multifrequency phase modulation spectrofluorometry of pyrene-labeled 55-ADA bound to ADCP on the membranes of normal and RSV or RSV Ts68 transformed chick embryo fibroblasts. We found: 1. ADCP has an allosteric regulatory role on 55-ADA, which may be of physiological relevance: It inhibits 55-ADA activity at low physiological adenosine concentrations but accelerates deamination at high substrate concentration. 2. When reconstituted in DMPC liposomes, it retains 55-ADA activity (in its absence the activity is lost) and upon rigidification with cholesterol, a three fold increase in 55-ADA activity is attained, contrary to ADCP's regulatory activity when free of lipids. 3. The reduced ADA activity in transformed chick embryo fibroblasts is associated with increased membrane lipid fluidity (reduced order parameter), reduced accessibility of ADCP and increase rotational dynamics of the complex. We thus obtained spectroscopic deciphering of the vertical motion of ADCP, controlled by lipid-protein interaction, resulting in variable activity of this malignancy marker.
A transcriptomic approach to search for novel phenotypic regulators in McArdle disease.
Nogales-Gadea, Gisela; Consuegra-García, Inés; Rubio, Juan C; Arenas, Joaquin; Cuadros, Marc; Camara, Yolanda; Torres-Torronteras, Javier; Fiuza-Luces, Carmen; Lucia, Alejandro; Martín, Miguel A; García-Arumí, Elena; Andreu, Antoni L
2012-01-01
McArdle disease is caused by lack of glycogen phosphorylase (GP) activity in skeletal muscle. Patients experience exercise intolerance, presenting as early fatigue and contractures. In this study, we investigated the effects produced by a lack of GP on several genes and proteins of skeletal muscle in McArdle patients. Muscle tissue of 35 patients and 7 healthy controls were used to identify abnormalities in the patients' transcriptomic profile using low-density arrays. Gene expression was analyzed for the influence of variables such as sex and clinical severity. Differences in protein expression were studied by immunoblotting and 2D electrophoresis analysis, and protein complexes were examined by two-dimensional, blue native gel electrophoresis (BN-PAGE). A number of genes including those encoding acetyl-coA carboxylase beta, m-cadherin, calpain III, creatine kinase, glycogen synthase (GS), and sarcoplasmic reticulum calcium ATPase 1 (SERCA1), were found to be downregulated in patients. Specifically, compared to controls, GS and SERCA1 proteins were reduced by 50% and 75% respectively; also, unphosphorylated GS and SERCA1 were highly downregulated. On BN-PAGE analysis, GP was present with GS in two muscle protein complexes. Our findings revealed some issues that could be important in understanding the physiological consequences of McArdle disease: (i) SERCA1 downregulation in patients could result in impaired calcium transport in type II (fast-twitch) muscle fibers, leading to early fatigability during exercise tasks involving type II fibers (which mostly use glycolytic metabolism), i.e. isometric exercise, lifting weights or intense dynamic exercise (stair climbing, bicycling, walking at a very brisk pace), (ii) GP and GS were found together in two protein complexes, which suggests a new regulatory mechanism in the activity of these glycogen enzymes.
Biogenesis of light harvesting proteins.
Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto
2015-09-01
The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamic interactions of proteins in complex networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appella, E.; Anderson, C.
2009-10-01
Recent advances in techniques such as NMR and EPR spectroscopy have enabled the elucidation of how proteins undergo structural changes to act in concert in complex networks. The three minireviews in this series highlight current findings and the capabilities of new methodologies for unraveling the dynamic changes controlling diverse cellular functions. They represent a sampling of the cutting-edge research presented at the 17th Meeting of Methods in Protein Structure Analysis, MPSA2008, in Sapporo, Japan, 26-29 August, 2008 (http://www.iapsap.bnl.gov). The first minireview, by Christensen and Klevit, reports on a structure-based yeast two-hybrid method for identifying E2 ubiquitin-conjugating enzymes that interact withmore » the E3 BRCA1/BARD1 heterodimer ligase to generate either mono- or polyubiquitinated products. This method demonstrated for the first time that the BRCA1/BARD1 E3 can interact with 10 different E2 enzymes. Interestingly, the interaction with multiple E2 enzymes displayed unique ubiquitin-transfer properties, a feature expected to be common among other RING and U-box E3s. Further characterization of new E3 ligases and the E2 enzymes that interact with them will greatly enhance our understanding of ubiquitin transfer and facilitate studies of roles of ubiquitin and ubiquitin-like proteins in protein processing and trafficking. Stein et al., in the second minireview, describe recent progress in defining the binding specificity of different peptide-binding domains. The authors clearly point out that transient peptide interactions mediated by both post-translational modifications and disordered regions ensure a high level of specificity. They postulate that a regulatory code may dictate the number of combinations of domains and post-translational modifications needed to achieve the required level of interaction specificity. Moreover, recognition alone is not enough to obtain a stable complex, especially in a complex cellular environment. Increasing evidence indicates that disordered domains can acquire structural features that modulate the binding and strength of the signaling cascade. Whereas the first two minireviews describe ways in which protein interactions are modulated, the third, by Tompa, focuses on the importance of protein disorder in a subset of amyloid proteins. It is apparent that within this group, part of the polypeptide chain remains disordered during amyloid formation. Moreover, the disordered segments have different amino acid composition and physicochemical characteristics, which suggests that they may play a role in amyloid stability. The disordered region may serve as a linker to connect the ordered core and a globular domain, maintaining the stability and structure of the globular domain and minimizing protein refolding upon amyloid formation. As techniques in protein chemistry advance, we are learning more and more about the mechanisms that regulate and are regulated by protein interactions. The three minireviews in this series offer a glimpse of the complex dynamics fundamental to protein-protein interactions. In the future, we expect that the knowledge gained will help to augment our ability to control complex pathologies and treat diverse diseases states.« less
Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R
2012-12-14
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.
Vitronectin--master controller or micromanager?
Leavesley, David I; Kashyap, Abhishek S; Croll, Tristan; Sivaramakrishnan, Manaswini; Shokoohmand, Ali; Hollier, Brett G; Upton, Zee
2013-10-01
The concept that the mammalian glycoprotein vitronectin acts as a biological 'glue' and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knockout (VN-KO) mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that VN occupies a role in the earliest events of thrombogenesis and tissue repair. VN is the foundation upon which the thrombus grows in an organised structure. In addition to sealing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators, and provides a provisional scaffold for the repairing tissue. In the absence of VN (e.g., VN-KO animal), this cascade is disrupted before it begins. A wide variety of biologically active species associate with VN. Although initial studies were focused on mitogens, other classes of bioactives (e.g., glycosaminoglycans and metalloproteinases) are now also known to specifically interact with VN. Although some interactions are transient, others are long-lived and often result in multi-protein complexes. Multi-protein complexes provide several advantages: prolonging molecular interactions, sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular/biological responses. We contend that these, or equivalent, multi-protein complexes facilitate VN polyfunctionality in vivo. It is also likely that many of the species demonstrated to associate with VN in vitro, also associate with VN in vivo in similar multi-protein complexes. Thus, the predominant biological function of VN is that of a master controller of the extracellular environment; informing, and possibly instructing cells 'where' to behave, 'when' to behave and 'how' to behave (i.e., appropriately for the current circumstance). © 2013 International Union of Biochemistry and Molecular Biology.
Hepatic translation control in the late-gestation fetal rat.
Gruppuso, Philip A; Tsai, Shu-Whei; Boylan, Joan M; Sanders, Jennifer A
2008-08-01
We have investigated the regulation of translation during the period of rapid liver growth that occurs at the end of gestation in the rat. This work was based on our prior observation that fetal hepatocyte proliferation is resistant to the inhibitory effects of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a nutrient-sensing kinase that controls ribosome biogenesis and protein translation. We hypothesized that translation control in late-gestation fetal liver differs from that in adult liver. We first examined the ability of rapamycin to inhibit the translation of mRNAs encoding ribosomal proteins. Consistent with the effect of rapamycin on proliferation, the activation of adult liver 5'-terminal oligopyrimidine tracts (5'-TOP) translation that occurred during refeeding after food deprivation was sensitive to rapamycin. Fetal liver 5'-TOP translation was insensitive. We went on to examine the eukaryotic initiation factor (eIF) 4F cap-binding complex that controls global protein synthesis. The molecular weights of the multiple eIF4G1 isoforms present in fetal and adult liver eIF4F complexes differed. In addition, fetal liver expressed the eIF4A1 form of the eIF4A helicase, whereas adult liver contained eIF4A1 and eIF4A2. Rapamycin administration before refeeding in adult rats inhibited formation of the preinitiation complex to a much greater degree than rapamycin administration to fetal rats in situ. We conclude that there are major structural and functional differences in translation control between late-gestation fetal and adult liver. These differences may confer differential sensitivity to the growth inhibitory effects of rapamycin.
Sun, Ping; Tropea, Joseph E.; Austin, Brian P.; Cherry, Scott; Waugh, David S.
2008-01-01
Summary The plague-causing bacterium Yersinia pestis utilizes a Type III Secretion System (T3SS) to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as "chaperones" to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 Å resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa T3SS, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat (TPR) family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal TPR motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the N-terminal 49 residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex. PMID:18281060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ping; Tropea, Joseph E.; Austin, Brian P.
2008-05-03
The plague-causing bacterium Yersinia pestis utilizes a type III secretion system to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as 'chaperones' to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 {angstrom} resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonasmore » aeruginosa type III secretion system, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal tetratricopeptide repeat motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the 49 N-terminal residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex.« less
Light-induced protein degradation in human-derived cells.
Sun, Wansheng; Zhang, Wenyao; Zhang, Chao; Mao, Miaowei; Zhao, Yuzheng; Chen, Xianjun; Yang, Yi
2017-05-27
Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
The ER membrane insertase Get1/2 is required for efficient mitophagy in yeast.
Onishi, Mashun; Nagumo, Sachiyo; Iwashita, Shohei; Okamoto, Koji
2018-05-10
Mitophagy is an evolutionarily conserved autophagy pathway that selectively eliminates mitochondria to control mitochondrial quality and quantity. Although mitophagy is thought to be crucial for cellular homeostasis, how this catabolic process is regulated remains largely unknown. Here we demonstrate that mitophagy during prolonged respiratory growth is strongly impaired in yeast cells lacking Get1/2, a transmembrane complex mediating insertion of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane. Under the same conditions, loss of Get1/2 caused only slight defects in other types of selective and bulk autophagy. In addition, mitophagy and other autophagy-related processes are mostly normal in cells lacking Get3, a cytosolic ATP-driven chaperone that promotes delivery of TA proteins to the Get1/2 complex. We also found that Get1/2-deficient cells exhibited wildtype-like induction and mitochondrial localization of Atg32, a protein essential for mitophagy. Notably, Get1/2 is important for Atg32-independent, ectopically promoted mitophagy. Together, we propose that Get1/2-dependent TA protein(s) and/or the Get1/2 complex itself may act specifically in mitophagy. Copyright © 2018 Elsevier Inc. All rights reserved.
Ahn, Hyo-Min; Koh, Young Ho
2016-01-01
We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903
The Mediator complex: a central integrator of transcription
Allen, Benjamin L.; Taatjes, Dylan J.
2016-01-01
The RNA polymerase II (pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator, a large, conformationally flexible protein complex with variable subunit composition (for example, a four-subunit CDK8 module can reversibly associate). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes important for transcription, including organization of chromatin architecture and regulation of pol II pre-initiation, initiation, re-initiation, pausing, and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions appear to be specific to metazoans, indicative of more diverse regulatory requirements. PMID:25693131
Tödter, Dominik; Gunka, Katrin; Stülke, Jörg
2017-01-01
In most bacteria, fatty acid biosynthesis is an essential process that must be controlled by the availability of precursors and by the needs of cell division. So far, no mechanisms controlling synthesis of malonyl-coenzyme A (CoA), the committed step in fatty acid synthesis, have been identified in the Gram-positive model bacterium Bacillus subtilis. We have studied the localization and function of two highly expressed proteins of unknown function, YqhY and YloU. Both proteins are members of the conserved and widespread Asp23 family. While the deletion of yloU had no effect, loss of the yqhY gene induced the rapid acquisition of suppressor mutations. The vast majority of these mutations affect subunits of the acetyl-CoA carboxylase (ACCase) complex, the enzyme that catalyzes the formation of malonyl-CoA. Moreover, lack of yqhY is accompanied by the formation of lipophilic clusters in the polar regions of the cells indicating an increased activity of ACCase. Our results suggest that YqhY controls the activity of ACCase and that this control results in inhibition of ACCase activity. Hyperactivity of the enzyme complex in the absence of YqhY does then provoke mutations that cause reduced ACCase activity. PMID:28579978
Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.
Bauß, Katharina; Knapp, Barbara; Jores, Pia; Roepman, Ronald; Kremer, Hannie; Wijk, Erwin V; Märker, Tina; Wolfrum, Uwe
2014-08-01
The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wu, Hai-rong; Ma, Yi-nan; Qi, Yu; Liu, Hong-gang
2013-04-23
To explore the expression and significance of respiratory chain enzyme of cells in urine sediment in mitochondrial encephalopathy myopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Through enzyme histochemistry, the authors analyzed the changes of respiratory chain enzyme in urine sediment in 20 MELAS patients due to mitochondrial A3243G mutation (MELAS group) and 20 health peoples (control group). And the impact on the expression of protein encoded by nuclear DNA (A21347) and mitochondrial DNA (A6404) was detected by immunochemistry. Image pro Plus 6.0 software was used for analysis of absorbance (A) of staining images as staining intensity. The data were expressed as M (Q1, Q3) and analyzed through statistical software. The staining intensity of complexes Iin the MELAS group was lower than that in the control group (0.06(0.01, 0.12) vs 0.12(0.01, 0.62), P = 0.010). The intergroup staining intensity of complex II showed no marked difference. Increased density of blue particle and cytoplasmic gathering was found in 13 cased (65%) of the MELAS group under light microscope. The staining intensity of complexes IV was expressed at a low level in the MELAS group (0.14(0.03, 0.32) vs 0.23(0.06, 0.43), P = 0.038). The expression of protein encoded by nuclear DNA (A21347) was lower than that in the control group (0.05(0.02, 0.45) vs 0.17(0.03, 0.70), P = 0.000). The expression of protein encoded by mitochondrial DNA (A6404) was also lower than that in the control group (0.03(0.01, 0.07) vs 0.15 (0.09, 0.23), P = 0.000). Abnormal change of respiratory chain enzyme in urine sediment in MELAS due to mitochondrial A3243G mutation and a low expression of proteins encoded by two kinds of DNA in complexes IV can help to confirm the genetic diagnosis of mitochondrial encephalomyopathies so that different subtypes may be classified and its pathogenesis elucidated.
Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review).
Zhang, Zhen; Wang, Huiyun; Yan, Maocai; Wang, Huannan; Zhang, Chunyan
2017-01-01
The use of metal complexes in the pharmaceutical industry has recently increased and as a result, novel metal‑based complexes have initiated an interest as potential anticancer agents. Copper (Cu), which is an essential trace element in all living organisms, is important in maintaining the function of numerous proteins and enzymes. It has recently been demonstrated that Cu complexes may be used as tumor‑specific proteasome inhibitors and apoptosis inducers, by targeting the ubiquitin‑proteasome pathway (UPP). Cu complexes have demonstrated promising results in preclinical studies. The UPP is important in controlling the expression, activity and location of various proteins. Therefore, selective proteasome inhibition and apoptotic induction in cancer cells have been regarded as potential anticancer strategies. The present short review discusses recent progress in the development of Cu complexes, including clioquinol, dithiocarbamates and Schiff bases, as proteasome inhibitors for cancer treatment. A discussion of recent research regarding the understanding of metal inhibitors based on Cu and ligand platforms is presented.
Tripathi, Pankaj; Anuradha, S; Ghosal, Gargi; Muniyappa, K
2006-12-08
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.
The GIT–PIX complexes regulate the chemotactic response of rat basophilic leukaemia cells
Gavina, Manuela; Za, Lorena; Molteni, Raffaella; Pardi, Ruggero; Curtis, Ivan de
2009-01-01
Background information. Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. The GIT–PIX protein complexes are involved in the regulation of cell motility and adhesion and in the endocytic traffic of members of the family of G-protein-coupled receptors. We have investigated the function of the endogenous GIT complexes in the regulation of cell motility stimulated by fMLP (formyl-Met-Leu-Phe) peptide, in a rat basophilic leukaemia RBL-2H3 cell line stably expressing an HA (haemagglutinin)-tagged receptor for the fMLP peptide. Results. Our analysis shows that RBL cells stably transfected with the chemoattractant receptor expressed both GIT1–PIX and GIT2–PIX endogenous complexes. We have used silencing of the different members of the complex by small interfering RNAs to study the effects on a number of events linked to agonist-induced cell migration. We found that cell adhesion was not affected by depletion of any of the proteins of the GIT complex, whereas agonist-enhanced cell spreading was inhibited. Analysis of agonist-stimulated haptotactic cell migration indicated a specific positive effect of GIT1 depletion on trans-well migration. The internalization of the formyl-peptide receptor was also inhibited by depletion of GIT1 and GIT2. The effects of the GIT complexes on trafficking of the receptors was confirmed by an antibody-enhanced agonist-induced internalization assay, showing that depletion of PIX, GIT1 or GIT2 protein caused decreased perinuclear accumulation of internalized receptors. Conclusions. Our results show that endogenous GIT complexes are involved in the regulation of chemoattractant-induced cell motility and receptor trafficking, and support previous findings indicating an important function of the GIT complexes in the regulation of different G-protein-coupled receptors. Our results also indicate that endogenous GIT1 and GIT2 regulate distinct subsets of agonist-induced responses and suggest a possible functional link between the control of receptor trafficking and the regulation of cell motility by GIT proteins. PMID:19912111
Turoverov, Konstantin K.; Kuznetsova, Irina M.; Uversky, Vladimir N.
2010-01-01
The native state of a protein is usually associated with a compact globular conformation possessing a rigid and highly ordered structure. At the turn of the last century certain studies arose which concluded that many proteins cannot, in principle, form a rigid globular structure in an aqueous environment, but they are still able to fulfill their specific functions — i.e., they are native. The existence of the disordered regions allows these proteins to interact with their numerous binding partners. Such interactions are often accompanied by the formation of complexes that possess a more ordered structure than the original components. The functional diversity of these proteins, combined with the variability of signals related to the various intra-and intercellular processes handled by these proteins and their capability to produce multi-variant and multi-directional responses allow them to form a unique regulatory net in a cell. The abundance of disordered proteins inside the cell is precisely controlled at the synthesis and clearance levels as well as via interaction with specific binding partners and posttranslational modifications. Another recently recognized biologically active state of proteins is the functional amyloid. The formation of such functional amyloids is tightly controlled and therefore differs from the uncontrolled formation of pathogenic amyloids which are associated with the pathogenesis of several conformational diseases, the development of which is likely to be determined by the failures of the cellular regulatory systems rather than by the formation of the proteinaceous deposits and/or by the protofibril toxicity. PMID:20097220
Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB
Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana
2013-01-01
Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612
Soheili, Tayebeh; Gicquel, Evelyne; Poupiot, Jérôme; N'Guyen, Luu; Le Roy, Florence; Bartoli, Marc; Richard, Isabelle
2012-02-01
Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein. © 2011 Wiley Periodicals, Inc.
Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas
2013-01-01
Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441
NASA Astrophysics Data System (ADS)
Hundt, Walter; Schink, Christian; Steinbach, Silke; O'Connell-Rodwell, Caitlin E.; Kiessling, Andreas; Librizzi, Damiano; Burbelko, Mykhaylo; Guccione, Samira
2012-06-01
We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The size of the treated M21 tumors remained fairly constant (647.8+/-103.4 mm2 at the beginning versus 704.8+/-94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promoter, luciferase activity decreased to 17.9%+/-4.3% of baseline values in the treated M21 tumors. When transcription was controlled by the Hsp70 promoter, the highest luciferase activity (4.5+/-0.7-fold increase over base-line values) was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in melanoma tumors.
Live Cell Genomics: RNA Exon-Specific RNA-Binding Protein Isolation.
Bell, Thomas J; Eberwine, James
2015-01-01
RNA-binding proteins (RBPs) are essential regulatory proteins that control all modes of RNA processing and regulation. New experimental approaches to isolate these indispensable proteins under in vivo conditions are needed to advance the field of RBP biology. Historically, in vitro biochemical approaches to isolate RBP complexes have been useful and productive, but biological relevance of the identified RBP complexes can be imprecise or erroneous. Here we review an inventive experimental to isolate RBPs under the in vivo conditions. The method is called peptide nucleic acid (PNA)-assisted identification of RBP (PAIR) technology and it uses cell-penetrating peptides (CPPs) to deliver photo-activatible RBP-capture molecule to the cytoplasm of the live cells. The PAIR methodology provides two significant advantages over the most commonly used approaches: (1) it overcomes the in vitro limitation of standard biochemical approaches and (2) the PAIR RBP-capture molecule is highly selective and adaptable which allows investigators to isolate exon-specific RBP complexes. Most importantly, the in vivo capture conditions and selectivity of the RBP-capture molecule yield biologically accurate and relevant RBP data.
TALE factors poise promoters for activation by Hox proteins.
Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G
2014-01-27
Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription. Copyright © 2014 Elsevier Inc. All rights reserved.
Optical Lock-In Detection of FRET Using Synthetic and Genetically Encoded Optical Switches
Mao, Shu; Benninger, Richard K. P.; Yan, Yuling; Petchprayoon, Chutima; Jackson, David; Easley, Christopher J.; Piston, David W.; Marriott, Gerard
2008-01-01
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins. PMID:18281383
Kuchin, S; Yeghiayan, P; Carlson, M
1995-01-01
The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter. Images Fig. 3 Fig. 4 Fig. 5 PMID:7732022
Cardote, Teresa A F; Ciulli, Alessio
2017-09-21
Cullin RING E3 ubiquitin ligases (CRLs) are large dynamic multi-subunit complexes that control the fate of many proteins in cells. CRLs are attractive drug targets for the development of small-molecule inhibitors and chemical inducers of protein degradation. Herein we describe a structure-guided biophysical approach to probe the protein-protein interaction (PPI) between the Cullin-2 scaffold protein and the adaptor subunits Elongin BC within the context of the von Hippel-Lindau complex (CRL2 VHL ) using peptides. Two peptides were shown to bind at the targeted binding site on Elongin C, named the "EloC site", with micromolar dissociation constants, providing a starting point for future optimization. Our results suggest ligandability of the EloC binding site to short linear peptides, unveiling the opportunity and challenges to develop small molecules that have the potential to target selectively the Cul2-adaptor PPI within CRLs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marionneau, Céline; Townsend, R Reid; Nerbonne, Jeanne M
2011-04-01
Voltage-gated K(+) (Kv) channels are key determinants of membrane excitability in the nervous and cardiovascular systems, functioning to control resting membrane potentials, shape action potential waveforms and influence the responses to neurotransmitters and neurohormones. Consistent with this functional diversity, multiple types of Kv currents, with distinct biophysical properties and cellular/subcellular distributions, have been identified. Rapidly activating and inactivating Kv currents, typically referred to as I(A) (A-type) in neurons, for example, regulate repetitive firing rates, action potential back-propagation (into dendrites) and modulate synaptic responses. Currents with similar properties, referred to as I(to,f) (fast transient outward), expressed in cardiomyocytes, control the early phase of myocardial action potential repolarization. A number of studies have demonstrated critical roles for pore-forming (α) subunits of the Kv4 subfamily in the generation of native neuronal I(A) and cardiac I(to,f) channels. Studies in heterologous cells have also suggested important roles for a number of Kv channel accessory and regulatory proteins in the generation of functional I(A) and I(to,f) channels. Quantitative mass spectrometry-based proteomic analysis is increasingly recognized as a rapid and, importantly, unbiased, approach to identify the components of native macromolecular protein complexes. The recent application of proteomic approaches to identify the components of native neuronal (and cardiac) Kv4 channel complexes has revealed even greater complexity than anticipated. The continued emphasis on development of improved biochemical and analytical proteomic methods seems certain to accelerate progress and to provide important new insights into the molecular determinants of native ion channel protein complexes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Discovery of new sites for drug binding to the hypertension-related renin-angiotensinogen complex.
Brás, Natércia F; Fernandes, Pedro A; Ramos, Maria J
2014-04-01
Renin (REN) is a key drug target to stop the hypertension cascade, but thus far only one direct inhibitor has been made commercially available. In this study, we assess an innovative REN inhibition strategy, by targeting the interface of the renin:angiotensinogen (REN:ANG) complex. We characterized the energetic role of interfacial residues of REN:ANG and identified the ones responsible for protein:protein binding, which can serve as drug targets for disruption of the REN:ANG association. For this purpose, we applied a computational alanine scanning mutagenesis protocol, which measures the contribution of each side chain for the protein:protein binding free energy with an accuracy of ≈ 1 kcal/mol. As a result, in REN and ANG, six and eight residues were found to be critical for binding, respectively. The leading force behind REN:ANG complexation was found to be the hydrophobic effect. The binding free energy per residue was found to be proportional to the buried area. Residues responsible for binding were occluded from water at the complex, which promotes an efficient pairing between the two proteins. Two druggable pockets involving critical residues for binding were found on the surface of REN, where small druglike molecules can bind and disrupt the ANG:REN association that may provide an efficient way to achieve REN inhibition and control hypertension.
Structure and Function of Lipopolysaccharide Binding Protein
NASA Astrophysics Data System (ADS)
Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.
1990-09-01
The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.
Gong, Lan; Ramm, Georg; Devenish, Rodney J.; Prescott, Mark
2012-01-01
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase. PMID:22496895
Function of YY1 in Long-Distance DNA Interactions
Atchison, Michael L.
2014-01-01
During B cell development, long-distance DNA interactions are needed for V(D)J somatic rearrangement of the immunoglobulin (Ig) loci to produce functional Ig genes, and for class switch recombination (CSR) needed for antibody maturation. The tissue-specificity and developmental timing of these mechanisms is a subject of active investigation. A small number of factors are implicated in controlling Ig locus long-distance interactions including Pax5, Yin Yang 1 (YY1), EZH2, IKAROS, CTCF, cohesin, and condensin proteins. Here we will focus on the role of YY1 in controlling these mechanisms. YY1 is a multifunctional transcription factor involved in transcriptional activation and repression, X chromosome inactivation, Polycomb Group (PcG) protein DNA recruitment, and recruitment of proteins required for epigenetic modifications (acetylation, deacetylation, methylation, ubiquitination, sumoylation, etc.). YY1 conditional knock-out indicated that YY1 is required for B cell development, at least in part, by controlling long-distance DNA interactions at the immunoglobulin heavy chain and Igκ loci. Our recent data show that YY1 is also required for CSR. The mechanisms implicated in YY1 control of long-distance DNA interactions include controlling non-coding antisense RNA transcripts, recruitment of PcG proteins to DNA, and interaction with complexes involved in long-distance DNA interactions including the cohesin and condensin complexes. Though common rearrangement mechanisms operate at all Ig loci, their distinct temporal activation along with the ubiquitous nature of YY1 poses challenges for determining the specific mechanisms of YY1 function in these processes, and their regulation at the tissue-specific and B cell stage-specific level. The large numbers of post-translational modifications that control YY1 functions are possible candidates for regulation. PMID:24575094
Chowdhury, Subir Roy; Djordjevic, Jelena; Thomson, Ella; Smith, Darrell R; Albensi, Benedict C; Fernyhough, Paul
2018-05-23
Abnormalities in mitochondrial function under diabetic conditions can lead to deficits in function of cortical neurons and their support cells exhibiting a pivotal role in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. We aimed to assess simultaneously mitochondrial respiration rates and membrane potential or H 2 O 2 generation and proteins involved in mitochondrial dynamics, antioxidants and AMPK/SIRT/PGC-1α pathway activity in cortex under diabetic conditions. Cortical mitochondria from streptozotocin (STZ)-induced type 1 diabetic rats or mice, and aged-match controls were used for simultaneous measurements of mitochondrial respiration rates and mitochondrial membrane potential (mtMP) or H 2 O 2 using OROBOROS oxygraph and measurements of enzymatic activities by a spectrophotometer. Protein levels in cortical mitochondria and homogenates were determined by Western blotting. Mitochondrial coupled respiration rates and FCCP-induced uncoupled respiration rates were significantly decreased in mitochondria of STZ-diabetic cortical rats compared to controls. The mtMP in the presence of ADP was significantly depolarized and succinate-dependent respiration rates and H 2 O 2 were significantly diminished in mitochondria of diabetic animals compared to controls, accompanied with reduced expression of CuZn- and Mn-superoxide dismutase. The enzymatic activities of Complex I, II, and IV and protein levels of certain components of Complex I and II, mitofusin 2 (Mfn2), dynamin-related protein 1 (DRP1), P-AMPK, SIRT2 and PGC-1α were significantly diminished in diabetic cortex. Deficits in mitochondrial function, dynamics, and antioxidant capabilities putatively mediated through sub-optimal AMPK/SIRT/PGC-1α signaling, are involved in the development of early sub-clinical neurodegeneration in the cortex under diabetic conditions. Copyright © 2017. Published by Elsevier Inc.
Protecting the proteome: Eukaryotic cotranslational quality control pathways
2014-01-01
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822
Simulating evolution of protein complexes through gene duplication and co-option.
Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter
2016-06-21
We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.
ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in mammalian cells.
Baudier, Jacques
2018-05-01
In yeast, a sequence of physical and genetic interactions termed the endoplasmic reticulum (ER)-mitochondria organizing network (ERMIONE) controls mitochondria-ER interactions and mitochondrial biogenesis. Several functions that characterize ERMIONE complexes are conserved in mammalian cells, suggesting that a similar tethering complex must exist in metazoans. Recent studies have identified a new family of nuclear-encoded ATPases associated with diverse cellular activities (AAA+-ATPase) mitochondrial membrane proteins specific to multicellular eukaryotes, called the ATPase family AAA domain-containing protein 3 (ATAD3) proteins (ATAD3A and ATAD3B). These proteins are crucial for normal mitochondrial-ER interactions and lie at the heart of processes underlying mitochondrial biogenesis. ATAD3A orthologues have been studied in flies, worms, and mammals, highlighting the widespread importance of this gene during embryonic development and in adulthood. ATAD3A is a downstream effector of target of rapamycin (TOR) signalling in Drosophila and exhibits typical features of proteins from the ERMIONE-like complex in metazoans. In humans, mutations in the ATAD3A gene represent a new link between altered mitochondrial-ER interaction and recognizable neurological syndromes. The primate-specific ATAD3B protein is a biomarker of pluripotent embryonic stem cells. Through negative regulation of ATAD3A function, ATAD3B supports mitochondrial stemness properties. © 2017 Cambridge Philosophical Society.
The nuclear import of ribosomal proteins is regulated by mTOR
Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.
2014-01-01
Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810
Lam, Winnie W M; Chan, Keith C C
2012-04-01
Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.
Protein sorting in complex plastids.
Sheiner, Lilach; Striepen, Boris
2013-02-01
Taming a cyanobacterium in a pivitol event of endosymbiosis brought photosynthesis to eukaryotes, and gave rise to the plastids found in glaucophytes, red and green algae, and the descendants of the latter, the plants. Ultrastructural as well as molecular research over the last two decades has demonstrated that plastids have enjoyed surprising lateral mobility across the tree of life. Numerous independent secondary and tertiary endosymbiosis have led to a spread of plastids into a variety of, up to that point, non-photosynthetic lineages. Happily eating and subsequently domesticating one another protists conquered a wide variety of ecological niches. The elaborate evolution of secondary, or complex, plastids is reflected in the numerous membranes that bound them (three or four compared to the two membranes of the primary plastids). Gene transfer to the host nucleus is a hallmark of endosymbiosis and provides centralized cellular control. Here we review how these proteins find their way back into the stroma of the organelle and describe the advances in the understanding of the molecular mechanisms that allow protein translocation across four membranes. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Published by Elsevier B.V.
The Endoplasmic Reticulum-Associated Degradation Pathways of Budding Yeast
Thibault, Guillaume; Ng, Davis T.W.
2012-01-01
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast. PMID:23209158
Haramija, Marko; Peter-Katalinić, Jasna
2017-10-30
Affinity mass spectrometry (AMS) is an emerging tool in the field of the study of protein•carbohydrate complexes. However, experimental obstacles and data analysis are preventing faster integration of AMS methods into the glycoscience field. Here we show how analysis of direct electrospray ionization mass spectrometry (ESI-MS) AMS data can be simplified for screening purposes, even for complex AMS spectra. A direct ESI-MS assay was tested in this study and binding data for the galectin-3C•lactose complex were analyzed using a comprehensive and simplified data analysis approach. In the comprehensive data analysis approach, noise, all protein charge states, alkali ion adducts and signal overlap were taken into account. In a simplified approach, only the intensities of the fully protonated free protein and the protein•carbohydrate complex for the main protein charge state were taken into account. In our study, for high intensity signals, noise was negligible, sodiated protein and sodiated complex signals cancelled each other out when calculating the K d value, and signal overlap influenced the Kd value only to a minor extent. Influence of these parameters on low intensity signals was much higher. However, low intensity protein charge states should be avoided in quantitative AMS analyses due to poor ion statistics. The results indicate that noise, alkali ion adducts, signal overlap, as well as low intensity protein charge states, can be neglected for preliminary experiments, as well as in screening assays. One comprehensive data analysis performed as a control should be sufficient to validate this hypothesis for other binding systems as well. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tavenor, Nathan Albert
Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta-turns) of a small protein with a tertiary fold. Although the tertiary fold of the native sequence was mimicked by the resulting artificial protein, the thermodynamic stability was greatly compromised. Most of this energetic penalty derived from the modifications present in the alpha-helix. The contribution within this thesis was direct comparison of several alpha-helical design strategies and establishment of the thermodynamic consequences of each.
McClintock, Carlee S; Hettich, Robert L.
2012-01-01
Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708
Endocytosis and Endosomal Trafficking in Plants.
Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S
2016-04-29
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier
2012-05-01
Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.
Hudry, Bruno; Viala, Séverine; Graba, Yacine; Merabet, Samir
2011-01-28
Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.
Testing of gastric contents for peanut proteins in a 13-year old anaphylaxis victim.
Beavers, Charles; Stauble, M Elaine; Jortani, Saeed A
2014-02-15
We report the case of a 13-y female who went into anaphylactic shock following the ingestion of a meal suspected to be contaminated by peanuts. The teenager had a known sensitivity to peanuts, however, the restaurant claimed that no peanut products were used in the preparation of her meal. The gastric contents of the decedent were retained and tested for peanut proteins due to the possible legal liability of the proprietor. Using antibodies against peanut proteins (roasted and unroasted), we optimized a method to detect total soluble peanut proteins by Western-blot analysis in gastric contents. In addition, we validated two commercially available tests which were originally intended for detection of peanut proteins in food matrices to examine the same gastric sample. One was an enzyme-linked immunosorbent assay (ELISA) that utilized polyclonal antibodies against Ara h 1 (Tepnel Life Sciences). The other was a laminar-flow assay directed against Ara h 1, Ara h 2 and Ara h 3 (R-Biopharm). A positive food-based control was created by reducing bread and peanuts (1:1, w/w) with water (1:1, w/v) using a mortar and pestle. A food-based negative food control was created similar to the positive control, except the peanuts were omitted and the amount of bread was doubled. The Western-blot assay was sensitive down to 2.5ng/ml of total peanut protein. The laminar flow was the most rapid and least complex. The ELISA was the most analytically sensitive with a cut-off of 1ng/ml of Ara h 1 protein compared to the laminar flow which had a cut-off of 4ng/ml Ara h 1 equivalent. Both ELISA and laminar flow assays were able to detect peanut proteins in the food matrices and positive controls, and not in negative controls. No peanut related proteins were detected in the decedent's gastric sample. The gastric sample spiked with peanuts was reliably detectable. The anaphylaxis patient had no peanut allergens detected in her gastric contents by any of the three methods employed. Both commercially available assays are easily adaptable for testing peanut allergens in the gastric contents as judged by the results of the immunoassays as well as the Western blot analysis. Due to the rising need for detecting peanut proteins in various heterogeneous and complex matrices, the use of appropriate controls should be also considered in these unique investigations. Copyright © 2013 Elsevier B.V. All rights reserved.
Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks
Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi
2014-01-01
Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
ATG13: just a companion, or an executor of the autophagic program?
Alers, Sebastian; Wesselborg, Sebastian; Stork, Björn
2014-06-01
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.
Role of actin in auxin transport and transduction of gravity
NASA Astrophysics Data System (ADS)
Hu, S.; Basu, S.; Brady, S.; Muday, G.
Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)
Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...
2014-10-13
Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melero, Cristina; Ollikainen, Noah; Harwood, Ian
Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less
Zhang, Liguo; Zhang, Xiaofei; Ju, Hanxun; ...
2016-01-23
We study the Three-Amino-acid-Loop-Extension(TALE) homeodomain transcription factor BLH3 that regulates timing of transition from vegetative to reproductive phase. Previous preliminary results obtained using large-scale yeast two-hybrids indicate that BLH3 protein possibly interact with Ovate Family Proteins(OFPs) transcription co-regulators. Nevertheless, it is uncertain whether OFP1–BLH3 complex is involved in regulation of timing of transition from vegetative to reproductive phase in Arabidopsis. The interaction between BLH3 and OFP1 was re-tested and verified by a yeast two-hybrid system. We found that the BLH3–OFP1 interaction was mainly mediated through the BLH3 homeodomain. Meanwhile, this interaction was further confirmed by bimolecular fluorescence complementation (BiFC) inmore » vivo. In addition, by establishing protoplast transient expression, we discovered that BLH3 acts as a transcriptional activator, whereas OFP1 functioned as a repressor. The interactions between OFP1 and BLH3 can reduce BLH3 transcriptional activity. The ofp1 mutant lines and blh3 mutant lines, OFP1 overexpress lines and BLH3 overexpress lines can both influence timing of transition from vegetative to reproductive phase. Furthermore, 35s:OFP1/blh3 plants exhibited flowering and leaf quantity similar to that of the wild-type controls. 35s:BLH3/ofp1 plants flowered earlier and had less leaves than wild-type controls, indicating that OFP1 protein might depend partially on BLH3 in its function to regulate the timing of transition from vegetative to reproductive phase. In conclusion, these results support our assumption that, by interacting with OFP1, BLH3 forms a functional protein complex that controls timing of progression from vegetative to reproductive phase, and OFP1 might negatively regulate BLH3 or the BLH-KNOX complex, an important interaction for sustaining the normal transition from vegetative to reproductive phase.« less
Structural determination of intact proteins using mass spectrometry
Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA
2008-05-06
The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.
Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.
Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L
2008-05-02
G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.
Molecular transformers in the cell: lessons learned from the DegP protease-chaperone.
Sawa, Justyna; Heuck, Alexander; Ehrmann, Michael; Clausen, Tim
2010-04-01
Structure-function analysis of DegP revealed a novel mechanism for protease and chaperone regulation. Binding of unfolded proteins induces the oligomer reassembly from the resting hexamer (DegP6) into the functional protease-chaperone DegP12/24. The newly formed cage exhibits the characteristics of a proteolytic folding chamber, shredding those proteins that are severely misfolded while stabilizing and protecting proteins present in their native state. Isolation of native DegP complexes with folded outer membrane proteins (OMPs) highlights the importance of DegP in OMP biogenesis. The encapsulated OMP beta-barrel is significantly stabilized in the hydrophobic chamber of DegP12/24 and thus DegP seems to employ a reciprocal mechanism to those chaperones assisting the folding of water soluble proteins via polar interactions. In addition, we discuss in this review similarities to other complex proteolytic machines that, like DegP, are under control of a substrate-induced or stress-induced oligomer conversion.
Network biology discovers pathogen contact points in host protein-protein interactomes.
Ahmed, Hadia; Howton, T C; Sun, Yali; Weinberger, Natascha; Belkhadir, Youssef; Mukhtar, M Shahid
2018-06-13
In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1 MAIN ). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1 MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSI LRR ) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.
Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan
2017-06-07
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.
Dynamically controlled crystal growth system
NASA Technical Reports Server (NTRS)
Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)
2002-01-01
Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.
TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael
2012-03-04
Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
Regulating Toxin-Antitoxin Expression: Controlled Detonation of Intracellular Molecular Timebombs
Hayes, Finbarr; Kędzierska, Barbara
2014-01-01
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within. PMID:24434949
Characterizing and controlling the inflammatory network during influenza A virus infection
NASA Astrophysics Data System (ADS)
Jin, Suoqin; Li, Yuanyuan; Pan, Ruangang; Zou, Xiufen
2014-01-01
To gain insights into the pathogenesis of influenza A virus (IAV) infections, this study focused on characterizing the inflammatory network and identifying key proteins by combining high-throughput data and computational techniques. We constructed the cell-specific normal and inflammatory networks for H5N1 and H1N1 infections through integrating high-throughput data. We demonstrated that better discrimination between normal and inflammatory networks by network entropy than by other topological metrics. Moreover, we identified different dynamical interactions among TLR2, IL-1β, IL10 and NFκB between normal and inflammatory networks using optimization algorithm. In particular, good robustness and multistability of inflammatory sub-networks were discovered. Furthermore, we identified a complex, TNFSF10/HDAC4/HDAC5, which may play important roles in controlling inflammation, and demonstrated that changes in network entropy of this complex negatively correlated to those of three proteins: TNFα, NFκB and COX-2. These findings provide significant hypotheses for further exploring the molecular mechanisms of infectious diseases and developing control strategies.
Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens.
Fader, Claudio Marcelo; Aguilera, Milton Osmar; Colombo, María Isabel
2015-10-01
Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.
Fuchs, Margit; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N.
2015-01-01
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. PMID:26496431
Fuchs, Margit; Luthold, Carole; Guilbert, Solenn M; Varlet, Alice Anaïs; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N
2015-10-01
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.
Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya
2013-01-01
Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458
Le, Duc-Hau
2015-01-01
Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.
Predicting Physical Interactions between Protein Complexes*
Clancy, Trevor; Rødland, Einar Andreas; Nygard, Ståle; Hovig, Eivind
2013-01-01
Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships. PMID:23438732
Scaloni, A; Ferranti, P; De Simone, G; Mamone, G; Sannolo, N; Malorni, A
1999-06-11
The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.
Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein
Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian
2015-01-01
Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. H.; Cho, U. -S.; Karin, M.
Sestrins are highly conserved, stress-inducible proteins that inhibit target of rapamycin complex 1 (TORC1) signaling. After their transcriptional induction, both vertebrate and invertebrate Sestrins turn on the adenosine monophosphate (AMP)–activated protein kinase (AMPK), which activates the tuberous sclerosis complex (TSC), a key inhibitor of TORC1 activation. However, Sestrin overexpression, on occasion, can result in TORC1 inhibition even in AMPK-deficient cells. This effect has been attributed to Sestrin’s ability to bind the TORC1-regulating GATOR2 protein complex, which was postulated to control trafficking of TORC1 to lysosomes. How the binding of Sestrins to GATOR2 is regulated and how it contributes to TORC1more » inhibition are unknown. New findings suggest that the amino acid leucine specifically disrupts the association of Sestrin2 with GATOR2, thus explaining how leucine and related amino acids stimulate TORC1 activity. We discuss whether and how these findings fit what has already been learned about Sestrin-mediated TORC1 inhibition from genetic studies conducted in fruit flies and mammals.« less
Sun, Aiming; Shoji, Mamoru; Lu, Yang J; Liotta, Dennis C; Snyder, James P
2006-06-01
The blood coagulation cascade includes a step in which the soluble protein, factor VIIa (fVIIa), complexes with its transmembrane receptor, tissue factor (TF). The fVIIa/TF protein-protein complex is subsequently drawn into the cell by endocytosis. The observation that TF is aberrantly and abundantly expressed on many cancer cells offers an opportunity to specifically target those cells with an effective anticancer drug. Thus, we propose a new drug delivery system, drug-linker-Phe-Phe-Arg-mk-fVIIa, which can associate with TF on the surface of cancer cells, but release the cytotoxic agent in the cytoplasm. Synthetic procedures have been developed for the preparation of phenylalanine-phenylalanine-arginine chloromethyl ketone, (FFRck) followed by coupling with the cytotoxin EF24 and subsequently fVIIa to give EF-24-FFRmk-fVIIa. When breast cancer cells (MDA-MB-231) and human melanoma cells (RPMI-7951) are treated with the complex, the cells are arrested to a greater extent than EF24 alone by comparison with controls.
Insecticidal activity of plant lectins and potential application in crop protection.
Macedo, Maria Lígia R; Oliveira, Caio F R; Oliveira, Carolina T
2015-01-27
Lectins constitute a complex group of proteins found in different organisms. These proteins constitute an important field for research, as their structural diversity and affinity for several carbohydrates makes them suitable for numerous biological applications. This review addresses the classification and insecticidal activities of plant lectins, providing an overview of the applicability of these proteins in crop protection. The likely target sites in insect tissues, the mode of action of these proteins, as well as the use of lectins as biotechnological tools for pest control are also described. The use of initial bioassays employing artificial diets has led to the most recent advances in this field, such as plant breeding and the construction of fusion proteins, using lectins for targeting the delivery of toxins and to potentiate expected insecticide effects. Based on the data presented, we emphasize the contribution that plant lectins may make as tools for the development of integrated insect pest control strategies.
Chandra Dantu, Sarath; Nathubhai Kachariya, Nitin; Kumar, Ashutosh
2016-01-01
Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. © 2015 Wiley Periodicals, Inc.
Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun
2011-05-20
Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.
Border control: selectivity of chloroplast protein import and regulation at the TOC-complex.
Demarsy, Emilie; Lakshmanan, Ashok M; Kessler, Felix
2014-01-01
Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.
The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction.
Albayrak, Timur; Scherhammer, Volker; Schoenfeld, Nicole; Braziulis, Erik; Mund, Thomas; Bauer, Manuel K A; Scheffler, Immo E; Grimm, Stefan
2003-08-01
A genetic screen was established to clone apoptosis-inducing genes in a high-throughput format. It led to the isolation of several proapoptotic genes whose proteins are localized to mitochondria. One of the isolated genes is cytochrome bL (cybL also known as SDHC, CII-3, or QPs-1), a component of the respiratory chain complex II. It was further investigated because both cybL and another component of complex II, cybS, have recently been identified as tumor suppressor proteins, some of which act by controlling apoptosis. Our studies reveal that cell death induction by cybL expression is concomitant with a transient inhibition of complex II and the generation of reactive oxygen species. Importantly, cells that are constitutively deficient in cybL are resistant to a variety of proapoptotic cytostatic drugs and to the effects of the Fas receptor. Our results therefore identify complex II as a sensor for apoptosis induction and could explain the unexpected observation that complex II is inactivated in tumors.
The Tumor Suppressor cybL, a Component of the Respiratory Chain, Mediates Apoptosis Induction
Albayrak, Timur; Scherhammer, Volker; Schoenfeld, Nicole; Braziulis, Erik; Mund, Thomas; Bauer, Manuel K.A.; Scheffler, Immo E.; Grimm, Stefan
2003-01-01
A genetic screen was established to clone apoptosis-inducing genes in a high-throughput format. It led to the isolation of several proapoptotic genes whose proteins are localized to mitochondria. One of the isolated genes is cytochrome bL (cybL also known as SDHC, CII-3, or QPs-1), a component of the respiratory chain complex II. It was further investigated because both cybL and another component of complex II, cybS, have recently been identified as tumor suppressor proteins, some of which act by controlling apoptosis. Our studies reveal that cell death induction by cybL expression is concomitant with a transient inhibition of complex II and the generation of reactive oxygen species. Importantly, cells that are constitutively deficient in cybL are resistant to a variety of proapoptotic cytostatic drugs and to the effects of the Fas receptor. Our results therefore identify complex II as a sensor for apoptosis induction and could explain the unexpected observation that complex II is inactivated in tumors. PMID:12925748
Di, Guilan; Li, Hui; Zhang, Chao; Zhao, Yanjing; Zhou, Chuanjiang; Naeem, Sajid; Li, Li; Kong, Xianghui
2017-07-01
Outbreaks of infectious diseases in common carp Cyprinus carpio, a major cultured fish in northern regions of China, constantly result in significant economic losses. Until now, information proteomic on immune defence remains limited. In the present study, a profile of intestinal mucosa immune response in Cyprinus carpio was investigated after 0, 12, 36 and 84 h after challenging tissues with Aeromonas hydrophila at a concentration of 1.4 × 10 8 CFU/mL. Proteomic profiles in different samples were compared using label-free quantitative proteomic approach. Based on MASCOT database search, 1149 proteins were identified in samples after normalisation of proteins. Treated groups 1 (T1) and 2 (T2) were first clustered together and then clustered with control (C group). The distance between C and treated group 3 (T3) represented the maxima according to hierarchical cluster analysis. Therefore, comparative analysis between C and T3 was selected in the following analysis. A total of 115 proteins with differential abundance were detected to show conspicuous expressing variances. A total of 52 up-regulated proteins and 63 down-regulated proteins were detected in T3. Gene ontology analysis showed that identified up-regulated differentially expressed proteins in T3 were mainly localised in the hemoglobin complex, and down-regulated proteins in T3 were mainly localised in the major histocompatibility complex II protein complex. Forty-six proteins of differential abundance (40% of 115) were involved in immune response, with 17 up-regulated and 29 down-regulated proteins detected in T3. This study is the first to report proteome response of carp intestinal mucosa against A. hydrophila infection; information obtained contribute to understanding defence mechanisms of carp intestinal mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.
López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José
2016-01-01
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen multiplication and promote survival, facilitating pathogen transmission. PMID:27027307
Steiner, Jennifer L; Lang, Charles H
2015-01-01
Alcohol (ethanol [EtOH]) intoxication antagonizes stimulation of muscle protein synthesis and mammalian target of rapamycin (mTOR) signaling. However, whether the anabolic response can be reversed when alcohol is consumed after the stimulus is unknown. A single bout of electrically stimulated muscle contractions (10 sets of 6 contractions) was induced in fasted male C57BL/6 mice 2 hours prior to alcohol intoxication. EtOH was injected intraperitoneally (3 g/kg), and the gastrocnemius/plantaris muscle complex was collected 2 hours later from the stimulated and contralateral unstimulated control leg. Muscle contraction increased protein synthesis 28% in control mice, while EtOH abolished this stimulation-induced increase. Further, EtOH suppressed the rate of synthesis ~75% compared to control muscle irrespective of stimulation. This decrease was associated with impaired protein elongation as EtOH increased the phosphorylation of eEF2 Thr(56) . In contrast, stimulation-induced increases in mTOR protein complex-1 (mTORC1) (S6K1 Thr(421) /Ser(424) , S6K1 Thr(389) , rpS6 Ser(240/244) , and 4E-BP1 Thr(37/46) ) and mitogen-activated protein kinase (MAPK) (JNK Thr(183) /Tyr(185) , p38 Thr(180) /Tyr(182) , and rpS6S(235/236) ) signaling were not reversed by acute EtOH. These data suggest that EtOH-induced decreases in protein synthesis in fasted mice may be independent of mTORC1 and MAPK signaling following muscle contraction and instead due to the antagonistic actions of EtOH on mRNA translation elongation. Therefore, EtOH suppresses the contraction-induced increase in protein synthesis, and over time has the potential to prevent skeletal muscle hypertrophy induced by repeated muscle contraction. Copyright © 2015 by the Research Society on Alcoholism.
Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew
2012-02-07
The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.
From pull-down data to protein interaction networks and complexes with biological relevance.
Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F
2008-04-01
Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.
Myb proteins: angels and demons in normal and transformed cells.
Zhou, Ye; Ness, Scott A
2011-01-01
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.
2012-01-01
SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318
Silva, Nicola; Ferrandiz, Nuria; Barroso, Consuelo; Tognetti, Silvia; Lightfoot, James; Telecan, Oana; Encheva, Vesela; Faull, Peter; Hanni, Simon; Furger, Andre; Snijders, Ambrosius P; Speck, Christian; Martinez-Perez, Enrique
2014-11-24
Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.
Lacasse, Michael J; Douglas, Colin D; Zamble, Deborah B
2016-12-13
[NiFe]-hydrogenase enzymes catalyze the reversible reduction of protons to molecular hydrogen and serve as a vital component of the metabolism of many pathogens. The synthesis of the bimetallic catalytic center requires a suite of accessory proteins, and the penultimate step, nickel insertion, is facilitated by the metallochaperones HypA and HypB. In Escherichia coli, nickel moves from a site in the GTPase domain of HypB to HypA in a process accelerated by GDP. To determine how the transfer of nickel is controlled, the impacts of HypA and nucleotides on the properties of HypB were examined. Integral to this work was His2Gln HypA, a mutant with attenuated nickel affinity that does not support hydrogenase production in E. coli. This mutation inhibits the translocation of nickel from HypB. H2Q-HypA does not modulate the apparent metal affinity of HypB, but the stoichiometry and stability of the HypB-nickel complex are modulated by the nucleotide. Furthermore, the HypA-HypB interaction was detected by gel filtration chromatography if HypB was loaded with GDP, but not a GTP analogue, and the protein complex dissociated upon binding of nickel to His2 of HypA. In contrast, a nucleotide does not modulate the binding of zinc to HypB, and loading zinc into the GTPase domain of HypB inhibits formation of the complex with HypA. These results demonstrate that GTP hydrolysis controls both metal binding and protein-protein interactions, conferring selective and directional nickel transfer during [NiFe]-hydrogenase biosynthesis.
Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato
2017-06-25
Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.
2013-01-01
The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560
Peggion, Caterina; Lopreiato, Raffaele; Casanova, Elena; Ruzzene, Maria; Facchin, Sonia; Pinna, Lorenzo A; Carignani, Giovanna; Sartori, Geppo
2008-12-01
The Saccharomyces cerevisiae atypical protein kinase Bud32p is a member of the nuclear endopeptidase-like, kinase, chromatin-associated/kinase, endopeptidase-like and other protein of small size (EKC/KEOPS) complex, known to be involved in the control of transcription and telomere homeostasis. Complex subunits (Pcc1p, Pcc2p, Cgi121p, Kae1p) represent, however, a small subset of the proteins able to interact with Bud32p, suggesting that this protein may be endowed with additional roles unrelated to its participation in the EKC/KEOPS complex. In this context, we investigated the relationships between Bud32p and the nuclear glutaredoxin Grx4p, showing that it is actually a physiological substrate of the kinase and that Bud32p contributes to the full functionality of Grx4p in vivo. We also show that this regulatory system is influenced by the phosphorylation of Bud32p at Ser258, which is specifically mediated by the Sch9p kinase [yeast homolog of mammalian protein kinase B (Akt/PKB)]. Notably, Ser258 phosphorylation of Bud32p does not alter the catalytic activity of the protein kinase per se, but positively regulates its ability to interact with Grx4p and thus to phosphorylate it. Interestingly, this novel signaling pathway represents a function of Bud32p that is independent from its role in the EKC/KEOPS complex, as the known functions of the complex in the regulation of transcription and telomere homeostasis are unaffected when the cascade is impaired. A similar relationship has already been observed in humans between Akt/PKB and p53-related protein kinase (Bud32p homolog), and could indicate that this pathway is conserved throughout evolution.
Protein Kinase C Controls Binding of Igo/ENSA Proteins to Protein Phosphatase 2A in Budding Yeast.
Thai, Vu; Dephoure, Noah; Weiss, Amit; Ferguson, Jacqueline; Leitao, Ricardo; Gygi, Steven P; Kellogg, Douglas R
2017-03-24
Protein phosphatase 2A (PP2A) plays important roles in controlling mitosis in all eukaryotic cells. The form of PP2A that controls mitosis is associated with a conserved regulatory subunit that is called B55 in vertebrates and Cdc55 in budding yeast. The activity of this form of PP2A can be inhibited by binding of conserved Igo/ENSA proteins. Although the mechanisms that activate Igo/ENSA to bind and inhibit PP2A are well understood, little is known about how Igo/Ensa are inactivated. Here, we have analyzed regulation of Igo/ENSA in the context of a checkpoint pathway that links mitotic entry to membrane growth in budding yeast. Protein kinase C (Pkc1) relays signals in the pathway by activating PP2A Cdc55 We discovered that constitutively active Pkc1 can drive cells through a mitotic checkpoint arrest, which suggests that Pkc1-dependent activation of PP2A Cdc55 plays a critical role in checkpoint signaling. We therefore used mass spectrometry to determine how Pkc1 modifies the PP2A Cdc55 complex. This revealed that Pkc1 induces changes in the phosphorylation of multiple subunits of the complex, as well as dissociation of Igo/ENSA. Pkc1 directly phosphorylates Cdc55 and Igo/ENSA, and phosphorylation site mapping and mutagenesis indicate that phosphorylation of Cdc55 contributes to Igo/ENSA dissociation. Association of Igo2 with PP2A Cdc55 is regulated during the cell cycle, yet mutation of Pkc1-dependent phosphorylation sites on Cdc55 and Igo2 did not cause defects in mitotic progression. Together, the data suggest that Pkc1 controls PP2A Cdc55 by multiple overlapping mechanisms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Programmable DNA scaffolds for spatially-ordered protein assembly
NASA Astrophysics Data System (ADS)
Chandrasekaran, Arun Richard
2016-02-01
Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed. Dedicated to my advisor Ned Seeman on the occasion of his 70th birthday.
Conformational Transitions in Molecular Systems
NASA Astrophysics Data System (ADS)
Bachmann, M.; Janke, W.
2008-11-01
Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.
Protein quality control in the early secretory pathway
Anelli, Tiziana; Sitia, Roberto
2008-01-01
Eukaryotic cells are able to discriminate between native and non-native polypeptides, selectively transporting the former to their final destinations. Secretory proteins are scrutinized at the endoplasmic reticulum (ER)–Golgi interface. Recent findings reveal novel features of the underlying molecular mechanisms, with several chaperone networks cooperating in assisting the maturation of complex proteins and being selectively induced to match changing synthetic demands. ‘Public' and ‘private' chaperones, some of which enriched in specializes subregions, operate for most or selected substrates, respectively. Moreover, sequential checkpoints are distributed along the early secretory pathway, allowing efficiency and fidelity in protein secretion. PMID:18216874
Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.
2016-01-01
We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452
Holden, Jennifer M.; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V.; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T.; Aitchison, John D.; Rout, Michael P.; Field, Mark C.
2014-01-01
The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina. PMID:24600046
Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.
Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu
2016-04-01
In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.
A chronic fatigue syndrome – related proteome in human cerebrospinal fluid
Baraniuk, James N; Casado, Begona; Maibach, Hilda; Clauw, Daniel J; Pannell, Lewis K; Hess S, Sonja
2005-01-01
Background Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. Methods Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 μl/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 μl/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. Results Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of ≥1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were α-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. Conclusion This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared. PMID:16321154
Correale, Stefania; de Paola, Ivan; Morgillo, Carmine Marco; Federico, Antonella; Zaccaro, Laura; Pallante, Pierlorenzo; Galeone, Aldo; Fusco, Alfredo; Pedone, Emilia; Luque, F Javier; Catalanotti, Bruno
2014-01-01
UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.
Ma, Zheng; Fung, Victor; D'Orso, Iván
2017-01-26
The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios
2017-01-01
Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos
2017-09-29
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Challenging Residual Contamination of Instruments for Robotic Surgery in Japan.
Saito, Yuhei; Yasuhara, Hiroshi; Murakoshi, Satoshi; Komatsu, Takami; Fukatsu, Kazuhiko; Uetera, Yushi
2017-02-01
BACKGROUND Recently, robotic surgery has been introduced in many hospitals. The structure of robotic instruments is so complex that updating their cleaning methods is a challenge for healthcare professionals. However, there is limited information on the effectiveness of cleaning for instruments for robotic surgery. OBJECTIVE To determine the level of residual contamination of instruments for robotic surgery and to develop a method to evaluate the cleaning efficacy for complex surgical devices. METHODS Surgical instruments were collected immediately after operations and/or after in-house cleaning, and the level of residual protein was measured. Three serial measurements were performed on instruments after cleaning to determine the changes in the level of contamination and the total amount of residual protein. The study took place from September 1, 2013, through June 30, 2015, in Japan. RESULTS The amount of protein released from robotic instruments declined exponentially. The amount after in-house cleaning was 650, 550, and 530 µg/instrument in the 3 serial measurements. The overall level of residual protein in each measurement was much higher for robotic instruments than for ordinary instruments (P<.0001). CONCLUSIONS Our data demonstrated that complete removal of residual protein from surgical instruments is virtually impossible. The pattern of decline differed depending on the instrument type, which reflected the complex structure of the instruments. It might be necessary to establish a new standard for cleaning using a novel classification according to the structural complexity of instruments, especially for those for robotic surgery. Infect Control Hosp Epidemiol 2017;38:143-146.
Dexamethasone attenuates oxidation of extracellular matrix proteins by human monocytes.
Ahmed, Shahid; Adamidis, Ananea; Jan, Louis C; Gibbons, Nora; Mattana, Joseph
2003-10-01
In response to infection or in immune complex-mediated diseases, inflammatory cells may oxidatively damage extracellular matrix (ECM) proteins. In this study we evaluated whether human monocytes could oxidize ECM and whether this could be modulated by exposure to LPS, IgG complexes, and dexamethasone (DEX). Wells in tissue culture plates were coated with the ECM preparation Matrigel. Porous inserts with or without the human monocyte cell line THP-1 were placed into ECM-containing wells and cells were exposed to control conditions or to LPS (10 ng/ml), IgG complexes (200 and 500 microg/ml), or DEX (10(-7) and 10(-6) M). ECM was then subjected to Western blot analysis using an antibody to oxidized protein. In addition, Western blot analysis was carried out on DEX-treated cells to evaluate expression of the NADPH oxidase components p67-phox and gp91-phox. THP-1 cells enhanced ECM oxidation and this effect was augmented by LPS and by IgG aggregates. Preincubation of cells with DEX attenuated ECM oxidation and was also associated with decreased expression of p67-phox and gp91-phox. These findings suggest that human monocytes can oxidize ECM proteins and that this may be modulated by IgG complexes and LPS. Dexamethasone appears to attenuate ECM oxidation and a better understanding of this mechanism might allow for interventions to minimize oxidative damage to ECM proteins by monocytes in infectious and inflammatory states.
Sverdlov, Aaron L.; Elezaby, Aly; Behring, Jessica B.; Bachschmid, Markus M.; Luptak, Ivan; Tu, Vivian H.; Siwik, Deborah A.; Miller, Edward J.; Liesa, Marc; Shirihai, Orian S; Pimentel, David R.; Cohen, Richard A.; Colucci, Wilson S.
2014-01-01
Background Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Methods and results Male C57Bl/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8 months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. Conclusions MHD due to consumption of a HFHS “Western” diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. PMID:25109264
Froese, Sean; Dai, Feihan F.; Robitaille, Mélanie; Bhattacharjee, Alpana; Huang, Xinyi; Jia, Weiping; Angers, Stéphane; Wheeler, Michael B.; Wei, Li
2015-01-01
Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D). Thus, it is important to understand how glucagon receptor (GCGR) activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO) cells, and GCGR complexes were isolated by affinity purification (AP). Complexes were then analyzed by mass spectrometry (MS), and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP) and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon-stimulated glucose production by modulating cAMP accumulation and genes that control gluconeogenesis. These interactors may be useful targets to control glucose homeostasis in T2D. PMID:26075596
Pont, Laura; Benavente, Fernando; Vilaseca, Marta; Giménez, Estela; Sanz-Nebot, Victoria
2015-11-01
Transthyretin (TTR) is a homotetrameric protein which is known to misfold and aggregate causing different types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I). FAP-I is associated with a specific TTR mutant variant (TTR (Met30)) that can be easily detected analysing the monomeric forms of the mutant protein. Meanwhile, the mechanism of protein aggregation onset, which could be triggered by structural changes on the native tetrameric protein complex, remains uncertain. We developed and described herein a new sample pretreatment based on immunoprecipitation (IP) to purify TTR from serum under non-denaturing conditions. Later, a nano-electrospray ionization-ion mobility mass spectrometry (nano-ESI-IM-MS or IM-MS) method was optimised to analyse the protein complexes in serum samples from healthy controls and FAP-I patients. IM-MS allowed separation and characterisation of tetrameric, trimeric and dimeric TTR gas ions due to their differential drift time, which is related to ion size and charge. The tetramer-to-dimer abundance ratio was differential between healthy controls and FAP-I patients (asymptomatic, symptomatic and an iatrogenic patient originally without the mutation who received a liver transplant from an FAP-I patient), and was also indicative of the effectiveness of liver transplantation as a treatment for FAP-I. Copyright © 2015 Elsevier B.V. All rights reserved.
PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs.
Zhu, Zhexin; Li, Chunliang; Zeng, Yanwu; Ding, Jianyi; Qu, Zepeng; Gu, Junjie; Ge, Laixiang; Tang, Fan; Huang, Xin; Zhou, Chenlin; Wang, Ping; Zheng, Deyou; Jin, Ying
2017-02-02
The chromatin landscape and cellular metabolism both contribute to cell fate determination, but their interplay remains poorly understood. Using genome-wide siRNA screening, we have identified prohibitin (PHB) as an essential factor in self-renewal of human embryonic stem cells (hESCs). Mechanistically, PHB forms protein complexes with HIRA, a histone H3.3 chaperone, and stabilizes the protein levels of HIRA complex components. Like PHB, HIRA is required for hESC self-renewal. PHB and HIRA act together to control global deposition of histone H3.3 and gene expression in hESCs. Of particular note, PHB and HIRA regulate the chromatin architecture at the promoters of isocitrate dehydrogenase genes to promote transcription and, thus, production of α-ketoglutarate, a key metabolite in the regulation of ESC fate. Our study shows that PHB has an unexpected nuclear role in hESCs that is required for self-renewal and that it acts with HIRA in chromatin organization to link epigenetic organization to a metabolic circuit. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Asexual and sexual differentiation in Aspergillus nidulans involve complex control by a number of factors and is light-dependent. The velvet protein, VeA, in A. nidulans is a negative regulator of conidiation and a positive regulator of sexual development. It forms a complex with VelB and LaeA to co...
Bouallaga, I; Massicard, S; Yaniv, M; Thierry, F
2000-11-01
Recent studies have reported new mechanisms that mediate the transcriptional synergy of strong tissue-specific enhancers, involving the cooperative assembly of higher-order nucleoprotein complexes called enhanceosomes. Here we show that the HPV18 enhancer, which controls the epithelial-specific transcription of the E6 and E7 transforming genes, exhibits characteristic features of these structures. We used deletion experiments to show that a core enhancer element cooperates, in a specific helical phasing, with distant essential factors binding to the ends of the enhancer. This core sequence, binding a Jun B/Fra-2 heterodimer, cooperatively recruits the architectural protein HMG-I(Y) in a nucleoprotein complex, where they interact with each other. Therefore, in HeLa cells, HPV18 transcription seems to depend upon the assembly of an enhanceosome containing multiple cellular factors recruited by a core sequence interacting with AP1 and HMG-I(Y).
Zhong, Yu; Morris, Deanna H; Jin, Lin; Patel, Mittul S; Karunakaran, Senthil K; Fu, You-Jun; Matuszak, Emily A; Weiss, Heidi L; Chait, Brian T; Wang, Qing Jun
2014-09-19
Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1(-/-);Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis.
Feichtinger, René G; Neureiter, Daniel; Skaria, Tom; Wessler, Silja; Cover, Timothy L; Mayr, Johannes A; Zimmermann, Franz A; Posselt, Gernot; Sperl, Wolfgang; Kofler, Barbara
2017-01-01
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) by mitochondria to aerobic glycolysis occurs in many types of tumors. However, the significance of this switching for the development of gastric carcinoma and what connection it may have to Helicobacter pylori infection of the gut, a primary cause of gastric cancer, are poorly understood. Therefore, we investigated the expression of OXPHOS complexes in two types of human gastric carcinomas ("intestinal" and "diffuse"), bacterial gastritis with and without metaplasia, and chemically induced gastritis by using immunohistochemistry. Furthermore, we analyzed the effect of HP infection on several key mitochondrial proteins. Complex I expression was significantly reduced in intestinal type (but not diffuse) gastric carcinomas compared to adjacent control tissue, and the reduction was independent of HP infection. Significantly, higher complex I and complex II expression was present in large tumors. Furthermore, higher complex II and complex III protein levels were also obvious in grade 3 versus grade 2. No differences of OXPHOS complexes and markers of mitochondrial biogenesis were found between bacterially caused and chemically induced gastritis. Thus, intestinal gastric carcinomas, but not precancerous stages, are frequently characterized by loss of complex I, and this pathophysiology occurs independently of HP infection.
Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis
Skaria, Tom; Wessler, Silja; Cover, Timothy L.; Posselt, Gernot; Sperl, Wolfgang; Kofler, Barbara
2017-01-01
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) by mitochondria to aerobic glycolysis occurs in many types of tumors. However, the significance of this switching for the development of gastric carcinoma and what connection it may have to Helicobacter pylori infection of the gut, a primary cause of gastric cancer, are poorly understood. Therefore, we investigated the expression of OXPHOS complexes in two types of human gastric carcinomas (“intestinal” and “diffuse”), bacterial gastritis with and without metaplasia, and chemically induced gastritis by using immunohistochemistry. Furthermore, we analyzed the effect of HP infection on several key mitochondrial proteins. Complex I expression was significantly reduced in intestinal type (but not diffuse) gastric carcinomas compared to adjacent control tissue, and the reduction was independent of HP infection. Significantly, higher complex I and complex II expression was present in large tumors. Furthermore, higher complex II and complex III protein levels were also obvious in grade 3 versus grade 2. No differences of OXPHOS complexes and markers of mitochondrial biogenesis were found between bacterially caused and chemically induced gastritis. Thus, intestinal gastric carcinomas, but not precancerous stages, are frequently characterized by loss of complex I, and this pathophysiology occurs independently of HP infection. PMID:28744336
Cy5 total protein normalization in Western blot analysis.
Hagner-McWhirter, Åsa; Laurin, Ylva; Larsson, Anita; Bjerneld, Erik J; Rönn, Ola
2015-10-01
Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence. Copyright © 2015 Elsevier Inc. All rights reserved.
Wicky, Sidonie; Tjandra, Hendri; Schieltz, David; Yates, John; Kellogg, Douglas R.
2011-01-01
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2ACdc55). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2ACdc55 and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle–dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2ACdc55 and suggest that upstream signals that regulate PP2ACdc55 may play an important role in controlling entry into mitosis. PMID:21119008
Wicky, Sidonie; Tjandra, Hendri; Schieltz, David; Yates, John; Kellogg, Douglas R
2011-01-01
The Wee1 kinase restrains entry into mitosis by phosphorylating and inhibiting cyclin-dependent kinase 1 (Cdk1). The Cdc25 phosphatase promotes entry into mitosis by removing Cdk1 inhibitory phosphorylation. Experiments in diverse systems have established that Wee1 and Cdc25 are regulated by protein phosphatase 2A (PP2A), but a full understanding of the function and regulation of PP2A in entry into mitosis has remained elusive. In budding yeast, entry into mitosis is controlled by a specific form of PP2A that is associated with the Cdc55 regulatory subunit (PP2A(Cdc55)). We show here that related proteins called Zds1 and Zds2 form a tight stoichiometric complex with PP2A(Cdc55) and target its activity to Cdc25 but not to Wee1. Conditional inactivation of the Zds proteins revealed that their function is required primarily at entry into mitosis. In addition, Zds1 undergoes cell cycle-dependent changes in phosphorylation. Together, these observations define a role for the Zds proteins in controlling specific functions of PP2A(Cdc55) and suggest that upstream signals that regulate PP2A(Cdc55) may play an important role in controlling entry into mitosis.
Blackwell, M F; Whitmarsh, J
1990-11-01
PYRENE FLUORESCENCE QUENCHING BY PLASTOQUINONE WAS USED TO ESTIMATE THE RATE OF PLASTOQUINONE LATERAL DIFFUSION IN SOYBEAN PHOSPHATIDYLCHOLINE PROTEOLIPOSOMES CONTAINING THE FOLLOWING INTEGRAL MEMBRANE PROTEINS: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc(1), and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 . 10(-7) cm(2) s(-1) in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc(1), and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration.
Blackwell, Mary F.; Whitmarsh, John
1990-01-01
Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774
Posttranslational Modifications and Plant-Environment Interaction.
Hashiguchi, A; Komatsu, S
2017-01-01
Posttranslational modifications (PTMs) of proteins such as phosphorylation and ubiquitination are crucial for controlling protein stability, localization, and conformation. Genetic information encoded in DNA is transcribed, translated, and increases its complexity by multiple PTMs. Conformational change introduced by PTMs affects interacting partners of each proteins and their downstream signaling; therefore, PTMs are the major level of modulations of total outcome of living cells. Plants are living in harsh environment that requires unremitting physiological modulation to survive, and the plant response to various environment stresses is regulated by PTMs of proteins. This review deals with the novel knowledge of PTM-focused proteomic studies on various life conditions. PTMs are focused that mediate plant-environment interaction such as stress perception, protein homeostasis, control of energy shift, and defense by immune system. Integration of diverse signals on a protein via multiple PTMs is discussed as well, considering current situation where signal integration became an emerging area approached by systems biology into account. © 2017 Elsevier Inc. All rights reserved.
Li, Qingliang; Wei, Hai; Liu, Lijing; Yang, Xiaoyuan; Zhang, Xiansheng; Xie, Qi
2017-07-01
Abiotic stresses often disrupt protein folding and induce endoplasmic reticulum (ER) stress. There is a sophisticated ER quality control (ERQC) system to mitigate the effects of malfunctioning proteins and maintain ER homeostasis. The accumulation of misfolded proteins in the ER activates the unfolded protein response (UPR) to enhance ER protein folding and the degradation of misfolded proteins mediate by ER-associated degradation (ERAD). That ERQC reduces abiotic stress damage has been well studied in mammals and yeast. However, in plants, both ERAD and UPR have been studied separately and found to be critical for plant abiotic stress tolerance. In this study, we discovered that UPR-associated transcription factors AtbZIP17, AtbZIP28 and AtbZIP60 responded to tunicamycin (TM) and NaCl induced ER stress and subsequently enhanced Arabidopsis thaliana abiotic stress tolerance. They regulated the expression level of ER chaperones and the HRD1-complex components. Moreover, overexpression of AtbZIP17, AtbZIP28 and AtbZIP60 could restore stress tolerance via ERAD in the HRD1-complex mutant hrd3a-2, which suggested that UPR and ERAD have an interactive mechanism in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.
Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe.
Ioffe, Valeriya M; Gorbenko, Galyna P; Deligeorgiev, Todor; Gadjev, Nikolai; Vasilev, Aleksey
2007-06-01
The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.
SUMO and Nucleocytoplasmic Transport.
Ptak, Christopher; Wozniak, Richard W
2017-01-01
The transport of proteins between the nucleus and cytoplasm occurs through nuclear pore complexes and is facilitated by numerous transport factors. These transport processes are often regulated by post-translational modification or, reciprocally, transport can function to control post-translational modifications through regulated transport of key modifying enzymes. This interplay extends to relationships between nucleocytoplasmic transport and SUMO-dependent pathways. Examples of protein sumoylation inhibiting or stimulating nucleocytoplasmic transport have been documented, both through its effects on the physical properties of cargo molecules and by directly regulating the functions of components of the nuclear transport machinery. Conversely, the nuclear transport machinery regulates the localization of target proteins and enzymes controlling dynamics of sumoylation and desumoylation thereby affecting the sumoylation state of target proteins. These inter-relationships between SUMO and the nucleocytoplasmic transport machinery, and the varied ways in which they occur, are discussed.
A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.
Bai, Zhiyong; Grant, Barth D
2015-03-24
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.
A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling
Bai, Zhiyong; Grant, Barth D.
2015-01-01
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511
Structural and mechanistic studies of measles virus illuminate paramyxovirus entry.
Plemper, Richard K; Brindley, Melinda A; Iorio, Ronald M
2011-06-01
Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.
Control of the actin cytoskeleton in root hair development.
Pei, Weike; Du, Fei; Zhang, Yi; He, Tian; Ren, Haiyun
2012-05-01
The development of root hair includes four stages: bulge site selection, bulge formation, tip growth, and maturation. The actin cytoskeleton is involved in all of these stages and is organized into distinct arrangements in the different stages. In addition to the actin configuration, actin isoforms also play distinct roles in the different stages. The actin cytoskeleton is regulated by actin-binding proteins, such as formin, Arp2/3 complex, profilin, actin depolymerizing factor, and villin. Some upstream signals, i.e. calcium, phospholipids, and small GTPase regulate the activity of these actin-binding proteins to produce the proper actin configuration. We constructed a working model on how the actin cytoskeleton is controlled by actin-binding proteins and upstream signaling in root hair development based on the current literature: at the tip of hairs, actin polymerization appears to be facilitated by Arp2/3 complex that is activated by small GTPase, and profilin that is regulated by phosphatidylinositol 4,5-bisphosphate. Meanwhile, actin depolymerization and turnover are likely mediated by villin and actin depolymerizing factor, which are stimulated by calcium. At the shank, actin cables are produced by formin and villin. Under the complicated interaction, the actin cytoskeleton is controlled spatially and temporally during root hair development. © 2012 Elsevier Ireland Ltd. All rights reserved.
Malchus, Nina; Weiss, Matthias
2010-01-01
A multitude of transmembrane proteins enters the endoplasmic reticulum (ER) as unfolded polypeptide chains. During their folding process, they interact repetitively with the ER's quality control machinery. Here, we have used fluorescence correlation spectroscopy to probe these interactions for a prototypical transmembrane protein, VSVG ts045, in vivo. While both folded and unfolded VSVG ts045 showed anomalous diffusion, the unfolded protein had a significantly stronger anomaly. This difference subsided when unfolded VSVG ts045 was in a complex with its chaperone calnexin, or when a mutant form of VSVG ts045 with only one glycan was used. Our experimental data and accompanying simulations suggest that the folding sensor of the quality control (UGT1) oligomerizes unfolded VSVG ts045, leading to a more anomalous/obstructed diffusion. In contrast, calnexin dissolves the oligomers, rendering unfolded VSVG ts045 more mobile, and hence prevents poisoning of the ER. PMID:20713018
Thabet, Ahmed; Honscha, Walther; Daugschies, Arwid; Bangoura, Berit
2017-05-01
Polyether ionophores are widely used to treat and control coccidiosis in chickens. Widespread use of anticoccidials resulted in worldwide resistance. Mechanisms of resistance development and expansion are complex and poorly understood. Relative proteomic quantification using LC-MS/MS was used to compare sensitive reference strains (Ref-1, Ref-2) with putatively resistant and moderately sensitive field strains (FS-R, FS-mS) of Eimeria tenella after isotopic labelling with tandem mass tags (TMT). Ninety-seven proteins were identified, and 25 of them were regulated. Actin was significantly upregulated in resistant strains in comparison with their sensitive counterparts. On the other hand, microneme protein (MIC4) was downregulated in resistant strains. Optimization of labelling E. tenella sporozoites by TMT might identify further proteins that play a role in the obvious complex mechanism leading to resistance against Monensin.
Association of REL Polymorphism with Cow's Milk Proteins Allergy in Pediatric Algerian Population.
Rahmoun, Nesrine; El Mecherfi, Kamel Eddine; Bouchetara, Assia; Lardjem Hetraf, Sara; Dahmani Amira, Chahinez; Adda Neggaz, Leila; Boudjema, Abdallah; Zemani-Fodil, Faouzia; Kheroua, Omar
2018-02-01
Cow's milk proteins allergy (CMPA) pathogenesis involves complex immunological mechanisms with the participation of several cells and molecules involved in food allergy. The association of polymorphisms in the interleukin 4, Forkhead box P3 and the avian reticuloendotheliosis genes was investigated in an infant population with CMPA of Western Algeria. We obtained DNA and clinical data from milk allergic subjects during active phase and from a group of non-atopic control subjects. Our findings showed that the allele G of the cRel gene intronic polymorphism at +7883 positions was significantly higher among cow's milk proteins allergic patients compared to control subjects. The results of this study suggest a possible association of CMPA with cRel G+7883T polymorphism.
Gordon, Jennifer L; Sibley, L David
2005-01-01
Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex), and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery). In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs) are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility. PMID:16343347
Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M
2014-08-01
5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.
Pauker, Maor H; Reicher, Barak; Joseph, Noah; Wortzel, Inbal; Jakubowicz, Shlomi; Noy, Elad; Perl, Orly; Barda-Saad, Mira
2014-12-12
T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Pauker, Maor H.; Reicher, Barak; Joseph, Noah; Wortzel, Inbal; Jakubowicz, Shlomi; Noy, Elad; Perl, Orly; Barda-Saad, Mira
2014-01-01
T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins. PMID:25342748
In Silico Analysis for the Study of Botulinum Toxin Structure
NASA Astrophysics Data System (ADS)
Suzuki, Tomonori; Miyazaki, Satoru
2010-01-01
Protein-protein interactions play many important roles in biological function. Knowledge of protein-protein complex structure is required for understanding the function. The determination of protein-protein complex structure by experimental studies remains difficult, therefore computational prediction of protein structures by structure modeling and docking studies is valuable method. In addition, MD simulation is also one of the most popular methods for protein structure modeling and characteristics. Here, we attempt to predict protein-protein complex structure and property using some of bioinformatic methods, and we focus botulinum toxin complex as target structure.
Jalili, Seifollah; Karami, Leila; Schofield, Jeremy
2013-06-01
Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.
A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress
Judge, Luke M.; Perez-Bermejo, Juan A.; Truong, Annie; Ribeiro, Alexandre J.S.; Yoo, Jennie C.; Jensen, Christina L.; Mandegar, Mohammad A.; Huebsch, Nathaniel; Kaake, Robyn M.; So, Po-Lin; Srivastava, Deepak; Krogan, Nevan J.
2017-01-01
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity. PMID:28724793
A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.
Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R
2017-07-20
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.
Robu, Mihaela; Shah, Rashmi G.; Purohit, Nupur K.; Zhou, Pengbo; Naegeli, Hanspeter
2017-01-01
Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV–DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1–XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV–DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins. PMID:28760956
Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M
2017-08-15
Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.
Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.
Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter
2014-01-01
The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.
Functional Mapping of Protein-Protein Interactions in an Enzyme Complex by Directed Evolution
Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter
2014-01-01
The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes. PMID:25551646
2011-01-01
Background Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Results Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Conclusion Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development. PMID:21276241
Wesolowski, Jordan; Weber, Mary M; Nawrotek, Agata; Dooley, Cheryl A; Calderon, Mike; St Croix, Claudette M; Hackstadt, Ted; Cherfils, Jacqueline; Paumet, Fabienne
2017-05-02
The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. IMPORTANCE Chlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified microtubules around the inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to reposition the Golgi complex. Copyright © 2017 Wesolowski et al.
Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P
2009-10-06
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.
Mailloux, Ryan J; Xuan, Jian Ying; McBride, Skye; Maharsy, Wael; Thorn, Stephanie; Holterman, Chet E; Kennedy, Christopher R J; Rippstein, Peter; deKemp, Robert; da Silva, Jean; Nemer, Mona; Lou, Marjorie; Harper, Mary-Ellen
2014-05-23
Glutaredoxin-2 (Grx2) modulates the activity of several mitochondrial proteins in cardiac tissue by catalyzing deglutathionylation reactions. However, it remains uncertain whether Grx2 is required to control mitochondrial ATP output in heart. Here, we report that Grx2 plays a vital role modulating mitochondrial energetics and heart physiology by mediating the deglutathionylation of mitochondrial proteins. Deletion of Grx2 (Grx2(-/-)) decreased ATP production by complex I-linked substrates to half that in wild type (WT) mitochondria. Decreased respiration was associated with increased complex I glutathionylation diminishing its activity. Tissue glucose uptake was concomitantly increased. Mitochondrial ATP output and complex I activity could be recovered by restoring the redox environment to that favoring the deglutathionylated states of proteins. Grx2(-/-) hearts also developed left ventricular hypertrophy and fibrosis, and mice became hypertensive. Mitochondrial energetics from Grx2 heterozygotes (Grx2(+/-)) were also dysfunctional, and hearts were hypertrophic. Intriguingly, Grx2(+/-) mice were far less hypertensive than Grx2(-/-) mice. Thus, Grx2 plays a vital role in modulating mitochondrial metabolism in cardiac muscle, and Grx2 deficiency leads to pathology. As mitochondrial ATP production was restored by the addition of reductants, these findings may be relevant to novel redox-related therapies in cardiac disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.
2014-01-01
All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383
TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation.
Di Carlo, Valerio; Grossi, Elena; Laneve, Pietro; Morlando, Mariangela; Dini Modigliani, Stefano; Ballarino, Monica; Bozzoni, Irene; Caffarelli, Elisa
2013-12-01
TDP-43 (TAR DNA-binding protein 43) is an RNA-binding protein implicated in RNA metabolism at several levels. Even if ubiquitously expressed, it is considered as a neuronal activity-responsive factor and a major signature for neurological pathologies, making the comprehension of its activity in the nervous system a very challenging issue. TDP-43 has also been described as an accessory component of the Drosha-DGCR8 (DiGeorge syndrome critical region gene 8) microprocessor complex, which is crucially involved in basal and tissue-specific RNA processing events. In the present study, we exploited in vitro neuronal differentiation systems to investigate the TDP-43 demand for the microprocessor function, focusing on both its canonical microRNA biosynthetic activity and its alternative role as a post-transcriptional regulator of gene expression. Our findings reveal a novel role for TDP-43 as an essential factor that controls the stability of Drosha protein during neuronal differentiation, thus globally affecting the production of microRNAs. We also demonstrate that TDP-43 is required for the Drosha-mediated regulation of Neurogenin 2, a master gene orchestrating neurogenesis, whereas post-transcriptional control of Dgcr8, another Drosha target, resulted to be TDP-43-independent. These results implicate a previously uncovered contribution of TDP-43 in regulating the abundance and the substrate specificity of the microprocessor complex and provide new insights into TDP-43 as a key player in neuronal differentiation.
Kristie, T M; LeBowitz, J H; Sharp, P A
1989-01-01
The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266
Kristie, T M; LeBowitz, J H; Sharp, P A
1989-12-20
The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.
Piñol-Roma, S
1999-01-01
rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.
Rapid kinetic BRET measurements to monitor G protein activation by GPCR and non-GPCR proteins.
Maziarz, Marcin; Garcia-Marcos, Mikel
2017-01-01
Heterotrimeric G proteins are central hubs of signal transduction whose activity is controlled by G protein-coupled receptors (GPCRs) as well as by a complex network of regulatory proteins. Recently, bioluminescence resonance energy transfer (BRET)-based assays have been used to monitor real-time activation of heterotrimeric G proteins in cells. Here we describe the use of a previously established BRET assay to monitor G protein activation upon GPCR stimulation and its adaptation to measure G protein activation by non-GPCR proteins, such as by cytoplasmic guanine nucleotide exchange factors (GEFs) like GIV/Girdin. The BRET assay monitors the release of free Gβγ from Gα-Gβγ heterotrimers as a readout of G protein activation, which is readily observable upon agonist stimulation of GPCRs. To control the signal input for non-GPCR activators, we describe the use of a chemically induced dimerization strategy to promote rapid membrane translocation of proteins containing the Gα-binding and -activating (GBA) motif found in some nonreceptor GEFs. The assay described here allows the kinetic measurement of G protein activation with subsecond temporal resolution and to compare the levels of activation induced by GPCR agonists vs those induced by the membrane recruitment of nonreceptor G protein signaling activators. © 2017 Elsevier Inc. All rights reserved.
Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.
2013-01-01
Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423
Kirkwood, Kathryn J; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I
2013-12-01
Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community.
Bordner, Andrew J.; Gorin, Andrey A.
2008-05-12
Here, protein-protein interactions are ubiquitous and essential for cellular processes. High-resolution X-ray crystallographic structures of protein complexes can elucidate the details of their function and provide a basis for many computational and experimental approaches. Here we demonstrate that existing annotations of protein complexes, including those provided by the Protein Data Bank (PDB) itself, contain a significant fraction of incorrect annotations. Results: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster ismore » relevant based on a diverse set of properties; and (4) finally combining these scores for each entry in order to predict the complex structure. Unlike previous annotation methods, consistent prediction of complexes with identical or almost identical protein content is insured. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions.« less
A Novel Algorithm for Detecting Protein Complexes with the Breadth First Search
Tang, Xiwei; Wang, Jianxin; Li, Min; He, Yiming; Pan, Yi
2014-01-01
Most biological processes are carried out by protein complexes. A substantial number of false positives of the protein-protein interaction (PPI) data can compromise the utility of the datasets for complexes reconstruction. In order to reduce the impact of such discrepancies, a number of data integration and affinity scoring schemes have been devised. The methods encode the reliabilities (confidence) of physical interactions between pairs of proteins. The challenge now is to identify novel and meaningful protein complexes from the weighted PPI network. To address this problem, a novel protein complex mining algorithm ClusterBFS (Cluster with Breadth-First Search) is proposed. Based on the weighted density, ClusterBFS detects protein complexes of the weighted network by the breadth first search algorithm, which originates from a given seed protein used as starting-point. The experimental results show that ClusterBFS performs significantly better than the other computational approaches in terms of the identification of protein complexes. PMID:24818139
Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.
Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A
2006-04-15
SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.
Armstrong, Stuart D; Xia, Dong; Bah, Germanus S; Krishna, Ritesh; Ngangyung, Henrietta F; LaCourse, E James; McSorley, Henry J; Kengne-Ouafo, Jonas A; Chounna-Ndongmo, Patrick W; Wanji, Samuel; Enyong, Peter A; Taylor, David W; Blaxter, Mark L; Wastling, Jonathan M; Tanya, Vincent N; Makepeace, Benjamin L
2016-08-01
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Armstrong, Stuart D.; Xia, Dong; Bah, Germanus S.; Krishna, Ritesh; Ngangyung, Henrietta F.; LaCourse, E. James; McSorley, Henry J.; Kengne-Ouafo, Jonas A.; Chounna-Ndongmo, Patrick W.; Wanji, Samuel; Enyong, Peter A.; Taylor, David W.; Blaxter, Mark L.; Wastling, Jonathan M.; Tanya, Vincent N.; Makepeace, Benjamin L.
2016-01-01
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus. The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers. PMID:27226403
Yoshino, M; Tsutsumi, K; Kanazawa, A
2015-01-01
β-Conglycinin, a major component of seed storage protein in soybean, comprises three subunits: α, α' and β. The expression of genes for these subunits is strictly controlled during embryogenesis. The proximal promoter region up to 245 bp upstream of the transcription start site of the α subunit gene sufficiently confers spatial and temporal control of transcription in embryos. Here, the binding profile of nuclear proteins in the proximal promoter region of the α subunit gene was analysed. DNase I footprinting analysis indicated binding of proteins to the RY element and DNA regions including box I, a region conserved in cognate gene promoters. An electrophoretic mobility shift assay (EMSA) using different portions of box I as a probe revealed that multiple portions of box I bind to nuclear proteins. In addition, an EMSA using nuclear proteins extracted from embryos at different developmental stages indicated that the levels of major DNA-protein complexes on box I increased during embryo maturation. These results are consistent with the notion that box I is important for the transcriptional control of seed storage protein genes. Furthermore, the present data suggest that nuclear proteins bind to novel motifs in box I including 5'-TCAATT-3' rather than to predicted cis-regulatory elements. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Myb proteins: angels and demons in normal and transformed cells
Zhou, Ye; Ness, Scott A.
2013-01-01
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered. PMID:21196221
A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.
Wang, Hong; Brautigan, David L
2002-12-20
Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.
The therapeutic potential of cell cycle targeting in multiple myeloma.
Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke
2017-10-27
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Seigneurin-Berny, Daphné; Verdel, André; Curtet, Sandrine; Lemercier, Claudie; Garin, Jérôme; Rousseaux, Sophie; Khochbin, Saadi
2001-01-01
The immunopurification of the endogenous cytoplasmic murine histone deacetylase 6 (mHDAC6), a member of the class II HDACs, from mouse testis cytosolic extracts allowed the identification of two associated proteins. Both were mammalian homologues of yeast proteins known to interact with each other and involved in the ubiquitin signaling pathway: p97/VCP/Cdc48p, a homologue of yeast Cdc48p, and phospholipase A2-activating protein, a homologue of yeast UFD3 (ubiquitin fusion degradation protein 3). Moreover, in the C-terminal region of mHDAC6, a conserved zinc finger-containing domain named ZnF-UBP, also present in several ubiquitin-specific proteases, was discovered and was shown to mediate the specific binding of ubiquitin by mHDAC6. By using a ubiquitin pull-down approach, nine major ubiquitin-binding proteins were identified in mouse testis cytosolic extracts, and mHDAC6 was found to be one of them. All of these findings strongly suggest that mHDAC6 could be involved in the control of protein ubiquitination. The investigation of biochemical properties of the mHDAC6 complex in vitro further supported this hypothesis and clearly established a link between protein acetylation and protein ubiquitination. PMID:11689694
Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex.
Liu, Xing; Main, David; Ma, Yijie; He, Bin
2018-05-09
The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA dependent protein kinase PKR, 2',5'-oligoadenylate synthetase, RIG-I and MDA-5. However, its precise role is incompletely defined. By screening human cDNA library, we show that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes the access of TBK1 to Hsp90 and IFN promoter activation. Consistently, upon HSV infection the Us11 protein suppresses the expression of IFN-β, RANTES, and interferon stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome dependent pathway. Accordingly, Us11 expression facilitates HSV growth. Conversely, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection. IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrate that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions. Copyright © 2018 American Society for Microbiology.
Bultema, Jarred J.; Ambrosio, Andrea L.; Burek, Carolyn L.; Di Pietro, Santiago M.
2012-01-01
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis. PMID:22511774
Bultema, Jarred J; Ambrosio, Andrea L; Burek, Carolyn L; Di Pietro, Santiago M
2012-06-01
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.
In Vitro Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly.
Terashima, Hiroyuki; Kawamoto, Akihiro; Tatsumi, Chinatsu; Namba, Keiichi; Minamino, Tohru; Imada, Katsumi
2018-06-26
The type III secretion system (T3SS) forms the functional core of injectisomes, protein transporters that allow bacteria to deliver virulence factors into their hosts for infection, and flagella, which are critical for many pathogens to reach the site of infection. In spite of intensive genetic and biochemical studies, the T3SS protein export mechanism remains unclear due to the difficulty of accurate measurement of protein export in vivo Here, we developed an in vitro flagellar T3S protein transport assay system using an inverted cytoplasmic membrane vesicle (IMV) for accurate and controlled measurements of flagellar protein export. We show that the flagellar T3SS in the IMV fully retains export activity. The flagellar hook was constructed inside the lumen of the IMV by adding purified component proteins externally to the IMV solution. We reproduced the hook length control and export specificity switch in the IMV consistent with that seen in the native cell. Previous in vivo analyses showed that flagellar protein export is driven by proton motive force (PMF) and facilitated by ATP hydrolysis by FliI, a T3SS-specific ATPase. Our in vitro assay recapitulated these previous in vivo observations but furthermore clearly demonstrated that even ATP hydrolysis by FliI alone can drive flagellar protein export. Moreover, this assay showed that addition of the FliH 2 /FliI complex to the assay solution at a concentration similar to that in the cell dramatically enhanced protein export, confirming that the FliH 2 /FliI complex in the cytoplasm is important for effective protein transport. IMPORTANCE The type III secretion system (T3SS) is the functional core of the injectisome, a bacterial protein transporter used to deliver virulence proteins into host cells, and bacterial flagella, critical for many pathogens. The molecular mechanism of protein transport is still unclear due to difficulties in accurate measurements of protein transport under well-controlled conditions in vivo We succeeded in developing an in vitro transport assay system of the flagellar T3SS using inverted membrane vesicles (IMVs). Flagellar hook formation was reproduced in the IMV, suggesting that the export apparatus in the IMV retains a protein transport activity similar to that in the cell. Using this system, we revealed that ATP hydrolysis by the T3SS ATPase can drive protein export without PMF. Copyright © 2018 Terashima et al.
Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo
NASA Astrophysics Data System (ADS)
Mancini, Joshua A.
Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles to the maquettes both in vitro and in vivo. Design principles are also established for increasing the amount of linear tetrapyrrole attachment to the maquette as well as modulating their photophysical properties. Fast and tight binding of cofactors, high cofactor attachment yields, and control of cofactor photophysical properties are all prerequisites for the maquettes to be successful in vivo photosynthetic light harvesting and signaling proteins.
Yang, Kai; Li, De-Feng; Wang, Xi'e; Liang, Jinzhao; Sitia, Roberto; Wang, Chih-Chen; Wang, Xi
2016-10-04
ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4. Our data reveal that ERp44 binds the oxidized form of peroxiredoxin 4 via thiol-disulfide interchange reactions. The structure explains the redox-dependent recognition and characterizes the essential non-covalent interactions at the interface. The ERp44-Prx4 covalent complexes can be reduced by glutathione and protein disulfide isomerase family members in the ER, allowing the two components to recycle. This work provides insights into the mechanisms of thiol-mediated protein retention and indicates the key roles of ERp44 in this biochemical cycle to optimize oxidative folding and redox homeostasis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Taehyung C; Moran, Crystal R; Cistrone, Philip A; Dawson, Philip E; Deniz, Ashok A
2018-04-12
Single-molecule fluorescence is widely used to study conformational complexity in proteins, and has proven especially valuable with intrinsically disordered proteins (IDPs). Protein studies using dual-color single-molecule Förster resonance energy transfer (smFRET) are now quite common, but many could benefit from simultaneous measurement of multiple distances through multi-color labeling. Such studies, however, have suffered from limitations in site-specific incorporation of more than two dyes per polypeptide. Here we present a fully site-specific three-color labeling scheme for α-synuclein, an IDP with important putative functions and links to Parkinson disease. The convergent synthesis combines native chemical ligation with regiospecific cysteine protection of expressed protein fragments to permit highly controlled labeling via standard cysteine-maleimide chemistry, enabling more global smFRET studies. Furthermore, this modular approach is generally compatible with recombinant proteins and expandable to accommodate even more complex experiments, such as by labeling with additional colors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Probing Protein Structure in Vivo with FRET
Davis, Trisha; Muller, Eric
2012-01-01
Fluorescence resonance energy transfer (FRET) is widely used to construct probes for cellular activities and to complement two-hybrid results that predict protein-protein interactions. The Yeast Resource Center promotes an underutilized potential of FRET as an in vivo tool to position proteins within low resolution structures derived from electron microscopy. The success of this approach using widefield microscopy depends upon the choice of filter sets, standardized image acquisition, a robust metric and controls matched to the structure under investigation. A comparison of various CFP and YFP filter combinations from Chroma and Semrock demonstrated the strength of the Chroma filters when coupled with our FRET metric, termed FretR. Coupling CFP and YFP to a selection of proteins of known structure allowed us to create a standard curve of FretR versus distance. How well other FRET metrics conform was also evaluated. Finally FretR was linked to an approximation of the efficiency of energy transfer. Together this feature set has allowed us to contribute to our understanding of the organization of the yeast spindle pole body, cohesin complex and gamma-tubulin complex.
Photosystem I assembly on chemically tailored SAM/ Au substrates for bio-hybrid device fabrication
NASA Astrophysics Data System (ADS)
Mukherjee, Dibyendu; Khomami, Bamin
2011-03-01
Photosystem I (PS I), a supra-molecular protein complex and a biological photodiode responsible for driving natural photosynthesis mechanism, charge separates upon exposure to light. Effective use of the photo-electrochemical activities of PS I for future bio-hybrid electronic devices requires controlled attachment of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface topography of PS I deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate SAM /Au substrates, thereby resulting in complex columnar structures that affect the electron capture pathway of PS I. Specifically, solution phase characterizations indicate that specific detergents used for PS I stabilization in buffer solutions drive the unique colloidal chemistry to tune protein-protein interactions and prevent aggregation, thereby allowing us to tailor the morphology of surface immobilized PS I. We present surface topographical, adsorption, and electrochemical characterizations of PSI /SAM/Au substrates to elucidate protein-surface attachment dynamics and its effect on the photo-activated electronic activities of surface immobilized PS I. Sustainable Energy Education and Research Center (SEERC).
Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko
2014-01-01
The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich
2016-06-21
The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood. The first fungal STRIPAK was described in Sordaria macrospora, which is a well-established model organism used to study the formation of fungal fruiting bodies, three-dimensional organ-like structures. We analyzed STRIPAK subunit PP2Ac1, catalytic subunit 1 of protein phosphatase PP2A, to study the importance of the catalytic activity of this protein during sexual development. The results of our yeast two-hybrid analysis and tandem affinity purification, followed by mass spectrometry, indicate that PP2Ac1 activity connects STRIPAK with other signaling pathways and thus forms a large interconnected signaling network. Copyright © 2016 Beier et al.
NASA Astrophysics Data System (ADS)
Payne, Christine
2014-03-01
Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.
Hufnagel, Peter; Rabus, Ralf
2006-01-01
The rapidly developing proteomics technologies help to advance the global understanding of physiological and cellular processes. The lifestyle of a study organism determines the type and complexity of a given proteomic project. The complexity of this study is characterized by a broad collection of pathway-specific subproteomes, reflecting the metabolic versatility as well as the regulatory potential of the aromatic-degrading, denitrifying bacterium 'Aromatoleum' sp. strain EbN1. Differences in protein profiles were determined using a gel-based approach. Protein identification was based on a progressive application of MALDI-TOF-MS, MALDI-TOF-MS/MS and LC-ESI-MS/MS. This progression was result-driven and automated by software control. The identification rate was increased by the assembly of a project-specific list of background signals that was used for internal calibration of the MS spectra, and by the combination of two search engines using a dedicated MetaScoring algorithm. In total, intelligent bioinformatics could increase the identification yield from 53 to 70% of the analyzed 5,050 gel spots; a total of 556 different proteins were identified. MS identification was highly reproducible: most proteins were identified more than twice from parallel 2DE gels with an average sequence coverage of >50% and rather restrictive score thresholds (Mascot >or=95, ProFound >or=2.2, MetaScore >or=97). The MS technologies and bioinformatics tools that were implemented and integrated to handle this complex proteomic project are presented. In addition, we describe the basic principles and current developments of the applied technologies and provide an overview over the current state of microbial proteome research. Copyright (c) 2006 S. Karger AG, Basel.
Discrete structural features among interface residue-level classes.
Sowmya, Gopichandran; Ranganathan, Shoba
2015-01-01
Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.
Discrete structural features among interface residue-level classes
2015-01-01
Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043
Shuh, Maureen; Derse, David
2000-01-01
The human T-cell leukemia virus type 1 Tax protein activates the expression of cellular immediate early genes controlled by the serum response element (SRE), which contains both the serum response factor (SRF) binding element (CArG box) and the ternary complex factor (TCF) binding element (Ets box). We show that TCF binding is necessary for Tax activation of the SRE and that Tax directly interacts with TCFs in vitro. In addition, Tax interactions with CREB binding protein (CBP) and p300- and CBP-associated factor were found to be essential for Tax activation of SRF-mediated transcription. PMID:11070040