Jing, Li; Amster, I Jonathan
2009-10-15
Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.
Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh
2015-10-01
We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.
Deng, Jingren; Lazar, Iulia M
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Deng, Jingren; Lazar, Iulia M.
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples.
McSweeney, Christopher S.; Palmer, Brian; Bunch, Rowan; Krause, Denis O.
1999-01-01
Tannins in forages complex with protein and reduce the availability of nitrogen to ruminants. Ruminal bacteria that ferment protein or peptides in the presence of tannins may benefit digestion of these diets. Bacteria from the rumina of sheep and goats fed Calliandra calothyrsus (3.6% N and 6% condensed tannin) were isolated on proteinaceous agar medium overlaid with either condensed (calliandra tannin) or hydrolyzable (tannic acid) tannin. Fifteen genotypes were identified, based on 16S ribosomal DNA-restriction fragment length polymorphism analysis, and all were proteolytic and fermented peptides to ammonia. Ten of the isolates grew to high optical density (OD) on carbohydrates (glucose, cellobiose, xylose, xylan, starch, and maltose), while the other isolates did not utilize or had low growth on these substrates. In pure culture, representative isolates were unable to ferment protein that was present in calliandra or had been complexed with tannin. One isolate, Lp1284, had high protease activity (80 U), a high specific growth rate (0.28), and a high rate of ammonia production (734 nmol/min/ml/OD unit) on Casamino Acids and Trypticase Peptone. Phylogenetic analysis of the 16S ribosomal DNA sequence showed that Lp1284 was related (97.6%) to Clostridium botulinum NCTC 7273. Purified plant protein and casein also supported growth of Lp1284 and were fermented to ammonia. This is the first report of a proteolytic, ammonia-hyperproducing bacterium from the rumen. In conclusion, a diverse group of proteolytic and peptidolytic bacteria were present in the rumen, but the isolates could not digest protein that was complexed with condensed tannin. PMID:10388706
NASA Astrophysics Data System (ADS)
Timm, Thomas; Lenz, Christof; Merkel, Dietrich; Sadiffo, Christian; Grabitzki, Julia; Klein, Jochen; Lochnit, Guenter
2015-03-01
Phosphorylcholine (PC)-modified biomolecules like lipopolysaccharides, glycosphingolipids, and (glyco)proteins are widespread, highly relevant antigens of parasites, since this small hapten shows potent immunomodulatory capacity, which allows the establishment of long-lasting infections of the host. Especially for PC-modified proteins, structural data is rare because of the zwitterionic nature of the PC substituent, resulting in low sensitivities and unusual but characteristic fragmentation patterns. We have developed a targeted mass spectrometric approach using hybrid triple quadrupole/linear ion trap (QTRAP) mass spectrometry coupled to nanoflow chromatography for the sensitive detection of PC-modified peptides from complex proteolytic digests, and the localization of the PC-modification within the peptide backbone. In a first step, proteolytic digests are screened using precursor ion scanning for the marker ions of choline ( m/z 104.1) and phosphorylcholine ( m/z 184.1) to establish the presence of PC-modified peptides. Potential PC-modified precursors are then subjected to a second analysis using multiple reaction monitoring (MRM)-triggered product ion spectra for the identification and site localization of the modified peptides. The approach was first established using synthetic PC-modified synthetic peptides and PC-modified model digests. Following the optimization of key parameters, we then successfully applied the method to the detection of PC-peptides in the background of a proteolytic digest of a whole proteome. This methodological invention will greatly facilitate the detection of PC-substituted biomolecules and their structural analysis.
Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly
Plakke, Melissa S.; Deutsch, Aaron B.; Meslin, Camille; Clark, Nathan L.; Morehouse, Nathan I.
2015-01-01
ABSTRACT Reproductive traits experience high levels of selection because of their direct ties to fitness, often resulting in rapid adaptive evolution. Much of the work in this area has focused on male reproductive traits. However, a more comprehensive understanding of female reproductive adaptations and their relationship to male characters is crucial to uncover the relative roles of sexual cooperation and conflict in driving co-evolutionary dynamics between the sexes. We focus on the physiology of a complex female reproductive adaptation in butterflies and moths: a stomach-like organ in the female reproductive tract called the bursa copulatrix that digests the male ejaculate (spermatophore). Little is known about how the bursa digests the spermatophore. We characterized bursa proteolytic capacity in relation to female state in the polyandrous butterfly Pieris rapae. We found that the virgin bursa exhibits extremely high levels of proteolytic activity. Furthermore, in virgin females, bursal proteolytic capacity increases with time since eclosion and ambient temperature, but is not sensitive to the pre-mating social environment. Post copulation, bursal proteolytic activity decreases rapidly before rebounding toward the end of a mating cycle, suggesting active female regulation of proteolysis and/or potential quenching of proteolysis by male ejaculate constituents. Using transcriptomic and proteomic approaches, we report identities for nine proteases actively transcribed by bursal tissue and/or expressed in the bursal lumen that may contribute to observed bursal proteolysis. We discuss how these dynamic physiological characteristics may function as female adaptations resulting from sexual conflict over female remating rate in this polyandrous butterfly. PMID:25994634
Blending protein separation and peptide analysis through real-time proteolytic digestion.
Slysz, Gordon W; Schriemer, David C
2005-03-15
Typical liquid- or gel-based protein separations require enzymatic digestion as an important first step in generating protein identifications. Traditional protocols involve long-term proteolytic digestion of the separated protein, often leading to sample loss and reduced sensitivity. Previously, we presented a rapid method of proteolytic digestion that showed excellent digestion of resistant and low concentrations of protein without requiring reduction and alkylation. Here, we demonstrate on-line, real-time tryptic digestion in conjunction with reversed-phase protein separation. The studies were aimed at optimizing pH and ionic strength and the size of the digestion element, to produce maximal protein digestion with minimal effects on chromatographic integrity. Upon establishing optimal conditions, the digestion element was attached downstream from a capillary C4 reversed-phase column. A four-protein mixture was processed through the combined system, and the resulting peptides were analyzed on-line by electrospray mass spectrometry. Extracted ion chromatograms for protein chromatography based on peptide elution were generated. These were shown to emulate ion chromatograms produced in a subsequent run without the digestion element, based on protein elution. The methodology will enable rapid and sensitive analysis of liquid-based protein separations using the power of bottom-up proteomics methodologies.
Analysis of specific proteolytic digestion of the peptidoglutaminase-asparaginase of koji molds.
Ito, Kotaro; Koyama, Yasuji
2014-09-01
AsGahB, a peptidoglutaminase-asparaginase acting as the main glutaminase in Aspergillus sojae, was previously purified from the cytoplasm of overexpressing strains. Here, we found that specific proteolytic digestion of AsGahB by extracellular proteases of koji molds is similar to that of AsGahA which exists in proteolytic form under solid-state culture. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 67.
1977-03-30
and Ecological Problems 14 Molecular Biology 23 Pharmacology. 25 Physiology. 27 Public Health 46 Radiobiology 48 Therapy . 49 BEHAVIORAL...normalizing metabolic processes be included in the complex therapy . USSR UDC 612.3 616.3 DIGESTIBILITY OF VEGETARIAN FISH MEAT PROTEINS BY PROTEOLYTIC...inactivation of one hemisphere, arising after unilateral electroconvulsive seizure, a study was made of the intelli- gibility of phonemes (vowels and
Dallas, David C.; Murray, Niamh M.; Gan, Junai
2015-01-01
Milk contains elements of numerous proteolytic systems (zymogens, active proteases, protease inhibitors and protease activators) produced in part from blood, in part by mammary epithelial cells and in part by immune cell secretion. Researchers have examined milk proteases for decades, as they can cause major defects in milk quality and cheese production. Most previous research has examined these proteases with the aim to eliminate or control their actions. However, our recent peptidomics research demonstrates that these milk proteases produce specific peptides in healthy milk and continue to function within the infant’s gastrointestinal tract. These findings suggest that milk proteases have an evolutionary function in aiding the infant’s digestion or releasing functional peptides. In other words, the mother provides the infant with not only dietary proteins but also the means to digest them. However, proteolysis in the milk is controlled by a balance of protease inhibitors and protease activators so that only a small portion of milk proteins are digested within the mammary gland. This regulation presents a question: If proteolysis is beneficial to the infant, what benefits are gained by preventing complete proteolysis through the presence of protease inhibitors? In addition to summarizing what is known about milk proteolytic systems, we explore possible evolutionary explanations for this proteolytic balance. PMID:26179272
Naseri, Bahram; Fathipour, Yaghoub; Moharramipour, Saeid; Hosseininaveh, Vahid; Gatehouse, Angharad M R
2010-12-01
Digestive proteolytic and amylolytic activities of the larvae of Helicoverpa armigera (Hübner) fed either on artificial diet or on different soybean cultivars (356, M4, M7, M9, Clark, Sahar, JK, BP, Williams, L17, Zane, Gorgan3 and DPX) and response of the larvae to feeding on some soybean-based protease inhibitors were studied. The highest general and specific proteolytic activities were in artificial-diet-fed larvae. Although the highest general proteolytic activity was in the larvae fed on L17, M4 and Sahar cultivars, the lowest tryptic activity was on L17 and Sahar, which may be due to the presence of some serine protease inhibitors in these two cultivars, resulting in hyperproduction of chymotrypsin- and elastase-like enzymes in response to the inhibition of these enzymes. The highest amylolytic activity was on M4, and the lowest was on Williams and DPX. General proteolytic activity of SKTI-fed larvae was the highest compared with SBBI- and STI-fed larvae. The findings demonstrated that the cultivars L17 and Sahar were partially resistant to this pest, probably because of some secondary chemicals or proteinaceous protease inhibitors of these cultivars.
Lee, Ju Yeon; Kim, Jin Young; Park, Gun Wook; Cheon, Mi Hee; Kwon, Kyung-Hoon; Ahn, Yeong Hee; Moon, Myeong Hee; Lee, Hyoung–Joo; Paik, Young Ki; Yoo, Jong Shin
2011-01-01
A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma, without the need for complex enrichment processes or expensive antibody preparations. PMID:21940909
Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej
2014-01-01
The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed. PMID:25153528
Mureşan, Carmen I; Schierhorn, Angelika; Buttstedt, Anja
2018-04-25
Royal jelly (RJ) is a beehive product with a complex composition, major royal jelly proteins (MRJPs) being the most abundant proteins. Cell culture and animal studies suggest various biological activities for the full-length/native MRJPs. In the field of apitherapy, it is assumed that MRJPs can positively affect human health. However, whenever RJ is administered orally, the availability for assimilation in the gastrointestinal tract is a prerequisite for MRJPs to have any effect on humans. We here show that MRJPs vary in resistance to pepsin digestion with MRJP2 being most stable and still present as full-length protein after 24 h of digestion. In the intestinal phase, using trypsin and chymotrypsin, MRJPs are rapidly digested with MRJP2 again showing longest stability (40 min), suggesting that MRJPs can reach the small intestine as full-length proteins but then have to be resorbed quickly if full-length proteins are to fulfill any biological activity.
Anaerobic digestibility of beef hooves with swine manure or slaughterhouse sludge.
Xia, Yun; Wang, Ding-Kang; Kong, Yunhong; Ungerfeld, Emilio M; Seviour, Robert; Massé, Daniel I
2015-04-01
Anaerobic digestion is an effective method for treating animal by-products, generating at the same time green energy as methane (CH4). However, the methods and mechanisms involved in anaerobic digestion of α-keratin wastes like hair, nails, horns and hooves are still not clear. In this study we investigated the feasibility of anaerobically co-digesting ground beef hooves in the presence of swine manure or slaughterhouse sludge at 25 °C using eight 42-L Plexiglas lab-scale digesters. Our results showed addition of beef hooves statistically significantly increased the rate of CH4 production with swine manure, but only increased it slightly with slaughterhouse sludge. After 90-day digestion, 73% of beef hoof material added to the swine manure-inoculated digesters had been converted into CH4, which was significantly higher than the 45% level achieved in the slaughterhouse sludge inoculated digesters. BODIPY-Fluorescent casein staining detected proteolytic bacteria in all digesters with and without added beef hooves, and their relative abundances corresponded to the rate of methanogenesis of the digesters with the different inocula. Fluorescence in situ hybridization in combination with BODIPY-Fluorescent casein staining identified most proteolytic bacteria as members of genus Alkaliphilus in the subfamily Clostridiaceae 2 of family Clostridiaceae. They thus appear to be the bacteria mainly responsible for digestion of beef hooves. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Dallas, David C.; German, J. Bruce
2017-01-01
Milk proteins are a complex and diverse source of biological activities. Beyond their function intact, milk proteins also act as carriers of encrypted functional sequences that when released as peptides exert biological functions, including antimicrobial and immunomodulatory, which could contribute to the infant’s competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother’s milk have been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant’s stomach, possibly even to a larger extent than the infant’s own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease based peptide release system. PMID:28346930
Dallas, David C; German, J Bruce
2017-01-01
Milk proteins are a complex and diverse source of biological activities. Beyond their function, intact milk proteins also act as carriers of encrypted functional sequences that, when released as peptides, exert biological functions, including antimicrobial and immunomodulatory activity, which could contribute to the infant's competitive success. Research has now revealed that the release of these functional peptides begins within the mammary gland itself. A complex array of proteases produced in mother's milk has been shown to be active in the milk, releasing these peptides. Moreover, our recent research demonstrates that these milk proteases continue to digest milk proteins within the infant's stomach, possibly even to a larger extent than the infant's own proteases. As the neonate has relatively low digestive capacity, the activity of milk proteases in the infant may provide important assistance to digesting milk proteins. The coordinated release of these encrypted sequences is accomplished by selective proteolytic action provided by an array of native milk proteases and infant-produced enzymes. The task for scientists is now to discover the selective advantages of this protein-protease-based peptide release system. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre
2016-03-01
Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.
Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin
NASA Astrophysics Data System (ADS)
Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter
1997-12-01
In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.
Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.
Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.
Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants
Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992
Srp, Jaroslav; Nussbaumerová, Martina; Horn, Martin; Mareš, Michael
2016-11-01
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø; de Souza, Gustavo A; Sollid, Ludvig M
2016-05-05
This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells.
Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.
2016-01-01
This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306
Winnick, Theodore; Davis, Alva R.; Greenberg, David M.
1940-01-01
1. A study has been made of the properties of a hitherto unreported proteolytic enzyme from the latex of the milkweed, Asclepias speciosa. The new protease has been named asclepain by the authors. 2. The results of chemical, diffusion, and denaturation tests indicate that asclepain is a protein. 3. Like papain, asclepain dots milk and digests most proteins, particularly if they are dissolved in concentrated urea solution. Unlike papain, asclepain did not clot blood. 4. The activation and inhibition phenomena of asclepain resemble those of papain, and seem best explained on the assumption that free sulfhydryl in the enzyme is necessary for proteolytic activity. The sulfhydryl of asclepain appears more labile than that of papain. 5. The measurement of pH-activity curves of asclepain on casein, ovalbumin, hemoglobin, edestin, and ovovitellin showed no definite digestion maxima for most of the undenatured proteins, while in urea solution there were well defined maxima near pH 7.0. Native hemoglobin and ovovitellin were especially undigestible, while native casein was rapidly attacked. 6. Temperature-activity curves were determined for asclepain on hemoglobin, casein, and milk solutions. The optimum temperature was shown to increase with decreasing time of digestion. PMID:19873154
Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando
2016-04-01
Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.
Mehrabadi, Mohammad; Bandani, Ali Reza; Dastranj, Mehdi
2014-06-01
The digestive enzymes from salivary gland complexes (SGC) of Eurygaster integriceps, and their response to starvation and feeding were studied. Moreover, digestive amylases were partially purified and characterized by ammonium sulfate precipitation and gel filtration chromatography. The SGC are composed of two sections, the principal glands and accessory glands. The principal glands are further divided into the anterior lobes and posterior lobes. The SGC main enzyme was α-amylase, which hydrolyzed starch better than glycogen. The other carbohydrases were also present in the SGC complexes. Enzymatic activities toward mannose (α/β-mannosidases) were little in comparison to activities against glucose (α/β-glucosidases) and galactose (α/β-galactosidases), the latter being the greatest. Acid phosphatase showed higher activity than alkaline phosphatase. There was no measurable activity for lipase and aminopeptidase. Proteolytic activity was detected against general and specific protease substrates. Activities of all enzymes were increased in response to feeding in comparison to starved insects, revealing their induction and secretion in response to feeding pulse. The SGC amylases eluted in four major peaks and post-electrophoretic detection of the α-amylases demonstrated the existence of at least five isoamylases in the SGC. The physiological implication of these findings in pre-oral digestion of E. integriceps is discussed. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Stygar, Dominika; Michalczyk, Katarzyna; Dolezych, Bogdan; Nakonieczny, Miroslaw; Migula, Pawel; Zaak, Maria; Sawczyn, Tomasz; Karcz-Socha, Iwona; Kukla, Michal; Zwirska-Korczala, Krystyna; Buldak, Rafal
2013-01-01
In the present study we describe the effect of chloronicotinoid pesticide (imidacloprid) on the digestive enzymes activity of the Cameraria ohridella larvae after lasting 1 year sublethal exposure to imidacloprid pesticide. Caterpillars - L4 stage (fourth instar, hyperphagic tissue-feeding phase) - were collected from chemically protected white horse chestnut trees 1 year after imidacloprid treatment, and compared with caterpillars collected from non-treated trees in a previous study. Enzymes activity of α-amylase, disaccharidases, glycosidases and proteases was assayed. The presence of pesticide in ingested food changed the digestive enzymes profile of caterpillars. The analysis of correlations between different digestive enzymes showed many significant correlations (P<0.05) among glycolytic activities like β-glucosidase and α-galactosidase activities. Statistically significant correlations for proteolytic activity were found between trypsin and chymotrypsin activity and aminopeptidase activity that occurred only in the 1st generation. PCA distinguished five primary components with eigenvalues higher than 1, from which the first two explain almost 59% of analyzed results. Surprisingly, in the pesticide treated groups significantly higher activities of sucrase and lactase in relation to control were found. In general, glycosidase (α-glucosidase, β-glucosidase and β-galactosidase) activities showed a similar pattern of activity in different generations. These results contrast with those obtained with control larvae, where significant differences in activities of α-glucosidase, β-glucosidase and β-galactosidase may result from the different quantity and quality food intake by subsequent generations of larvae. No inter-generation differences in total proteolytic activity were observed in treated larvae. The absolute value of total proteolytic activity was higher than that in the control group. The pesticide present in the vascular system of the horse chestnut tree significantly affected some of the digestive enzymes activities and - in consequence - also interrelationships between enzymes, what may affect the food digestion. Copyright © 2012 Elsevier Inc. All rights reserved.
In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong-Seo; Monroe, Matthew E.; Camp, David G.
2013-02-01
Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, it has been controversial regarding the sources of such partially tryptic peptides. Herein we investigate the impact of in-source fragmentation on shotgun proteomics using three biological samples, including a standard protein mixture, a mouse brain tissue homogenate, and a mouse plasma sample. Since the in-source fragments of a peptide retain the same elution time with its parent fully tryptic peptide, the partially tryptic peptides from in-source fragmentation can be distinguished from the other partially tryptic peptides by plotting the observed retention times against themore » computationally predicted retention times. Most partially tryptic in-source fragmentation artifacts were misaligned from the linear distribution of fully tryptic peptides. The impact of in-source fragmentation on peptide identifications was clearly significant in a less complex sample such as a standard protein digest, where ~60 % of unique peptides were observed as partially tryptic peptides from in-source fragmentation. In mouse brain or mouse plasma samples, in-source fragmentation contributed to 1-3 % of all identified peptides. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic processing by endogenous proteases in the samples. By filtering out the in-source fragmentation artifacts from the identified partially tryptic or non-tryptic peptides, it is possible to directly survey in-vivo proteolytic processing in biological samples such as blood plasma.« less
Xia, Yun; Kong, Yunhong; Huang, Heping; Yang, Hee Eun; Forster, Robert; McAllister, Tim A
2016-12-01
In this study, BODIPY FL DQ™ casein staining combined with fluorescence in situ hybridization (FISH) was used to detect and identify protein-hydrolyzing bacteria within biofilms that produced active cell-surface-associated serine- and metallo-proteases during the ruminal digestion of barley and corn grain in cows fed barley-based diets at 2 different levels. A doublet coccoid bacterial morphotype associated with barley and corn grain particles fluoresced after BODIPY FL DQ™ casein staining. Bacteria with this morphotype accounted for 3%-10% of the total bacteria attached to surface of cereal grain particles, possibly indicative of an important role in the hydrolysis of the protein matrix within the endosperm. However, the identity of these predominant proteolytic bacteria could not be determined using FISH. Quantitative FISH revealed that known proteolytic species, Prevotella ruminicola, Ruminobacter amylophilus, and Butyrivibrio fibrisolvens, were attached to particles of various cultivars of barley grain and corn, confirming their role in the proteolysis of cereal grains. Differences in chemical composition among different barley cultivars did not affect the composition of proteolytic bacterial populations. However, the concentrate level in the basal diet did have an impact on the relative abundance of proteolytic bacteria and thus possibly their overall contribution to the proteolysis of cereal grains.
Pascual-Ruiz, S; Carrillo, L; Alvarez-Alfageme, F; Ruíz, M; Castañera, P; Ortego, F
2009-10-01
The effects of different prey regimes on the performance and digestive physiology of the spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae), were assessed. Specifically, P. maculiventris nymphs were fed on Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), larvae; Egyptian cotton leafworm (ECW); Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae); larvae; Calliphora spp. (CAL) (Diptera: Calliphoridae) pupae or a mixture of the three prey. No differences in development and weight gain were observed when P. maculiventris nymphs were fed different prey species (CPB, ECW or CAL). However, an increase in weight gain and a reduction in the duration of the stadia were observed for nymphs fed with a mixture of the three prey. To investigate the physiological background, biochemical analysis were carried out on insects dissected at the end of the feeding assay. We have found that the proteolytic activity in the salivary glands of P. maculiventris nymphs was not affected by prey species, whereas the relative activity of these proteases in the midgut depends on the prey. Moreover, gel assays proved that the proteolytic profiles of midguts from P. maculiventris nymphs feeding on CPB, ECW and CPB closely resembled those of their prey. All together, these results suggest that P. maculiventris may utilize enzymes from the prey they consume that may facilitate the process of digestion.
Attomole-level protein fingerprinting based on intrinsic peptide fluorescence.
Okerberg, E; Shear, J B
2001-04-01
Protein identification has relied heavily on proteolytic analysis, but current techniques are often slow and generally consume large quantities of valuable protein sample. We report the development of a rapid, ultralow volume protein analysis strategy based on tryptic digestion within the tip of a 1.5-microm capillary channel followed by separation of the proteolytic fragments using capillary electrophoresis (CE). Two-photon excitation is used to probe the intrinsic fluorescence of peptide fragments through "deep-UV" excitation of aromatic amino acid residues at the outlet of the CE channel. Detection limits using this technique are 0.7, 2.4, and 23 amol for the aromatic amino acids tryptophan, tyrosine, and phenylalanine, respectively. In these studies, we demonstrate the capacity to differentiate bovine and yeast cytochrome c variants using less than 15 amol of protein through tryptic fingerprinting. Moreover, the detection of a single amino acid substitution between bovine and canine cytochrome c illustrates the sensitivity of this approach to minor differences in protein sequence. The 2-pL sample volume required for this on-column tryptic digestion is, to our knowledge, the smallest yet reported for a proteolytic assay.
Santos, Juliana Ferreira; Soares, Karollina Lopes Siqueira; Assis, Caio Rodrigo Dias; Guerra, Carlos Augusto Martins; Lemos, Daniel; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza
2016-10-01
The effect of different farming systems (cage, pond) upon digestive enzyme activities of Nile tilapia was evaluated. Juvenile Nile tilapia (87.61 ± 1.52 g) were simultaneously cultured in pond and cage systems during 90 days. Cages used nutritional biphasic plan (35 and 32 % crude protein-CP feeds) and ponds used nutritional triphasic plan (35, 32 and 28 % CP feeds). Biometric measurements were monthly performed for adjustments in feeding regimes and removal of intestine tissues to evaluate the performance of enzyme activities. Total proteolytic, amylase and lipase activities were not statistically different between the treatments throughout the periods analyzed (31, 63 and 94 days of culture). However, trypsin and chymotrypsin activities were higher with 31 and 63 days of culture in fish from pond system, suggesting that natural food may have influenced these activities. A positive correlation was observed between the recommended concentration of essential amino acids for Nile tilapia and specific aminopeptidases activity in fish cage system. Substrate-SDS-PAGE revealed 12 active proteolytic bands in both systems. However, integrated density (ID) values were higher in the bands of ponds. Specimens of either cage or pond exhibited five bands of amylolytic activity. Fish from cage and pond systems showed the highest values of ID within 31 days of cultivation. In this study, the complexity of digestive functions could be verified for animals maintained under commercial conditions. Some of the assessed enzymes may show adaptations of their activities and/or expression that allow the fish to achieve a more efficient nutrient assimilation.
Golikhajeh, Neshat; Razmjou, Jabraeil
2017-01-01
Digestive enzymatic activity in three geographic strains (Miandiab, Kalposh and Moghan regions) of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) reared on different sugar beet cultivars (Dorothea, Rozier, Persia and Perimer) was studied under laboratory conditions (25 ± 1 °C, 65 ± 5% RH, and a photo period of 16:8 (L:D) h photoperiod). The results of this study demonstrated that digestive protease and amylase activity of S. exigua larvae was affected by both geographic origin of the pest and host plant cultivar. Three strains reared on the same sugar beet cultivars demonstrated different levels of proteolytic and amylolytic activities in fourth and fifth instars. The highest proteolytic and amylolytic activity, in most cases, was observed in larvae collected from Kalposh region. Among different sugar beet cultivars, the highest protease activity in three strains was observed on cultivars Rozier and Perimer. Nevertheless, the highest amylase activity was seen on cultivar Dorothea, and the lowest activity was seen on cultivar Rozier. This study suggested that variations in digestive enzymatic activity of three geographic strains of S. exigua might be attributed to local adaptation with their local host plant and environmental conditions inherent by larvae. PMID:28069730
Chalabi, Maryam; Khademi, Fatemeh; Yarani, Reza; Mostafaie, Ali
2014-04-01
Actinidin, a member of the papain-like family of cysteine proteases, is abundant in kiwifruit. To date, a few studies have been provided to investigate the proteolytic activity and substrate specificity of actinidin on native proteins. Herein, the proteolytic activity of actinidin was compared to papain on several different fibrous and globular proteins under neutral, acidic and basic conditions. The digested samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry to assess the proteolytic effect. Furthermore, the levels of free amino nitrogen (FAN) of the treated samples were determined using the ninhydrin colorimetric method. The findings showed that actinidin has no or limited proteolytic effect on globular proteins such as immunoglobulins including sheep IgG, rabbit IgG, chicken IgY and fish IgM, bovine serum albumin (BSA), lipid transfer protein (LTP), and whey proteins (α-lactalbumin and β-lactoglobulin) compared to papain. In contrast to globular proteins, actinidin could hydrolyze collagen and fibrinogen perfectly at neutral and mild basic pHs. Moreover, this enzyme could digest pure α-casein and major subunits of micellar casein especially in acidic pHs. Taken together, the data indicated that actinidin has narrow substrate specificity with the highest enzymatic activity for the collagen and fibrinogen substrates. The results describe the actinidin as a mild plant protease useful for many special applications such as cell isolation from different tissues and some food industries as a mixture formula with other relevant proteases.
Boensch, C; Huang, S S; Connolly, D T; Huang, J S
1999-04-09
The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.
Savoie, A; Le François, N R; Lamarre, S G; Blier, P U; Beaulieu, L; Cahu, C
2011-04-01
Growth rate is dependent upon adequate provision of amino acids especially in newly-hatched fish which experience very high growth rate. The replacement of a fraction of protein content by partially hydrolyzed (pre-digested) proteins was carried out and the digestive capacities and performances of larval/juvenile spotted wolffish (Anarhichas minor) were measured. The goal of this study was to verify whether the scope for growth is principally dictated by the proteolytic capacity of the digestive system by examining the effect of protein hydrolysates (PH) and trypsin inhibitor dietary inclusion on protein digestion/assimilation capacities, growth and survival. Four experimental diets were examined: C (control) I (supplemented with 750 mg/kg soybean trypsin inhibitor (SBTI)) H (supplemented with 20% PH) and HI (supplemented with 20% PH and 750 mg/kg SBTI). Protein hydrolysate supplementation gave significantly higher body mass than control at day 15 post-hatching. Unexpectedly, at day 30 and 60, fish administered diet HI (containing trypsin inhibitor) were heavier than the other groups. Suggested mechanisms are presented and discussed. The main conclusions of this study are that wolffish larval stage lasts roughly 15 days and that juvenile growth is linked to proteolytic capacity, but also very likely to absorption capacity of peptides and amino acids. Copyright © 2011 Elsevier Inc. All rights reserved.
Tabachnick, M; Perret, V
1987-08-01
[125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.
Cubarsi, R; Carrió, M M; Villaverde, A
2005-09-01
The in vivo proteolytic digestion of bacterial inclusion bodies (IBs) and the kinetic analysis of the resulting protein fragments is an interesting approach to investigate the molecular organization of these unconventional protein aggregates. In this work, we describe a set of mathematical instruments useful for such analysis and interpretation of observed data. These methods combine numerical estimation of digestion rate and approximation of its high-order derivatives, modelling of fragmentation events from a mixture of Poisson processes associated with differentiated protein species, differential equations techniques in order to estimate the mixture parameters, an iterative predictor-corrector algorithm for describing the flow diagram along the cascade process, as well as least squares procedures with minimum variance estimates. The models are formulated and compared with data, and successively refined to better match experimental observations. By applying such procedures as well as newer improved algorithms of formerly developed equations, it has been possible to model, for two kinds of bacterially produced aggregation prone recombinant proteins, their cascade digestion process that has revealed intriguing features of the IB-forming polypeptides.
The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins.
Bennick, A; Cannon, M; Madapallimattam, G
1979-10-01
Protein A and C, which are major components of the acidic proline-rich proteins in human saliva, were digested, before or after adsorption to hydroxyapatite, with alkaline phosphatase, trypsin, thermolysin and a proteinase preparation from salivary sediment. The results demonstrate that the binding site is located in the proline-poor N-terminal part of the protein, possibly between residues 3 and 25. Phosphoserine is necessary for maximal adsorption of the proteins to hydroxyapatite. When proteins A and C are adsorbed to hydroxyapatite before proteolytic digestion there is a protection of some of the susceptible bonds in the N-terminal part of the proteins and a gradual removal of the proline-rich C-terminal part. Thermolysin can cleave susceptible bonds in the part of the protein that remains bound to hydroxyapatite, but at least some of the resulting peptides are retained on the mineral. Since the ability of the proteins to inhibit hydroxyapatite formation and to bind calcium is located in the N-terminal proline-poor part, it is possible that these activities are retained after proteolytic digestion of the adsorbed proteins.
Schmid-Schönbein, Geert W.
2017-01-01
Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737
Fibrin Clots Are Equilibrium Polymers That Can Be Remodeled Without Proteolytic Digestion
NASA Astrophysics Data System (ADS)
Chernysh, Irina N.; Nagaswami, Chandrasekaran; Purohit, Prashant K.; Weisel, John W.
2012-11-01
Fibrin polymerization is a necessary part of hemostasis but clots can obstruct blood vessels and cause heart attacks and strokes. The polymerization reactions are specific and controlled, involving strong knob-into-hole interactions to convert soluble fibrinogen into insoluble fibrin. It has long been assumed that clots and thrombi are stable structures until proteolytic digestion. On the contrary, using the technique of fluorescence recovery after photobleaching, we demonstrate here that there is turnover of fibrin in an uncrosslinked clot. A peptide representing the knobs involved in fibrin polymerization can compete for the holes and dissolve a preformed fibrin clot, or increase the fraction of soluble oligomers, with striking rearrangements in clot structure. These results imply that in vivo clots or thrombi are more dynamic structures than previously believed that may be remodeled as a result of local environmental conditions, may account for some embolization, and suggest a target for therapeutic intervention.
Aquatic Plant Control Research Program. White Amur Bibliography.
1983-08-01
Experiments in recycling swine manure in fishponds. In: Pillay, T.V.R., and W.A. Dill (Eds.). 1979 Advances in Aquaculture. Farnham and Surrey, England...the proteolytic enzyme responses of the gut to fasting and to seasonal changes. Little cellulase activity occurs in grass carp digestion L= 7...grass carp in Soviet fish culture averages 40% (Anon. 19701). The high feeding rate is primarily due to the quick passage and imcomplete digestion
Quirós Orlich, José R; Valverde Chavarría, Silvia; Ulloa Rojas, Juan B
2014-08-01
The proteolytic digestive activity and growth of Parachromis dovii larvae during the ontogeny were evaluated in a recirculation system using two feeding strategies during a 28-day period. Larvae were reared using two feeding protocols (three replicates each): (A) Artemia nauplii (at satiation), fed from exogenous feeding [8 days after hatching (DAH)] until 15 DAH followed by nauplii substitution by formulated feed (20% day(-1)) until 20 DAH and then formulated feed until 28 DAH; (B) formulated feed (100 % BW daily) from exogenous feeding until 28 DAH. Levels of acid (pepsin type) and alkaline digestive proteases as well as growth and survival of larvae were measured along the feeding period. Survival was high and similar between treatments: 98.9 ± 0.0 for Artemia, 97.3 ± 0.0% for formulated feed. The specific growth rate for length and weight was higher in larvae fed with Artemia nauplii than in larvae reared with formulated feed: 3.4 ± 0.1 versus 1.8 ± 0.1% day(-1) for body length (P = 0.009) and 12.2 ± 0.1 versus 6.5 ± 0.3% day(-1) for body weight (P = 0.002). The acid and alkaline proteolytic activity was detected, in both treatments, from the beginning of the experiment, at 8 DAH. The total enzymatic activity (U larva(-1)) for acid and alkaline proteases was higher in larvae reared with Artemia after 12 DAH, whereas the specific enzymatic activity was similar for both enzyme types in the two treatments. The results suggest that P. dovii larvae were capable to digest formulated diets from the beginning of exogenous feeding and that they could be reared with formulated feeds. However, the formulated feed used should be nutritionally improved because of the poor growth obtained in this research.
THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID
Donaldson, Virginia H.; Ratnoff, Oscar D.
1962-01-01
The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen. PMID:13887179
Plant Lectins: Wheat Defense Strategy Against Hessian Fly
USDA-ARS?s Scientific Manuscript database
Plants produce a variety of defense proteins, including lectins in response to attack by phytophagous insects. Ultrastructural studies reveal that binding to insect gut structures and resistance to proteolytic degradation by insect digestive enzymes are the two main prerequisites for the lectins to...
NASA Astrophysics Data System (ADS)
Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael
2011-01-01
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Gray, Christopher J; Sánchez-Ruíz, Antonio; Šardzíková, Ivana; Ahmed, Yassir A; Miller, Rebecca L; Reyes Martinez, Juana E; Pallister, Edward; Huang, Kun; Both, Peter; Hartmann, Mirja; Roberts, Hannah N; Šardzík, Robert; Mandal, Santanu; Turnbull, Jerry E; Eyers, Claire E; Flitsch, Sabine L
2017-04-18
The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.
FAP finds FGF21 easy to digest.
Gillum, Matthew P; Potthoff, Matthew J
2016-05-01
Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and the factors contributing to the post-translational regulation of FGF21 activity has previously been unknown. In a recent issue of the Biochemical Journal, Zhen et al. have identified fibroblast activation protein (FAP) as the endopeptidase responsible for this site-specific cleavage of human FGF21 (hFGF21), and propose that inhibition of FAP may be a therapeutic strategy to increase endogenous levels of active FGF21. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Personalizing Protein Nourishment
DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE
2016-01-01
Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355
NASA Astrophysics Data System (ADS)
Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel
2017-11-01
Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome models.
Kikuchi, Keiji; Kozuka-Hata, Hiroko; Oyama, Masaaki; Seiki, Motoharu; Koshikawa, Naohiko
2018-01-01
Proteolytic cleavage of membrane proteins can alter their functions depending on the cleavage sites. We recently demonstrated that membrane type 1 matrix metalloproteinase (MT1-MMP ) converts the tumor suppressor EphA2 into an oncogenic signal transducer through EphA2 cleavage. The cleaved EphA2 fragment that remains at the cell surface may be a better target for cancer therapy than intact EphA2. To analyze the cleavage site(s) of EphA2, we purified the fragments from tumor cells expressing MT1-MMP and Myc- and 6× His-tagged EphA2 by two-step affinity purification . The purified fragment was digested with trypsin to generate proteolytic peptides , and the amino acid sequences of these peptides were determined by nano-LC-mass spectrometry to identify the MT1-MMP-mediated cleavage site(s) of EphA2.
Sojka, Daniel; Franta, Zdeněk; Horn, Martin; Hajdušek, Ondřej; Caffrey, Conor R; Mareš, Michael; Kopáček, Petr
2008-01-01
Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain), and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases. PMID:18348719
Sripan, Panupan; Aukkanimart, Ratchadawan; Boonmars, Thidarut; Pranee, Sriraj; Songsri, Jiraporn; Boueroy, Parichart; Khueangchaingkhwang, Sukhonthip; Pumhirunroj, Benjamabhorn; Artchayasawat, Atchara
2017-01-01
Pepsin is common digestive enzyme used for fish digestion in the laboratory to collect trematode metacercariae. In a field study, to survey the infected fish is needed a huge yield of pepsin and it is very expensive. Therefore, our purpose of this study was to investigate the candidate enzyme from pineapple juice which has a digestive enzyme called bromelain, a mixture of proteolytic enzymes, to digest fish in order to harvest metacercariae. Fish were divided into 2 groups: one group in which metacercariae were harvested using acid pepsin as a control and other groups in which the fish was digested using fresh pineapple juices. The results showed that pineapple juice is able to digest fish similarly to pepsin. The Pattavia pineapple juice had the highest number of metacercariae similar to the control. For Trat Si Thong pineapple juice, we found the number of metacercariae was less than control. This result suggests that the Pattavia pineapple juice was optimal juice for fish digestion to metacercaria collection and can be used instread of pepsin acid. PMID:28441786
Schulze, Waltraud X; Sanggaard, Kristian W; Kreuzer, Ines; Knudsen, Anders D; Bemm, Felix; Thøgersen, Ida B; Bräutigam, Andrea; Thomsen, Line R; Schliesky, Simon; Dyrlund, Thomas F; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J
2012-11-01
The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.
Brett, M; Findlay, J B
1983-01-01
Ovine rhodopsin may be cleaved in situ by Staphylococcus aureus V8 proteinase into two membrane-bound fragments designated V8-L (27 000 mol.wt.) and V8-S (12 000 mol.wt.). After purification of the proteolysed complex by affinity chromatography in detergent using concanavalin A immobilized on Sepharose 4B, the two polypeptide fragments may be separated by gel-permeation chromatography on Sephadex LH-60. Digestion of the N-terminal-derived V8-L fragment with CNBr in 70% (v/v) trifluoroacetic acid resulted in a peptide mixture that could be fractionated by procedures involving gel-permeation chromatography in organic and aqueous solvents and the use of differential solubility. The complete or partial sequences of all ten peptides are reported. PMID:6224479
Li, Wei-Fen; Feng, Jie; Xu, Zi-Rong; Yang, Cai-Mei
2004-03-15
To investigate effects of non-starch polysaccharides(NSP) enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley. Sixty crossbred piglets averaging 13.5 kg were randomly assigned to two treatment groups with three replications (pens) based on sex and mass. Each group was fed on the diet based on barley with or without added NSP enzymes (0.15%) for a 40-d period. At the end of the experiment the pigs were weighed. Three piglets of each group were chosen and slaughtered. Pancreas, digesta from the distal end of the duodenum and jejunal mucosa were collected for determination. Activities of the digestive enzymes trypsin, chymotrypsin, amylase and lipase were determined in the small intestinal sections as well as in homogenates of pancreatic tissue. Maltase, sucrase, lactase and gamma-glutamyl transpeptidase (gamma-GT) activities were analyzed in jejunal mucosa. Supplementation with NSP enzymes improved growth performance of piglets. It showed that NSP enzymes had no effect on digestive enzyme activities in pancreas, but decreased the activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents by 57.56%, 76.08%, 69.03% and 40.22%(P<0.05) compared with control, and increased gamma-GT activities in jejunal mucosa by 118.75%(P<0.05). Supplementation with NSP enzymes in barley based diets could improve piglets' growth performance, decrease activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents and increase gamma-GT activities in jejunal mucosa.
Franco, Octávio L; dos Santos, Roseane C; Batista, João A N; Mendes, Ana Cristina M; de Araújo, Marcus Aurélio M; Monnerat, Rose G; Grossi-de-Sá, Maria Fátima; de Freitas, Sonia M
2003-06-01
The cotton boll weevil Anthonomus grandis (Boheman) is one of the major pests of cotton (Gossypium hirsutum L.) in tropical and sub-tropical areas of the New World. This feeds on cotton floral fruits and buds causing severe crop losses. Digestion in the boll weevil is facilitated by high levels of serine proteinases, which are responsible for the almost all proteolytic activity. Aiming to reduce the proteolytic activity, the inhibitory effects of black-eyed pea trypsin/chymotrypsin inhibitor (BTCI), towards trypsin and chymotrypsin from bovine pancreas and from midguts of A. grandis larvae and adult insects were analyzed. BTCI, purified from Vigna unguiculata (L.) seeds, was highly active against different trypsin-like proteinases studied and moderately active against the digestive chymotrypsin of adult insects. Nevertheless, no inhibitory activity was observed against chymotrypsin from A. grandis larval guts. To test the BTCI efficiency in vivo, neonate larvae were reared on artificial diet containing BTCI at 10, 50 and 100 microM. A reduction of larval weight of up to approximately 54% at the highest BTCI concentration was observed. At this concentration, the insect mortality was 65%. This work constitutes the first observation of a Bowman-Birk type inhibitor active in vitro and in vivo toward the cotton boll weevil A. grandis. The results of bioassays strongly suggest that BTCI may have potential as a transgene protein for use in engineered crop plants modified for heightened resistance to the cotton boll weevil.
Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H
1990-03-01
Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.
Curtis, Daniel L; van Breukelen, Frank; McGaw, Iain J
2013-12-01
Extracellular digestive processes were examined in the Dungeness crab, Cancer magister and the blue crab, Callinectes sapidus, during hyposaline exposure. Both species are found in estuaries as adults, but vary in their ability to balance the cardiovascular and respiratory demands of concurrent osmoregulation and digestion. The weak osmoregulator, C. magister, is unable to balance the demands of osmoregulation and digestion. Concordant with observed decreases in oxygen consumption and mechanical digestion, proteolytic digestion within the foregut and hepatopancreas was delayed, resulting in a relative reduction of circulating amino acids post-feeding in low salinity. In contrast, the efficient osmoregulator, C. sapidus, balances the demands of osmoregulation and digestion, and mechanical digestion continues unabated in low salinity. Protease activity in the gut fluid and hepatopancreas showed either no change or a reduction over time. The transport of amino acids into the cells post-feeding is opposed by an efflux of amino acids at the cellular level, and resulted in a build up of amino acids in the hemolymph. Despite differences in the extracellular responses to low salinity exposure following feeding, both species were able to maintain high digestive efficiencies. © 2013.
NASA Astrophysics Data System (ADS)
Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner
2011-06-01
Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.
Tulini, Fabricio L; Hymery, Nolwenn; Haertlé, Thomas; Le Blay, Gwenaelle; De Martinis, Elaine C P
2016-02-01
Lactic acid bacteria (LAB) can be isolated from different sources such as milk and cheese, and the lipolytic, proteolytic and glycolytic enzymes of LAB are important in cheese preservation and in flavour production. Moreover, LAB produce several antimicrobial compounds which make these bacteria interesting for food biopreservation. These characteristics stimulate the search of new strains with technological potential. From 156 milk and cheese samples from cow, buffalo and goat, 815 isolates were obtained on selective agars for LAB. Pure cultures were evaluated for antimicrobial activities by agar antagonism tests and for proteolytic activity on milk proteins by cultivation on agar plates. The most proteolytic isolates were also tested by cultivation in skim milk followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fermented milk. Among the 815 tested isolates, three of them identified as Streptococcus uberis (strains FT86, FT126 and FT190) were bacteriocin producers, whereas four other ones identified as Weissella confusa FT424, W. hellenica FT476, Leuconostoc citreum FT671 and Lactobacillus plantarum FT723 showed high antifungal activity in preliminary assays. Complementary analyses showed that the most antifungal strain was L. plantarum FT723 that inhibited Penicillium expansum in modified MRS agar (De Man, Rogosa, Sharpe, without acetate) and fermented milk model, however no inhibition was observed against Yarrowia lipolytica. The proteolytic capacities of three highly proteolytic isolates identified as Enterococcus faecalis (strains FT132 and FT522) and Lactobacillus paracasei FT700 were confirmed by SDS-PAGE, as visualized by the digestion of caseins and whey proteins (β-lactoglobulin and α-lactalbumin). These results suggest potential applications of these isolates or their activities (proteolytic activity or production of antimicrobials) in dairy foods production.
Keis, Stefanie; Stocker, Achim; Dimroth, Peter; Cook, Gregory M.
2006-01-01
The F1Fo-ATP synthases of alkaliphilic bacteria exhibit latent ATPase activity, and for the thermoalkaliphile Bacillus sp. strain TA2.A1, this activity is intrinsic to the F1 moiety. To study the mechanism of ATPase inhibition, we developed a heterologous expression system in Escherichia coli to produce TA2F1 complexes from this thermoalkaliphile. Like the native F1Fo-ATP synthase, the recombinant TA2F1 was blocked in ATP hydrolysis activity, and this activity was stimulated by the detergent lauryldimethylamine oxide. To determine if the C-terminal domain of the ɛ subunit acts as an inhibitor of ATPase activity and if an electrostatic interaction plays a role, a TA2F1 mutant with either a truncated ɛ subunit [i.e., TA2F1(ɛΔC)] or substitution of basic residues in the second α-helix of ɛ with nonpolar alanines [i.e., TA2F1(ɛ6A)] was constructed. Both mutants showed ATP hydrolysis activity at low and high concentrations of ATP. Treatment of the purified F1Fo-ATP synthase and TA2F1(ɛWT) complex with proteases revealed that the ɛ subunit was resistant to proteolytic digestion. In contrast, the ɛ subunit of TA2F1(ɛ6A) was completely degraded by trypsin, indicating that the C-terminal arm was in a conformation where it was no longer protected from proteolytic digestion. In addition, ATPase activity was not further activated by protease treatment when compared to the untreated control, supporting the observation that ɛ was responsible for inhibition of ATPase activity. To study the effect of the alanine substitutions in the ɛ subunit in the entire holoenzyme, we reconstituted recombinant TA2F1 complexes with F1-stripped native membranes of strain TA2.A1. The reconstituted TA2FoF1(ɛWT) was blocked in ATP hydrolysis and exhibited low levels of ATP-driven proton pumping consistent with the F1Fo-ATP synthase in native membranes. Reconstituted TA2FoF1(ɛ6A) exhibited ATPase activity that correlated with increased ATP-driven proton pumping, confirming that the ɛ subunit also inhibits ATPase activity of TA2FoF1. PMID:16707672
Proteomics in Forensic Sciences: Identification of the Nature of the Last Meal at Autopsy.
Pieri, Maria; Lombardi, Antonio; Basilicata, Pascale; Mamone, Gianfranco; Picariello, Gianluca
2018-06-13
A long-term psychiatric 40 years-old male patient was found dead at 9:00 a.m. in the clinic where he lived. Death was caused by traumatic injuries, which the sanitary staff imputed to a fall. Nurses declared that the patient refused having breakfast, whereas at autopsy the stomach contained 350 g of whitish semifluid material. Using both shotgun and gel-based proteomics, we demonstrated that the chyme contained partly digested milk- and bread-derived proteins, eaten during a recent breakfast. The conflict between evidence and assertions of the attending sanitary staff prompted the Legal Authority to undertake detailed investigations to ascertain facts and possible responsibilities. The herein characterization provides insights in the in vivo mechanisms of gastric breakdown of food proteins in a real meal. β-lactoglobulin was partially resistant to gastric digestion as confirmed by Western blot analysis, in contrast to caseins and wheat gluten proteins, which had been degraded by gastric fluids. In addition to a complex pattern of gastric proteins (e.g., mucin-5AC, pepsin A-3, pepsinogen C, gastric lipase, gastrokine-2, trefoil factors), chyme contained intact proteins and variably sized food-derived polypeptides arising from peptic and nonpeptic proteolytic cleavage as well as heterodimeric disulfide-cross-linked peptides. These findings suggest that the current analytical workflows offer only a partial picture of the real complexity of the human "digestome".
Microscale immobilized enzyme reactors in proteomics: latest developments.
Safdar, Muhammad; Spross, Jens; Jänis, Janne
2014-01-10
Enzymatic digestion of proteins is one of the key steps in proteomic analyses. There has been a steady progress in the applied digestion protocols in the past, starting from conventional time-consuming in-solution or in-gel digestion protocols to rapid and efficient methods utilizing different types of microscale enzyme reactors. Application of such microreactors has been proven beneficial due to lower sample consumption, higher sensitivity and straightforward coupling with LC-MS set-ups. Novel stationary phases, immobilization techniques and device formats are being constantly developed and tested to optimize digestion efficiency of proteolytic enzymes. This review focuses on the latest developments associated with the preparation and application of microscale enzyme reactors for proteomics applications since 2008 onwards. A special attention has been paid to the discussion of different stationary phases applied for immobilization purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
Schulze, Waltraud X.; Sanggaard, Kristian W.; Kreuzer, Ines; Knudsen, Anders D.; Bemm, Felix; Thøgersen, Ida B.; Bräutigam, Andrea; Thomsen, Line R.; Schliesky, Simon; Dyrlund, Thomas F.; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J.
2012-01-01
The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition. PMID:22891002
Kim, Young-Kee; Bae, Jin-Hye; Oh, Byung-Keun; Lee, Won Hong; Choi, Jeong-Woo
2002-04-01
Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.
Dabek, Marta; Podgurniak, Paweł; Piedra, Jose L Valverde; Szymańczyk, Sylwia; Filip, Rafał; Wojtasz-Pajak, Anna; Werpachowska, Eliza; Podgurniak, Malgorzata; Pierzynowski, Stefan G
2007-05-01
Gut enzymes in the small intestine are exposed to extremely low electrical currents (ELEC) generated by the smooth muscle. In the present study, the in vitro tests were undertaken to evaluate the effect of these electric currents on the activity of the proteolytic pancreatic digestive enzymes. A simulator generating the typical electrical activity of pig gut was used for these studies. The electric current emitted by the simulator was transmitted to the samples, containing enzyme and its substrate, using platinum plate electrodes. All samples were incubated at 37 degrees C for 1 h. The changes in optical density, corresponding to enzyme activity, in samples stimulated for 1 h with ELEC was compared with that not exposed to ELEC. The obtained results show that the electrical current with the characteristics of the myoelectrical migrating complex (MMC) has an influence on pancreatic enzyme activity. Increased endopeptidase and reduced exopeptidase activity was noticed in samples treated with ELEC. This observation can be of important as analyzed factors which can alter enzymatic activity of the gut, can thus also affect feed/food digestibility. (c) 2007 Wiley-Liss, Inc.
Liu, Yun; Wang, Huixiang; Liu, Qingping; Qu, Haiyun; Liu, Baohong; Yang, Pengyuan
2010-11-07
A microfluidic reactor has been developed for rapid enhancement of protein digestion by constructing an alumina network within a poly(ethylene terephthalate) (PET) microchannel. Trypsin is stably immobilized in a sol-gel network on the PET channel surface after pretreatment, which produces a protein-resistant interface to reduce memory effects, as characterized by X-ray fluorescence spectrometry and electroosmotic flow. The gel-derived network within a microchannel provides a large surface-to-volume ratio stationary phase for highly efficient proteolysis of proteins existing both at a low level and in complex extracts. The maximum reaction rate of the encapsulated trypsin reactor, measured by kinetic analysis, is much faster than in bulk solution. Due to the microscopic confinement effect, high levels of enzyme entrapment and the biocompatible microenvironment provided by the alumina gel network, the low-level proteins can be efficiently digested using such a microreactor within a very short residence time of a few seconds. The on-chip microreactor is further applied to the identification of a mixture of proteins extracted from normal mouse liver cytoplasm sample via integration with 2D-LC-ESI-MS/MS to show its potential application for large-scale protein identification.
Karava, Nilesh B; Mahoney, Raymond R
2011-06-01
We studied the effect of lyophilization of chicken breast muscle on the formation of dialyzable iron from ferric iron. Chicken breast muscle was used chilled, frozen or lyophilized and was analyzed for sulfhydryl and histidine content. It was then homogenized and mixed with ferric iron. The mixture was extracted with acid or digested with pepsin and pancreatin. The extracts and digests were analyzed for dialyzable ferrous and dialyzable total iron and also for protein. In the chilled muscle, similar amounts of dialyzable iron were formed after acid extraction and after proteolytic digestion; however, digestion led to more dialyzable ferrous iron. Freezing had no effect but lyophilization of the homogenized muscle caused large decreases in dialyzable iron and dialyzable ferrous iron for both extraction and digestion processes. Lyophilization also resulted in decreased extraction of peptides, decreased digestion of muscle proteins and reduced levels of sulfhydryl and histidine residues. Our results demonstrate that dialyzable iron is produced both by acid-soluble low molecular weight muscle component(s) and also by peptides resulting from digestion of muscle proteins: both of which reduce and chelate iron. Reduced formation of dialyzable iron by both mechanisms following lyophilization could be explained by sulfhydryl oxidation and impaired digestion due to protein crosslinking.
Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Schoeffield, Andrew
2014-08-01
The spatial distribution of proteolytic enzymes in the adult foregut of Protophormia terraenovae was studied in the context of protein digestion and regurgitation. Based on substrate specificity, pH optima, and use of specific protease inhibitors, all adults tested displayed enzyme activity in the foregut consistent with pepsin, trypsin and chymotrypsin. Chymotrypsin-like and trypsin-like enzyme activity were detected in all gut fluids and tissues tested, with chymotrypsin displaying the highest activity in saliva and salivary gland tissue, whereas maximal trypsin activity was evident in the crop. Pepsin-like activity was only evident in crop fluids and tissues. The activity of all three enzymes was low or undetectable (pepsin) in the fluids and tissue homogenates derived from the esophagus and cardia of any of the adults assayed. Fed adult females displayed higher enzyme activities than fed males, and the activity of all three enzymes were much more prevalent in fed adults than starved. The pH optimum of the trypsin-like enzyme was between pH 7.0 and 8.0; chymotrypsin was near pH 8.0; and maximal pepsin-like activity occurred between pH 1.0 and 2.0. Regurgitate from fed adult females displayed enzyme activity consistent with the proteolytic enzymes detected in crop gut fluids. Enzymes in regurgitate were not derived from food sources based on assays of bovine liver samples. These latter observations suggest that adult flies release fluids from foregut when encountering dry foods, potentially as a means to initiate extra-oral digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xia, Yun; Massé, Daniel I; McAllister, Tim A; Beaulieu, Carole; Ungerfeld, Emilio
2012-03-01
Biogas production from anaerobic digestion of chicken feathers with swine manure or slaughterhouse sludge was assessed in two separate experiments. Ground feathers without any pre-treatment were added to 42-L digesters inoculated with swine manure or slaughterhouse sludge, representing 37% and 23% of total solids, respectively and incubated at 25°C in batch mode. Compared to the control without feather addition, total CH(4) production increased by 130% (P<0.001) and 110% (P=0.09) in the swine manure and the slaughterhouse sludge digesters, respectively. Mixed liquor NH(4)N concentration increased (P<0.001) from 4.8 and 3.1g/L at the beginning of the digestion to 6.9 and 3.5 g/L at the end of digestion in the swine manure and the slaughterhouse sludge digesters, respectively. The fraction of proteolytic microorganisms increased (P<0.001) during the digestion from 12.5% to 14.5% and 11.3% to 13.0% in the swine manure and the slaughterhouse sludge digesters with feather addition, respectively, but decreased in the controls. These results are reflective of feather digestion. Feather addition did not affect CH(4) yields of the swine manure digesters (P=0.082) and the slaughterhouse sludge digesters (P=0.21), indicating that feathers can be digested together with swine manure or slaughterhouse sludge without negatively affecting the digestion of swine manure and slaughterhouse sludge. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Aiello, Donatella; Materazzi, Stefano; Risoluti, Roberta; Thangavel, Hariprasad; Di Donna, Leonardo; Mazzotti, Fabio; Casadonte, Francesca; Siciliano, Carlo; Sindona, Giovanni; Napoli, Anna
2015-08-01
Fish parvalbumin (PRVB) is an abundant and stable protein in fish meat. The variation in cross-reactivity among individuals is well known and explained by a broad repertoire of molecular forms and differences between IgE-binding epitopes in fish species. PVRB has "sequential" epitopes, which retain their IgE-binding capacity and allergenicity also after heating and digestion using proteolytic enzymes. From the allergonomics perspective, PRVB is still a challenging target due to its multiple isoforms present at different degrees of distribution. Little information is available in the databases about PVRBs from Oncorhynchus mykiss. At present, only two validated, incomplete isoforms of this species are included in the protein databases: parvalbumin beta 1 (P86431) and parvalbumin beta 2 (P86432). A simple and rapid protocol has been developed for selective solubilization of PRVB from the muscle of farmed rainbow trout (Oncorhynchus mykiss), followed by calcium depletion, proteolytic digestion, MALDI MS, and MS/MS analysis. With this strategy thermal allergen release was assessed and PRVB1 (P86431), PRVB1.1, PRVB2 (P86432) and PRVB2.1 variants from the rainbow trout were sequenced. The correct ordering of peptide sequences was aided by mapping the overlapping enzymatic digests. The deduced peptide sequences were arranged and the theoretical molecular masses (Mr) of the resulting sequences were calculated. Experimental masses (Mr) of each PRVB variant were measured by linear MALDI-TOF.
Effect of amino acid substitution on biological activity of cyanophlyctin-β and brevinin-2R
NASA Astrophysics Data System (ADS)
Ghorani-Azam, Adel; Balali-Mood, Mahdi; Aryan, Ehsan; Karimi, Gholamreza; Riahi-Zanjani, Bamdad
2018-04-01
Antimicrobial peptides (AMPs), as ancient immune components, are found in almost all types of living organisms. They are bioactive components with strong antibacterial, antiviral, and anti-tumor properties. In this study, we designed three sequences of antimicrobial peptides to study the effects of structural changes in biological activity compared with original peptides, cyanophlyctin β, and brevinin-2R. For antibacterial activity, two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeroginosa) were assayed. Unlike cyanophlyctin β and brevinin-2R, the synthesized peptide (brevinin-M1, brevinin-M2 and brevinin-M3) showed no considerable antibacterial properties. Hemolytic activity of these peptides was also ignorable even at very high concentrations of 2 mg/ml. However, after proteolytic digestion by trypsin, the peptides showed antibacterial activity comparable to their original template sequences. Structural prediction suggested that the motif sequence responsible for antibacterial activity may be re-exposed to bacterial cell membrane after proteolytic digestion. Also, findings showed that only a small change in primary sequence and therefore structure of peptides may result in a significant alteration in biological activity.
Nakonieczny, Mirosław; Michalczyk, Katarzyna; Kedziorski, Andrzej
2007-02-01
We assayed the relative activities of midgut proteolytic enzymes in individuals of the fourth (L(4)) and fifth (L(5)) instar of Apollo larvae, inhabiting Pieniny Mts (southern Poland). The comparisons between midgut tissue with glicocalyx (MT) and liquid midgut contents with peritrophic membrane (MC) were made. Optimal media pHs of the assayed proteolytic enzymes in P. apollo midgut samples were similar to those of other lepidopteran species. Endopeptidases, as well as carboxypeptidases, digested effectively in alkaline environment, while aminopeptidases were active in a broad pH range. Trypsin is probably the main endoprotease (correlation with caseinolytic activity in MC of L(5) larvae: r=0.606; p=0.004); however, its activity was low as compared with that in other leaf-eating Lepidoptera. This suggests a minor role of trypsin and chymotrypsin in protein digestion in Apollo larvae, probably due to limited availability of the leaf proteins. Instead, due to very high carboxypeptidase A activity in midgut tissue, the larvae obtain exogenous amino acids either directly or from oligopeptides and glycoproteins. High and significant positive correlations between the enzyme activity and glucosidase as well as galactosidase activities strongly support this opinion.
X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa
Welner, Ditte Hededam; Tsai, Alex Yi-Lin; DeGiovanni, Andy M.; ...
2017-03-29
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstratemore » DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.« less
2015-01-01
Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br–MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br–MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo. PMID:25119793
Parodi, Alessandro; Haddix, Seth G; Taghipour, Nima; Scaria, Shilpa; Taraballi, Francesca; Cevenini, Armando; Yazdi, Iman K; Corbo, Claudia; Palomba, Roberto; Khaled, Sm Z; Martinez, Jonathan O; Brown, Brandon S; Isenhart, Lucas; Tasciotti, Ennio
2014-10-28
Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br-MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br-MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo.
What makes protein indigestible from tissue-related, cellular, and molecular aspects?
Becker, Petra M; Yu, Peiqiang
2013-10-01
This paper gives an insight into key factors, which impair enzymatic protein digestion. By nature, some proteins in raw products are already poorly digestible because of structural peculiarities, or due to their occurrence in plant cytoplasmic organelles or in cell membranes. In plant-based protein, molecular and structural changes can be induced by genetic engineering, even if protein is not a target compound class of the genetic modification. Other proteins only become difficult to digest due to changes that occur during the processing of proteinaceous products, such as extruding, boiling, or acidic or alkaline treatment. The utilization of proteinaceous raw materials in industrial fermentations can also have negative impacts on protein digestibility, when reused as fermentation by-products for animal nutrition, such as brewers' grains. After consumption, protein digestion can be impeded in the intestine by the presence of antinutritional factors, which are ingested together with the food or feedstuff. It is concluded that the encircling matrix, but also molecular, chemical, and structural peculiarities or modifications to amino acids and proteins obstruct protein digestion by common proteolytic enzymes in humans and animals. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hosseininejad, A. S.; Naseri, B.; Razmjou, J.
2015-01-01
This study aimed to evaluate the feeding responses and digestive proteolytic and amylolytic activity of Helicoverpa armigera (Hübner) on 11 corn (Zea mays L.) hybrids at 25 ± 1°C, 65 ± 5% relative humidity (RH), and a photoperiod of 16:8 (L:D) h. The fourth- and fifth-instar larvae fed on hybrid K47*K19 had the highest weight of food consumption and those reared on hybrid KSC705 had the lowest value of food consumption. The highest weight gain of the larvae was observed when H. armigera were fed hybrid KLM78*MO17 and lowest when they were fed hybrids K36 * MO17, KSC705, and K35 * K36. Pupal weight of H. armigera was heaviest when larvae were fed hybrid K47*K19 and lightest when they were fed hybrid KSC705. The highest proteolytic activity of the fourth-instar larvae was observed when they were fed hybrid KSC705, and the lowest activity was observed when they were fed hybrid K47*A67. Fifth-instar larvae that fed on hybrid K47*K19 showed the highest proteolytic activity. Fourth-instar larvae that fed on hybrid K36*MO17 showed the highest amylase activity. The fifth-instar larvae fed on hybrid K47*A67 showed the maximum amylase activity and those reared on the K48*K18 showed the minimum activity. Our results indicated that K36 * MO17, KSC705, and K48 * K18 were the most unsuitable hybrids for feeding H. armigera. PMID:25688090
Fernández Gimenez, A V; García-Carreño, F L; Navarrete del Toro, M A; Fenucci, J L
2001-10-01
The present study describes the activity and some characteristics of proteinases in the hepatopancreas of red shrimp Pleoticus muelleri during the different stages of the molting cycle. Proteolytic activity was highest between pH 7.5 and 8. The hepatopancreatic protein content in the premolt stage was higher than in the other stages of the molting cycle (P<0.05). No significant differences were found in total proteolytic activity in the hepatopancreas when comparing molting stages. The proteolytic activity of the P. muelleri hepatopancreas enzyme preparations is the main responsibility of serine proteinases. TLCK, a trypsin inhibitor, reduced azocasein hydrolysis between 26% (intermolt) and 37% (premolt). TPCK, a chymotrypsin inhibitor, did not decrease hydrolytic activity, except for in postmolt. Low trypsin and chymotrypsin activities were found during intermolt, and increased in postmolt. The electrophoretogram of the enzyme extracts shows 12 bands of activity during intermolt (from 16.6 to 53.1 kDa). Some fractions were not detected in the postmolt and premolt stages. Three low molecular weight trypsin forms (17.4, 19.1 and 20 kDa) were found in all molting stages. One band of chymotrypsin (21.9 kDa) was observed in all molting stages. High molecular mass active bands (66-205 kDa) could not be characterized with inhibitors. Comparison of the protease-specific activity of the hepatopancreas of some species indicated a relationship between digestive enzyme activity and feeding habits of the shrimp. Omnivorous shrimp, such as Penaeus vannamei (syn: Litopenaeus vannamei) and Penaeus monodon, showed higher protease activity than the carnivorous shrimp, Penaeus californiensis (syn: Farfantepenaeus californiensis) and P. muelleri. In fact, the enzymatic activity in the hepatopancreas of P. muelleri showed variations in relation to feeding habit and molting cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.
1991-04-23
The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digestsmore » of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.« less
Mugita, Yuko; Minematsu, Takeo; Huang, Lijuan; Nakagami, Gojiro; Kishi, Chihiro; Ichikawa, Yoshie; Nagase, Takashi; Oe, Makoto; Noguchi, Hiroshi; Mori, Taketoshi; Abe, Masatoshi; Sugama, Junko; Sanada, Hiromi
2015-01-01
A common complication in patients with incontinence is perineal skin lesions, which are recognized as a form of dermatitis. In these patients, perineal skin is exposed to digestive enzymes and intestinal bacterial flora, as well as excessive water. The relative contributions of digestive enzymes and intestinal bacterial flora to skin lesion formation have not been fully shown. This study was conducted to reveal the process of histopathological changes caused by proteases and bacterial inoculation in skin maceration. For skin maceration, agarose gel containing proteases was applied to the dorsal skin of male Sprague-Dawley rats for 4 h, followed by Pseudomonas aeruginosa inoculation for 30 min. Macroscopic changes, histological changes, bacterial distribution, inflammatory response, and keratinocyte proliferation and differentiation were examined. Proteases induced digestion in the prickle cell layer of the epidermis, and slight bleeding in the papillary dermis and around hair follicles in the macerated skin without macroscopic evidence of erosion. Bacterial inoculation of the skin macerated by proteolytic solution resulted in the formation of bacteria-rich clusters comprising numerous microorganisms and inflammatory cells within the papillary dermis, with remarkable tissue damage around the clusters. Tissue damage expanded by day 2. On day 3, the proliferative keratinocyte layer was elongated from the bulge region of the hair follicles. Application of proteases and P. aeruginosa induced skin lesion formation internally without macroscopic erosion of the overhydrated area, suggesting that the histopathology might be different from regular dermatitis. The healing process of this lesion is similar to transepidermal elimination. PMID:26407180
Lardinois, Olivier M; Detweiler, Charles D; Tomer, Kenneth B; Mason, Ronald P; Deterding, Leesa J
2008-03-01
An off-line mass spectrometry method that combines immuno-spin trapping and chromatographic procedures has been developed for selective detection of the nitrone spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) covalently attached to proteins, an attachment which occurs only subsequent to DMPO trapping of free radicals. In this technique, the protein-DMPO nitrone adducts are digested to peptides with proteolytic agents, peptides from the enzymatic digest are separated by HPLC, and enzyme-linked immunosorbent assays (ELISA) using polyclonal anti-DMPO nitrone antiserum are used to detect the eluted HPLC fractions that contain DMPO nitrone adducts. The fractions showing positive ELISA signals are then concentrated and characterized by tandem mass spectrometry (MS/MS). This method, which constitutes the first liquid chromatography-ELISA-mass spectrometry (LC-ELISA-MS)-based strategy for selective identification of DMPO-trapped protein residues in complex peptide mixtures, facilitates location and preparative fractionation of DMPO nitrone adducts for further structural characterization. The strategy is demonstrated for human hemoglobin, horse heart myoglobin, and sperm whale myoglobin, three globin proteins known to form DMPO-trappable protein radicals on treatment with H(2)O(2). The results demonstrate the power of the new experimental strategy to select DMPO-labeled peptides and identify sites of DMPO covalent attachments.
Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves
2016-01-01
ABSTRACT Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. PMID:27803188
Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K
2014-01-01
L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.
Macció, Laura; Vallés, Diego; Cantera, Ana Maria
2013-12-01
A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.
Rimareva, L V; Overchenko, M B; Serba, E M; Trifonova, V V
1997-01-01
Screening of enzyme preparations displaying a maximum proteolytic activity at pH 4.0-5.5 and effecting deep proteolysis of plant proteins was performed. Amyloprotooryzin prepared from Aspergillus oryzae 387 containing a complex of proteolytic enzymes was the most effective. The amino acid composition of the hydrolysates obtained was studied. Amyloprotooryzin increased the contents of amino acids by 108-227%, depending on the substrate used. The enzymatic complex of amyloprotooryzin was studied; in addition, proteases, alpha-amylase, exo-beta-glucanase, and xylanase were detected in the complex.
Beckmann, Anna-Madeleine; Glebov, Konstantin; Walter, Jochen; Merkel, Olaf; Mangold, Martin; Schmidt, Frederike; Becker-Pauly, Christoph; Gütschow, Michael; Stirnberg, Marit
2016-08-01
Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.
Peanut digestome: Identification of digestion resistant IgE binding peptides.
Di Stasio, Luigia; Picariello, Gianluca; Mongiello, Mariantonietta; Nocerino, Rita; Berni Canani, Roberto; Bavaro, Simona; Monaci, Linda; Ferranti, Pasquale; Mamone, Gianfranco
2017-09-01
Stability to proteolytic degradation in the digestive tract is considered a general feature shared by most food allergens. Current digestibility models exclusively utilize purified allergen proteins, neglecting the relevant effects of matrix that occur for foodstuff systems. In the present study, we investigated digestion stability of the major peanut allergens directly in the natural matrix using an in vitro static model that simulates the gastrointestinal digestion including the oral, gastric, duodenal and intestinal (brush border membrane enzymes) phases. Immunogenicity was evaluated by Western Blot using N=8 pooled sera of peanut allergic pediatric subjects. Immunoreactive, large-sized and fragments of Ara h 2, Ara h 6 and Ara h 3 survived hydrolysis as assessed by SDS-PAGE. Smaller resistant peptides mainly arising from Ara h 3 and also Ara h 1 were detected and further identified by LC-high resolution-MS/MS. RP-HPLC purification followed by dot-blot analysis and MS/MS-based identification demonstrated that stable IgE-binding peptides derived from Ara h 3. These results provide a more realistic picture of the potentially allergenic determinants of peanuts that survived the human digestion, taking into account the role of the food matrix, which may significantly affect gastrointestinal breakdown of peanut allergens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silveira, Jenniffer; Silva, Carlos Peres; Cargnin-Ferreira, Eduardo; Alexandre, Daniel; Elias, Mariele Abádia; Fracalossi, Débora Machado
2013-12-01
This study assessed the morphological development of jundiá larvae's digestive system and digestive proteolytic activity. Specific serine proteinases activities varied over time, with the highest peak at 12 h after hatching (AH), which corresponded to 296.38 ± 84.20 mU mg⁻¹ for trypsin and 315.45 ± 42.16 mU mg⁻¹ for chymotrypsin. Specific aspartic proteinases activities increased up to the start of weaning, oscillated during that phase, but showed a consistent increase after that, resulting in the highest specific activity at 252 h AH (7.88 ± 0.68 mU mg⁻¹). Gel assays showed different molecular forms, especially of serine proteinases. Histology showed the gastrointestinal tract development onset at 0 h AH and open mouth at 4 h AH. At 16 h AH, the following differentiation of the digestive tract was evident: oropharyngeal cavity, esophagus, liver, pancreas, stomach, and intestine. At 40 h AH, zymogen granules in the pancreas were observed, and at 48 h AH, mucus in the digestive tract and gastric glands in the stomach. Findings indicate that jundiá has a functional stomach before the end of vitelline reserves. Therefore, jundiá larvae are probably capable to digest inert feed at the exogenous feeding onset.
Identification of protein–protein interfaces by decreased amide proton solvent accessibility
Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.
1998-01-01
Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953
2005-09-01
brain homogenate from normal mice and mice infected with bovine spongiform encephalopathy (BSE) and the assay correctly identified the three positive...brains of mice infected with bovine spongiform encephalopathy contain PrP that is resistant to proteolytic digestion and can be detected by western blot...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rational development of diagnostics and therapies for the transmissible spongiform
Raftery, Mark J; Saldanha, Rohit G; Geczy, Carolyn L; Kumar, Rakesh K
2003-01-01
Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis), rye grass (Lolium perenne) and Bermuda grass (Cynodon dactylon) were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense) group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1. PMID:14577842
Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.
Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi
2002-09-25
The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.
Tzuc, Jaqueline Tuyub; Escalante, Diana Rendíz; Rojas Herrera, Rafael; Gaxiola Cortés, Gabriela; Ortiz, Maria Leticia Arena
2014-01-01
Bacteria capable of producing different extracellular enzymes of potential relevance in digestive processes were isolated from the stomach, hepatopancreas and intestine of Pacific white shrimp Litopenaeus vannamei. A total of 64 strains with proteolytic activity were isolated and grouped into 16 clusters based on morphological characteristics: 4 groups were isolated from the intestine; 5 from the hepatopancreas; and 7 from the stomach. Molecular methods (16S rRNA gene amplification and sequencing) and phenotypic criteria (Gram stain, catalase and oxidase tests, cell and colony morphology) were used to identify strains, which corresponded to Pseudoalteromonas and Vibrio genera. These genera are reported to form part of the digestive tract microbial community in shrimp. Both genera were isolated from all three tested tissues. One member of each morphologic group was selected for analysis of the presence of amylases, lipases/esterases and chitinases. Most of the strains had all the tested enzymes, indicating that the L. vannamei digestive tract microbiotic flora includes groups which have the potential to contribute to the degradation of dietary components.
Feasibility of infectious prion digestion using mild conditions and commercial subtilisin.
Pilon, John L; Nash, Paul B; Arver, Terry; Hoglund, Don; Vercauteren, Kurt C
2009-10-01
Two serine protease enzymes, subtilisin 309 and subtilisin 309-v, were used to digest brain homogenates containing high levels of prion infectivity using mildly alkaline conditions to investigate prion decontamination methods. To establish that PrP(res) infectivity was eliminated, we utilized the Rocky Mountain Laboratory (RML) mouse-adapted scrapie model system for bioassay. Only one digestion condition (subtilisin 309 at 138mAU/ml, 55 degrees C and 14h digestion time pH 7.9) was considered to be highly relevant statistically (P<0.001) compared to control, with 52% of challenged mice surviving until the end of the study period. In contrast, treatment of PrP(res) by autoclaving at 134 degrees C or treatment with hypochlorite at a concentration of 20,000 ppm completely protected mice from prionosis. Further, in vitro assays suggest that potential proteolytic based PrP(res) decontamination methods must use high enzyme concentration, pH values >9.0, and elevated temperatures to be a safely efficacious, thereby limiting applicability on delicate surgical instruments and use in the environment.
Epitope enhancement for immunohistochemical demonstration of tartrate-resistant acid phosphatase.
Janckila, A J; Lear, S C; Martin, A W; Yam, L T
1996-03-01
We have developed a monoclonal antibody (9C5) for immunohistochemical localization of tartrate-resistant acid phosphatase (TRAcP). This antibody reacts with a denatured epitope of TRAcP and requires enhancement methods to promote antigenicity in paraffin-embedded tissues. We used this antibody to systematically examine proteolytic digestion and heat denaturation conditions for epitope enhancement in both paraffin sections and fixed smears. The goal was to increase the sensitivity of the immunohistochemical stain for TRAcP. Optimal conditions for proteolytic digestion were established. Denaturation in a conventional boiling water bath was compared to microwave irradiation in several commonly used solutions. Immunohistochemistry was compared directly to TRAcP cytochemistry in fixed smears from hairy cell leukemia specimens to gauge the level of sensitivity of our improved method. Attempts were made to "retrieve" the 9C5 epitope from overfixed tissues and aged smears. Maximal immunoreactivity of TRAcP was achieved by microwave irradiation in a citrate or Tris buffer of pH 6.0-8.0 without the need for a subsequent protease digestion step. With this method of epitope enhancement, immunohistochemistry with antibody 9C5 was as sensitive as direct cytochemical staining of TRAcP activity. However, once a tissue specimen had been overfixed or a smear stored for a year or more, the 9C5 epitope was no longer retrievable. The key element in epitope enhancement for 9C5 immunohistochemistry is heat denaturation of the target epitope. Immunohistochemistry of TRAcP in paraffin sections would be a great asset to the study of specialized forms of the monocyte/macrophage lineage and to the process of macrophage activation. It would also provide another means for more precise evaluation of residual disease in bone marrow of patients treated for hairy cell leukemia.
Bauerová-Hlinková, Vladena; Hostinová, Eva; Gašperík, Juraj; Beck, Konrad; Borko, Ľubomír; Lai, F. Anthony; Zahradníková, Alexandra; Ševčík, Jozef
2010-01-01
We report the domain analysis of the N-terminal region (residues 1–759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR21–606·His6, RyR2391–606·His6, RyR2409–606·His6, Trx·RyR2384–606·His6, Trx·RyR2391-606·His6 and Trx·RyR2409–606·His6. The folding of RyR21–606·His6 was analyzed by circular dichroism spectroscopy resulting in α-helix and β-sheet content of ∼23% and ∼29%, respectively, at temperatures up to 35 °C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR21–606·His6, resulted in the appearance of two specific subfragments of ∼40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His6·Tag antibody indicated that RyR21–606·His6 is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively. PMID:20045464
Spit, Jornt; Zels, Sven; Dillen, Senne; Holtof, Michiel; Wynant, Niels; Vanden Broeck, Jozef
2014-05-01
While technological advancements have recently led to a steep increase in genomic and transcriptomic data, and large numbers of protease sequences are being discovered in diverse insect species, little information is available about the expression of digestive enzymes in Orthoptera. Here we describe the identification of Locusta migratoria serine protease transcripts (cDNAs) involved in digestion, which might serve as possible targets for pest control management. A total of 5 putative trypsin and 15 putative chymotrypsin gene sequences were characterized. Phylogenetic analysis revealed that these are distributed among 3 evolutionary conserved clusters. In addition, we have determined the relative gene expression levels of representative members in the gut under different feeding conditions. This study demonstrated that the transcript levels for all measured serine proteases were strongly reduced after starvation. On the other hand, larvae of L. migratoria displayed compensatory effects to the presence of Soybean Bowman Birk (SBBI) and Soybean Trypsin (SBTI) inhibitors in their diet by differential upregulation of multiple proteases. A rapid initial upregulation was observed for all tested serine protease transcripts, while only for members belonging to class I, the transcript levels remained elevated after prolonged exposure. In full agreement with these results, we also observed an increase in proteolytic activity in midgut secretions of locusts that were accustomed to the presence of protease inhibitors in their diet, while no change in sensitivity to these inhibitors was observed. Taken together, this paper is the first comprehensive study on dietary dependent transcript levels of proteolytic enzymes in Orthoptera. Our data suggest that compensatory response mechanisms to protease inhibitor ingestion may have appeared early in insect evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of processing and in vitro proteolytic digestion on soybean and yambean hemagglutinins.
Ojimelukwe, P C; Onuoha, C C; Obanu, Z A
1995-06-01
Some conventional processing methods were applied on yambean and soybean seeds and flour samples. They include soaking fermentation, cooking whole seeds in the presence and absence of trona, autoclaving and dry heat treatment of flour samples. Hemagglutinating activity was assayed for after processing treatments. The hemagglutinating proteins from these seeds were classified based on their solubility properties. Effects of the presence of 0.01% concentration of trypsin, pepsin and proteases on agglutination of human red blood cells were also evaluated. Most processing methods, particularly cooking whole seeds for 1-2 h, soaking and fermentation, reduced hemagglutinating activity on cow red blood cells. Size reduction accompanied by heat treatment was effective in eliminating hemagglutination. Both the albumin and globulin fractions of the soybean showed hemagglutinating activity but only the albumin fraction of the yambean had agglutinating properties. Proteolytic action of proteases was more effective in reduction of hemagglutinating activity than that of trypsin and pepsin.
Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins
Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela
2015-01-01
Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950
Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity
2015-01-01
We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576
NASA Astrophysics Data System (ADS)
Lim, Seng Koon; Sandén, Camilla; Selegård, Robert; Liedberg, Bo; Aili, Daniel
2016-02-01
Membrane active peptides are of large interest for development of drug delivery vehicles and therapeutics for treatment of multiple drug resistant infections. Lack of specificity can be detrimental and finding routes to tune specificity and activity of membrane active peptides is vital for improving their therapeutic efficacy and minimize harmful side effects. We describe a de novo designed membrane active peptide that partition into lipid membranes only when specifically and covalently anchored to the membrane, resulting in pore-formation. Dimerization with a complementary peptide efficiently inhibits formation of pores. The effect can be regulated by proteolytic digestion of the inhibitory peptide by the matrix metalloproteinase MMP-7, an enzyme upregulated in many malignant tumors. This system thus provides a precise and specific route for tuning the permeability of lipid membranes and a novel strategy for development of recognition based membrane active peptides and indirect enzymatically controlled release of liposomal cargo.
Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.
Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela
2016-04-15
The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.
2005-05-01
modifications: peptide N-terminal glutamine to pyroglutamic transformation, oxidation of methionine, acetylation of protein N-terminus, and...or identical with human tripeptidyl peptidase II (TPPII) with a sequence of 1249 amino acids , accession number CAH72179, GI:55661755, derived from the...34In- Gel" Digestion Procedure for the Micropreparation of Internal Protein Fragments for Amino Acid Sequencing. Anal. Biochem., 224, 451-455. Osmulski
Esaulenko, E E; Khil'chuk, M A; Bykov, I M
2013-01-01
The results of the study of activity of digestive proteases (pepsin, trypsin, chymotrypsin) in homogenates of stomach, pancreas and duodenum in experimental animals have been presented. Rats were exposed to intoxication with carbon tetrachloride (subcutaneous administration of a 50% oil solution of CCl4 in the dose of 0.5 ml per 100 g body weight) for three days and then they were given analysed oils (black nut, walnut and flax oil) intragastrically by gavage at a dose of 0.2 ml per day within 23 days. Pepsin level in gastric mucosa homogenates and chymotrypsin activity in pancreatic homogenates were determined by method of N.P. Pyatnitskiy based on on the ability of enzymes to coagulate dairy-acetate mixture, respectively, at 25 degrees C and 35 degrees C. Trypsin activity in homogenates of pancreatic was determined by method of Erlanger - Shaternikova colorimetrically. It has been established that intoxication with CCl4 decreased the synthesis of proteolytic enzymes of the stomach (by 51%) and pancreas (by 70-78%). Injections of analysed vegetable oils to animals contributed to the normalization of proteolytic enzymes synthesis. The conclusion that there are prospects of using the analysed vegetable oils containing large quantity of polyunsaturated fatty acids (omega-3 and omega-6) for the correction of detected biochemical abnormalities has been done.
Guerrero, Andres; Dallas, David C.; Contreras, Stephanie; Chee, Sabrina; Parker, Evan A.; Sun, Xin; Dimapasoc, Lauren; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2014-01-01
An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids. PMID:25172956
Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio
2018-04-09
The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Yao, Ning; Chen, Hemei; Lin, Huaqing; Deng, Chunhui; Zhang, Xiangmin
2008-03-21
Human serum contains a complex array of proteolytically derived peptides (serum peptidome), which contain biomarkers of preclinical screening and disease diagnosis. Recently, commercial C(8)-functionalized magnetic beads (1-10 microm) were widely applied to the separation and enrichment of peptides in human serum, prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. In this work, laboratory-prepared C(8)-functionalized magnetic nanoparticles (about 50 nm) were prepared and applied to the fast separation and the enrichment of peptides from serum. At first, the C(8)-magnetic nanoparticles were synthesized by modifying amine-functionalized magnetic nanoparticles with chlorodimethyloctylsilane. These synthesized C(8)-amine-functionalized magnetic particles have excellent magnetic responsibility, high dispersibility and large surface area. Finally, the C(8)-magnetic nanoparticles were successfully applied to fast and efficient enrichment of low-abundance peptides from protein tryptic digestion and human serum followed by MALDI-TOF-MS analysis.
Moon, Andrea F; Mueller, Geoffrey A; Zhong, Xuejun; Pedersen, Lars C
2010-01-01
Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. PMID:20196072
Fuzita, Felipe J; Pinkse, Martijn W H; Patane, José S L; Juliano, Maria A; Verhaert, Peter D E M; Lopes, Adriana R
2015-01-01
Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily, a large gene duplication of cathepsin L occurred in Arachnida with the sequences from ticks being completely divergent from other arachnids probably due to the particular selective pressures over this group.
Winnick, Theodore; Davis, Alva R.; Greenberg, David M.
1940-01-01
1. The kinetics of milk clotting by asclepain, the protease of Asclepias speciosa, were investigated. At higher concentrations of enzyme, the clotting time was inversely proportional to the enzyme concentration. 2. The digestion of casein and hemoglobin in 6.6 M urea by asclepain follows the second order reaction rate. The rate was roughly second order for casein in water. 3. Evaluation of the nature of the enzyme-substrate intermediate indicates that one molecule of asclepain combines with one molecule of casein or hemoglobin in urea solution. 4. Inhibition by the reaction products was deduced from the fact that the digestion velocity of hemoglobin in urea solution varied with the asclepain concentration in agreement with the Schütz-Borissov rule. PMID:19873155
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system.
Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O; Oyama, Fumitaka
2016-11-24
Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc) 2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc) 2 , a source of carbon, nitrogen and energy.
Cruz-Huerta, Elvia; Fernández-Tomé, Samuel; Arques, M Carmen; Amigo, Lourdes; Recio, Isidra; Clemente, Alfonso; Hernández-Ledesma, Blanca
2015-08-01
Lunasin is a naturally-occurring peptide demonstrating chemopreventive, antioxidant and anti-inflammatory properties. To exhibit these activities, orally ingested lunasin needs to survive proteolytic attack of digestive enzymes to reach target tissues in active form/s. Preliminary studies suggested the protective role of protease inhibitors, such as the Bowman-Birk inhibitor and Kunitz-trypsin inhibitor, against lunasin's digestion by both pepsin and pancreatin. This work describes in depth the behaviour of lunasin under conditions simulating the transit through the gastrointestinal tract in the absence or presence of soybean Bowman-Birk isoinhibitor 1 (IBB1) in both active and inactive states. By liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS), the remaining lunasin at the end of gastric and gastro-duodenal phases was quantified. Protection against the action of pepsin was independent of the amount of IBB1 present in the analyzed samples, whereas an IBB1 dose-dependent protective effect against trypsin and chymotrypsin was observed. Peptides released from lunasin and inactive IBB1 were identified by MS/MS. The remaining lunasin and IBB1 as well as their derived peptides could be responsible for the anti-proliferative activity against colon cancer cells observed for the digests obtained at the end of simulated gastrointestinal digestion.
Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system
Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O.; Oyama, Fumitaka
2016-01-01
Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy. PMID:27883045
Bedgood, R M; Stallcup, M R
1992-04-05
The intracellular processing of the murine leukemia virus envelope glycoprotein precursor Pr85 to the mature products gp70 and p15e was analyzed in the mouse T-lymphoma cell line W7MG1. Kinetic (pulse-chase) analysis of synthesis and processing, coupled with endoglycosidase (endo H) and neuraminidase digestions revealed the existence of a novel high molecular weight processing intermediate, gp95, containing endo H-resistant terminally glycosylated oligosaccharide chains. In contrast to previously published conclusions, our data indicate that proteolytic cleavage of the envelope precursor occurs after the acquisition of endo H-resistant chains and terminal glycosylation and thus after the mannosidase II step. In the same W7MG1 cell line, the type and order of murine leukemia virus envelope protein processing events was identical to that for the mouse mammary tumor virus envelope protein. Interestingly, complete mouse mammary tumor virus envelope protein processing requires the addition of glucocorticoid hormone, whereas murine leukemia virus envelope protein processing occurs constitutively in these W7MG1 cells. We propose that all retroviral envelope proteins share a common processing pathway in which proteolytic processing is a late event that follows acquisition of endo H resistance and terminal glycosylation.
Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica
2017-09-01
Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.
Cecchini, Stefano; Caputo, Anna R
2009-01-01
Several studies have shown an immunomodulatory effect of orally administered bovine lactoferrin (LF) in fish, but the process of digestion was not characterized. In the present study, we investigated the fate of bovine LF after oral and anal administration, and studied the appearance of intact LF in the bloodstream and its proteolytic attack during the gastric transit in rainbow trout (Oncorhynchus mykiss) held at 9 degrees C and 18 degrees C. Data obtained showed the presence of intact bovine LF in the bloodstream only after anal administration in fish held at 18 degrees C and the presence of several peptides derived from bovine LF in the gastric content. Immunoblotting analysis showed that only a part of bovine LF-derived peptides reacted with the applied anti-bovine LF antibody. The concentration of intact bovine LF, after 30 min of administration, in the gastric content of fish reared at 18 degrees C, being extremely low, if any, led us to suspect that the immunoregulatory effect of dietary bovine LF shown in fish by several authors is not due to the intact form but to bioactive fragments, originated by the proteolytic attack during the gastric transit, as demonstrated in higher vertebrates.
Zels, Sven; Dillen, Senne; Crabbé, Katleen; Spit, Jornt; Nachman, Ronald J; Vanden Broeck, Jozef
2015-06-01
Sulfakinin (SK) is a sulfated insect neuropeptide that is best known for its function as a satiety factor. It displays structural and functional similarities with the vertebrate peptides gastrin and cholecystokinin. Peptidomic studies in multiple insects, crustaceans and arachnids have revealed the widespread occurrence of SK in the arthropod phylum. Multiple studies in hemi- and holometabolous insects revealed the pleiotropic nature of this neuropeptide: in addition to its activity as a satiety factor, SK was also reported to affect muscle contraction, digestive enzyme release, odor preference, aggression and metabolism. However, the main site of action seems to be the digestive system of insects. In this study, we have investigated whether SK can intervene in the control of nutrient uptake and digestion in the migratory locust (Locusta migratoria). We provide evidence that sulfakinin reduces food uptake in this species. Furthermore, we discovered that SK has very pronounced effects on the main digestive enzyme secreting parts of the locust gut. It effectively reduced digestive enzyme secretion from both the midgut and gastric caeca. SK injection also elicited a reduction in absorbance and proteolytic activity of the gastric caeca contents. The characteristic sulfation of the tyrosine residue is crucial for the observed effects on digestive enzyme secretion. In an attempt to provide potential leads for the development of peptidomimetic compounds based on SK, we also tested two mimetic analogs of the natural peptide ligand in the digestive enzyme secretion assay. These analogs were able to mimic the effect of the natural SK, but their effects were milder. The results of this study provide new insights into the action of SK on the digestive system in (hemimetabolous) insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tran, T T Nha; Brinkworth, Craig S; Bowie, John H
2015-01-30
To use negative-ion nano-electrospray ionization mass spectrometry of peptides from the tryptic digest of ricin D, to provide sequence information; in particular, to identify disulfide position and connectivity. Negative-ion fragmentations of peptides from the tryptic digest of ricin D was studied using a Waters QTOF2 mass spectrometer operating in MS and MS(2) modes. Twenty-three peptides were obtained following high-performance liquid chromatography and studied by negative-ion mass spectrometry covering 73% of the amino-acid residues of ricin D. Five disulfide-containing peptides were identified, three intermolecular and two intramolecular disulfide-containing peptides. The [M-H](-) anions of the intermolecular disulfides undergo facile cleavage of the disulfide units to produce fragment peptides. In negative-ion collision-induced dissociation (CID) these source-formed anions undergo backbone cleavages, which provide sequencing information. The two intramolecular disulfides were converted proteolytically into intermolecular disulfides, which were identified as outlined above. The positions of the five disulfide groups in ricin D may be determined by characteristic negative-ion cleavage of the disulfide groups, while sequence information may be determined using the standard negative-ion backbone cleavages of the resulting cleaved peptides. Negative-ion mass spectrometry can also be used to provide partial sequencing information for other peptides (i.e. those not containing Cys) using the standard negative-ion backbone cleavages of these peptides. Copyright © 2014 John Wiley & Sons, Ltd.
Peng, Lijuan; Turesky, Robert J.
2013-01-01
Aromatic amines and heterocyclic aromatic amines (HAAs) are a class of structurally related carcinogens that are formed during the combustion of tobacco or during the high temperature cooking of meats. These procarcinogens undergo metabolic activation by N-oxidation of the exocyclic amine group to produce N-hydroxylated metabolites, which are critical intermediates implicated in toxicity and DNA damage. The arylhydroxylamines and their oxidized arylnitroso derivatives can also react with cysteine (Cys) residues of glutathione or proteins to form, respectively, sulfenamide and sulfinamide adducts. However, sulfur-nitrogen linked adducted proteins are often difficult to detect because they are unstable and undergo hydrolysis during proteolytic digestion. Synthetic N-oxidized intermediates of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic HAA produced in cooked meats, and 4-aminobiphenyl, a carcinogenic aromatic amine present in tobacco smoke were reacted with human serum albumin (SA) and formed labile sulfenamide or sulfinamide adducts at the Cys34 residue. Oxidation of the carcinogen-modified SA with m-chloroperoxybenzoic acid (m-CPBA) produced the arylsulfonamide adducts, which were stable to heat and the chemical reduction conditions employed to denature SA. The sulfonamide adducts of PhIP and 4-ABP were identified, by liquid chromatography/mass spectrometry, in proteolytic digests of denatured SA. Thus, selective oxidation of arylamine-modified SA produces stable arylsulfonamide-SA adducts, which may serve as biomarkers of these tobacco and dietary carcinogens. PMID:23240913
Park, Sei Joon; Kim, Tae Wan; Baik, Byung-Kee
2010-08-15
Peas provide an excellent plant protein resource for human diets, but their proteins are less readily digestible than animal proteins. To identify the relationship between composition and in vitro digestibility of pea protein, eight pea varieties with a wide range of protein content (157.3-272.7 g kg(-1)) were determined for the proportion of albumins and globulins, their compositions using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in vitro protein digestibility (IVPD) before and after heat treatment using a multi-enzyme (trypsin, chymotrypsin and peptidase) method. The proportion of albumins based on total seed protein content decreased from 229 to 147 g kg(-1) as seed protein content increased from 157.3 to 272.7 g kg(-1), while the proportion of globulins increased from 483 to 590 g kg(-1). The IVPDs of eight raw pea seeds were 79.9-83.5%, with significant varietal variations, and those were improved to 85.9-86.8% by cooking. Albumins, including (pea albumins 2) PA2, trypsin inhibitor, lectin and lipoxygenase, were identified as proteolytic resistant proteins. Globulins were mostly digested by protease treatment after heating. The quantitative ratio of albumins and globulins, and the quantitative variations of albumin protein components, including lipoxygenase, PA2, lectins and trypsin inhibitors, appear to influence the protein digestibility of both raw and cooked pea seeds. Copyright (c) 2010 Society of Chemical Industry.
Effects of spray drying and size reduction of edible bird's nest on in-vitro digestibility
NASA Astrophysics Data System (ADS)
Muslim, Masitah; Babji, Abdul Salam; Mustapha, Wan Aida Wan
2015-09-01
The purpose of this study is to determine the effects of spray drying and size reduction of edible bird's nest (EBN) on in-vitro digestibility respectively. Sample prepared were EBN microparticulates; 710 µm (EBN710), 300 µm (EBN300) and 38 µm (EBN38), EBN spray died (EBNSD) and raw EBN (EBNraw) as control. Protein content and solubility were determined before the samples being subjected to in-vitro digestibility. Protein content of EBN710 (55.37±0.269%), EBN300 (56.57±0.163%) EBN38 (56.77±0.021%) and EBNraw (55.46±0.269%) was not significantly different (p>0.05) but EBNSD (60.33b+0.346%) was the highest (p<0.05). Solubility results showed that EBNSD had the highest solubility (94.38±1.24%) in water significantly (p<0.05) compared to EBNraw (16.01±0.231%), EBN710 (21.89+0.41%), EBN300 (22.52+0.072%) and EBN38 (27.51±0.321%). Digestibility of EBN300 (88.43±0.95%) was higher (p<0.05) compared to EBNSD (85.23±0.27%). However, treatment of microparticulates and spray drying were not significantly different with EBNraw (85.38±1.12%). Digestibility of EBN microparticulates and spray dried powder were all lower (p<0.05) than casein (98.36+0.95%). Lower EBN digestibility could be due to the nature of EBN protein as glycoprotein. Proteolytic (tryptic) digestion of native glycoprotein is often incomplete due to ste aric hindrance from the presence of bulky oligosaccharides.
Autoantibodies against the inner aspect of erythrocyte membranes in NZB mice.
Linder, E
1977-01-01
Erythrocyte autoantibodies in NZB mice react by hemagglutination methods with exposed and hidden red cell antigens. The hidden antigens can be exposed by treatment with proteolytic enzymes. By indirect immunofluorescence one antibody population can be shown to react with modified red cells. In the present study the location of the corresponding autoantigen within the membrane was studied. Mechanical or hypotonic lysis of the red cells exposed the antigen. Proteolytic digestion known to expose other erythrocyte autoantigens had no effect. The autoantigen was exposed on 'inside out' erythrocyte membrane vesicles, but not on 'right-side out' vesicles, prepared from isolated erythrocyte ghosts. Frezzing and thawing as well as mechanical disintergration of red cells liberated antigenically active material as saline-insuluble fibrillar material. The observations indicate that the autoantigen studied is located at the inner aspect of the erythrocyte membrane and suggest that it is associated with fibril-forming structural components. The observed reactivity distinguishes the described antibodies from previously identified erythrocyte autoantibodies. PMID:862240
Niketic, V; Draganić, Z; Nesković, S; Draganić, I
1982-01-01
The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.
Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury.
Grady, T; Mah'Moud, M; Otani, T; Rhee, S; Lerch, M M; Gorelick, F S
1998-11-01
The pathological activation of digestive zymogens within the pancreatic acinar cell probably plays a central role in initiating many forms of pancreatitis. To examine the relationship between zymogen activation and acinar cell injury, we investigated the effects of secretagogue treatment on isolated pancreatic acini. Immunofluorescence studies using antibodies to the trypsinogen-activation peptide demonstrated that both CCK (10(-7) M) hyperstimulation and bombesin (10(-5) M) stimulation of isolated acini resulted in trypsinogen processing to trypsin. These treatments also induced the proteolytic processing of procarboxypeptidase A1 to carboxypeptidase A1 (CA1). After CCK hyperstimulation, most CA1 remained in the acinar cell. In contrast, the CA1 generated by bombesin was released from the acinar cell. CCK hyperstimulation of acini was associated with cellular injury, whereas bombesin treatment did not induce injury. These studies suggest that 1) proteolytic zymogen processing occurs within the pancreatic acinar cell and 2) both zymogen activation and the retention of enzymes within the acinar cell may be required to induce injury.
Dei Piu', Lucilla; Tassoni, Annalisa; Serrazanetti, Diana Isabella; Ferri, Maura; Babini, Elena; Tagliazucchi, Davide; Gianotti, Andrea
2014-07-15
Small peptides show higher antioxidant capacity than native proteins and may be absorbed in the intestine without further digestion. In our study, a protein by-product from rice starch industry was hydrolyzed with commercial proteolytic enzymes (Alcalase, Neutrase, Flavourzyme) and microbial whole cells of Bacillus spp. and the released peptides were tested for antioxidant activity. Among enzymes, Alcalase was the most performing, while microbial proteolytic activity was less efficient. Conversely, the antioxidant activity was higher in the samples obtained by microbial hydrolysis and particularly with Bacillus pumilus AG1. The sequences of low molecular weight antioxidant peptides were determined and analyzed for aminoacidic composition. The results obtained so far suggest that the hydrolytic treatment of this industrial by-product, with selected enzymes and microbial systems, can allow its exploitation for the production of functional additives and supplements rich in antioxidant peptides, to be used in new food formulas for human consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.
Autodigestion: Proteolytic Degradation and Multiple Organ Failure in Shock
Altshuler, Angelina E.; Kistler, Erik B.; Schmid-Schönbein, Geert W.
2015-01-01
There is currently no effective treatment for multiorgan failure following shock other than alleviation supportive care. A better understanding of the pathogenesis of these sequelae to shock is required. The intestine plays a central role in multiorgan failure. It was previously suggested that bacteria and their toxins are responsible for the organ failure seen in circulatory shock, but clinical trials in septic patients have not confirmed this hypothesis. Instead, we review here evidence that the digestive enzymes, synthesized in the pancreas and discharged into the small intestine as requirement for normal digestion, may play a role in multi-organ failure. These powerful enzymes are non-specific, highly concentrated and fully activated in the lumen of the intestine. During normal digestion they are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. However, if this barrier becomes permeable, e.g. in an ischemic state, the digestive enzymes escape into the wall of the intestine. They digest tissues in the mucosa and generate small molecular weight cytotoxic fragments such as unbound free fatty acids. Digestive enzymes may also escape into the systemic circulation and activate other degrading proteases. These proteases have the ability to clip the ectodomain of surface receptors and compromise their function; for example cleaving the insulin receptor causing insulin resistance. The combination of digestive enzymes and cytotoxic fragments leaking into the central circulation causes cell and organ dysfunction, and ultimately may lead to complete organ failure and death. We summarize current evidence suggesting that enteral blockade of digestive enzymes inside the lumen of the intestine may serve to reduce acute cell and organ damage and improve survival in experimental shock. PMID:26717111
Broadband ion mobility deconvolution for rapid analysis of complex mixtures.
Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj
2018-05-04
High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.
Castagliuolo, Ignazio; Riegler, Martin F.; Valenick, Leyla; LaMont, J. Thomas; Pothoulakis, Charalabos
1999-01-01
Saccharomyces boulardii is a nonpathogenic yeast used in the treatment of Clostridium difficile diarrhea and colitis. We have reported that S. boulardii inhibits C. difficile toxin A enteritis in rats by releasing a 54-kDa protease which digests the toxin A molecule and its brush border membrane (BBM) receptor (I. Castagliuolo, J. T. LaMont, S. T. Nikulasson, and C. Pothoulakis, Infect. Immun. 64:5225–5232, 1996). The aim of this study was to further evaluate the role of S. boulardii protease in preventing C. difficile toxin A enteritis in rat ileum and determine whether it protects human colonic mucosa from C. difficile toxins. A polyclonal rabbit antiserum raised against purified S. boulardii serine protease inhibited by 73% the proteolytic activity present in S. boulardii conditioned medium in vitro. The anti-protease immunoglobulin G (IgG) prevented the action of S. boulardii on toxin A-induced intestinal secretion and mucosal permeability to [3H]mannitol in rat ileal loops, while control rabbit IgG had no effect. The anti-protease IgG also prevented the effects of S. boulardii protease on digestion of toxins A and B and on binding of [3H]toxin A and [3H]toxin B to purified human colonic BBM. Purified S. boulardii protease reversed toxin A- and toxin B-induced inhibition of protein synthesis in human colonic (HT-29) cells. Furthermore, toxin A- and B-induced drops in transepithelial resistance in human colonic mucosa mounted in Ussing chambers were reversed by 60 and 68%, respectively, by preexposing the toxins to S. boulardii protease. We conclude that the protective effects of S. boulardii on C. difficile-induced inflammatory diarrhea in humans are due, at least in part, to proteolytic digestion of toxin A and B molecules by a secreted protease. PMID:9864230
Lee, Joonyeob; Koo, Taewoan; Han, Gyuseong; Shin, Seung Gu; Hwang, Seokhwan
2015-12-01
Anaerobic digestion of cattle offal was investigated in batch reactors at 35 °C to determine the feasibility of using cattle offal as a feedstock. The organic content [i.e., volatile solids (VS)] of the cattle offal was mainly composed of protein (33.9%) and lipids (46.1%). Hydrolysis along with acidogenesis was monitored to investigate the substrate degradation and generation of intermediate products (e.g., volatile fatty acids, ammonia). Acetate (2.03 g/L), propionate (0.60 g/L), n-butyrate (0.39 g/L), and iso-valerate (0.37 g/L) were major acidogenesis products (91% of total volatile fatty acid concentration). Overall protein and lipid degradation were 82.9 and 81.8%, respectively. Protein degraded first, and four times faster (0.28 day(-1)) than lipid (0.07 day(-1)). Methane yields were 0.52 L CH4/g VSadded and 0.65 L CH4/g VSremoved, indicating that anaerobic digestion of the offal was feasible. A quantitative QPCR assay was conducted to understand the microbial dynamics. The variation patt erns in the gene concentrations successfully indicated the population dynamics of proteolytic and lipolytic acidogens. A fourth-order Runge-Kutta approximation was used to determine the kinetics of the acidogens. The molecular biotechnology approach was appropriate for the evaluation of the acidogenic biokinetics. The maximum growth rate, μ m, halfsaturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, of the proteolytic acidogens were 9.9 day(-1), 37.8 g protein/L, 1.1 × 10(10) copies/g protein, and 3.8 × 10(-1), respectively. Those for the lipolytic acidogens were 1.2 × 10(-1) day(-1), 8.3 g lipid/L, 1.5 × 10(9) copies/g lipid, and 9.9 × 10(-3) day(-1), respectively.
Preliminary characterization of digestive enzymes in freshwater mussels
Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.
2015-01-01
Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.
Macedo, Maria L. R.; Kubo, Carlos E. G.; Freire, Maria G. M.; Júnior, Roberto T. A.; Parra, José R. P.
2014-01-01
Abstract The effects of the beech apricot, Labramia bojeri A. de Candolle (Sapotales: Sapotaceae), seed aqueous extract on the larval development of the velvetbean moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was evaluated. The extract inhibited larval development, pupal weight, and survival and emergence of adults. Digestive proteolytic activity in larval midgut and feces extracts was determined. Larvae fed 10 g/L of the aqueous extract showed a significant reduction in trypsin activity (~64%), when compared with control larvae. Trypsin and chymotrypsin activities were also detected in fecal material in aqueous-extract-fed larvae, with about ~4.5 times more trypsin activity than the controls. The results from dietary utilization experiments with A. gemmatalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The effect of the extract suggests the potential use of L. bojeri seeds to inhibit the development of A. gemmatalis via oral exposure. The L. bojeri extract can be an alternative to other methods of control. PMID:25373174
Fuzita, Felipe J.; Pinkse, Martijn W. H.; Patane, José S. L.; Juliano, Maria A.; Verhaert, Peter D. E. M.; Lopes, Adriana R.
2015-01-01
Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily, a large gene duplication of cathepsin L occurred in Arachnida with the sequences from ticks being completely divergent from other arachnids probably due to the particular selective pressures over this group. PMID:25875018
Assay Development Process | Office of Cancer Clinical Proteomics Research
Typical steps involved in the development of a mass spectrometry-based targeted assay include: (1) selection of surrogate or signature peptides corresponding to the targeted protein or modification of interest; (2) iterative optimization of instrument and method parameters for optimal detection of the selected peptide; (3) method development for protein extraction from biological matrices such as tissue, whole cell lysates, or blood plasma/serum and proteolytic digestion of proteins (usually with trypsin); (4) evaluation of the assay in the intended biological matrix to determine if e
The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.
Haggarty, N W; Dunbar, B; Fothergill, L A
1983-01-01
The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important for the activity of the glycolytic mutase are conserved in the erythrocyte diphosphoglycerate mutase. PMID:6313356
Physical and chemical properties of the transmissible mink encephalopathy agent.
Marsh, R F; Hanson, R P
1969-02-01
The size of the transmissible mink encephalopathy (TME) agent is estimated to be less than 50 nm on the basis of its passage through membrane filters. The agent is sensitive to ether, relatively resistant to 10% Formalin, resistant to ultraviolet irradiation, and susceptible to proteolytic digestion with Pronase. Attempts to extract an infectious nucleic acid fraction with hot phenol were unsuccessful. The results of these studies indicate that the TME agent has biochemical properties which are similar to those described for the transmissible agent of scrapie.
2011-09-01
Fbg αC 242-424. DNA for expressing Fbg αC 242-424 and FXIII A2 in Ecoli have been obtained from collaborators. Strategies for expressing and...the coming months. It will be important to 11 verify that the expressed FXIII A2 is active and that the Fbg αC 242-424 can serve as an effective...optimized. For the larger substrate Fbg αC 242-424, we will need to proteolytically digest the quenched kinetic samples with chymotrypsin prior to
Beintema, J J; Peumans, W J
1992-03-09
The primary structure of stinging nettle (Urtica dioica) agglutinin has been determined by sequence analysis of peptides obtained from three overlapping proteolytic digests. The sequence of 80 residues consists of two hevein-like domains with the same spacing of half-cystine residues and several other conserved residues as observed earlier in other proteins with hevein-like domains. The hinge region between the two domains is four residues longer than those between the four domains in cereal lectins like wheat germ agglutinin.
Pyati, Prashant; Bandani, Ali R; Fitches, Elaine; Gatehouse, John A
2011-07-01
Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparison of in vitro systems of protein digestion using either mammal or fish proteolytic enzymes.
Moyano, F J; Savoie, L
2001-02-01
Hydrolysis of three different proteins by either crude fish digestive extracts or purified mammal proteases was assayed using two different in vitro systems. The closed system was a modification of the pH-stat method including a previous acid digestion. The open system used a digestion cell containing a semi-permeable membrane which allowed continuous separation of the final products of hydrolysis with a molecular cut-off of 1000 Da. Assays in both systems resulted a similar arrangement of the tested proteins in relation to their ability to be hydrolyzed, with casein>fish meal> or =soybean meal. With the exception of casein, no significant differences were found between results produced by any of the enzyme sources using the closed system. In constrast, significantly higher hydrolysis of all proteins was produced by mammal enzymes under conditions operating in the open system. Differences in the rate of release of amino acids measured in this latter system were related both to the type of protein and the origin of the enzymes. When using purified mammal enzymes, release of lysine or phenylalanine from casein and soybean was high, but low from fishmeal. Isoleucine and valine present in fishmeal were preferentially hydrolyzed by commercial enzymes, but glycine and proline by fish enzymes.
Cardioprotective peptides from marine sources.
Harnedy, Padraigín A; FitzGerald, Richard J
2013-05-01
Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.
N-Glycan Structure Annotation of Glycopeptides Using a Linearized Glycan Structure Database (GlyDB)
Ren, Jian Min; Rejtar, Tomas; Li, Lingyun; Karger, Barry L.
2008-01-01
While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation. PMID:17625816
Djaballah, H; Rowe, A J; Harding, S E; Rivett, A J
1993-01-01
The multicatalytic proteinase complex or proteasome is a high-molecular-mass multisubunit proteinase which is found in the nucleus and cytoplasm of eukaryotic cells. Electron microscopy of negatively stained rat liver proteinase preparations suggests that the particle has a hollow cylindrical shape (approximate width 11 nm and height 17 nm using methylamine tungstate as the negative stain) with a pseudo-helical arrangement of subunits rather than the directly stacked arrangement suggested previously. The side-on view has a 2-fold rotational symmetry, while end-on there appears to be six or seven subunits around the ring. This model is very different from that proposed by others for the proteinase from rat liver but resembles the structure of the simpler archaebacterial proteasome. The possibility of conformational changes associated with the addition of effectors of proteolytic activity has been investigated by sedimentation velocity analysis and dynamic light-scattering measurements. The results provide the first direct evidence for conformational changes associated with the observed positive co-operativity in one component of the peptidylglutamylpeptide hydrolase activity as well as with the stimulation of peptidylglutamylpeptide hydrolase activities by MnCl2. In the latter case, there appears to be a correlation between changes in the shape of the molecule and the effect on activity. KCl and low concentrations of SDS may also act by inducing conformational changes within the complex. Sedimentation-velocity measurements also provide evidence for the formation of intermediates during dissociation of the complex by urea, guanidinium chloride or sodium thiocyanate. Dissociation of the complex either by these agents or by treatment at low pH leads to inactivation of its proteolytic components. The results suggest that activation and inhibition of the various proteolytic activities may be mediated by measurable changes in size and shape of the molecules. Images Figure 1 Figure 2 PMID:8318014
Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes.
Saganová, Michaela; Bokor, Boris; Stolárik, Tibor; Pavlovič, Andrej
2018-05-16
Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.
Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor
Lazar, Iulia M.; Deng, Jingren; Smith, Nicole
2016-01-01
The vast majority of mass spectrometry (MS)-based protein analysis methods involve an enzymatic digestion step prior to detection, typically with trypsin. This step is necessary for the generation of small molecular weight peptides, generally with MW < 3,000-4,000 Da, that fall within the effective scan range of mass spectrometry instrumentation. Conventional protocols involve O/N enzymatic digestion at 37 ºC. Recent advances have led to the development of a variety of strategies, typically involving the use of a microreactor with immobilized enzymes or of a range of complementary physical processes that reduce the time necessary for proteolytic digestion to a few minutes (e.g., microwave or high-pressure). In this work, we describe a simple and cost-effective approach that can be implemented in any laboratory for achieving fast enzymatic digestion of a protein. The protein (or protein mixture) is adsorbed on C18-bonded reversed-phase high performance liquid chromatography (HPLC) silica particles preloaded in a capillary column, and trypsin in aqueous buffer is infused over the particles for a short period of time. To enable on-line MS detection, the tryptic peptides are eluted with a solvent system with increased organic content directly in the MS ion source. This approach avoids the use of high-priced immobilized enzyme particles and does not necessitate any aid for completing the process. Protein digestion and complete sample analysis can be accomplished in less than ~3 min and ~30 min, respectively. PMID:27078683
Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor.
Lazar, Iulia M; Deng, Jingren; Smith, Nicole
2016-04-06
The vast majority of mass spectrometry (MS)-based protein analysis methods involve an enzymatic digestion step prior to detection, typically with trypsin. This step is necessary for the generation of small molecular weight peptides, generally with MW < 3,000-4,000 Da, that fall within the effective scan range of mass spectrometry instrumentation. Conventional protocols involve O/N enzymatic digestion at 37 ºC. Recent advances have led to the development of a variety of strategies, typically involving the use of a microreactor with immobilized enzymes or of a range of complementary physical processes that reduce the time necessary for proteolytic digestion to a few minutes (e.g., microwave or high-pressure). In this work, we describe a simple and cost-effective approach that can be implemented in any laboratory for achieving fast enzymatic digestion of a protein. The protein (or protein mixture) is adsorbed on C18-bonded reversed-phase high performance liquid chromatography (HPLC) silica particles preloaded in a capillary column, and trypsin in aqueous buffer is infused over the particles for a short period of time. To enable on-line MS detection, the tryptic peptides are eluted with a solvent system with increased organic content directly in the MS ion source. This approach avoids the use of high-priced immobilized enzyme particles and does not necessitate any aid for completing the process. Protein digestion and complete sample analysis can be accomplished in less than ~3 min and ~30 min, respectively.
Kehlet, Ursula; Mitra, Bhaskar; Aaslyng, Margit D.
2017-01-01
Low temperature long time (LTLT) sous-vide cooking may modify meat proteins in a way that could promote satiety. We investigated the effects of (1) cooking method (LTLT 58 °C vs. oven 160 °C), (2) LTLT holding time (17 h vs. 72 min), and (3) pork structure, LTLT 58 °C for 17 h (minced vs. roast) on appetite regulation and in vitro protein digestibility. In a cross-over study, 37 healthy men consumed four meals containing pork: LTLT-cooked roast, 58 °C, 72 min; LTLT-cooked roast, 58 °C, 17 h; and, oven-cooked roast, 160 °C to a core temperature of 58 °C and LTLT-cooked minced patties, 58 °C, 17 h. Ad libitum energy intake (EI) after three hours was the primary endpoint. Moreover, subjective appetite sensations were assessed. Protein digestibility was determined in an in vitro simulated digestion model. Ad libitum EI did not differ between the meals. Furthermore, appetite ratings were not clearly affected. LTLT cooking for 72 min increased the proteolytic rate in the early gastric phase during digestion as compared to LTLT cooking for 17 h or oven cooking. In conclusion, LTLT cooking, LTLT holding time, and pork structure did not affect ad libitum EI. However, LTLT cooking at 58 °C for 72 min seemed to enhance in vitro protein digestibility. PMID:28846600
Kehlet, Ursula; Mitra, Bhaskar; Ruiz Carrascal, Jorge; Raben, Anne; Aaslyng, Margit D
2017-08-26
Low temperature long time (LTLT) sous-vide cooking may modify meat proteins in a way that could promote satiety. We investigated the effects of (1) cooking method (LTLT 58 °C vs. oven 160 °C), (2) LTLT holding time (17 h vs. 72 min), and (3) pork structure, LTLT 58 °C for 17 h (minced vs. roast) on appetite regulation and in vitro protein digestibility. In a cross-over study, 37 healthy men consumed four meals containing pork: LTLT-cooked roast, 58 °C, 72 min; LTLT-cooked roast, 58 °C, 17 h; and, oven-cooked roast, 160 °C to a core temperature of 58 °C and LTLT-cooked minced patties, 58 °C, 17 h. Ad libitum energy intake (EI) after three hours was the primary endpoint. Moreover, subjective appetite sensations were assessed. Protein digestibility was determined in an in vitro simulated digestion model. Ad libitum EI did not differ between the meals. Furthermore, appetite ratings were not clearly affected. LTLT cooking for 72 min increased the proteolytic rate in the early gastric phase during digestion as compared to LTLT cooking for 17 h or oven cooking. In conclusion, LTLT cooking, LTLT holding time, and pork structure did not affect ad libitum EI. However, LTLT cooking at 58 °C for 72 min seemed to enhance in vitro protein digestibility.
An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.
Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun
2016-01-01
Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.
Vukovic, Jadranka; Loftheim, Håvard; Winther, Bjørn; Reubsaet, J Léon E
2008-06-27
Off-line digestion of proteins using immobilized trypsin beads is studied with respect to the format of the digestion reactor, the digestion conditions, the comparison with in-solution digestion and its use in complex biological samples. The use of the filter vial as the most appropriate digestion reactor enables simple, efficient and easy-to-handle off-line digestion of the proteins on trypsin beads. It was shown that complex proteins like bovine serum albumin (BSA) need much longer time (89 min) and elevated temperature (37 degrees C) to be digested to an acceptable level compared to smaller proteins like cytochrome c (5 min, room temperature). Comparing the BSA digestion using immobilized trypsin beads with conventional in-solution digestion (overnight at 37 degrees C), it was shown that comparable results were obtained with respect to sequence coverage (>90%) and amount of missed cleavages (in both cases around 20 peptides with 1 or 2 missed cleavages were detected). However, the digestion using immobilized trypsin beads was considerable less time consuming. Good reproducibility and signal intensities were obtained for the digestion products of BSA in a complex urine sample. In addition to this, peptide products of proteins typically present in urine were identified.
An Examination of the Proteolytic Activity for Bovine Pregnancy-Associated Glycoprotein 2 and 12
Telugu, Bhanu Prakash V.L.; Palmier, Mark O.; Van Doren, Steven R.; Green, Jonathan A.
2010-01-01
The pregnancy-associated glycoproteins (PAGs) represent a complex group of putative aspartic peptidases expressed exclusively in the placentas of species in the Artiodactyla order. The ruminant PAGs segregate into two classes -the ‘ancient’ and ‘modern’ PAGs. Some of the modern PAGs possess alterations in the catalytic center that are predicted to preclude their ability to act as peptidases. The ancient ruminant PAGs in contrast are thought to be peptidases, although, no proteolytic activity has been described for these members. The goal of this present study was to investigate (1) if the ancient bovine PAGs (PAGs-2 and -12) have proteolytic activity, and (2) if there are any differences in activity between these two closely related members. Recombinant bovine PAGs-2 and -12 were expressed in a baculovirus expression system and the purified proteins were analyzed for proteolytic activity against a synthetic fluorescent cathepsin D/E substrate. Both proteins exhibited proteolytic activity with acidic pH optima. The kcat/KM for bovine PAG-2 was 2.7×105 M−1s−1 and for boPAG-12 it was 6.8×104 M−1s−1. The enzymes were inhibited by pepstatin A with a Ki of 0.56 and 7.5 nM for boPAG-2 and boPAG-12, respectively. This is the first report describing proteolytic activity in PAGs from ruminant ungulates. PMID:20030586
Papagianni, Maria
2014-01-01
A number of novel Penicillium strains belonging to Penicillium nalgiovense, Penicillium solitum, Penicillium commune, Penicillium olsonii, and Penicillium oxalicum species, isolated from the surface of traditional Greek sausages, were evaluated for their proteolytic and lipolytic potential in a solid substrate first and next in submerged fermentations, using complex media. Extracellular proteolytic activity was assessed at acid, neutral, and alkaline pH, while the lipolytic activity was assessed using olive oil, the short-chain triacylglycerol tributyrin, and the long-chain triolein, as substrates. The study revealed that although closely related, the tested strains produce enzymes of distinct specificities. P. nalgiovense PNA9 produced the highest alkaline proteolytic activity (13.2 unit (U)/ml) and the highest lipolytic activity with tributyrin (92 U/ml). Comparisons with known sources show that proteases and/or lipases can be secreted effectively by some Penicillia (P. nalgiovense PNA4, PNA7, and PNA9 and P. solitum PSO1), and further investigations on their properties and characteristics would be promising.
Carrió, M M; Corchero, J L; Villaverde, A
1999-09-14
Inclusion bodies formed by two closely related hybrid proteins, namely VP1LAC and LACVP1, have been compared during their building in Escherichia coli. Features of these proteins are determinant of aggregation rates and protein composition of the bodies, generating insoluble particles with distinguishable volume evolution. Interestingly, in LACVP1 and less perceptibly in VP1LAC bodies, an important fraction of the aggregated polypeptide is lost at a given stage of body construction. Stable degradation intermediates of the more fragile LACVP1 are concomitantly found embedded in the bodies. When recombinant protein synthesis is arrested in growing cells, the amount of aggregated protein drops while the amount of soluble protein undergoes a sudden rise before proteolysis. This indicates an architectural plasticity during the in vivo building of the studied inclusion bodies by a dynamic transition between soluble and insoluble forms of the recombinant proteins involved. During this transition, protease-sensitive polypeptides can suffer an efficient proteolytic attack and the resulting fragments further aggregate as inclusion body components.
Plundrich, Nathalie J; White, Brittany L; Dean, Lisa L; Davis, Jack P; Foegeding, E Allen; Lila, Mary Ann
2015-07-01
Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated during simulated in vitro gastric digestion. When digested with pepsin, the basic subunit of the peanut allergen Ara h 3 was more rapidly hydrolyzed in peanut protein-cranberry or green tea polyphenol complexes compared to uncomplexed peanut flour. Ara h 2 was also hydrolyzed more quickly in the peanut protein-cranberry polyphenol complex than in uncomplexed peanut flour. Peptides from peanut protein-cranberry polyphenol complexes and peanut protein-green tea polyphenol complexes were substantially less immunoreactive (based on their capacity to bind to peanut-specific IgE from patient plasma) compared to peptides from uncomplexed peanut flour. These results suggest that peanut protein-polyphenol complexes may be less immunoreactive passing through the digestive tract in vivo, contributing to their attenuated allergenicity.
Neves-Ferreira, A G; Perales, J; Ovadia, M; Moussatché, H; Domont, G B
1997-06-01
The South American opossum Didelphis marsupialis is known to be highly resistant to snake envenomation. In this paper it is shown that the opossum serum inhibits haemorrhage induced by both Crotalinae and Viperinae venoms. Tested against Bothrops jararaca (jararaca) venom, the antibothropic complex (ABC) isolated from the opossum serum was at least six times more antihaemorrhagic than the commercial antivenom. ABC showed no proteolytic activity by itself and was not hydrolysed by the venom. It inhibited the hydrolysis of casein by B. jararaca venom, but did not inhibit its hydrolytic activities upon N alpha-benzoyl-L-arginine ethyl ester (BAEE) and N alpha-benzoyl-DL-arginine p-nitroanilide (BAPNA). The inhibitor did not interfere with trypsin and bacterial collagenase activities on BAPNA and N-(3-[2-furyl]acryloyl)-Leu-Gly-Pro-Ala (FALGPA), respectively. It reduced chymotrypsin hydrolysis of N-acetyl-L-tyrosine ethyl ester (ATEE) because ABC is also a substrate for this enzyme. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, B. jararaca venom preferentially degraded fibrinogen A alpha-chain and fibrin alpha-chain. Tested on extracellular matrix proteins, the venom hydrolysed collagen IV, gelatins I and V, laminin and fibronectin, besides depolimerizing collagen I alpha-chain dimers. Fibrillar collagen V was not digested. These hydrolyses were inhibited by ABC and by EDTA. Our results show that the antibothropic complex is a venom metalloproteinase inhibitor, which could, at least partially, account for its antihaemorrhagic activity. Electrophoretic evidence indicated non-covalent complex formation between the antihaemorrhagic factor and component(s) of B. jararaca venom.
Esaki, Masatoshi; Johjima-Murata, Ai; Islam, Md Tanvir; Ogura, Teru
2018-01-01
The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.
Princiotta, M F; Schubert, U; Chen, W; Bennink, J R; Myung, J; Crews, C M; Yewdell, J W
2001-01-16
The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases.
NASA Astrophysics Data System (ADS)
Pečová, M.; Šebela, M.; Marková, Z.; Poláková, K.; Čuda, J.; Šafářová, K.; Zbořil, R.
2013-03-01
In this work, magnetosomes produced by microorganisms were chosen as a suitable magnetic carrier for covalent immobilization of thermostable trypsin conjugates with an expected applicability for efficient and rapid digestion of proteins at elevated temperatures. First, a biogenic magnetite was isolated from Magnetospirillum gryphiswaldense and its free surface was coated with the natural polysaccharide chitosan containing free amino and hydroxy groups. Prior to covalent immobilization, bovine trypsin was modified by conjugating with α-, β- and γ-cyclodextrin. Modified trypsin was bound to the magnetic carriers via amino groups using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling reagents. The magnetic biomaterial was characterized by magnetometric analysis and electron microscopy. With regard to their biochemical properties, the immobilized trypsin conjugates showed an increased resistance to elevated temperatures, eliminated autolysis, had an unchanged pH optimum and a significant storage stability and reusability. Considering these parameters, the presented enzymatic system exhibits properties that are superior to those of trypsin forms obtained by other frequently used approaches. The proteolytic performance was demonstrated during in-solution digestion of model proteins (horseradish peroxidase, bovine serum albumin and hen egg white lysozyme) followed by mass spectrometry. It is shown that both magnetic immobilization and chemical modification enhance the characteristics of trypsin making it a promising tool for protein digestion.
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
Dørum, Siri; Arntzen, Magnus Ø.; Qiao, Shuo-Wang; Holm, Anders; Koehler, Christian J.; Thiede, Bernd; Sollid, Ludvig M.; Fleckenstein, Burkhard
2010-01-01
Background Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2). In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten. Methods A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation. Results We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized. Conclusion TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease. PMID:21124911
Tillner, Robert; Rønnestad, Ivar; Harboe, Torstein; Ueberschär, Bernd
2013-11-01
In order to maximize protein digestion, the release of enzymes into the gut lumen is closely controlled by a regulatory loop. Cholecystokinin (CCK) is among the enteric hormones that play a key role in the control of digestive enzyme secretion, but its role in first-feeding larvae is still unclear and may differ between species. However, in all marine fish larvae that have not developed a stomach by first-feeding, trypsin is the most important proteolytic enzyme. In order to examine the regulation and feedback mechanisms in the gut of larval cod, we therefore studied the interactions between cholecystokinin and tryptic enzyme activity following the administration of solutions containing test substances directly into the gut. We tube-fed a single dose of physiological saline solution containing either CCK, CCK antagonist, trypsin inhibitor, phytohemagglutinin (PHA; a possible trigger for the digestive response) or physiological saline alone, while a further control group was left untreated. We then followed the response in CCK and tryptic enzyme activity for 0.5-8h after the administration. We performed the experiment on larvae at 26day post first-feeding, which is before the stomach has evolved and the size of the larvae allows easier handling. Individual larvae were analyzed for CCK and tryptic enzyme activity using radioimmunoassay and fluorimetric techniques respectively. Both factors varied over time in the untreated control group, possibly due to an endogenous daily rhythm. The higher CCK levels at 4h and 8h in the saline-injected group may be caused by reflexes initiated by distension of the gut. An increase in tryptic enzyme activity after injection of CCK supports the hypothesis that this hormone plays a part in the release of pancreatic enzymes in larval cod at this developmental stage. However, administration of a CCK antagonist and a trypsin inhibitor did not reveal conclusive results, probably due to the relatively low concentrations used. The response in tryptic activity in the PHA group was similar to the administration of CCK, pointing towards a stimulatory effect of PHA on the proteolytic enzyme capacity of cod larvae. © 2013.
Krokhin, Oleg; Ens, Werner; Standing, Kenneth G; Wilkins, John; Perreault, Hélène
2004-01-01
The identification of glycosylation sites in proteins is often possible through a combination of proteolytic digestion, separation, mass spectrometry (MS) and tandem MS (MS/MS). Liquid chromatography (LC) in combination with MS/MS has been a reliable method for detecting glycopeptides in digestion mixtures, and for assigning glycosylation sites and glycopeptide sequences. Direct interfacing of LC with MS relies on electrospray ionization, which produces ions with two, three or four charges for most proteolytic peptides and glycopeptides. MS/MS spectra of such glycopeptide ions often lead to ambiguous interpretation if deconvolution to the singly charged level is not used. In contrast, the matrix-assisted laser desorption/ionization (MALDI) technique usually produces singly charged peptide and glycopeptide ions. These ions require an extended m/z range, as provided by the quadrupole-quadrupole time-of-flight (QqTOF) instrument used in these experiments, but the main advantages of studying singly charged ions are the simplicity and consistency of the MS/MS spectra. A first aim of the present study is to develop methods to recognize and use glycopeptide [M+H]+ ions as precursors for MS/MS, and thus for glycopeptide/glycoprotein identification as part of wider proteomics studies. Secondly, this article aims at demonstrating the usefulness of MALDI-MS/MS spectra of N-glycopeptides. Mixtures of diverse types of proteins, obtained commercially, were prepared and subjected to reduction, alkylation and tryptic digestion. Micro-column reversed-phase separation allowed deposition of several fractions on MALDI plates, followed by MS and MS/MS analysis of all peptides. Glycopeptide fractions were identified after MS by their specific m/z spacing patterns (162, 203, 291 u) between glycoforms, and then analyzed by MS/MS. In most cases, MS/MS spectra of [M+H]+ ions of glycopeptides featured peaks useful for determining sugar composition, peptide sequence, and thus probable glycosylation site. Peptide-related product ions could be used in database search procedures and allowed the identification of the glycoproteins. Copyright 2004 John Wiley & Sons, Ltd.
Proteolytic enzymes in seawater: contribution of prokaryotes and protists
NASA Astrophysics Data System (ADS)
Obayashi, Y.; Suzuki, S.
2016-02-01
Proteolytic enzyme is one of the major catalysts of microbial processing of organic matter in biogeochemical cycle. Here we summarize some of our studies about proteases in seawater, including 1) distribution of protease activities in coastal and oceanic seawater, 2) responses of microbial community and protease activities in seawater to organic matter amending, and 3) possible contribution of heterotrophic protists besides prokaryotes to proteases in seawater, to clarify cleared facts and remaining questions. Activities of aminopeptidases, trypsin-type and chymotrypsin-type proteases were detected from both coastal and oceanic seawater by using MCA-substrate assay. Significant activities were detected from not only particulate (cell-associated) fraction but also dissolved fraction of seawater, especially for trypsin-type and chymotrypsin-type proteases. Hydrolytic enzymes in seawater have been commonly thought to be mainly derived from heterotrophic prokaryotes; however, it was difficult to determine actual source organisms of dissolved enzymes in natural seawater. Our experiment with addition of dissolved protein to subtropical oligotrophic Pacific water showed drastically enhancement of the protease activities especially aminopeptidases in seawater, and the prokaryotic community structure simultaneously changed to be dominant of Bacteroidetes, indicating that heterotrophic bacteria were actually one of the sources of proteases in seawater. Another microcosm experiment with free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium showed that extracellular trypsin-type activity was mainly attributed to the ciliate. The protist seemed to work in organic matter digestion in addition to be a grazer. From the results, we propose a system of organic matter digestion by prokaryotes and protists in aquatic environments, although their actual contribution in natural environments should be estimated in future studies.
Release of Full-Length PrPC from Cultured Neurons Following Neurotoxic Challenge
Wang, Kevin K. W.; Zoltewicz, J. Susie; Chiu, Allen; Zhang, Zhiqun; Rubenstein, Richard
2012-01-01
The susceptibility of the normal cellular prion protein isoform, cellular prion protein (PrPC), to proteolytic digestion has been well documented. In addition, a link between PrPC and the cytosolic protease, calpain, has been reported although the specifics of the interaction remain unclear. We performed in vitro and in cell-based studies to examine this relationship. We observed that human recombinant PrP (HrPrP) was readily cleaved by calpain-1 and -2, and we have identified and defined the targeted cleavage sites. In contrast, HrPrP was resistant to caspase-3 digestion. Unexpectedly, when brain lysates from PrPC-expressing mice were treated with calpain, no appreciable loss of the intact PrPC, nor the appearance of PrPC breakdown products (BDPs) were observed, even though alpha II-spectrin was converted to its signature calpain-induced BDPs. In addition, when rat cerebrocortical neuronal cultures (RtCNC) were subjected to the two neurotoxins at subacute levels, maitotoxin (MTX) and N-methyl-d-aspartate (NMDA), PrPC-BDPs were also not detectable. However, a novel finding from these cell-based studies is that apparently full-length, mature PrPC is released into culture media from RtCNC challenged with subacute doses of MTX and NMDA. Calpain inhibitor SNJ-1945 and caspase inhibitor IDN-6556 did not attenuate the release of PrPC. Similarly, the lysosomal protease inhibitor, NH4Cl, and the proteasome inhibitor, lactacystin, did not significantly alter the integrity of PrPC or its release from the RtCNC. In conclusion, rat neuronal PrPC is not a significant target for proteolytic modifications during MTX and NMDA neurotoxic challenges. However, the robust neurotoxin-mediated release of full-length PrPC into the cell culture media suggests an unidentified neuroprotective mechanism for PrPC. PMID:23093947
Kumari, Rakhi; Gupta, Subodh; Singh, Arvind R; Ferosekhan, S; Kothari, Dushyant C; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna
2013-01-01
Exogenous proteolytic enzyme supplementation is required in certain disease conditions in humans and animals and due to compelling reasons on use of more plant protein ingredients and profitability in animal feed industry. However, limitations on their utility in diet are imposed by their pH specificity, thermolabile nature, inhibition due to a variety of factors and the possibility of intestinal damage. For enhancing the efficacy and safety of exogenous trypsin, an efficient chitosan (0.04%) nanoencapsulation-based controlled delivery system was developed. An experiment was conducted for 45 days to evaluate nanoencapsulated trypsin (0.01% and 0.02%) along with 0.02% bare trypsin and 0.4% chitosan nanoparticles against a control diet on productive efficiency (growth rate, feed conversion and protein efficiency ratio), organo-somatic indices, nutrient digestibility, tissue enzyme activities, hematic parameters and intestinal histology of the fish Labeo rohita. All the synthesized nanoparticles were of desired characteristics. Enhanced fish productive efficiency using nanoencapsulated trypsin over its bare form was noticed, which corresponded with enhanced (P<0.01) nutrient digestibility, activity of intestinal protease, liver and muscle tissue transaminases (alanine and aspartate) and dehydrogenases (lactate and malate), serum blood urea nitrogen and serum protein profile. Intestinal tissues of fish fed with 0.02% bare trypsin showed broadened, marked foamy cells with lipid vacuoles. However, villi were healthier in appearance with improved morphological features in fish fed with nanoencapsulated trypsin than with bare trypsin, and the villi were longer in fish fed with 0.01% nanoencapsulated trypsin than with 0.02% nanoencapsulated trypsin. The result of this premier experiment shows that nanoencapsulated trypsin mimics zymogen-like proteolytic activity via controlled release, and hence the use of 0.01% nanoencapsulated trypsin (in chitosan nanoparticles) over bare trypsin can be favored as a dietary supplement in animals and humans.
The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases
Zhao, Xiao; Hume, Samantha L; Johnson, Christopher; Thompson, Paul; Huang, Junyong; Gray, Joe; Lamb, Heather K; Hawkins, Alastair R
2010-01-01
The role of specific cleavage of transcription repressor proteins by proteases and how this may be related to the emerging theme of dinucleotides as cellular signaling molecules is poorly characterized. The transcription repressor NmrA of Aspergillus nidulans discriminates between oxidized and reduced dinucleotides, however, dinucleotide binding has no effect on its interaction with the zinc finger in the transcription activator AreA. Protease activity in A. nidulans was assayed using NmrA as the substrate, and was absent in mycelium grown under nitrogen sufficient conditions but abundant in mycelium starved of nitrogen. One of the proteases was purified and identified as the protein Q5BAR4 encoded by the gene AN2366.2. Fluorescence confocal microscopy showed that the nuclear levels of NmrA were reduced approximately 38% when mycelium was grown on nitrate compared to ammonium and absent when starved of nitrogen. Proteolysis of NmrA occurred in an ordered manner by preferential digestion within a C-terminal surface exposed loop and subsequent digestion at other sites. NmrA digested at the C-terminal site was unable to bind to the AreA zinc finger. These data reveal a potential new layer of control of nitrogen metabolite repression by the ordered proteolytic cleavage of NmrA. NmrA digested at the C-terminal site retained the ability to bind NAD+ and showed a resistance to further digestion that was enhanced by the presence of NAD+. This is the first time that an effect of dinucleotide binding to NmrA has been demonstrated. PMID:20506376
Zhu-Salzman, K; Salzman, R A
2001-10-01
Griffonia simplicifolia lectin II (GSII) is a plant defensive protein that significantly delays development of the cowpea bruchid Callosobruchus maculatus (F.). Previous structure/function analysis by site-directed mutagenesis indicated that carbohydrate binding and resistance to insect gut proteolysis are required for the anti-insect activity of this lectin. However, whether there is a causal link between carbohydrate binding and resistance to insect metabolism remains unknown. Two proteases principally responsible for digestive proteolysis in third and fourth instar larvae of C. maculatus were purified by activated thiol sepharose chromatography and resolved as cathepsin L-like proteases, based on N-terminal amino acid sequence analysis. Digestion of bacterially expressed recombinant GSII (rGSII) and its mutant protein variants with the purified gut proteases indicates that carbohydrate binding, presumably to a target ligand in insect gut, and proteolytic resistance are independent properties of rGSII, and that both facilitate its efficacy as a plant defensive molecule.
Zdarta, Jakub; Antecka, Katarzyna; Jędrzak, Artur; Synoradzki, Karol; Łuczak, Magdalena; Jesionowski, Teofil
2018-05-08
In the presented study synthesized magnetic nanoparticles were used as an inorganic precursor for the preparation of novel magnetite-lignin and magnetite-chitin hybrid supports for enzyme immobilization. Effective synthesis of the hybrids was confirmed by Fourier transform infrared spectroscopy and powder X-ray diffraction analysis. The materials exhibited good thermal stability and surface areas of 4.3 and 5.6 m 2 /g respectively. The magnetite-lignin + trypsin and magnetite-chitin + trypsin systems were found to have good storage stability and reusability. After 20 days they retained over 75% and 90% respectively of their initial activity, and after 10 consecutive biocatalytic cycles retained over 60% and 80% respectively of their initial activity. The kinetic parameters of the free and immobilized enzyme were also comprehensively examined and compared. The results of peptide digestion tests confirmed the high proteolytic activity of the produced trypsin-based magnetic biocatalytic systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen
2017-01-01
Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21’s activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening. PMID:28179567
Plants can use protein as a nitrogen source without assistance from other organisms
Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Rentsch, Doris; Robinson, Nicole; Christie, Michael; Webb, Richard I.; Gamage, Harshi K.; Carroll, Bernard J.; Schenk, Peer M.; Schmidt, Susanne
2008-01-01
Nitrogen is quantitatively the most important nutrient that plants acquire from the soil. It is well established that plant roots take up nitrogen compounds of low molecular mass, including ammonium, nitrate, and amino acids. However, in the soil of natural ecosystems, nitrogen occurs predominantly as proteins. This complex organic form of nitrogen is considered to be not directly available to plants. We examined the long-held view that plants depend on specialized symbioses with fungi (mycorrhizas) to access soil protein and studied the woody heathland plant Hakea actites and the herbaceous model plant Arabidopsis thaliana, which do not form mycorrhizas. We show that both species can use protein as a nitrogen source for growth without assistance from other organisms. We identified two mechanisms by which roots access protein. Roots exude proteolytic enzymes that digest protein at the root surface and possibly in the apoplast of the root cortex. Intact protein also was taken up into root cells most likely via endocytosis. These findings change our view of the spectrum of nitrogen sources that plants can access and challenge the current paradigm that plants rely on microbes and soil fauna for the breakdown of organic matter. PMID:18334638
Caleffe, Ronaldo Roberto Tait; de Oliveira, Stefany Rodrigues; Gigliolli, Adriana Aparecida Sinópolis; Ruvolo-Takasusuki, Maria Claudia Colla; Conte, Helio
2018-06-08
Larval therapy (LT) comprises the application of sterile Calliphoridae larvae for wound debridement, disinfection, and healing in humans and animals. Larval digestion plays a key role in LT, where the salivary glands and gut produce and secrete proteolytic and antimicrobial substances. The objective of this work was to bioprospect the salivary glands of Chrysomya megacephala (Fabricius, 1794) larvae, using ultrastructural, morphological, and histological observations, and the total protein electrophoretic profile. The salivary glands present a deferent duct, originating from the buccal cavity, which bifurcates into efferent ducts that insert through a slight dilatation to a pair of tubular-shaped tissues, united in the region of fat cells. Histologically, the secretion had protein characteristics. Cell cytoplasm presented numerous free ribosomes, autophagic vacuoles, spherical and elongated mitochondria, atypical Golgi complexes, and dilated rough endoplasmic reticulum. In the apical cytoplasm, secretory granules and microvilli secretions demonstrated intense protein synthesis, basal cytoplasm with trachea insertions, and numerous mitochondria. The present work described the ultrastructure and morphology of C. megacephala third instar salivary glands, confirming intense protein synthesis and the molecular weight of soluble proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen
2017-02-28
Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.
Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.
1988-01-21
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.
Galek, H; Osswald, W F; Elstner, E F
1990-01-01
Aqueous leaf extracts from Dionaea muscipula contain quinones such as the naphthoquinone plumbagin that couple to different NADH-dependent diaphorases, producing superoxide and hydrogen peroxide upon autoxidation. Upon preincubation of Dionaea extracts with certain diaphorases and NADH in the presence of serumalbumin (SA), subsequent tryptic digestion of SA is facilitated. Since the secretroy glands of Droseracea contain proteases and possibly other degradative enzymes it is suggested that the presence of oxygen-activating redox cofactors in the extracts function as extracellular predigestive oxidants which render membrane-bound proteins of the prey (insects) more susceptible to proteolytic attacks.
Simulation of organismic morphology and behavior by synthetic poly-alpha-amino acids.
Fox, S W; McCauley, R; Joseph, D; Windsor, C R; Yuyama, S
1966-01-01
Experiments imitating spontaneous geothermal occurrences have yielded most of the amino acids found in protein. All of the amino acids found in protein are simultaneously condensed, by heating in a range of appropriate conditions, to polymers which have many of the properties of proteins. These properties include molecular weights of many thousand, digestibility by proteolytic enzymes, and catalytic activities. One of the other properties is the tendency to form structured units; these units have many of the attributes of biocells. The processes indicated, and others, comprise a conceptual continuum which, according to accumulated information, must have occurred under the conditions existing in regions of the primitive Earth.
Dunning, F. Mark; Ruge, Daniel R.; Piazza, Timothy M.; Stanker, Larry H.; Zeytin, Füsûn N.
2012-01-01
Rapid, high-throughput assays that detect and quantify botulinum neurotoxin (BoNT) activity in diverse matrices are required for environmental, clinical, pharmaceutical, and food testing. The current standard, the mouse bioassay, is sensitive but is low in throughput and precision. In this study, we present three biochemical assays for the detection and quantification of BoNT serotype A, B, and F proteolytic activities in complex matrices that offer picomolar to femtomolar sensitivity with small assay volumes and total assay times of less than 24 h. These assays consist of magnetic beads conjugated with BoNT serotype-specific antibodies that are used to purify BoNT from complex matrices before the quantification of bound BoNT proteolytic activity using the previously described BoTest reporter substrates. The matrices tested include human serum, whole milk, carrot juice, and baby food, as well as buffers containing common pharmaceutical excipients. The limits of detection were below 1 pM for BoNT/A and BoNT/F and below 10 pM for BoNT/B in most tested matrices using 200-μl samples and as low as 10 fM for BoNT/A with an increased sample volume. Together, these data describe rapid, robust, and high-throughput assays for BoNT detection that are compatible with a wide range of matrices. PMID:22923410
AAA-ATPases in Protein Degradation
Yedidi, Ravikiran S.; Wendler, Petra; Enenkel, Cordula
2017-01-01
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea. PMID:28676851
AAA-ATPases in Protein Degradation.
Yedidi, Ravikiran S; Wendler, Petra; Enenkel, Cordula
2017-01-01
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.
Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A
2010-01-01
There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.
Impact of gastric pH profiles on the proteolytic digestion of mixed βlg-Xanthan biopolymer gels.
Dekkers, B L; Kolodziejczyk, E; Acquistapace, S; Engmann, J; Wooster, T J
2016-01-01
The understanding of how foods are digested and metabolised is essential to enable the design/selection of foods as part of a balanced diet. Essential to this endeavour is the development of appropriate biorelevant in vitro digestion tools. In this work, the influence of gastric pH profile on the in vitro digestion of mixtures of β-lactoglobulin (βlg) and xanthan gum prior to and after heat induced gelation was investigated. A conventional highly acidic (pH 1.9) gastric pH profile was compared to two dynamic gastric pH profiles (initial pH of 6.0 vs. 5.2 and H(+) secretion rates of 60 vs. 36 mmol h(-1)) designed to mimic the changes in gastric pH observed during clinical trials with high protein meals. In moving away from the pH 1.9 model, to a pH profile reflecting in vivo conditions, the initial rate and degree of protein digestion halved during the first 45 minutes. After 90 minutes of gastric digestion, all three pH profiles caused similar extents of protein digestion. Given that 50% gastric emptying times of (test) meals are in range of 30-90 min, it would seem highly relevant to use a dynamic pH gastric model rather than a pH 1.9 (USP) or pH 3 model (INFOGEST) in assessing the impact of food structuring approaches on protein digestion. The impact that heat induced gelation had on the degree of gel digestion by pepsin was also investigated. Surprisingly, it was found that heat induced gelation of βlg-xanthan mixtures at 70-90 °C for 20 minutes lead to a considerable decrease in the rate of proteolysis, which contrasts many studies of dispersed aggregates and gels of βlg alone whose heating accelerates pepsin activity due to unfolding. In the present case, the formation of a dense protein network created a fine pore structure which restricted pepsin access into the gel thereby slowing proteolysis. This work not only has implications for the in vitro assessment of protein digestion, but also highlights how protein digestion might be slowed, learnings that might have an influence on the design of foods as part of a satisfying balanced diet.
Nonproteolytic Roles of 19S ATPases in Transcription of CIITApIV Genes
Maganti, Nagini; Moody, Tomika D.; Truax, Agnieszka D.; Thakkar, Meghna; Spring, Alexander M.; Germann, Markus W.; Greer, Susanna F.
2014-01-01
Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes. PMID:24625964
Princiotta, Michael F.; Schubert, Ulrich; Chen, Weisan; Bennink, Jack R.; Myung, Jayhyuk; Crews, Craig M.; Yewdell, Jonathan W.
2001-01-01
The proteasome is the primary protease used by cells for degrading proteins and generating peptide ligands for class I molecules of the major histocompatibility complex. Based on the properties of cells adapted to grow in the presence of the proteasome inhibitor 4-hydroxy-5-iodo-3-nitrophenylacetyl-Leu-Leu-leucinal-vinyl sulfone (NLVS), it was proposed that proteasomes can be replaced by alternative proteolytic systems, particularly a large proteolytic complex with a tripeptidyl peptidase II activity. Here we show that NLVS-adapted cells retain sensitivity to a number of highly specific proteasome inhibitors with regard to antigenic peptide generation, accumulation of polyubiquitinated proteins, degradation of p53, and cell viability. In addition, we show that in the same assays (with a single minor exception), NLVS-adapted cells are about as sensitive as nonselected cells to Ala-Ala-Phe-chloromethylketone, a specific inhibitor of tripeptidyl peptidase II activity. Based on these findings, we conclude that proteasomes still have essential proteolytic functions in adapted cells that are not replaced by Ala-Ala-Phe-chloromethylketone-sensitive proteases. PMID:11149939
Chen, Xu; He, Xiaowei; Fu, Xiong; Zhang, Bin; Huang, Qiang
2017-05-01
This study investigated structural, in vitro digestion and physicochemical properties of normal rice starch (NRS)/flour (NRF) complexed with maize oil (MO) through heat-moisture treatment (HMT). The NRS-/NRF-MO complex displayed an increased pasting temperature and a decreased peak viscosity. After HMT, less ordered Maltese and more granule fragments were observed for NRS-/NRF-MO complex. Meanwhile, more aggregation was observed in the HMT samples with higher moisture contents. We found that higher onset temperature, lower enthalpy change and relative crystallinity of the NRS-/NRF-MO complex were associated with a higher moisture content of HMT samples. The higher moisture content of HMT was also favorable for the amylose-lipid complex formation. Differences in starch digestion properties were found for NRS-MO and NRF-MO complex. All of the NRS/NRF complexed MO after cooking showed lower rapidly digestible starch (RDS) contents compared with the control sample, therein NRS-/NRF- MO 20% exhibited the highest sum of the slowly digestible starch and resistant starch contents. In general, HMT had a greater impact on the in vitro digestion and physicochemical properties of flour samples compared with starch counterparts. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun
2018-02-28
The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.
Protease inhibitors from several classes work synergistically against Callosobruchus maculatus.
Amirhusin, Bahagiawati; Shade, Richard E; Koiwa, Hisashi; Hasegawa, Paul M; Bressan, Ray A; Murdock, Larry L; Zhu-Salzman, Keyan
2007-07-01
Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.
Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue
2013-01-01
We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661
Xia, Ke; Pittelli, Sandy; Church, Jennifer; Colón, Wilfredo
2016-10-12
Kinetically stable proteins (KSPs) are resistant to the denaturing detergent sodium dodecyl sulfate (SDS). Such resilience makes KSPs resistant to proteolytic degradation and may have arisen in nature as a mechanism for organismal adaptation and survival against harsh conditions. Legumes are well-known for possessing degradation-resistant proteins that often diminish their nutritional value. Here we applied diagonal two-dimensional (D2D) SDS-polyacrylamide gel electrophoresis (PAGE), a method that allows for the proteomics-level identification of KSPs, to a group of 12 legumes (mostly beans and peas) of agricultural and nutritional importance. Our proteomics results show beans that are more difficult to digest, such as soybean, lima beans, and various common beans, have high contents of KSPs. In contrast, mung bean, red lentil, and various peas that are highly digestible contain low amounts of KSPs. Identified proteins with high kinetic stability are associated with warm-season beans, which germinate at higher temperatures. In contrast, peas and red lentil, which are cool-season legumes, contain low levels of KSPs. Thus, our results show protein kinetic stability is an important factor in the digestibility of legume proteins and may relate to nutrition efficiency, timing of seed germination, and legume resistance to biotic stressors. Furthermore, we show D2D SDS-PAGE is a powerful method that could be applied for determining the abundance and identity of KSPs in engineered and wild legumes and for advancing basic research and associated applications.
Moelleken, Jörg; Gassner, Christian; Lingke, Sabine; Tomaschek, Simone; Tyshchuk, Oksana; Lorenz, Stefan; Mølhøj, Michael
2017-01-01
ABSTRACT The determination of the binding strength of immunoglobulins (IgGs) to targets can be influenced by avidity when the targets are soluble di- or multimeric proteins, or associated to cell surfaces, including surfaces introduced from heterogeneous assays. However, for the understanding of the contribution of a second drug-to-target binding site in molecular design, or for ranking of monovalent binders during lead identification, affinity-based assessment of the binding strength is required. Typically, monovalent binders like antigen-binding fragments (Fabs) are generated by proteolytic cleavage with papain, which often results in a combination of under- and over-digestion, and requires specific optimization and chromatographic purification of the desired Fabs. Alternatively, the Fabs are produced by recombinant approaches. Here, we report a lean approach for the functional assessment of human IgG1s during lead identification based on an in-solution digestion with the GingisKHAN™ protease, generating a homogenous pool of intact Fabs and Fcs and enabling direct assaying of the Fab in the digestion mixture. The digest with GingisKHAN™ is highly specific and quantitative, does not require much optimization, and the protease does not interfere with methods typically applied for lead identification, such as surface plasmon resonance or cell-based assays. GingisKHAN™ is highly suited to differentiate between affinity and avidity driven binding of human IgG1 monoclonal and bispecific antibodies during lead identification. PMID:28805498
Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; Vanden Broeck, Jozef
2016-01-01
Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects. PMID:27581362
Macedo, Maria L R; Kubo, Carlos E G; Freire, Maria G M; Júnior, Roberto T A; Parra, José R P
2014-02-26
The effects of the beech apricot, Labramia bojeri A. de Candolle (Sapotales: Sapotaceae), seed aqueous extract on the larval development of the velvetbean moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was evaluated. The extract inhibited larval development, pupal weight, and survival and emergence of adults. Digestive proteolytic activity in larval midgut and feces extracts was determined. Larvae fed 10 g/L of the aqueous extract showed a significant reduction in trypsin activity (~64%), when compared with control larvae. Trypsin and chymotrypsin activities were also detected in fecal material in aqueous-extract-fed larvae, with about ~4.5 times more trypsin activity than the controls. The results from dietary utilization experiments with A. gemmatalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The effect of the extract suggests the potential use of L. bojeri seeds to inhibit the development of A. gemmatalis via oral exposure. The L. bojeri extract can be an alternative to other methods of control. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
NASA Astrophysics Data System (ADS)
Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; vanden Broeck, Jozef
2016-09-01
Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.
Spit, Jornt; Holtof, Michiel; Badisco, Liesbet; Vergauwen, Lucia; Vogel, Elise; Knapen, Dries; Vanden Broeck, Jozef
2016-09-01
Herbivorous insects evolved adaptive mechanisms to compensate for the presence of plant defensive protease inhibitors (PI) in their food. The underlying regulatory mechanisms of these compensatory responses remain largely elusive. In the current study, we investigated the initiation of this adaptive response in the migratory locust, Locusta migratoria, via microarray analysis of gut tissues. Four hours after dietary uptake of PIs, 114 and 150 transcripts were respectively found up- or downregulated. The results suggest a quick trade-off between compensating for potential loss of digestive activity on the one hand, and stress tolerance, defense, and structural integrity of the gut on the other hand. We additionally addressed the role of a group of related upregulated hexamerin-like proteins in the PI-induced response. Simultaneous knockdown of corresponding transcripts by means of RNA interference resulted in a reduced capacity of the locust nymphs to cope with the effects of PI. Moreover, since insect hexamerins have been shown to bind Juvenile Hormone (JH), we also investigated the effect of JH on the proteolytic digestion in L. migratoria. Our results indicate that JH has a stimulatory effect on the expression of three homologous chymotrypsin genes, while knocking down the JH receptor (methoprene tolerant) led to opposite effects.
Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S
2010-08-01
Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat.
Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.
Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna
2015-01-01
Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901
Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama
2013-01-01
To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929
Weaver, Matt; Workman, Gail; Schultz, Chad R.; Lemke, Nancy; Rempel, Sandra A.; Sage, E. Helene
2011-01-01
The matricellular SPARC-family member hevin (Sparc-like 1/SPARCL-1/SC1/Mast9) contributes to neural development and alters tumor progression in a range of mammalian models. Based on sequence similarity, we hypothesized that proteolytic digestion of hevin would result in SPARC-like fragments (SLF) that affect the activity and/or location of these proteins. Incubation of hevin with matrix metalloproteinase-3 (MMP-3), a protease known to cleave SPARC, produced a limited number of peptides. Sequencing revealed the major proteolytic products to be SPARC-like in primary structure. In gliomas implanted into murine brain, a SLF was associated with SPARC in the neovasculature but not with hevin, the latter prominent in the astrocytes encompassed by infiltrating tumor. In this model of invasive glioma that involves MMP-3 activity, host-derived SLF was not observed in the extracellular matrix adjacent to tumor cells. In contrast, it occurred with its homolog SPARC in the angiogenic response to the tumor. We conclude that MMP-3-derived SLF is a marker of neovessels in glioma, where it could influence the activity of SPARC. PMID:21688302
Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins
Yun, Thomas H.; Cott, Jessica E.; Tapping, Richard I.; Slauch, James M.
2009-01-01
The immune response to infection includes activation of the blood clotting system, leading to extravascular fibrin deposition to limit the spread of invasive microorganisms. Some bacteria have evolved mechanisms to counteract this host response. Pla, a member of the omptin family of Gram-negative bacterial proteases, promotes the invasiveness of the plague bacterium, Yersinia pestis, by activating plasminogen to plasmin to digest fibrin. We now show that the endogenous anticoagulant tissue factor pathway inhibitor (TFPI) is also highly sensitive to proteolysis by Pla and its orthologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium. Using gene deletions, we demonstrate that bacterial inactivation of TFPI requires omptin expression. TFPI inactivation is mediated by proteolysis since Western blot analysis showed that TFPI cleavage correlated with loss of anticoagulant function in clotting assays. Rates of TFPI inactivation were much higher than rates of plasminogen activation, indicating that TFPI is a better substrate for omptins. We hypothesize that TFPI has evolved sensitivity to proteolytic inactivation by bacterial omptins to potentiate procoagulant responses to bacterial infection. This may contribute to the hemostatic imbalance in disseminated intravascular coagulation and other coagulopathies accompanying severe sepsis. PMID:18988866
Application of the MIDAS approach for analysis of lysine acetylation sites.
Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M
2013-01-01
Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation.
Maynaud, Géraldine; Druilhe, Céline; Daumoin, Mylène; Jimenez, Julie; Patureau, Dominique; Torrijos, Michel; Pourcher, Anne-Marie; Wéry, Nathalie
2017-05-01
The stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH 4 yields in batch tests showed a positive linear correlation between both types of biodegradability (R 2 =0.8). The accessibility and complexity of organic matter were assessed using chemical extractions combined with fluorescence spectroscopy, and biodegradability was mostly anti-correlated with complexity of organic matter. Post-treatments presented a significant effect on the biodegradability and complexity of organic matter. Biodegradability was low for composted digestates which comprised slowly accessible complex molecules. Inversely, solid fractions obtained after phase separation contained a substantial part of remaining biodegradable organic matter with a significant easily accessible fraction comprising simpler molecules. Understanding the effect of post-treatment on the biodegradability of digestates should help to optimize their valorization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hagen, Live H.; Frank, Jeremy A.; Zamanzadeh, Mirzaman; Eijsink, Vincent G. H.; Pope, Phillip B.; Arntzen, Magnus Ø.
2016-01-01
ABSTRACT In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria.” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. PMID:27815274
Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H
2013-04-01
Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of proteolytic enzymes in colorectal cancer development and progression.
Herszényi, László; Barabás, Loránd; Hritz, István; István, Gábor; Tulassay, Zsolt
2014-10-07
Tumor invasion and metastasis is a highly complicated, multi-step phenomenon. In the complex event of tumor progression, tumor cells interact with basement membrane and extracellular matrix components. Proteolytic enzymes (proteinases) are involved in the degradation of extracellular matrix, but also in cancer invasion and metastasis. The four categories of proteinases (cysteine-, serine-, aspartic-, and metalloproteinases) are named and classified according to the essential catalytic component in their active site. We and others have shown that proteolytic enzymes play a major role not only in colorectal cancer (CRC) invasion and metastasis, but also in malignant transformation of precancerous lesions into cancer. Tissue and serum-plasma antigen concentrations of proteinases might be of great value in identifying patients with poor prognosis in CRC. Our results, in concordance with others indicate the potential tumor marker impact of proteinases for the early diagnosis of CRC. In addition, proteinases may also serve as potential target molecules for therapeutic agents.
Dual Proteolytic Pathways Govern Glycolysis and Immune Competence
Lu, Wei; Zhang, Yu; McDonald, David O.; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H.; Morgan, Neil V.; Reynard, Louise N.; Zheng, Lixin; Murdock, Heardley M.; Turvey, Stuart E.; Hackett, Scott J.; Prestidge, Tim; Hall, Julie M.; Cant, Andrew J.; Matthews, Helen F.; Santibanez Koref, Mauro F.; Simon, Anna Katharina; Korolchuk, Viktor I.; Lenardo, Michael J.; Hambleton, Sophie; Su, Helen C.
2014-01-01
SUMMARY Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels, and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health. PMID:25525876
Prandi, Barbara; Farioli, Laura; Tedeschi, Tullia; Pastorello, Elide Anna; Sforza, Stefano
2012-12-30
Non-specific lipid transfer proteins (ns-LTPs) are major food allergens of the Rosaceae family. The severity of allergic reactions often relates to resistance of the allergen to digestion. Thus, it is important to evaluate the digestibility of these proteins and characterise the peptides generated in the gastrointestinal tract. Simulated gastrointestinal digestion of purified allergen Pru ar 3 was performed using pepsin for the gastric phase in aqueous HCl at pH = 2 and chymotrypsin and trypsin for the intestinal phase in aqueous NH(4)HCO(3) at pH = 7.8. The peptide mixture obtained was analysed by ultra-performance liquid chromatography/electrospray ionisation mass spectrometry (UPLC/ESI-MS). Peptide sequences were identified by comparing their molecular mass to that obtained by in silico digestion, and were confirmed by the ions obtained by in-source fragmentation. Semi-quantification was performed for the intact protein by comparison with internal standards. The resistance to gastrointestinal digestion of Pru ar 3 allergen was evaluated to be 9%. This value is consistent with that found for grape LTP, but much lower than the resistance found for peach LTP (35%). All the peptides generated were identified by ESI-MS on the basis of their molecular mass and from the ions generated from in-source fragmentation. Apart from low molecular mass peptides, five high molecular mass peptides (4500-7000 Da) containing disulphide bridges were identified. ESI-MS of the intact protein indicated a less compact folded structure when compared to that of the homologous peach LTP. An extensive characterisation of the peptides generated from the gastrointestinal digestion of Pru ar 3 allergen was performed here for the first time via UPLC/ESI-MS analysis. The digestibility of the allergen was evaluated and compared with that of other LTPs, demonstrating that only a small amount of undigested protein remains, and that specific proteolytic action involves immunodominant epitopes. These data might explain the lower allergenicity of apricot LTP compared to peach LTP, despite their high sequence homology. Copyright © 2012 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...
Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis
Mancini, Marie; Machamer, Carolyn E.; Roy, Sophie; Nicholson, Donald W.; Thornberry, Nancy A.; Casciola-Rosen, Livia A.; Rosen, Antony
2000-01-01
Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptotic stimuli are transduced by distinct proteolytic pathways, with multiple components of the proteolytic machinery clustering at distinct subcellular sites. We demonstrate here that, in addition to its nuclear distribution, caspase-2 is localized to the Golgi complex, where it cleaves golgin-160 at a unique site not susceptible to cleavage by other caspases with very similar tetrapeptide specificities. Early cleavage at this site precedes cleavage at distal sites by other caspases. Prevention of cleavage at the unique caspase-2 site delays disintegration of the Golgi complex after delivery of a pro-apoptotic signal. We propose that the Golgi complex, like mitochondria, senses and integrates unique local conditions, and transduces pro-apoptotic signals through local caspases, which regulate local effectors. PMID:10791974
Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion
Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A.; Gates, Fred K.; Wickham, Martin S. J.; Shewry, Peter R.; Bakalis, Serafim; Padfield, Philip; Mills, E. N. Clare
2015-01-01
Scope Resistance of proteins to gastrointestinal digestion may play a role in determining immune‐mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Methods and results Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS‐PAGE and immunoblotting using monoclonal antibodies specific for celiac‐toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. Conclusion The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten‐starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. PMID:26202208
Cohen, Itay; Kayode, Olumide; Hockla, Alexandra; Sankaran, Banumathi; Radisky, Derek C; Radisky, Evette S; Papo, Niv
2016-05-15
Engineered protein therapeutics offer advantages, including strong target affinity, selectivity and low toxicity, but like natural proteins can be susceptible to proteolytic degradation, thereby limiting their effectiveness. A compelling therapeutic target is mesotrypsin, a protease up-regulated with tumour progression, associated with poor prognosis, and implicated in tumour growth and progression of many cancers. However, with its unique capability for cleavage and inactivation of proteinaceous inhibitors, mesotrypsin presents a formidable challenge to the development of biological inhibitors. We used a powerful yeast display platform for directed evolution, employing a novel multi-modal library screening strategy, to engineer the human amyloid precursor protein Kunitz protease inhibitor domain (APPI) simultaneously for increased proteolytic stability, stronger binding affinity and improved selectivity for mesotrypsin inhibition. We identified a triple mutant APPIM17G/I18F/F34V, with a mesotrypsin inhibition constant (Ki) of 89 pM, as the strongest mesotrypsin inhibitor yet reported; this variant displays 1459-fold improved affinity, up to 350 000-fold greater specificity and 83-fold improved proteolytic stability compared with wild-type APPI. We demonstrated that APPIM17G/I18F/F34V acts as a functional inhibitor in cell-based models of mesotrypsin-dependent prostate cancer cellular invasiveness. Additionally, by solving the crystal structure of the APPIM17G/I18F/F34V-mesotrypsin complex, we obtained new insights into the structural and mechanistic basis for improved binding and proteolytic resistance. Our study identifies a promising mesotrypsin inhibitor as a starting point for development of anticancer protein therapeutics and establishes proof-of-principle for a novel library screening approach that will be widely applicable for simultaneously evolving proteolytic stability in tandem with desired functionality for diverse protein scaffolds. © 2016 Authors; published by Portland Press Limited.
Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals
Kostic, Nenad M.; Chen, Jian
1991-03-05
Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.
Biesiekierski, Jessica R
2017-03-01
Gluten is the main storage protein of wheat grains. Gluten is a complex mixture of hundreds of related but distinct proteins, mainly gliadin and glutenin. Similar storage proteins exist as secalin in rye, hordein in barley, and avenins in oats and are collectively referred to as "gluten." The objective was to discuss the biochemical and functional properties of the gluten proteins, including structure, sources, and dietary intakes. Literature was reviewed from food science and nutrition journals. The gluten protein networks vary because of different components and sizes, and variability caused by genotype, growing conditions, and technological processes. The structures and interactions of this matrix contribute to the unique properties of gluten. The resulting functions are essential to determining the dough quality of bread and other baked products. Gluten is heat stable and has the capacity to act as a binding and extending agent and is commonly used as an additive in processed foods for improved texture, moisture retention, and flavor. Gliadin contains peptide sequences that are highly resistant to gastric, pancreatic, and intestinal proteolytic digestion in the gastrointestinal tract. The average daily gluten intake in a Western diet is thought to be 5-20 g/day and has been implicated in several disorders. Gluten containing grains (wheat, rye, barley, and oats) are important staple foods. Gluten is among the most complex protein networks and plays a key role in determining the rheological dough properties. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
In vitro digestive stability of complexes between gliadin and synthetic blocking peptides.
Hoffmann, Karolina; Carlsson, Nils-Gunnar; Alminger, Marie; Chen, Tingsu; Wold, Agnes; Olsson, Olof; Sandberg, Ann-Sofie
2011-05-01
Celiac disease is caused by an inappropriate immune response to incompletely digested gluten proteins. We investigated whether synthetic peptides with high affinity to wheat gliadin could be selected with a phage display technique and whether complexes between such peptides and gliadin could sustain gastric and pancreatic digestion. Two synthetic peptides, P61 and P64, were selected because of their high affinity to immobilized gliadin. They were allowed to form complexes with gliadin, whereafter the complexes were subjected to in vitro digestion with gastric and pancreatic enzymes. The digestion products were analyzed with Western blot and RP HPLC. The results showed that both peptides formed stable complexes with intact gliadin and that complexes between gliadin and peptide P64 partly resisted gastrointestinal digestion. The two peptides reduced the binding of serum anti-gliadin IgA antibodies by 12%, and 11.5%, respectively, and the binding of anti-gliadin antibodies of the IgG isotype by 13% and 10%. Thus peptides produced by a phage display technique could interact stably with gliadin partly masking epitopes for antibody binding. A combination of peptides of this kind may be used to block gliadin-immune system interactions. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.
Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew
2015-01-01
Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme supplements are ineffective in degrading immunogenic gluten epitopes. PMID:26030273
[Mechanism of action and control in the digestion of proteins and peptides in humans].
Frenhani, P B; Burini, R C
1999-01-01
This review aims to report the major control mechanisms of protein and peptides digestion of special interest in human patients. Regarding protein assimilation its digestive process begins at the stomach with some not so indispensable actions comparatively to those of duodenal/jejunal lumen. However even the intestine processes are partially under gastric secretion control. Proteolytic enzyme activities are related to protein structure and amino acid constituents, tertiary and quartenary structures need HCl denaturation prior to enzymatic hydrolysis. Thereafter the exopeptidases are guided by either NH2 (aminopeptidases) or COOH (carboxypeptidases) terminals of the molecule while endopeptidases are oriented by the specific amino acids constituents of the peptide. Both dietary and luminal secreted proteins and polypeptides undergo to either limited or complete proteolysis resulting basic or neutral free-amino acids (40%) or dioctapeptides. The brush border peptidases continue to degrade oligopeptide to di-tripeptides and neutral free-amino acids. Some peptides are uptaked by the enterocytes whose cytosolic peptidases complete the hydrolysis. Hence the digestive products flowing in the portal vein are mainly free-amino acids from either luminal or cytosolic hydrolysis and some di-tripeptides intactly absorbed. Both mechanical and chemical processes of digestion are under neural (vagal), neuroendocrinal (acetilcholine), endocrinal (gastrin, secretin and cholecystokinin) or paracrinal (histamine) controls. The gastric phase (hydrochloric acid and pepsinogen secretions) is activated by gastrin, histamine and acetilcholine which respond to both dietary-amino acids (tryptophan and phenylalanine) and mechanic distention of stomach. The pancreatic secretion is stimulated by either cephalic or gastric phases and has influence on the intestinal phase of digestion. The intestinal types of cells S and I release secretin and cholecystokinin respectively in response of acid quimo (cells S) or amino acids and peptides (cells I) in the lumen. Secretin stimulates the releasing of water, bicarbonate and enteropeptidases whereas cholecystokinin acts on pancreatic enzymes.
Nucleic acid isolation process
Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.
1990-01-01
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.
The tubulins of animals, plants, fungi and protists implications for metazoan evolution
NASA Astrophysics Data System (ADS)
Little, Melvyn; Ludueña, Richard F.; Morejohn, Louis C.; Asnes, Clara; Hoffman, Eugene
1984-03-01
α-Tubulin subunits from trout (S. gairdneri) sperm tails, sea urchin (S. purpuratus) cilia, protistan alga (C. elongatum) flagella and rose (Paul's Scarlet) cytoplasm have been characterized by limited proteolytic cleavage with the enzymeStaphylococcus aureus protease and electrophoresis of the digestion products on SDS-PAGE. The resulting patterns corresponded to either of two major types representative of animal and non-animal α-tubulins, respectively. A total of 28 α-tubulins have now been characterized by this method. They are classified in this paper according to the type of cleavage pattern generated by the enzymeS. aureus protease. The implications of these results for metazoan evolution are discussed.
Freeze, H H; Koza-Taylor, P; Saunders, A; Cardelli, J A
1989-11-15
We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.
Un-nicked BoNT/B activity in human SHSY-5Y neuronal cells.
Shi, Xuerong; Garcia, Gregory E; Nambiar, Madhusoodana P; Gordon, Richard K
2008-09-01
BoNT/B holotoxin (HT) from the native source is a mixture of nicked and un-nicked forms. A previous study showed that while un-nicked HT could be transcytosed by intestinal epithelial cells, they did not correlate this with proteolytic activity or biological effect(s). Un-nicked HT is likely to be present in BoNT biological warfare agents (BWA), so it is important to investigate the relative toxicity of un-nicked HT in this BWA. To address this issue, we purified un-nicked HT from commercial sources and evaluated its ability to cleave substrates both in vitro and in vivo, and its effects on vesicle trafficking. The un-nicked HT was unable to cleave VAMPTide substrate used for in vitro proteolytic assays. Brief digestion of the un-nicked toxin with trypsin resulted in significant activation of the toxin proteolytic ability. SHSY-5Y human neuroblastoma cells were used to examine HT uptake and activation in vivo. Vesicle trafficking can be measured following K(+) stimulation of cells preloaded with [(3)H]-noradrenaline (NA). We found that highly purified un-nicked HT did inhibit NA release but at much reduced levels compared to the nicked toxin. That the reduction in NA release was due to BoNT effects on SNARE proteins was supported by the finding that VAMP-2 protein levels in un-nicked toxin treated cells was greater than those treated with nicked toxin. These results demonstrate that although un-nicked HT has markedly reduced toxicity than the nicked form, due to the preponderance in BoNT/B preparations from the native bacteria, it is a major source of toxicity. (c) 2008 Wiley-Liss, Inc.
Ramos, Yassel; Huerta, Vivian; Martín, Dayron; Palomares, Sucel; Yero, Alexis; Pupo, Dianne; Gallien, Sebastien; Martín, Alejandro M; Pérez-Riverol, Yasset; Sarría, Mónica; Guirola, Osmany; Chinea, Glay; Domon, Bruno; González, Luis Javier
2017-07-13
The interactions between the four Dengue virus (DENV) serotypes and plasma proteins are crucial in the initial steps of viral infection to humans. Affinity purification combined with quantitative mass spectrometry analysis, has become one of the most powerful tools for the investigation on novel protein-protein interactions. Using this approach, we report here that a significant number of bait-interacting proteins do not dissociate under standard elution conditions, i.e. acid pH and chaotropic agents, and that this problem can be circumvented by using the "on-matrix" digestion procedure described here. This procedure enabled the identification of 16 human plasma proteins interacting with domain III from the envelope protein of DENV serotypes 1, 3 and 4 that would have not been detected otherwise and increased the known DIIIE interactors in human plasma to 59 proteins. Selected Reaction Monitoring analysis evidenced DENV interactome in human plasma is rather conserved although significant differences on the reactivity of viral serotypes with specific proteins do exist. A comparison between the serotype-dependent profile of reactivity and the conservation pattern of amino acid residues suggests an evolutionary selection of highly conserved interactions with the host and other interactions mediated for surface regions of higher variability. False negative results on the identification of interacting proteins in pull-down experiments compromise the subsequent interpretation of results and the formulation of a working hypothesis for the derived future work. In this study we demonstrate the presence of bait-interacting proteins reluctant to dissociate under elution conditions of acid pH and presence of chaotropics. We propose the direct proteolytic digestion of proteins while still bound to the affinity matrix ("on-matrix" digestion) and evaluate the impact of this methodology in the comparative study of the interactome of the four serotypes of Dengue virus mediated by the domain III of the viral envelope glycoprotein. Fifty nine proteins were identified as putative interaction partners of Dengue virus (IPs) either due to direct binding or by co-isolation with interacting proteins. Collectively the IPs identified from the pull-down with the recombinant domain III proteins representing the four viral serotypes, 29% were identified only after "on-matrix" digestion which demonstrate the usefulness of this method of recovering bait-bound proteins. Results highlight a particular importance of "on-matrix" digestion procedure for comparative studies where a stronger interaction with one of the interest baits could prevent a bound protein to elute under standard conditions thus leading to misinterpretation as absent in the interactome of this particular bait. The analysis of the Interaction Network indicates that Dengue virus interactome mediated by the domain III of the envelope protein is rather conserved in the viral complex suggesting a key role of these interactions for viral infection thus making candidates to explore for potential biomarkers of clinical outcome in DENV-caused disease. Interestingly, some particular IPs exhibit significant differences in the strength of the interaction with the viral serotypes representing interactions that involve more variable regions in the surface of the domain III. Since such variable regions are the consequence of the interaction with antibodies generated by human immune response; this result relates the interaction with proteins from human plasma with the interplay of the virus and the human immune system. Copyright © 2017 Elsevier B.V. All rights reserved.
Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals
Kostic, N.M.; Chen, J.
1991-03-05
Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings
Optimization of parameters for coverage of low molecular weight proteins
Müller, Stephan A.; Kohajda, Tibor; Findeiß, Sven; Stadler, Peter F.; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin
2010-01-01
Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT-CID and IT-ETD allowed the validation of 75% of the identified proteins using this orthogonal fragmentation technique. Furthermore, a new approach to evaluating and improving the completeness of protein databases that utilizes the program RNAcode was introduced and examined. Electronic supplementary material The online version of this article (doi:10.1007/s00216-010-4093-x) contains supplementary material, which is available to authorized users. PMID:20803007
Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid.
Chan, Xin-Yue; Hong, Kar-Wai; Yin, Wai-Fong; Chan, Kok-Gan
2016-01-28
Tropical carnivorous plant, Nepenthes, locally known as "monkey cup", utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid.
Reducing background noise in near-infrared medical imaging: Routes to activated fluorescing
NASA Astrophysics Data System (ADS)
Burdette, Mary K.; Bandera, Yuriy; Powell, Rhonda R.; Bruce, Terri F.; Foulger, Stephen H.
2016-03-01
Activated fluorescence was achieved for nanoparticle based systems. One particulate system consisting of a poly(propargyl acrylate) (PA) core with covalently attached derivatized fluorescein and modified bovine serum albumin covalently conjugated to a cyanine 3 derivative was initially nonfluorescent. Upon trypsin addition and subsequent proteolytic digestion, Förster resonance energy transfer (FRET) was induced. The other particulate system consisted of a PA core with covalently attached azide modified BSA, which was covalently attached to a silicon phthalocyanine derivative (PA/BSA/akSiPc600). Both systems were biocompatible. To investigate activated fluorescence with the PA/BSA/akSiPc600 system in cancer cells, human non-small cell lung cancer cells (A549 cell line) were used as a model system. The PA/BSA/akSiPc600 system was incubated with the cells at varying time points in an effort to see a fluorescence increase over time as the cells uptake the particles and as they digest the BSA, most probably, via endocytosis. It was seen, through live cell scanning confocal microscopy, that the fluorescence was activated in the cell.
Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.
Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare
2015-10-01
Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pfeifer, Sabine; Bublin, Merima; Dubiela, Pawel; Hummel, Karin; Wortmann, Judith; Hofer, Gerhard; Keller, Walter; Radauer, Christian
2015-01-01
Scope Allergens from nuts frequently induce severe allergic reactions in sensitive individuals. The aim of this study was to elucidate the physicochemical characteristics of natural Cor a 14, the 2S albumin from hazelnut. Methods and results Cor a 14 was purified from raw hazelnuts using a combination of precipitation and chromatographic techniques. The protein was analyzed using gel electrophoresis, MS, and far‐UV circular dichroism (CD) analyses. The immunoglobulin E (IgE) binding of native, heat‐treated, and in vitro digested Cor a 14 was studied. We identified two different Cor a 14 isoforms and showed microclipping at the C‐terminus. CD spectra at room temperature showed the typical characteristics of 2S albumins, and temperatures of more than 80°C were required to start unfolding of Cor a 14 demonstrating its high stability to heat treatment. In vitro digestion experiments revealed that Cor a 14 is resistant to proteolytic degradation. Native and heat‐treated protein was recognized by sera from hazelnut allergic patients. However, denaturation of the allergen led to significantly reduced IgE binding. Conclusion We identified two different isoforms of Cor a 14 displaying high stability under heating and gastric and duodenal conditions. Data from IgE‐binding experiments revealed the existence of both, linear and conformational epitopes. PMID:26178695
Human Milk: Bioactive Proteins/Peptides and Functional Properties.
Lönnerdal, Bo
2016-06-23
Breastfeeding has been associated with many benefits, both in the short and in the long term. Infants being breastfed generally have less illness and have better cognitive development at 1 year of age than formula-fed infants. Later in life, they have a lower risk of obesity, diabetes and cardiovascular disease. Several components in breast milk may be responsible for these different outcomes, but bioactive proteins/peptides likely play a major role. Some proteins in breast milk are comparatively resistant towards digestion and may therefore exert their functions in the gastrointestinal tract in intact form or as larger fragments. Other milk proteins may be partially digested in the upper small intestine and the resulting peptides may exert functions in the lower small intestine. Lactoferrin, lysozyme and secretory IgA have been found intact in the stool of breastfed infants and are therefore examples of proteins that are resistant against proteolytic degradation in the gut. Together, these proteins serve protective roles against infection and support immune function in the immature infant. α-lactalbumin, β-casein, κ-casein and osteopontin are examples of proteins that are partially digested in the upper small intestine, and the resulting peptides influence functions in the gut. Such functions include stimulation of immune function, mineral and trace element absorption and defense against infection. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.
Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A
2017-01-01
Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.
Singh, Arvind R.; Ferosekhan, S.; Kothari, Dushyant C.; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna
2013-01-01
Exogenous proteolytic enzyme supplementation is required in certain disease conditions in humans and animals and due to compelling reasons on use of more plant protein ingredients and profitability in animal feed industry. However, limitations on their utility in diet are imposed by their pH specificity, thermolabile nature, inhibition due to a variety of factors and the possibility of intestinal damage. For enhancing the efficacy and safety of exogenous trypsin, an efficient chitosan (0.04%) nanoencapsulation-based controlled delivery system was developed. An experiment was conducted for 45 days to evaluate nanoencapsulated trypsin (0.01% and 0.02%) along with 0.02% bare trypsin and 0.4% chitosan nanoparticles against a control diet on productive efficiency (growth rate, feed conversion and protein efficiency ratio), organo-somatic indices, nutrient digestibility, tissue enzyme activities, hematic parameters and intestinal histology of the fish Labeo rohita. All the synthesized nanoparticles were of desired characteristics. Enhanced fish productive efficiency using nanoencapsulated trypsin over its bare form was noticed, which corresponded with enhanced (P<0.01) nutrient digestibility, activity of intestinal protease, liver and muscle tissue transaminases (alanine and aspartate) and dehydrogenases (lactate and malate), serum blood urea nitrogen and serum protein profile. Intestinal tissues of fish fed with 0.02% bare trypsin showed broadened, marked foamy cells with lipid vacuoles. However, villi were healthier in appearance with improved morphological features in fish fed with nanoencapsulated trypsin than with bare trypsin, and the villi were longer in fish fed with 0.01% nanoencapsulated trypsin than with 0.02% nanoencapsulated trypsin. The result of this premier experiment shows that nanoencapsulated trypsin mimics zymogen-like proteolytic activity via controlled release, and hence the use of 0.01% nanoencapsulated trypsin (in chitosan nanoparticles) over bare trypsin can be favored as a dietary supplement in animals and humans. PMID:24040333
Acute pancreatitis: a multisystem disease.
Agarwal, N; Pitchumoni, C S
1993-06-01
Proteolytic enzymes, lipase, kinins, and other active peptides liberated from the inflamed pancreas convert inflammation of the pancreas, a single-organ disease of the retroperitoneum, to a multisystem disease. Adult respiratory distress syndrome, in addition to being secondary to microvascular thrombosis, may be the result of active phospholipase A (lecithinase), which digests lecithin, a major component of surfactant. Myocardial depression and shock are suspected to be secondary to vasoactive peptides and a myocardial depressant factor. Coagulation abnormalities may range from scattered intravascular thrombosis to severe disseminated intravascular coagulation. Acute renal failure has been explained on the basis of hypovolemia and hypotension. The renin-angiotensin alterations in acute pancreatitis (AP) as mediators of renal failure need to be studied. Metabolic complications include hypocalcemia, hyperlipemia, hyperglycemia, hypoglycemia, and diabetic ketoacidosis, of which hypocalcemia has been long recognized as an indicator of poor prognosis. The pathogenesis of hypocalcemia is multifactorial and includes calcium-soap formation, hormonal imbalances (e.g., parathyroid hormone, calcitonin, glucagon), binding of calcium by free fatty acid-albumin complexes, and intracellular translocation of calcium. Subcutaneous fat necrosis, arthritis, and Purtscher's retinopathy are rare. The various prognostic criteria of AP and other associated laboratory abnormalities are manifestations of systemic effects. Early recognition and appropriated management of these complications have resulted in improved prognosis of severe AP.
Cytotoxic T Lymphocyte Epitopes of HIV-1 Nef
Lucchiari-Hartz, Maria; van Endert, Peter M.; Lauvau, Grégoire; Maier, Reinhard; Meyerhans, Andreas; Mann, Derek; Eichmann, Klaus; Niedermann, Gabriele
2000-01-01
Although a pivotal role of proteasomes in the proteolytic generation of epitopes for major histocompatibility complex (MHC) class I presentation is undisputed, their precise function is currently the subject of an active debate: do proteasomes generate many epitopes in definitive form, or do they merely generate the COOH termini, whereas the definitive NH2 termini are cleaved by aminopeptidases? We determined five naturally processed MHC class I ligands derived from HIV-1 Nef. Unexpectedly, the five ligands correspond to only three cytotoxic T lymphocyte (CTL) epitopes, two of which occur in two COOH-terminal length variants. Parallel analyses of proteasomal digests of a Nef fragment encompassing the epitopes revealed that all five ligands are direct products of proteasomes. Moreover, in four of the five ligands, the NH2 termini correspond to major proteasome cleavage sites, and putative NH2-terminally extended precursor fragments were detected for only one of the five ligands. All ligands are transported by the transporter associated with antigen processing (TAP). The combined results from these five ligands provide strong evidence that many definitive MHC class I ligands are precisely cleaved at both ends by proteasomes. Additional evidence supporting this conclusion is discussed, along with contrasting results of others who propose a strong role for NH2-terminal trimming with direct proteasomal epitope generation being a rare event. PMID:10637269
Molecular basis of toxicity of Clostridium perfringens epsilon toxin.
Bokori-Brown, Monika; Savva, Christos G; Fernandes da Costa, Sérgio P; Naylor, Claire E; Basak, Ajit K; Titball, Richard W
2011-12-01
Clostridium perfringens ε-toxin is produced by toxinotypes B and D strains. The toxin is the aetiological agent of dysentery in newborn lambs but is also associated with enteritis and enterotoxaemia in goats, calves and foals. It is considered to be a potential biowarfare or bioterrorism agent by the US Government Centers for Disease Control and Prevention. The relatively inactive 32.9 kDa prototoxin is converted to active mature toxin by proteolytic cleavage, either by digestive proteases of the host, such as trypsin and chymotrypsin, or by C. perfringens λ-protease. In vivo, the toxin appears to target the brain and kidneys, but relatively few cell lines are susceptible to the toxin, and most work has been carried out using Madin-Darby canine kidney (MDCK) cells. The binding of ε-toxin to MDCK cells and rat synaptosomal membranes is associated with the formation of a stable, high molecular weight complex. The crystal structure of ε-toxin reveals similarity to aerolysin from Aeromonas hydrophila, parasporin-2 from Bacillus thuringiensis and a lectin from Laetiporus sulphureus. Like these toxins, ε-toxin appears to form heptameric pores in target cell membranes. The exquisite specificity of the toxin for specific cell types suggests that it binds to a receptor found only on these cells. © 2011 The Authors Journal compilation © 2011 FEBS.
Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp.
Gagliano, M C; Braguglia, C M; Petruccioli, M; Rossetti, S
2015-05-01
Thermophilic bacteria have been isolated from several terrestrial, marine and industrial environments. Anaerobic digesters treating organic wastes are often an important source of these microorganisms, which catalyze a wide array of metabolic processes. Moreover, organic wastes are primarily composed of proteins, whose degradation is often incomplete. Coprothermobacter spp. are proteolytic anaerobic thermophilic microbes identified in several studies focused on the analysis of the microbial community structure in anaerobic thermophilic reactors. They are currently classified in the phylum Firmicutes; nevertheless, several authors showed that the Coprothermobacter group is most closely related to the phyla Dictyoglomi and Thermotoga. Since only a few proteolytic anaerobic thermophiles have been characterized so far, this microorganism has attracted the attention of researchers for its potential applications with high-temperature environments. In addition to proteolysis, Coprothermobacter spp. showed several metabolic abilities and may have a biotechnological application either as source of thermostable enzymes or as inoculum in anaerobic processes. Moreover, they can improve protein degradation by establishing a syntrophy with hydrogenotrophic archaea. To gain a better understanding of the phylogenesis, metabolic capabilities and adaptations of these microorganisms, it is of importance to better define the role in thermophilic environments and to disclose properties not yet investigated. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Seredyński, Rafał; Wolna, Dorota; Kędzior, Mateusz; Gutowicz, Jan
2017-01-01
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dual proteolytic pathways govern glycolysis and immune competence.
Lu, Wei; Zhang, Yu; McDonald, David O; Jing, Huie; Carroll, Bernadette; Robertson, Nic; Zhang, Qian; Griffin, Helen; Sanderson, Sharon; Lakey, Jeremy H; Morgan, Neil V; Reynard, Louise N; Zheng, Lixin; Murdock, Heardley M; Turvey, Stuart E; Hackett, Scott J; Prestidge, Tim; Hall, Julie M; Cant, Andrew J; Matthews, Helen F; Koref, Mauro F Santibanez; Simon, Anna Katharina; Korolchuk, Viktor I; Lenardo, Michael J; Hambleton, Sophie; Su, Helen C
2014-12-18
Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health. Copyright © 2014 Elsevier Inc. All rights reserved.
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Mondéjar, I; Avilés, M; Coy, P
2013-03-01
Is zona pellucida (ZP) resistance to proteolysis, induced by oviductal fluid (OF), a mechanism common to species other than the pig and cow? ZP resistance to proteolysis induced by OF was observed in the mouse, rat, hamster, rabbit, sheep, goat, pig and cow, but not in humans. Oviductal ZP resistance to proteolysis occurs in the pig and cow where it influences the incidence of fertilization and polyspermy. The effect is observed after incubation of ZP in OFs from pig (pOF), cow (cOF), rabbit (rOF) and sheep (sOF). Oocytes from nine different species, including ungulates, rodents, lagomorphs and primates were incubated in rOF, sOF, gOF, cOF, pOF and human oviductal fluid (hOF). ZP digestion times for the matured oocytes of these nine species, without any treatment or incubated in 5 (mouse, rat, hamster, rabbit, cow, ewe and goat) or 6 (pig and humans) of the OFs collected were compared using three replicates per treatment and at least three oocytes per replicate. In vivo matured oocytes from rat, hamster, mouse, rabbit and humans, in vitro matured oocytes from cow, goat, ewe and pig and rOF, cOF, gOF, sOF, pOF and human (hOF) were collected and processed for the study. Oocytes from each species were incubated in the different OFs for 30 min. The resistance of the ZP of the oocytes to enzymatic digestion in a pronase solution (0.5% in PBS) was measured and registered as ZP digestion time. rOF increased ZP resistance to proteolytic digestion in the range of between 96 and 720 h for any of the species tested, whereas the corresponding increase in human ZP was only 1 min. OFs from the remaining species also had a significant effect, with variations among the cross-species experiments (P < 0.05). hOF, which was only tested on human and porcine oocytes, had no effect on ZP chemical hardening. Measurements of ZP digestion times are not of extreme accuracy and errors of a few seconds can be assumed in the experimental data. However, when differences are in the range of hours among treatments, variations measured in seconds do not alter the robustness of the findings. Human oocytes and OF were of limited access, compared with oocytes from species collected in slaughterhouses. OFs from mouse, rat and hamster were not tested due to the small size of the genital tract in these species and the small volume of fluid available. Since oviductal modification of ZP resistance to proteolytic digestion has been demonstrated to influence fertilization and this pre-fertilization mechanism is considered to contribute to the control of polyspermy, the apparent absence of this mechanism in humans suggests that the regulation of polyspermy depends mainly on other mechanisms, most probably of cortical granule origin. Investigation into a possible relationship between the lack of oviductal ZP hardening in human oocytes and the existence of tubal ectopic pregnancies in this species is proposed. This work was supported by the Spanish Ministry of Science and Innovation and FEDER, Grant AGL2009-12512-C02-01-02. The authors declare no competing interest.
Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian
2015-01-01
ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures. PMID:25926655
Interactome disassembly during apoptosis occurs independent of caspase cleavage.
Scott, Nichollas E; Rogers, Lindsay D; Prudova, Anna; Brown, Nat F; Fortelny, Nikolaus; Overall, Christopher M; Foster, Leonard J
2017-01-12
Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Hagen, Live H; Frank, Jeremy A; Zamanzadeh, Mirzaman; Eijsink, Vincent G H; Pope, Phillip B; Horn, Svein J; Arntzen, Magnus Ø
2017-01-15
In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH 3 -N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. Copyright © 2016 American Society for Microbiology.
Chen, Bingyan; Jia, Xiangze; Miao, Song; Zeng, Shaoxiao; Guo, Zebin; Zhang, Yi; Zheng, Baodong
2018-06-30
Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization process, and the effect of high pressure homogenization (HPH) on the slow digestion properties of LS-GMS was investigated. The digestion profiles showed HPH treatment reduced the digestive rate of LS-GMS, and the extent of this change was dependent on homogenized pressure. Scanning electron microscopy displayed HPH treatment change the morphology of LS-GMS, with high pressure producing more compact block-shape structure to resist enzyme digestion. The results of Gel-permeation chromatography and Small-angle X-ray scattering revealed high homogenization pressure impacted molecular weight distribution and semi-crystalline region of complexes, resulting in the formation of new semi-crystalline with repeat unit distance of 16-18 nm and molecular weight distribution of 2.50-2.80 × 10 5 Da, which displayed strong enzymatic resistance. Differential scanning calorimeter results revealed new semi-crystalline lamellar may originate from type-II complexes that exhibited a high transition temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.
2015-01-01
In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new molecular mechanism of resistance to pesticides. PMID:26258982
Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks.
Moreno-Montoro, Miriam; Jauregi, Paula; Navarro-Alarcón, Miguel; Olalla-Herrera, Manuel; Giménez-Martínez, Rafael; Amigo, Lourdes; Miralles, Beatriz
2018-06-01
In this study, ultrafiltered goat milks fermented with the classical starter bacteria Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarus subsp. thermophilus or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain were analyzed using ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and/or high performance liquid chromatography-ion trap (HPLC-IT-MS/MS). Partial overlapping of the identified sequences with regard to fermentation culture was observed. Evaluation of the cleavage specificity suggested a lower proteolytic activity of the probiotic strain. Some of the potentially identified peptides had been previously reported as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antibacterial and might account for the in vitro activity previously reported for these fermented milks. Simulated digestion of the products was conducted in the presence of a dialysis membrane to retrieve the bioaccessible peptide fraction. Some sequences with reported physiological activity resisted digestion but were found in the non-dialyzable fraction. However, new forms released by digestion, such as the antioxidant α s1 -casein 144 YFYPQL 149 , the antihypertensive α s2 -casein 90 YQKFPQY 96 , and the antibacterial α s2 -casein 165 LKKISQ 170 , were found in the dialyzable fraction of both fermented milks. Moreover, in the fermented milk including the probiotic strain, the k-casein dipeptidyl peptidase IV inhibitor (DPP-IV) 51 INNQFLPYPY 60 as well as additional ACE inhibitory or antioxidant sequences could be identified. With the aim of anticipating further biological outcomes, quantitative structure activity relationship (QSAR) analysis was applied to the bioaccessible fragments and led to potential ACE inhibitory sequences being proposed. Graphical abstract Ultrafiltered goat milks were fermented with the classical starter bacteria (St) and with St plus the L. plantarum C4 probiotic strain. Samples were analyzed using HPLC-IT-MS/MS and UPLC-Q-TOF-MS/MS. After simulated digestion and dialysis, some of the active sequences remained and new peptides with reported beneficial activities were released.
Global site-specific analysis of glycoprotein N-glycan processing.
Cao, Liwei; Diedrich, Jolene K; Ma, Yuanhui; Wang, Nianshuang; Pauthner, Matthias; Park, Sung-Kyu Robin; Delahunty, Claire M; McLellan, Jason S; Burton, Dennis R; Yates, John R; Paulson, James C
2018-06-01
N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.
Kullolli, Majlinda; Rock, Dan A; Ma, Ji
2017-02-03
Characterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification. However, the sensitivity and efficiency of these methods is not always sufficient for characterization of novel proteins from complex biomatrices such as plasma or serum. In this study a novel bottom-up targeted protein workflow was optimized for analysis of proteolytic degradation of therapeutic proteins. Selective and sensitive tagging of the alpha-amine at the N-terminus of proteins of interest was performed by immunoaffinity capture of therapeutic protein and its catabolites followed by on-bead succinimidyloxycarbonylmethyl tri-(2,4,6-trimethoxyphenyl N-terminus (TMPP-NTT) tagging. The positively charged hydrophobic TMPP tag facilitates unambiguous sequence identification of all N-terminus peptides from complex tryptic digestion samples via data dependent liquid chromatgraphy-tandem mass spectroscopy. Utility of the workflow was illustrated by definitive analysis of in vitro catabolic profile of neurotensin human Fc (NTs-huFc) protein in mouse serum. The results from this study demonstrated that the IC-TMPP-NTT workflow is a simple and efficient method for catabolite formation in therapeutic proteins.
Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis.
Book, Adam J; Yang, Peizhen; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D
2005-06-01
The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling.
Tripeptidyl Peptidase II. An Oligomeric Protease Complex from Arabidopsis1
Book, Adam J.; Yang, Peizhen; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.
2005-01-01
The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling. PMID:15908606
Proteolytic crosstalk in multi-protease networks
NASA Astrophysics Data System (ADS)
Ogle, Curtis T.; Mather, William H.
2016-04-01
Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.
Proteolytic-antiproteolytic balance and its regulation in carcinogenesis
Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw
2005-01-01
Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961
Wu, Chen; Crowhurst, Ross N; Dennis, Alice B; Twort, Victoria G; Liu, Shanlin; Newcomb, Richard D; Ross, Howard A; Buckley, Thomas R
2016-01-01
Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.
Le Maux, Solène; Brodkorb, André; Croguennec, Thomas; Hennessy, Alan A; Bouhallab, Saïd; Giblin, Linda
2013-07-01
The dairy protein β-lactoglobulin (BLG) is known to bind fatty acids such as the salt of the essential longchain fatty acid linoleic acid (cis,cis-9,12-octadecadienoic acid, n-6, 18:2). The aim of the current study was to investigate how bovine BLG-linoleate complexes, of various stoichiometry, affect the enzymatic digestion of BLG and the intracellular transport of linoleate into enterocyte-like monolayers. Duodenal and gastric digestions of the complexes indicated that BLG was hydrolyzed more rapidly when complexed with linoleate. Digested as well as undigested BLG-linoleate complexes reduced intracellular linoleate transport as compared with free linoleate. To investigate whether enteroendocrine cells perceive linoleate differently when part of a complex, the ability of linoleate to increase production or secretion of the enteroendocrine satiety hormone, cholecystokinin, was measured. Cholecystokinin mRNA levels were different when linoleate was presented to the cells alone or as part of a protein complex. In conclusion, understanding interactions between linoleate and BLG could help to formulate foods with targeted fatty acid bioaccessibility and, therefore, aid in the development of food matrices with optimal bioactive efficacy. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Potential applicability of chymotrypsin-susceptible microcin J25 derivatives to food preservation.
Pomares, María Fernanda; Salomón, Raúl A; Pavlova, Olga; Severinov, Konstantin; Farías, Ricardo; Vincent, Paula A
2009-09-01
Microcin J25 (MccJ25) is a 21-residue ribosomally synthesized lariat peptide antibiotic. MccJ25 is active against such food-borne disease-causing pathogens as Salmonella spp., Shigella spp., and Escherichia coli, including E. coli O157:H7 and non-O157 strains. MccJ25 is highly resistant to digestion by proteolytic enzymes present in the stomach and intestinal contents. MccJ25 would therefore remain active in the gastrointestinal tract, affecting normal intestinal microbiota, and this limits the potential use of MccJ25 as a food preservative. In the present paper, we describe a chymotrypsin-susceptible MccJ25 derivative with a mutation of Gly(12) to Tyr that retained almost full antibiotic activity and efficiently inhibited the growth of pathogenic Salmonella enterica serovar Newport and Escherichia coli O157:H7 in skim milk and egg yolk. However, unlike the wild-type MccJ25, the MccJ25(G12Y) variant was inactivated by digestive enzymes both in vitro and in vivo. To our knowledge, our results represent the first example of a rational modification of a microcin aimed at increasing its potential use in food preservation.
Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel
2017-01-01
Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen. PMID:28125712
Rizzello, Carlo Giuseppe; Lorusso, Anna; Montemurro, Marco; Gobbetti, Marco
2016-06-01
Lactic acid bacteria were isolated and identified from quinoa flour, spontaneously fermented quinoa dough, and type I quinoa sourdough. Strains were further selected based on acidification and proteolytic activities. Selected Lactobacillus plantarum T6B10 and Lactobacillus rossiae T0A16 were used as mixed starter to get quinoa sourdough. Compared to non-fermented flour, organic acids, free amino acids, soluble fibers, total phenols, phytase and antioxidant activities, and in vitro protein digestibility markedly increased during fermentation. A wheat bread was made using 20% (w/w) of quinoa sourdough, and compared to baker's yeast wheat breads manufactured with or without quinoa flour. The use of quinoa sourdough improved the chemical, textural, and sensory features of wheat bread, showing better performances compared to the use of quinoa flour. Protein digestibility and quality, and the rate of starch hydrolysis were also nutritional features that markedly improved using quinoa sourdough as an ingredient. This study exploited the potential of quinoa flour through sourdough fermentation. A number of advantages encouraged the manufacture of novel and healthy leavened baked goods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proteolysis, proteasomes and antigen presentation
NASA Technical Reports Server (NTRS)
Goldberg, A. L.; Rock, K. L.
1992-01-01
Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.
Molecular transformers in the cell: lessons learned from the DegP protease-chaperone.
Sawa, Justyna; Heuck, Alexander; Ehrmann, Michael; Clausen, Tim
2010-04-01
Structure-function analysis of DegP revealed a novel mechanism for protease and chaperone regulation. Binding of unfolded proteins induces the oligomer reassembly from the resting hexamer (DegP6) into the functional protease-chaperone DegP12/24. The newly formed cage exhibits the characteristics of a proteolytic folding chamber, shredding those proteins that are severely misfolded while stabilizing and protecting proteins present in their native state. Isolation of native DegP complexes with folded outer membrane proteins (OMPs) highlights the importance of DegP in OMP biogenesis. The encapsulated OMP beta-barrel is significantly stabilized in the hydrophobic chamber of DegP12/24 and thus DegP seems to employ a reciprocal mechanism to those chaperones assisting the folding of water soluble proteins via polar interactions. In addition, we discuss in this review similarities to other complex proteolytic machines that, like DegP, are under control of a substrate-induced or stress-induced oligomer conversion.
Wenig, Katja; Chatwell, Lorenz; von Pawel-Rammingen, Ulrich; Björck, Lars; Huber, Robert; Sondermann, Peter
2004-12-14
Pathogenic bacteria have developed complex and diverse virulence mechanisms that weaken or disable the host immune defense system. IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a secreted cysteine endopeptidase from the human pathogen S. pyogenes with an extraordinarily high degree of substrate specificity, catalyzing a single proteolytic cleavage at the lower hinge of human IgG. This proteolytic degradation promotes inhibition of opsonophagocytosis and interferes with the killing of group A Streptococcus. We have determined the crystal structure of the catalytically inactive mutant IdeS-C94S by x-ray crystallography at 1.9-A resolution. Despite negligible sequence homology to known proteinases, the core of the structure resembles the canonical papain fold although with major insertions and a distinct substrate-binding site. Therefore IdeS belongs to a unique family within the CA clan of cysteine proteinases. Based on analogy with inhibitor complexes of papain-like proteinases, we propose a model for substrate binding by IdeS.
Yao, Fan; Zhou, Zhicheng; Kim, Jongchan; Hang, Qinglei; Xiao, Zhenna; Ton, Baochau N; Chang, Liang; Liu, Na; Zeng, Liyong; Wang, Wenqi; Wang, Yumeng; Zhang, Peijing; Hu, Xiaoyu; Su, Xiaohua; Liang, Han; Sun, Yutong; Ma, Li
2018-06-11
Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCF SKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP's nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP's K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP.
Soybean P34 Probable Thiol Protease Probably Has Proteolytic Activity on Oleosins.
Zhao, Luping; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei; Chen, Yeming
2017-07-19
P34 probable thiol protease (P34) and Gly m Bd 30K (30K) show high relationship with the protease of 24 kDa oleosin of soybean oil bodies. In this study, 9 day germinated soybean was used to separate bioprocessed P34 (P32) from bioprocessed 30K (28K). Interestingly, P32 existed as dimer, whereas 28K existed as monomer; a P32-rich sample had proteolytic activity and high cleavage site specificity (Lys-Thr of 24 kDa oleosin), whereas a 28K-rich sample showed low proteolytic activity; the P32-rich sample contained one thiol protease. After mixing with purified oil bodies, all P32 dimers were dissociated and bound to 24 kDa oleosins to form P32-24 kDa oleosin complexes. By incubation, 24 kDa oleosin was preferentially hydrolyzed, and two hydrolyzed products (HPs; 17 and 7 kDa) were confirmed. After most of 24 kDa oleosin was hydrolyzed, some P32 existed as dimer, and the other as P32-17 kDa HP. It was suggested that P32 was the protease.
Chen, Xu; He, Xiao-Wei; Zhang, Bin; Fu, Xiong; Jane, Jay-Lin; Huang, Qiang
2017-11-01
This study aimed to understand effects of adding corn oil (CO) and soy protein (SP) to corn starch on the physicochemical properties and digestive rates of annealed starch complex and mechanisms of interactions between corn starch (CS), CO and SP. Binary and ternary blends were prepared using CS mixed with CO (10%, dsb) and/or SP (10%, dsb) and incubated in a water bath at 50°C for 14h. Results showed that more agglomerates of the granules were in the ternary blends. With the addition of CO and/or SP, the CS displayed a decreased pasting temperature, an increased peak viscosity and a decreased enthalpy change of amylose-lipid complex dissociation. The CO can reinforce but SP hinder the annealing phenomenon. Results also showed that CO decreased retrogradation of CS, whereas SP increased it. The digestibility studies showed that the addition of CO and SP decreased the content of rapidly digestible starch and increased the sum of slowly digestible starch and resistant starch contents. SP displayed more impact on the digestibility of the ternary blends than CO. The physical barrier of CO, and amylose-lipid complex and protein-starch matrix can provide resistance to starch digestion. Copyright © 2017. Published by Elsevier B.V.
Evolution of a mass spectrometry-grade protease with PTM-directed specificity.
Tran, Duc T; Cavett, Valerie J; Dang, Vuong Q; Torres, Héctor L; Paegel, Brian M
2016-12-20
Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases. Citrulline, a PTM implicated in epigenetic and immunological function, made an ideal first target, because citrullination eliminates arginyl tryptic sites. Bead-displayed trypsin mutant genes were translated in droplets, the mutant proteases were challenged to cleave bead-bound fluorogenic probes of citrulline-dependent proteolysis, and the resultant beads (1.3 million) were screened. The most promising mutant efficiently catalyzed citrulline-dependent peptide bond cleavage (k cat /K M = 6.9 × 10 5 M -1 ⋅s -1 ). The resulting C-terminally citrullinated peptides generated characteristic isotopic patterns in MALDI-TOF MS, and both a fragmentation product y 1 ion corresponding to citrulline (176.1030 m/z) and diagnostic peak pairs in the extracted ion chromatograms of LC-MS/MS analysis. Using these signatures, we identified citrullination sites in protein arginine deiminase 4 (12 sites) and in fibrinogen (25 sites, two previously unknown). The unique mass spectral features of PTM-dependent proteolytic digest products promise a generalized PTM site-mapping strategy based on a toolbox of such mutant proteases, which are now accessible by laboratory evolution.
Christophersen, Philip Carsten; Zhang, Long; Müllertz, Anette; Nielsen, Hanne Mørck; Yang, Mingshi; Mu, Huiling
2014-09-01
To investigate the in vitro release and degradation of desmopressin from saturated triglyceride microparticles under both lipolytic and proteolytic conditions. The release of desmopressin from different solid lipid microparticles in the absence and presence of a microbial lipase and protease was determined. Trilaurin (TG12), trimyristin (TG14), tripalmitin (TG16), and tristearin (TG18) were used as lipid excipients to produce solid lipid microparticles. In the presence of lipase, the rate of drug release from different lipid particles was in the order of TG14 > TG16 > TG18, which is the same rank order as the lipid degradation rate. A reverse rank order was found for the protection of desmopressin from enzymatic degradation due to spatial separation of desmopressin from the protease. TG12 accelerated the release of desmopressin from all lipid particles when added as either drug-free microparticles to the lipolysis medium or incorporated in TG16 particles. Additionally, TG12 particles protected desmopressin from degradation when present in the lipolysis medium with the other lipid microparticles. TG12 is a very interesting lipid for oral lipid formulations containing peptides and proteins as it alters release and degradation of the incorporated desmopressin. The present study demonstrates the possibility of bio-relevant in vitro evaluation of lipid-based solid particles.
Stanic-Vucinic, Dragana; Nikolic, Milan; Milcic, Milos; Cirkovic Velickovic, Tanja
2016-01-01
Phycocyanobilin (PCB) binds with high affinity (2.2 x 106 M-1 at 25°C) to human serum albumin (HSA) at sites located in IB and IIA subdomains. The aim of this study was to examine effects of PCB binding on protein conformation and stability. Using 300 ns molecular dynamics (MD) simulations, UV-VIS spectrophotometry, CD, FT-IR, spectrofluorimetry, thermal denaturation and susceptibility to trypsin digestion, we studied the effects of PCB binding on the stability and rigidity of HSA, as well as the conformational changes in PCB itself upon binding to the protein. MD simulation results demonstrated that HSA with PCB bound at any of the two sites showed greater rigidity and lower overall and individual domain flexibility compared to free HSA. Experimental data demonstrated an increase in the α-helical content of the protein and thermal and proteolytic stability upon ligand binding. PCB bound to HSA undergoes a conformational change to a more elongated conformation in the binding pockets of HSA. PCB binding to HSA stabilizes the structure of this flexible transport protein, making it more thermostable and resistant to proteolysis. The results from this work explain at molecular level, conformational changes and stabilization of HSA structure upon ligand binding. The resultant increased thermal and proteolytic stability of HSA may provide greater longevity to HSA in plasma. PMID:27959940
COMPARATIVE STUDIES OF THREE METHODS FOR MEASURING PEPSIN ACTIVITY
Loken, Merle K.; Terrill, Kathleen D.; Marvin, James F.; Mosser, Donn G.
1958-01-01
Comparison has been made of a simple method originated by Absolon and modified in our laboratories for assay of proteolytic activity using RISA (radioactive iodinated serum albumin—Abbott Laboratories), with the commonly used photometric methods of Anson and Kunitz. In this method, pepsin was incubated with an albumin substrate containing RISA, followed by precipitation of the undigested substrate with trichloroacetic acid and measurement of radioactive digestion products in the supernatant fluid. The I131—albumin bond was shown in the present studies to be altered only by the proteolytic activity, and not by the incubation procedures at various values of pH. Any free iodine present originally in the RISA was removed by a single passage through a resin column (amberlite IRA-400-C1). Pepsin was shown to be most stable in solution at a pH of 5.5. Activity of pepsin was shown to be maximal when it was incubated with albumin at a pH of 2.5. Pepsin activity was shown to be altered in the presence of various electrolytes. Pepsin activity measured by the RISA and Anson methods as a function of concentration or of time of incubation indicated that these two methods are in good agreement and are equally sensitive. Consistently smaller standard errors were obtained by the RISA method of pepsin assay than were obtained with either of the other methods. PMID:13587910
Oliveira, Catiúscia P; Prado, Willian A; Lavayen, Vladimir; Büttenbender, Sabrina L; Beckenkamp, Aline; Martins, Bruna S; Lüdtke, Diogo S; Campo, Leandra F; Rodembusch, Fabiano S; Buffon, Andréia; Pessoa, Adalberto; Guterres, Silvia S; Pohlmann, Adriana R
2017-02-01
This study was conducted a promising approach to surface functionalization developed for lipid-core nanocapsules and the merit to pursue new strategies to treat solid tumors. Bromelain-functionalized multiple-wall lipid-core nanocapsules (Bro-MLNC-Zn) were produced by self-assembling following three steps of interfacial reactions. Physicochemical and structural characteristics, in vitro proteolytic activity (casein substrate) and antiproliferative activity (breast cancer cells, MCF-7) were determined. Bro-MLNC-Zn had z-average diameter of 135 nm and zeta potential of +23 mV. The complex is formed by a Zn-N chemical bond and a chelate with hydroxyl and carboxyl groups. Bromelain complexed at the nanocapsule surface maintained its proteolytic activity and showed anti-proliferative effect against human breast cancer cells (MCF-7) (72.6 ± 1.2% at 1.250 μg mL -1 and 65.5 ± 5.5% at 0.625 μg mL -1 ). Comparing Bro-MLNC-Zn and bromelain solution, the former needed a dose 160-folds lower than the latter for a similar effect. Tripan blue dye assay corroborated the results. The surface functionalization approach produced an innovative formulation having a much higher anti-proliferative effect than the bromelain solution, even though both in vitro proteolytic activity were similar, opening up a great opportunity for further studies in nanomedicine.
Martinet, N; Beninati, S; Nigra, T P; Folk, J E
1990-01-01
N1N8-Bis(gamma-glutamyl)spermidine was found in exhaustive proteolytic digests of isolated cell envelopes from human epidermis at levels comparable with those of epsilon-(gamma-glutamyl)lysine. Significantly higher than normal amounts of these compounds, particularly the bis(gamma-glutamyl)polyamine, were observed in envelopes from afflicted areas (scales) of psoriatic patients. These findings support the notions that N1N8-bis(gamma-glutamyl)spermidine, like epsilon-(gamma-glutamyl)lysine, functions in cell envelopes as an enzyme-generated protein cross-link and stabilizing force and that individuals with the chronic, recurrent skin disease, psoriasis, exhibit in involved epidermis abnormal cell-envelope-protein cross-linking. PMID:2241917
The effect of wounds on desiccation of prey: implications for a predator with extra-oral digestion.
Morse, Douglass H
1998-06-01
Predators that inject prey with proteolytic enzymes, thereby breaking down their tissues for subsequent ingestion, run the risk that desiccation will hinder eventual retrieval of resources from these prey. Wounds made in capture might exacerbate this problem. However, desiccation rates of small syrphid flies Toxomerusmarginatus (Diptera: Syrphidae) killed by juvenile crab spiders Misumena vatia (Araneae: Thomisidae) and intact dead syrphid flies did not differ over the normal period of feeding, though desiccation rates in shade and sun differed several-fold. Neither the size of the spider (and presumably the size of the wounds it inflicted) nor the location of the wounds on the flies' bodies affected desiccation rates. Thus, this tactic of prey handling does not exact an added processing cost on Misumena.
Digestomics: an emerging strategy for comprehensive analysis of protein catabolism.
Bingeman, Travis S; Perlman, David H; Storey, Douglas G; Lewis, Ian A
2017-02-01
When cells mobilize nutrients from protein, they generate a fingerprint of peptide fragments that reflects the net action of proteases and the identities of the affected proteins. Analyzing these mixtures falls into a grey area between proteomics and metabolomics that is poorly served by existing technology. Herein, we describe an emerging digestomics strategy that bridges this gap and allows mixtures of proteolytic fragments to be quantitatively mapped with an amino acid level of resolution. We describe recent successes using this technique, including a case where digestomics provided the link between hemoglobin digestion by the malaria parasite and the world-wide distribution of chloroquine resistance. We highlight other areas of microbiology and cancer research that are well-suited to this emerging technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qin, Chunlin; Brunn, Jan C; Cook, Richard G; Orkiszewski, Ralph S; Malone, James P; Veis, Arthur; Butler, William T
2003-09-05
Full-length cDNA coding for dentin matrix protein 1 (DMP1) has been cloned and sequenced, but the corresponding complete protein has not been isolated. In searching for naturally occurring DMP1, we recently discovered that the extracellular matrix of bone contains fragments originating from DMP1. Shortened forms of DMP1, termed 37K and 57K fragments, were treated with alkaline phosphatase and then digested with trypsin. The resultant peptides were purified by a two-dimensional method: size exclusion followed by reversed-phase high performance liquid chromatography. Purified peptides were sequenced by Edman degradation and mass spectrometry, and the sequences compared with the DMP1 sequence predicted from cDNA. Extensive sequencing of tryptic peptides revealed that the 37K fragments originated from the NH2-terminal region, and the 57K fragments were from the COOH-terminal part of DMP1. Phosphate analysis indicated that the 37K fragments contained 12 phosphates, and the 57K fragments had 41. From 37K fragments, two peptides lacked a COOH-terminal lysine or arginine; instead they ended at Phe173 and Ser180 and were thus COOH termini of 37K fragments. Two peptides were from the NH2 termini of 57K fragments, starting at Asp218 and Asp222. These findings indicated that DMP1 is proteolytically cleaved at four bonds, Phe173-Asp174, Ser180-Asp181, Ser217-Asp218, and Gln221-Asp222, forming eight fragments. The uniformity of cleavages at the NH2-terminal peptide bonds of aspartyl residues suggests that a single proteinase is involved. Based on its reported specificity, we hypothesize that these scissions are catalyzed by PHEX protein. We envision that the proteolytic processing of DMP1 plays a crucial role during osteogenesis and dentinogenesis.
Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2015-01-01
The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.
Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A.
2016-01-01
We present the mass spectrometry (MS) based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone post-translational modifications (PTMs). Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has thus gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform 2-fold more MS/MS events than traditional DIA, it acquired on average ~5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. PMID:27193262
Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.
Taoka, Masato; Morofuji, Noriaki; Yamauchi, Yoshio; Ojima, Hidenori; Kubota, Daisuke; Terukina, Goro; Nobe, Yuko; Nakayama, Hiroshi; Takahashi, Nobuhiro; Kosuge, Tomoo; Isobe, Toshiaki; Kondo, Tadashi
2014-11-07
This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.
Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A
2016-08-01
We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Plotnick, Eric
This ERIC Digest discusses concept mapping, a technique for representing the structure of information visually. Concept mapping can be used to brainstorm, design complex structures, communicate complex ideas, aid learning by explicitly integrating new and old knowledge, and assess understanding or diagnose misunderstanding. Visual representation…
Ul Haq, Mohammad Raies; Kapila, Rajeev; Kapila, Suman
2015-02-01
Crossbred Karan Fries (KF) cows, among the best yielders of milk in India are carriers of A1 and A2 alleles. These genetic variants have been established as the source of β-casomorphins (BCMs) bioactive peptides that are implicated with various physiological and health issues. Therefore, the present study was aimed to investigate the release of BCM-7/5 from β-casein variants of KF by simulated gastrointestinal digestion (SGID) performed with proteolytic enzymes, in vitro. β-Casein variants (A1A1, A1A2 and A2A2) were isolated from milk samples of genotyped Karan Fries animals and subjected to hydrolysis by SGID using proteolytic enzymes (pepsin, trypsin, chymotrypsin and pancreatin), in vitro. Detection of BCMs were carried out in two peptide fractions (A and B) of RP-HPLC collected at retention time (RT) 24 and 28min respectively corresponding to standard BCM-5 and BCM-7 by MS-MS and competitive ELISA. One of the RP-HPLC fractions (B) showed the presence of 14 amino acid peptide (VYPFPGPIHNSLPQ) having encrypted internal BCMs sequence while no such peptide or precursor was observed in fraction A by MS-MS analysis. Further hydrolysis of fraction B of A1A1 and A1A2 variants of β-casein with elastase and leucine aminopeptidase revealed the release of BCM-7 by competitive ELISA. The yield of BCM-7 (0.20±0.02mg/g β-casein) from A1A1 variant was observed to be almost 3.2 times more than A1A2 variant of β-casein. However, release of BCM-7/5 could not be detected from A2A2 variant of β-casein. The biological activity of released peptides on rat ileum by isolated organ bath from A1A1 (IC50=0.534-0.595μM) and A1A2 (IC50=0.410-0.420μM) hydrolysates further confirmed the presence of opioid peptide BCM-7. Copyright © 2014 Elsevier Ltd. All rights reserved.
The anaerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.; Boone, D.R.
1996-01-01
The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited rangemore » of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.« less
Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.
Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi
2015-01-01
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves; Einav, Shirit
2016-11-01
Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. Viruses commonly bud at the plasma membrane by recruiting the host ESCRT machinery via conserved motifs termed late domains. The mechanism by which some viruses, such as HCV, bud intracellularly is, however, poorly characterized. Moreover, whether envelopment of HCV and other viruses lacking defined late domains is ESCRT mediated and, if so, what the entry points into the ESCRT pathway are remain unknown. Here, we report the interaction network of HCV with the ESCRT machinery and a critical role for HRS, an ESCRT-0 complex component, in HCV envelopment. Viral protein ubiquitination was discovered to be a signal for HRS binding and HCV assembly, thereby functionally compensating for the absence of late domains. These findings characterize how a virus lacking defined late domains co-opts ESCRT to bud intracellularly. Since the ESCRT machinery is essential for the life cycle of multiple viruses, better understanding of this virus-host interplay may yield targets for broad-spectrum antiviral therapies. Copyright © 2016 Barouch-Bentov et al.
Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip
Nelson, Gregory M.; Huffman, Holly; Smith, David F.
2003-01-01
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function. PMID:14627198
Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.
Nelson, Gregory M; Huffman, Holly; Smith, David F
2003-01-01
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.
Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.
Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee
Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin.
Whittington, A Carl; Mason, Andrew J; Rokyta, Darin R
2017-04-01
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Krstic, Dimitrije; Rodriguez, Myriam; Knuesel, Irene
2012-01-01
The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD. PMID:23082219
Stable isotope, site-specific mass tagging for protein identification
Chen, Xian
2006-10-24
Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.
Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine
2018-03-27
Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to products assimilable by the host or (ii) may have acquired these functions through gene transfer from the aerobic algal microbiota.
Masson, Glenn R.; Maslen, Sarah L.
2017-01-01
Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics. PMID:28381646
Activation of liver alcohol dehydrogenase by glycosylation.
Tsai, C S; White, J H
1983-01-01
D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol. PMID:6342612
López-Ferrer, Daniel; Hixson, Kim K.; Smallwood, Heather; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.
2009-01-01
A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultra-rapid digestion and thorough 18O labeling for quantitative protein comparisons. The reproducible and highly efficient method provided effective digestions in <1 min with a minimized amount of enzyme required compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as 18O labeling of such complex protein mixtures, which validated the application of this method for differential proteomic measurements. This approach is simple, reproducible, cost effective, rapid, and thus well-suited for automation. PMID:19555078
Specific starch digestion of maize alpha-limit dextrins by recombinant mucosal glucosidase enzymes
USDA-ARS?s Scientific Manuscript database
Starch digestion requires two luminal enzymes, salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities from the N- and C-terminals of maltase-glucoamylase (MGAM) and sucrose-isomaltase (SI) complexes. AMY is not a requirement for starch digestion to glucose b...
Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes?
Weiß, S; Lebuhn, M; Andrade, D; Zankel, A; Cardinale, M; Birner-Gruenberger, R; Somitsch, W; Ueberbacher, B J; Guebitz, G M
2013-04-01
Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea
The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less
Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.
Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas
2009-07-20
Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.
Book, Adam J; Gladman, Nicholas P; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D
2010-08-13
Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.
Book, Adam J.; Gladman, Nicholas P.; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.
2010-01-01
Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis. PMID:20516081
Bonatti, S; Cancedda, F D
1982-04-01
Cytoplasmic extracts prepared from Sindbis virus-infected chicken embryo fibroblasts pulse-chase-labeled with [35S]methionine 6 h postinfection were analyzed on a highly resolving sodium dodecyl sulfate-gel either directly or after various treatments. The results we obtained suggest that (i) the proteolytic cleavage which converts PE2 to E2 glycoprotein takes place intracellularly, before or at least during the formation of complex-type oligosaccharide side chains; and (ii) E1 glycoprotein undergoes a complex maturation pattern. Newly synthesized E1 has a molecular weight of 53,000: shortly thereafter, this 53,000 (53K) form was converted to a 50K form. Subsequently, the 50K form decreased its apparent molecular weight progressively and eventually comigrated with E1 glycoprotein present in the extracellular virus, which displays a molecular weight of 51,000 to 52,000. The conversion of the 53K to the 50K form was not the result of a proteolytic processing and did not depend on glycosylation or disulfide bridge formation and exchange. The possible mechanisms of this conversion are discussed. The second conversion step (from the 50K to the 51-52K form) was due to the formation of complex-type oligosaccharide and was reversed by incubating the cellular extracts with neuraminidase before electrophoretic analysis.
Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel
2012-01-01
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786
NASA Astrophysics Data System (ADS)
Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik
2016-06-01
Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.
Pepinsky, Blake; Gong, Bang-Jian; Gao, Yan; Lehmann, Andreas; Ferrant, Janine; Amatucci, Joseph; Sun, Yaping; Bush, Martin; Walz, Thomas; Pederson, Nels; Cameron, Thomas; Wen, Dingyi
2017-08-22
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP 60-114 , remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP 60-114 had no impact on activity. The specific activity of the GDF11/PDP 60-114 complex (EC 50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP 60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP 60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP 60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC 50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC 50 = 2 nM) by protease treatment. Complex formation with PDP 60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-β family that form latent pro/mature domain complexes.
Validation of an in vitro digestive system for studying macronutrient decomposition in humans.
Kopf-Bolanz, Katrin A; Schwander, Flurina; Gijs, Martin; Vergères, Guy; Portmann, Reto; Egger, Lotti
2012-02-01
The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.
Yeasts from autochthonal cheese starters: technological and functional properties.
Binetti, A; Carrasco, M; Reinheimer, J; Suárez, V
2013-08-01
The aim of this work was to identify 20 yeasts isolated from autochthonal cheese starters and evaluate their technological and functional properties. The capacities of the yeasts to grow at different temperatures, pH, NaCl and lactic acid concentrations as well as the proteolytic and lipolytic activities were studied. Moreover, survival to simulated gastrointestinal digestion, hydrophobicity, antimicrobial activity against pathogens and auto- and co-aggregation abilities were evaluated. The sequentiation of a fragment from the 26S rDNA gene indicated that Kluyveromyces marxianus was the predominant species, followed by Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces lactis and Galactomyces geotrichum. RAPD with primer M13 allowed a good differentiation among strains from the same species. All strains normally grew at pH 4.7-5.5 and temperatures between 15 and 35°C. Most of them tolerated 10% NaCl and 3% lactic acid. Some strains showed proteolytic (eight isolates) and/or lipolytic (four isolates) capacities. All strains evidenced high gastrointestinal resistance, moderate hydrophobicity, intermediate auto-aggregation and variable co-aggregation abilities. No strains inhibited the growth of the pathogens assayed. Some strains from dairy sources showed interesting functional and technological properties. This study has been the first contribution to the identification and characterization of yeasts isolated from autochthonal cheese starters in Argentina. Many strains could be proposed as potential candidates to be used as probiotics and/or as co-starters in cheese productions. © 2013 The Society for Applied Microbiology.
Impairment of Macrophage Presenting Ability and Viability by Echinococcus granulosus Antigens.
Mejri, Naceur; Hassen, Imed Eddine; Knapp, Jenny; Saidi, Mouldi
2017-03-01
Despite advances toward an improved understanding of the evasive mechanisms leading to the establishment of cystic echinococcosis, the discovery of specific immunosuppressive mechanisms and related factors are of great interest in the development of an immunotherapeutic approach. To elucidate immunosuppressive effects of bioactive factors contained in chromatographic fractions from hydatid cystic fluid (HCF) of Echinococcus granulosus. Hydatid cystic fluid was fractionated by reverse phase chromatography. Non-specific Concanavalin A-driven proliferation of spleen cells was used to determine specific inhibitory fractions. Trypan blue exclusion test and flowcytometry analysis were performed to check whether highly inhibitory fractions of HCF have apoptotic effect on peritoneal macrophages. Western blot analysis was used to determine proteolytic effects of parasitic antigens on major histocompatibility complex (MHC) class II (I-a) contained in membrane proteins extract from macrophages. High concentrations of HCF and few of chromatographic fractions suppressed spleen cells proliferation. Fractions 7 and 35 were the highest inhibitory fractions. Specifically fraction 35 and to a lesser extent HCF induced apoptosis in peritoneal naive macrophages. However, HCF and the fraction 7 proteolytically altered the expression of MHC class II molecules on peritoneal macrophages. The proteolytic molecule was identified to be a serine protease. Macrophages taken at the chronic and end phase from cystic echinococcosis-infected mice were able to uptake and process C-Ovalbumine-FITC. These cells expressed a drastically reduced level of (I-a) molecules. Our study present new aspects of immune suppression function of E. granulosus. Further molecular characterization of apoptotic and proteolytic factors might be useful to develop immunotherapeutic procedure to break down their inhibitory effects.
Müller, Barbara; Anders, Maria; Reinstein, Jochen
2014-01-01
Human immunodeficiency virus particles undergo a step of proteolytic maturation, in which the main structural polyprotein Gag is cleaved into its mature subunits matrix (MA), capsid (CA), nucleocapsid (NC) and p6. Gag proteolytic processing is accompanied by a dramatic structural rearrangement within the virion, which is necessary for virus infectivity and has been proposed to proceed through a sequence of dissociation and reformation of the capsid lattice. Morphological maturation appears to be tightly regulated, with sequential cleavage events and two small spacer peptides within Gag playing important roles by regulating the disassembly of the immature capsid layer and formation of the mature capsid lattice. In order to measure the influence of individual Gag domains on lattice stability, we established Förster's resonance energy transfer (FRET) reporter virions and employed rapid kinetic FRET and light scatter measurements. This approach allowed us to measure dissociation properties of HIV-1 particles assembled in eukaryotic cells containing Gag proteins in different states of proteolytic processing. While the complex dissociation behavior of the particles prevented an assignment of kinetic rate constants to individual dissociation steps, our analyses revealed characteristic differences in the dissociation properties of the MA layer dependent on the presence of additional domains. The most striking effect observed here was a pronounced stabilization of the MA-CA layer mediated by the presence of the 14 amino acid long spacer peptide SP1 at the CA C-terminus, underlining the crucial role of this peptide for the resolution of the immature particle architecture.
Bantscheff, M; Weiss, V; Glocker, M O
1999-08-24
We have developed a mass spectrometry based method for the identification of linker regions and domain borders in multidomain proteins. This approach combines limited proteolysis and in-gel proteolytic digestions and was applied to the determination of linkers in the transcription factor NtrC from Escherichia coli. Limited proteolysis of NtrC with thermolysin and papain revealed that initial digestion yielded two major bands in SDS-PAGE that were identified by mass spectrometry as the R-domain and the still covalently linked OC-domains. Subsequent steps in limited proteolysis afforded further cleavage of the OC-fragment into the O- and the C-domain at accessible amino acid residues. Mass spectrometric identification of the tryptic/thermolytic peptides obtained after in-gel total proteolysis of the SDS-PAGE-separated domains determined the domain borders and showed that the protease accessible linker between R- and O-domain comprised amino acids Val-131 and Gln-132 within the "Q-linker" in agreement with papain and subtilisin digestion. The region between amino acid residues Thr-389 and Gln-396 marked the hitherto unknown linker sequence that connects the O- with the C-domain. High abundances of proline-, alanine-, serine-, and glutamic acid residues were found in this linker structure (PASE-linker) of related NtrC response regulator proteins. While R- and C-domains remained stable under the applied limited proteolysis conditions, the O-domain was further truncated yielding a core fragment that comprised the sequence from Ile-140 to Arg-320. ATPase activity was lost after separation of the R-domain from the OC-fragment. However, binding of OC- and C- fragments to specific DNA was observed by characteristic band-shifts in migration retardation assays, indicating intact tertiary structures of the C-domain. The outlined strategy proved to be highly efficient and afforded lead information of tertiary structural features necessary for protein design and engineering and for structure-function studies.
Zhu, Xia-ping; Yin, Ji-xian; Chen, Wei-dong; Hu, Zi-Wen; Liang, Qing-xun; Chen, Tie-yao
2010-08-01
The method of determination of iron, titanium and vanadium in indissolvable vanadium and titanium magnetite has been established by inductively coupled plasma atomic emission spectroscopy through adding the complexant A and using microwave-assisted digestion. The optimal conditions are confirmed by orthogonal experiment: 0.1 g vanadium and titanium magnetite, 0.04 g complexant A, 12 mL concentrated HC1, 10 min digestion time, and 385 W microwave power. The newly-established method has been applied to digest vanadium and titanium magnetite of Panzhihua Iron and Steel Institute (GBW07226). The iron, titanium and vanadium were detected by ICP-OES, and both comparative error (Er%) and comparative standard deviation (RSD%) met the demand of analytical chemistry, and the complexant A can significantly accelerate the dissolution of vanadium and titanium magnetite through the complexation with the dissolved metal ions, and making the surface of sample and hydrochloric acid medium to update constantly. The determination of the main and trace elements of digestion solution at the same time was achieved by ICP-OES. The method has the advantages of less use of reagents, economy, rapidness, and being friendly to environment, and it meets the requirement for rapid and volume determination. So the method has the value of practical application for the entry-exit inspection and quarantine department of the state and other relevant inspection units.
Bandyopadhyay, Prasun; Ghosh, Amit K; Ghosh, Chandrasekhar
2012-06-01
Tea and coffee are widely consumed beverages across the world and they are rich sources of various polyphenols. Polyphenols are responsible for the bitterness and astringency of beverages and are also well known to impart antioxidant properties which is beneficial against several oxidative stress related diseases like cancer, cardiovascular diseases, and aging. On the other hand, proteins are also known to display many important roles in several physiological activities. Polyphenols can interact with proteins through hydrophobic or hydrophilic interactions, leading to the formation of soluble or insoluble complexes. According to recent studies, this complex formation can affect the bioavailability and beneficiary properties of both the individual components, in either way. For example, polyphenol-protein complex formation can reduce or enhance the antioxidant activity of polyphenols; similarly it can also affect the digestion ability of several digestive enzymes present in our body. Surprisingly, no review article has been published recently which has focused on the progress in this area, despite numerous articles having appeared in this field. This review summarizes the recent trends and patterns (2005 onwards) in polyphenol-protein interaction studies focusing on the characterization of the complex, the effect of this complex formation on tea and coffee taste, antioxidant properties and the digestive system.
Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.
O'Grady, John P; Meyer, Kevin W; Poe, Derrick N
2017-01-01
The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.
Cuetos, M J; Gómez, X; Otero, M; Morán, A
2010-10-01
Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.
Probing the hammerhead ribozyme structure with ribonucleases.
Hodgson, R A; Shirley, N J; Symons, R H
1994-01-01
Susceptibility to RNase digestion has been used to probe the conformation of the hammerhead ribozyme structure prepared from chemically synthesised RNAs. Less than about 1.5% of the total sample was digested to obtain a profile of RNase digestion sites. The observed digestion profiles confirmed the predicted base-paired secondary structure for the hammerhead. Digestion profiles of both cis and trans hammerhead structures were nearly identical which indicated that the structural interactions leading to self-cleavage were similar for both systems. Furthermore, the presence or absence of Mg2+ did not affect the RNase digestion profiles, thus indicating that Mg2+ did not modify the hammerhead structure significantly to induce self-cleavage. The base-paired stems I and II in the hammerhead structure were stable whereas stem III, which was susceptible to digestion, appeared to be an unstable region. The single strand domains separating the stems were susceptible to digestion with the exception of sites adjacent to guanosines; GL2.1 in the stem II loop and G12 in the conserved GAAAC sequence, which separates stems II and III. The absence of digestion at GL2.1 in the stem II hairpin loop of the hammerhead complex was maintained in uncomplexed ribozyme and in short oligonucleotides containing only the stem II hairpin region. In contrast, the G12 site became susceptible when the ribozyme was not complexed with its substrate. Overall the results are consistent with the role of Mg2+ in the hammerhead self-cleavage reaction being catalytic and not structural. Images PMID:8202361
Maunsell, Bláithín; Adams, Claire; O'Gara, Fergal
2006-01-01
In the soil bacterium Pseudomonas fluorescens M114, extracellular proteolytic activity and fluorescent siderophore (pseudobactin M114) production were previously shown to be co-ordinately negatively regulated in response to environmental iron levels. An iron-starvation extracytoplasmic function sigma factor, PbrA, required for the transcription of siderophore biosynthetic genes, was also implicated in M114 protease regulation. The current study centred on the characterization and genetic regulation of the gene(s) responsible for protease production in M114. A serralysin-type metalloprotease gene, aprA, was identified and found to encode the major, if not only, extracellular protease produced by this strain. The expression of aprA and its protein product were found to be subject to complex regulation. Transcription analysis confirmed that PbrA was required for full aprA transcription under low iron conditions, while the ferric uptake regulator, Fur, was implicated in aprA repression under high iron conditions. Interestingly, the iron regulation of AprA was dependent on culture conditions, with PbrA-independent AprA-mediated proteolytic activity observed on skim milk agar supplemented with yeast extract, when supplied with iron or purified pseudobactin M114. These effects were not observed on skim milk agar without yeast extract. PbrA-independent aprA expression was also observed from a truncated transcriptional fusion when grown in sucrose asparagine tryptone broth supplied with iron or purified pseudobactin M114. Thus, experimental evidence suggested that iron mediated its effects via transcriptional activation by PbrA under low iron conditions, while an as-yet-unidentified sigma factor(s) may be required for the PbrA-independent aprA expression and AprA proteolytic activity induced by siderophore and iron.
Ji, Ying
2018-03-01
The digestibility and molecular structure of corn starch mixed with amino acid modified by low-pressure treatment (LPT) was investigated. Amino acid induced a significant increase in the slowly digestible starch (SDS) and decrease in the rapidly digestible starch (RDS) after LPT. The reason is the formation of ester bond between the molecular chains of amino acid and starch. Low pressure treatment altered greatly the morphology of corn starch mixed with or without amino acid. After LPT, less ordered Maltese and more granule fragments were observed for starch-amino acid complex. An increase in size distribution was obvious after LPT and the size distribution curves provided from a new variety. We found that higher enthalpy and relative crystallinity of the starch-amino acid complex were associated with a higher SDS content. It can be inferred that LPT had a greater impact on the digestion and structural characterization of corn starch mixed with amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.
King, Marcus D.; Guentzel, M. Neal; Arulanandam, Bernard P.; Bodour, Adria A.; Brahmakshatriya, Vinayak; Lupiani, Blanca; Chambers, James P.
2011-01-01
Proteolytic cleavage activation of influenza virus hemagglutinin (HA0) is required for cell entry via receptor-mediated endocytosis. Despite numerous studies describing bacterial protease-mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the cloaca of wild waterfowl was examined for (i) representative bacterial types and (ii) their ability to cleave in a “trypsin-like” manner the precursor viral hemagglutinin molecule (HA0). Using radiolabeled HA0, bacterial secretion-mediated trypsin-like conversion of HA0 to HA1 and HA2 peptide products was observed to various degrees in 42 of 44 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially reduced emergent virus progeny compared with what was expected. Examination of two isolates exhibiting pronounced trypsin-like conversion of HA0 to HA1 and HA2 peptide products and low infectivity revealed lipase activity to be present. Because influenza virus possesses a complex lipid envelope, the presence of lipid hydrolase activity could in part account for the observed less-than-expected level of viable progeny. A thorough characterization of respective isolate protease HA0 hydrolysis products as well as other resident activities (i.e., lipase) is ongoing such that the role of these respective contributors in virus activation/inactivation can be firmly established. PMID:21531837
Bhattacharjee, Sanchari; Dasgupta, Rakhi; Bagchi, Angshuman
2017-09-01
Cells withstand the effects of temperature change with the help of small heat shock proteins IbpA and IbpB. The IbpAB protein complex interacts with Lon protease in their free form and gets degraded at physiological temperature when there is no temperature stress. However, the proteolytic degradation of IbpAB is diminished when Lon is mutated. The mutation K722Q in Lon brings about some structural changes so that the proteolytic interactions between the heat shock proteins with that of the mutated Lon protease are lost. However, the detailed molecular aspects of the interactions are not yet fully understood. In the present, we made an attempt to analyze the biochemical aspects of the interactions between the small heat shock proteins IbpAB with wild type and mutant Lon protease. We for the first time deciphered the molecular details of the mechanism of interaction of small heat shock proteins with Lon protease bearing K722Q mutation i.e. the interaction pattern of heat shock proteins with mutant Lon protease at physiological temperature in absence of proteolytic machinery. Our study may therefore be useful to elucidate the mechanistic details of the correlation with IbpA, IbpB and Lon protease. Copyright © 2017 Elsevier B.V. All rights reserved.
Zamakhchari, Maram; Wei, Guoxian; Dewhirst, Floyd; Lee, Jaeseop; Schuppan, Detlef; Oppenheim, Frank G.; Helmerhorst, Eva J.
2011-01-01
Background Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes. Methodology/Principal Findings Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD620 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70–75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3–10). Conclusion/Significance While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides. PMID:21957450
Zamakhchari, Maram; Wei, Guoxian; Dewhirst, Floyd; Lee, Jaeseop; Schuppan, Detlef; Oppenheim, Frank G; Helmerhorst, Eva J
2011-01-01
Gluten proteins, prominent constituents of barley, wheat and rye, cause celiac disease in genetically predisposed subjects. Gluten is notoriously difficult to digest by mammalian proteolytic enzymes and the protease-resistant domains contain multiple immunogenic epitopes. The aim of this study was to identify novel sources of gluten-digesting microbial enzymes from the upper gastro-intestinal tract with the potential to neutralize gluten epitopes. Oral microorganisms with gluten-degrading capacity were obtained by a selective plating strategy using gluten agar. Microbial speciations were carried out by 16S rDNA gene sequencing. Enzyme activities were assessed using gliadin-derived enzymatic substrates, gliadins in solution, gliadin zymography, and 33-mer α-gliadin and 26-mer γ-gliadin immunogenic peptides. Fragments of the gliadin peptides were separated by RP-HPLC and structurally characterized by mass spectrometry. Strains with high activity towards gluten were typed as Rothia mucilaginosa and Rothia aeria. Gliadins (250 µg/ml) added to Rothia cell suspensions (OD(620) 1.2) were degraded by 50% after ∼30 min of incubation. Importantly, the 33-mer and 26-mer immunogenic peptides were also cleaved, primarily C-terminal to Xaa-Pro-Gln (XPQ) and Xaa-Pro-Tyr (XPY). The major gliadin-degrading enzymes produced by the Rothia strains were ∼70-75 kDa in size, and the enzyme expressed by Rothia aeria was active over a wide pH range (pH 3-10). While the human digestive enzyme system lacks the capacity to cleave immunogenic gluten, such activities are naturally present in the oral microbial enzyme repertoire. The identified bacteria may be exploited for physiologic degradation of harmful gluten peptides.
Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.
Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo
2009-04-01
Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.
Host nuclear proteins expressed in simian virus 40-transformed and -infected cells.
Melero, J A; Tur, S; Carroll, R B
1980-01-01
Two new families of host proteins (Mr, 48,000 and 55,000), in additional to the viral large (T) and small tumor antigens, are precipitable, with anti-T antiserum, from cells transformed or infected by the DNA tumor virus simian virus 40 (SV40). Rabbit anti-mouse 48,000 protein antiserum reacts specifically with SV40-infected or -transformed mouse cells to give nuclear staining indistinguishable from T-antigen staining but does not react with SV40-transformed human cells which nevertheless have structurally analogous 48,000 proteins, nor does it give nuclear fluorescence with untransformed mouse cells. Comparison of the partial proteolytic digests of the 48,000 proteins from cultured cells of various mammalian species shows that they are structurally related but not related to the 55,000 or large T-antigen proteins. The 55,000 proteins from the various mammalian species were also structurally related. Images PMID:6244576
[Tobacco--a producer of recombinant interleukins].
Budzianowski, Jaromir
2012-01-01
Interleukins are cytokines of highly pleiotropic activity and they have high potential for application in the treatment of cancer and autoimmune diseases. Trials of recombinant interleukin production in plants relate almost exclusively to tobacco, where through the transformation of the nuclear genome (agroinfection) monomeric (IL-2, IL-4, IL-13, IL-18), homodimeric (IL-10) and single-chain heterodimeric (IL-12) interleukins have been obtained. The expression of IL-10 as a homodimer in the chloroplast genome could not be reached. Expression of the given interleukin was obtained in the leaves, cell culture and culture of hairy roots of tobacco. Interleukins obtained in tobacco showed similar in vitro biological activity as commercial ILs produced mostly in E. coli. Glycosylated IL-13 obtained in tobacco was much more resistant to proteolytic digestion than commercial non-glycosylated IL-13; therefore in the case of sufficiently large production it could be suitable for oral administration in the treatment of type I diabetes.
Carbonylation of milk powder proteins as a consequence of processing conditions.
Fenaille, François; Parisod, Véronique; Tabet, Jean-Claude; Guy, Philippe A
2005-08-01
During industrial treatments, milk proteins could be oxidatively modified, thus leading to the formation of modified/oxidised amino acid residues. The apparition of such modified residues may contribute to the formation of new immunologically reactive structures. Some of these adducts could, in an advanced stage, lead to cross-linked protein species whose proteolytic susceptibility would be drastically decreased. Such protein species, that are resistant to digestion, could also constitute major food allergens. Therefore, these oxidative protein modifications tend to increase the natural allergenicity of milk proteins. For these reasons, monitoring milk protein oxidative modifications could be very useful regarding both product quality and allergenicity issues. In the present paper, we highlight, using different analytical approaches, the preferential carbonylation of beta-lactoglobulin (beta-Lg) during industrial treatments of milk. This result is particularly interesting since native beta-Lg represents one of the major milk allergens.
Gómara, María José; Pérez-Pomeda, Ignacio; Gatell, José María; Sánchez-Merino, Victor; Yuste, Eloisa; Haro, Isabel
2017-02-01
The work reports the design and synthesis of a chimeric peptide that is composed of the peptide sequences of two entry inhibitors which target different sites of HIV-1 gp41. The chimeric peptide offers the advantage of targeting two gp41 regions simultaneously: the fusion peptide and the loop both of which are membrane active and participate in the membrane fusion process. We therefore use lipid raft-like liposomes as a tool to specifically direct the chimeric inhibitor peptide to the membrane domains where the HIV-1 envelope protein is located. Moreover, the liposomes that mimic the viral membrane composition protect the chimeric peptide against proteolytic digestion thereby increasing the stability of the peptide. The described liposome preparations are suitable nanosystems for managing hydrophobic entry-inhibitor peptides as putative therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.
Protein-Linked Glycan Degradation in Infants Fed Human Milk
Dallas, David C.; Sela, David; Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito
2014-01-01
Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and infants (particularly premature infants). PMID:24533224
Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G
2006-04-01
To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.
Escobar-Henriques, Mafalda; Langer, Thomas
2006-01-01
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
Tetrahedral aminopeptidase: a novel large protease complex from archaea
Franzetti, B.; Schoehn, G.; Hernandez, J.-F.; Jaquinod, M.; Ruigrok, R.W.H.; Zaccai, G.
2002-01-01
A dodecameric protease complex with a tetrahedral shape (TET) was isolated from Haloarcula marismortui, a salt-loving archaeon. The 42 kDa monomers in the complex are homologous to metal-binding, bacterial aminopeptidases. TET has a broad aminopeptidase activity and can process peptides of up to 30–35 amino acids in length. TET has a central cavity that is accessible through four narrow channels (<17 Å wide) and through four wider channels (21 Å wide). This architecture is different from that of all the proteolytic complexes described to date that are made up by rings or barrels with a single central channel and only two openings. PMID:11980710
Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site
Kang, Min Suk; Kim, Soon Rae; Kwack, Pyeongsu; Lim, Byung Kook; Ahn, Sung Won; Rho, Young Min; Seong, Ihn Sik; Park, Seong-Chul; Eom, Soo Hyun; Cheong, Gang-Won; Chung, Chin Ha
2003-01-01
CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a ‘spool-like’ structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism. PMID:12805205
- Invited Review - Calcium Digestibility and Metabolism in Pigs*
González-Vega, J. C.; Stein, H. H.
2014-01-01
Calcium (Ca) and phosphorus (P) are minerals that have important physiological functions in the body. For formulation of diets for pigs, it is necessary to consider an appropriate Ca:P ratio for an adequate absorption and utilization of both minerals. Although both minerals are important, much more research has been conducted on P digestibility than on Ca digestibility. Therefore, this review focuses on aspects that are important for the digestibility of Ca. Only values for apparent total tract digestibility (ATTD) of Ca have been reported in pigs, whereas values for both ATTD and standardized total tract digestibility (STTD) of P in feed ingredients have been reported. To be able to determine STTD values for Ca it is necessary to determine basal endogenous losses of Ca. Although most Ca is absorbed in the small intestine, there are indications that Ca may also be absorbed in the colon under some circumstances, but more research to verify the extent of Ca absorption in different parts of the intestinal tract is needed. Most P in plant ingredients is usually bound to phytate. Therefore, plant ingredients have low digestibility of P due to a lack of phytase secretion by pigs. During the last 2 decades, inclusion of microbial phytase in swine diets has improved P digestibility. However, it has been reported that a high inclusion of Ca reduces the efficacy of microbial phytase. It is possible that formation of insoluble calcium-phytate complexes, or Ca-P complexes, not only may affect the efficacy of phytase, but also the digestibility of P and Ca. Therefore, Ca, P, phytate, and phytase interactions are aspects that need to be considered in Ca digestibility studies. PMID:25049919
Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli.
Butzin, Nicholas C; Mather, William H
2018-01-19
Recently, a synthetic circuit in E. coli demonstrated that two proteins engineered with LAA tags targeted to the native protease ClpXP are susceptible to crosstalk due to competition for degradation between proteins. To understand proteolytic crosstalk beyond the single protease regime, we investigated in E. coli a set of synthetic circuits designed to probe the dynamics of existing and novel degradation tags fused to fluorescent proteins. These circuits were tested using both microplate reader and single-cell assays. We first quantified the degradation rates of each tag in isolation. We then tested if there was crosstalk between two distinguishable fluorescent proteins engineered with identical or different degradation tags. We demonstrated that proteolytic crosstalk was indeed not limited to the LAA degradation tag, but was also apparent between other diverse tags, supporting the complexity of the E. coli protein degradation system.
Extraction of an urease-active organo-complex from soil.
NASA Technical Reports Server (NTRS)
Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.
1972-01-01
Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.
NASA Astrophysics Data System (ADS)
Siemensma, André; Babcock, James; Wilcox, Chris; Huttinga, Hans
In the light of the growing demand for high quality plant-derived hydrolysates (i.e., HyPep™ and UltraPep™ series), Sheffield Bio-Science has developed a new hydrolysate platform that addresses the need for animal-free cell culture medium supplements while also minimizing variability concerns. The platform is based upon a novel approach to enzymatic digestion and more refined processing. At the heart of the platform is a rationally designed animal component-free (ACF) enzyme cocktail that includes both proteases and non-proteolytic enzymes (hydrolases) whose activities can also liberate primary components of the polymerized non-protein portion of the raw material. This enzyme system is added during a highly optimized process step that targets specific enzyme-substrate reactions to expand the range of beneficial nutritional factors made available to cells in culture. Such factors are fundamental to improving the bio-performance of the culture system, as they provide not merely growth-promoting peptides and amino acids, but also key carbohydrates, lipids, minerals, and vitamins that improve both rate and quality of protein expression, and serve to improve culture life due to osmo-protectant and anti-apoptotic properties. Also of significant note is that, compared to typical hydrolysates, the production process is greatly reduced and requires fewer steps, intrinsically yielding a better-controlled and therefore more reproducible product. Finally, the more sophisticated approach to enzymatic digestion renders hydrolysates more amenable to sterile filtration, allowing hydrolysate end users to experience streamlined media preparation and bioreactor supplementation activities. Current and future development activities will evolve from a better understanding of the complex interactions within a handful of key biochemical pathways that impact the growth and productivity of industrially relevant organisms. Presented in this chapter are some examples of the efforts that have been made so far to elucidate the mechanisms for the often dramatic benefits that hydrolysates can impart on cell culture processes. Given the variety of roles that hydrolysates likely play in each cell type, close collaboration between protein hydrolysate manufacturers and biopharmaceutical developers will continue to be critical to expanding the industry's knowledge and retaining hydrolysates as a tool for enhancing media formulations.
Paniagua, Candelas; Kirby, Andrew R; Gunning, A Patrick; Morris, Victor J; Matas, Antonio J; Quesada, Miguel A; Mercado, José A
2017-06-01
Pectins analysed by AFM are visualized as individual chains, branched or unbranched, and aggregates. To investigate the nature of these structures, sodium carbonate soluble pectins from strawberry fruits were digested with endo-polygalacturonase M2 from Aspergillus aculeatus and visualized by AFM. A gradual decrease in the length of chains was observed as result of the treatment, reaching a minimum L N value of 22nm. The branches were not visible after 2h of enzymatic incubation. The size of complexes also diminished significantly with the enzymatic digestion. A treatment to hydrolyse rhamnogalacturonan II borate diester bonds neither affected chains length or branching nor complex size but reduced the density of aggregates. These results suggest that chains are formed by a mixture of homogalacturonan and more complex molecules composed by a homogalacturonan unit linked to an endo-PG resistant unit. Homogalacturonan is a structural component of the complexes and rhamnogalacturonan II could be involved in their formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chesnokova, Liudmila S; Ahuja, Munish K; Hutt-Fletcher, Lindsey M
2014-11-01
Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Chesnokova, Liudmila S.; Ahuja, Munish K.
2014-01-01
ABSTRACT Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. IMPORTANCE The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation. PMID:25142593
Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart
2012-02-01
Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods. Copyright © 2011 Elsevier Inc. All rights reserved.
Sanz, Jose Luis; Rojas, Patricia; Morato, Ana; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina
2017-02-01
Microalgae biomasses are considered promising feedstocks for biofuel and methane productions. Two Continuously Stirred Tank Reactors (CSTR), fed with fresh (CSTR-C) and heat pre-treated (CSTR-T) Chlorella biomass were run in parallel in order to determine methane productions. The methane yield was 1.5 times higher in CSTR-T with regard to CSTR-C. Aiming to understand the microorganism roles within of the reactors, the sludge used as an inoculum (I), plus raw (CSTR-C) and heat pre-treated (CSTR-T) samples were analyzed by high-throughput pyrosequencing. The bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. Spirochaetae and Actinobacteria were only detected in sample I. Proteobacteria, mainly Alfaproteobacteria, were by far the dominant phylum within of the CSTR-C bioreactor. Many of the sequences retrieved were related to bacteria present in activated sludge treatment plants and they were absent after thermal pre-treatment. Most of the sequences affiliated to the Bacteroidetes were related to uncultured groups. Anaerolineaceae was the sole family found of the Chloroflexi phylum. All of the genera identified of the Firmicutes phylum carried out macromolecule hydrolysis and by-product fermentation. The proteolytic bacteria were prevalent over the saccharolytic microbes. The percentage of the proteolytic genera increased from the inoculum to the CSTR-T sample in a parallel fashion with an available protein increase owing to the high protein content of Chlorella. To relate the taxa identified by high-throughput sequencing to their functional roles remains a future challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R
1994-12-01
The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.
Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore
2014-01-01
Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially. PMID:23949661
Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore
2014-01-01
Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially.
A Cysteine Protease Is Critical for Babesia spp. Transmission in Haemaphysalis Ticks
Tsuji, Naotoshi; Miyoshi, Takeharu; Battsetseg, Badger; Matsuo, Tomohide; Xuan, Xuenan; Fujisaki, Kozo
2008-01-01
Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. PMID:18483546
Role of Proteases in Extra-Oral Digestion of a Predatory Bug, Andrallus spinidens
Zibaee, Arash; Hoda, Hassan; Mahmoud, Fazeli-Dinan
2012-01-01
Roles of salivary proteases in the extra-oral digestion of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) were studied by using 2% azocasein as a general substrate and specific protease substrates, as well as synthetic and endogenous inhibitors. It was found that salivary glands of A. spinidens have two anterior, two lateral, and two posterior lobes. Azocasein was used to measure the activity of general proteases in the salivary glands using different buffer solutions. The enzyme had the highest activity at pH 8. General protease activity was highest at 40 °C and was stable for 6–16 hours. The use of specific substrates showed that trypsin-like, chymotrypsin-like, aminopeptidase, and carboxypeptidase are the active proteases present in salivary glands, by the maximum activity of trypsin-like protease in addition to their optimal pH between 8–9. Ca2+ and Mg2+ increased proteolytic activity about 216%, while other ions decreased it. Specific inhibitors including SBTI, PMSF, TLCK, and TPCK significantly decreased enzyme activity, as well as the specific inhibitors of methalloproteases including phenanthroline, EGTA, and TTHA. Extracted endogenous trypsin inhibitors extracted from potential prey, Chilo suppressalis, Naranga aenescens, Pieris brassicae, Hyphantria cunea, and Ephestia kuhniella, had different effects on trypsin-like protease activity of A. spinidens salivary glands. With the exception of C. suppressalis, the endogenous inhibitors significantly decreased enzyme activity in A. spinidens. PMID:22954419
Min, Kyung R.; Galvis, Adriana; Williams, Brandon; Rayala, Ramanjaneyulu; Cudic, Predrag
2017-01-01
ABSTRACT Despite continuous efforts to control cariogenic dental biofilms, very few effective antimicrobial treatments exist. In this study, we characterized the activity of the novel synthetic cyclic lipopeptide 4 (CLP-4), derived from fusaricidin, against the cariogenic pathogen Streptococcus mutans UA159. We determined CLP-4's MIC, minimum bactericidal concentration (MBC), and spontaneous resistance frequency, and we performed time-kill assays. Additionally, we assessed CLP-4's potential to inhibit biofilm formation and eradicate preformed biofilms. Our results demonstrate that CLP-4 has strong antibacterial activity in vitro and is a potent bactericidal agent with low spontaneous resistance frequency. At a low concentration of 5 μg/ml, CLP-4 completely inhibited S. mutans UA159 biofilm formation, and at 50 μg/ml, it reduced the viability of established biofilms by >99.99%. We also assessed CLP-4's cytotoxicity and stability against proteolytic digestion. CLP-4 withstood trypsin or chymotrypsin digestion even after treatment for 24 h, and our toxicity studies showed that CLP-4 effective concentrations had negligible effects on hemolysis and the viability of human oral fibroblasts. In summary, our findings showed that CLP-4 is a potent antibacterial and antibiofilm agent with remarkable stability and low nonspecific cytotoxicity. Hence, CLP-4 is a promising novel antimicrobial peptide with potential for clinical application in the prevention and treatment of dental caries. PMID:28533236
Fraser, John K; Hicok, Kevin C; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution ® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing.
Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; ...
2015-06-25
The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less
Giannone, Richard J; Wurch, Louie L; Podar, Mircea; Hettich, Robert L
2015-08-04
The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. As this interaction is thought to be membrane-associated, involving a myriad of membrane-anchored proteins, proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitans proteins. Using this method, we show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. These gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.
Udechukwu, M Chinonye; Downey, Brianna; Udenigwe, Chibuike C
2018-02-01
Gastrointestinal stability of zinc-peptide complexes is essential for zinc delivery. As peptide surface charge can influence their metal complex stability, we evaluated the zinc-chelating capacity and stability of zinc complexes of whey protein hydrolysates (WPH), produced with Everlase (WPH-Ever; ζ-potential, -39mV) and papain (WPH-Pap; ζ-potential, -7mV), during simulated digestion. WPH-Ever had lower amount of zinc-binding amino acids but showed higher zinc-chelating capacity than WPH-Pap. This is attributable to the highly anionic surface charge of WPH-Ever for electrostatic interaction with zinc. Release of zinc during peptic digestion was lower for WPH-Ever-zinc, and over 50% of zinc remained bound in both peptide complexes after peptic-pancreatic digestion. Fourier transform infrared spectroscopy suggests the involvement of carboxylate ion, and sidechain carbon-oxygen of aspartate/glutamate and serine/threonine in zinc-peptide complexation. The findings indicate that strong zinc chelation can promote gastric stability and impede intestinal release, for peptides intended for use as dietary zinc carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Michalko, Jaroslav; Socha, Peter; Mészáros, Patrik; Blehová, Alžbeta; Libantová, Jana; Moravčíková, Jana; Matušíková, Ildikó
2013-10-01
Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including β-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-β-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant β-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of β-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of β-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.
Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long
2015-11-25
The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.
Ma, Zhifang; Bai, Jing; Jiang, Xiue
2015-08-19
Established nanobio interactions face the challenge that the formation of nanoparticle-protein corona complexes shields the inherent properties of the nanoparticles and alters the manner of the interactions between nanoparticles and biological systems. Therefore, many studies have focused on protein corona-mediated nanoparticle binding, internalization, and intracellular transportation. However, there are a few studies to pay attention to if the corona encounters degradation after internalization and how the degradation of the protein corona affects cytotoxicity. To fill this gap, we prepared three types of off/on complexes based on gold nanoparticles (Au NPs) and dye-labeled serum proteins and studied the extracellular and intracellular proteolytic processes of protein coronas as well as their accompanying effects on cytotoxicity through multiple evaluation mechanisms, including cell viability, adenosine triphosphate (ATP) content, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). The proteolytic process was confirmed by recovery of the fluorescence of the dye-labeled protein molecules that was initially quenched by Au NPs. Our results indicate that the degradation rate of protein corona is dependent on the type of the protein based on systematical evaluation of the extracellular and intracellular degradation processes of the protein coronas formed by human serum albumin (HSA), γ-globulin (HGG), and serum fibrinogen (HSF). Degradation is the fastest for HSA corona and the slowest for HSF corona. Notably, we also find that the Au NP-HSA corona complex induces lower cell viability, slower ATP production, lower MMP, and higher ROS levels. The cytotoxicity of the nanoparticle-protein corona complex may be associated with the protein corona degradation process. All of these results will enrich the database of cytotoxicity induced by nanomaterial-protein corona complexes.
The 26S Proteasome Complex: An Attractive Target for Cancer Therapy
Frankland-Searby, Sarah; Bhaumik, Sukesh R.
2011-01-01
The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers. PMID:22037302
A study of proteases and protease-inhibitor complexes in biological fluids
Granelli-Piperno, A; Reich, E
1978-01-01
We have (a) screened a variety of cell lines and body fluids for plasminogen activators and (b) studied the activity of proteases bound to α2- macroglobulin after exposing the complexes to partial degradation and/or denaturing procedures to unmask proteolytic activity. The respective results show (a) that the plasminogen activators in urine and cell culture media are generally of lower molecular weight than those in plasma; and (b) that proteases bound to α2-macroglobulin recover the ability to attack macromolecular substrates after exposure to sodium dodecyl sulfate while retaining the electrophoretic mobility of the protease inhibitor complex. This indicates that the protease and inhibitor are probably linked by covalent bonds. In contrast, other complexes formed between proteases and inhibitors of lower molecular weight (such as soybean or Kunitz inhibitors) are fully dissociated by sodium dodecyl sulfate (SDS). The experiments described were based on a new procedure for detecting proteolytic enzyme activity in SDS-polyacrylamide gels. The method relies on solutions of nonionic detergents for extracting SDS, after which the electrophoretic gel is applied to an indicator gel consisting of a fibrin- agar mixture. The method is sensitive, permitting the detection of proteinases in less than 1 μl of fresh plasma, and it is effective for resolving small differences in molecular weight. The procedure can be quantitated and, with minor modifications appropriate to each particular system, it has been applied to a broad spectrum of serine enzymes and proenzymes, including some that function in the pathways of fibrinolysis, coagulation and kinin-generation. Other potential applications appear likely. PMID:78958
Effect of proteolytic starter cultures as leavening agents of pizza dough.
Pepe, O; Villani, F; Oliviero, D; Greco, T; Coppola, S
2003-08-01
Lactic acid bacteria (LAB) and yeasts were selected on the basis of in vitro proteolytic activity against wheat gluten protein and then assayed as leavening agents for pizza dough. Trials were carried out to compare a proteolytic starter (Prt(+)), consisting of Lactobacillus sakei T56, Weissella paramesenteroides A51 and Candida krusei G271, and a non-proteolytic starter (Prt(-)), consisting of Lb. sakei T58, W. paramesenteroides A58 and Saccharomyces cerevisiae T22. The proteolytic activity of the starter cultures was monitored immediately after mixing of the dough and throughout the fermentation process. The proteolytic activity was assessed by analysing the salt-soluble protein (SSP) and the dioxane-soluble protein (DSP) fractions of the pizza dough by discontinuous SDS-PAGE. Only the Prt(+) starter exhibited considerable qualitative and quantitative changes in the electrophoretic patterns of the protein fractions extracted. After the fermentation, the Prt(+) and Prt(-) doughs were tested to evaluate the influence of the proteolytic activity on the mechanical properties of the dough before and after baking. Indications emerged suggesting an influence of the proteolytic activity on the viscoelasticity of pizza dough. The pizza dough with Prt(+) strains showed an increase in viscous properties during the fermentation as compared with the Prt(-) dough. Moreover, an increase in the firmness of the crumb was observed in Prt(+) baked pizza dough.
Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M
2014-11-01
The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.
Tsukamoto, Sachiko; Yokosawa, Hideyoshi
2006-01-01
The ubiquitin-proteasome proteolytic pathway plays a major role in selective protein degradation and regulates various cellular events including cell cycle progression, transcription, DNA repair, signal transduction, and immune response. Ubiquitin, a highly conserved small protein in eukaryotes, attaches to a target protein prior to degradation. The polyubiquitin chain tagged to the target protein is recognized by the 26S proteasome, a high-molecular-mass protease subunit complex, and the protein portion is degraded by the 26S proteasome. The potential of specific proteasome inhibitors, which act as anti-cancer agents, is now under intensive investigation, and bortezomib (PS-341), a proteasome inhibitor, has been recently approved by FDA for multiple myeloma treatment. Since ubiquitination of proteins requires the sequential action of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), and polyubiquitination is a prerequisite for proteasome-mediated protein degradation, inhibitors of E1, E2, and E3 are reasonably thought to be drug candidates for treatment of diseases related to ubiquitination. Recently, various compounds inhibiting the ubiquitin-proteasome pathway have been isolated from natural resources. We also succeeded in isolating inhibitors against the proteasome and E1 enzyme from marine natural resources. In this review, we summarize the structures and biological activities of natural products that inhibit the ubiquitin-proteasome proteolytic pathway.
Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals
NASA Astrophysics Data System (ADS)
Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.
2018-01-01
Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.
Peng, Shanli; Xue, Lei; Leng, Xue; Yang, Ruobing; Zhang, Genyi; Hamaker, Bruce R
2015-03-18
The in vivo slow digestion property of octenyl succinic anhydride modified waxy corn starch (OSA-starch) in the presence of tea polyphenols (TPLs) was studied. Using a mouse model, the experimental results showed an extended and moderate postprandial glycemic response with a delayed and significantly decreased blood glucose peak of OSA-starch after cocooking with TPLs (5% starch weight base). Further studies revealed an increased hydrodynamic radius of OSA-starch molecules indicating an interaction between OSA-starch and TPLs. Additionally, decreased gelatinization temperature and enthalpy and reduced viscosity and emulsifiability of OSA-starch support their possible complexation to form a spherical OSA-starch-TPLs (OSAT) complex. The moderate and extended postprandial glycemic response is likely caused by decreased activity of mucosal α-glucosidase, which is noncompetitively inhibited by tea catechins released from the complex during digestion. Meanwhile, a significant decrease of malondialdehyde (MDA) and increased DPPH free radical scavenging activity in small intestine tissue demonstrated the antioxidative functional property of the OSAT complex. Thus, the complex of OSAT, acting as a functional carbohydrate material, not only leads to a flattened and prolonged glycemic response but also reduces the oxidative stress, which might be beneficial to health.
Watanabe, K; Hayano, K
1993-07-01
Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.
Zaĭtseva, O V; Kuznetsova, T V; Markosova, T G
2009-01-01
Localization and peculiarities of NO-ergic elements were studied for he first time throughout the entire length of digestive tract of the marine gastropod mollusc Achatina fulica (Prosobranchia) and the terrestrial molusc Littorina littorea (Pulmonata) by using histochemical method of detection of NADPH-diaphorase (NADPHd). NO-ergic cells and fibers were revealed in all parts of the mollusc digestive tract beginning from pharynx. An intensive NADPHd activity was found in many intraepithelial cells of the open type and in their processes in intra- and subepithelial nerve plexuses, single subepithelial neurons, granular connective tissue cells, and numerous nerve fibers among muscle elements of he digestive tract wall as well as in nerves innervating the tract. NADPHd was also present in receptor cells of he oral area and in the central A. fulica ganglia participating in innervation of the digestive tract. The digestive tract NO-ergic system ofA. fulica has a more complex organization that that of L. littorea. In the A. fulica pharynx, stomach, and midgut, directly beneath epithelium, there is revealed a complex system of glomerular structures formed by thin NADPHd-positive nerve fibers coming from the side of epithelium. More superficially under the main groups of muscle elements, small agglomerations of NADPHd-positive neurons are seen, which could be considered as primitive, non-formed microganglia. Peculiarities of distribution and a possible functional role of NO-ergic elements in the digestive tract of molluscs are discussed as compared with other invertebrate and vertebrate animals.
Haratifar, Sanaz; Meckling, Kelly A; Corredig, Milena
2014-06-01
Numerous studies have demonstrated that tea catechins form complexes with milk proteins, especially caseins. Much less work has been conducted to understand the metabolic conversions of tea-milk complexes during gastro-duodenal digestion. The objective of this study was to determine the significance of this association on the digestibility of the milk proteins and on the bioaccessibility of the tea polyphenol epigallocatechin gallate (EGCG). An in vitro digestion model mimicking the gastric and duodenal phases of the human gastrointestinal tract was employed to follow the fate of the milk proteins during digestion and determine the bioefficacy of EGCG isolated or encapsulated with the caseins. The samples, before and after digestion, were tested using two parallel colonic epithelial cell lines, a normal line (4D/WT) and its cancerous transformed counterpart (D/v-src). EGCG caused a decrease in proliferation of cancer cells, while in normal cells, neither isolated nor encapsulated EGCG affected cell proliferation, at concentrations <0.15 mg ml(-1). At higher concentrations, both isolated and encapsulated produced similar decreases in proliferation. On the other hand, the bioefficacy on the cancer cell line showed some differences at lower concentrations. The results demonstrated that regardless of the extent of digestion of the nanoencapsulated EGCG, the bioefficacy of EGCG was not diminished, confirming that casein micelles are an appropriate delivery system for polyphenols.
Simulation of anaerobic digestion processes using stochastic algorithm.
Palanichamy, Jegathambal; Palani, Sundarambal
2014-01-01
The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.
Bou-Assaf, George M; Chamoun, Jean E; Emmett, Mark R; Fajer, Piotr G; Marshall, Alan G
2010-04-15
Solution-phase hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is an excellent tool to study protein-protein interactions and conformational changes in biological systems, especially when traditional methods such as X-ray crystallography or nuclear magnetic resonance are not feasible. Peak overlap among the dozens of proteolytic fragments (including those from autolysis of the protease) can be severe, due to high protein molecular weight(s) and the broad isotopic distributions due to multiple deuterations of many peptides. In addition, different subunits of a protein complex can yield isomeric proteolytic fragments. Here, we show that depletion of (13)C and/or (15)N for one or more protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of the depleted fragment ions, and remove ambiguity in assignment of the m/z values to the correct isomeric peptides. Specifically, it becomes possible to monitor the exchange progress for two isobaric fragments originating from two or more different subunits within the complex, without having to resort to tandem mass spectrometry techniques that can lead to deuterium scrambling in the gas phase. Finally, because the isotopic distribution for a small to medium-size peptide is essentially just the monoisotopic species ((12)C(c)(1)H(h)(14)N(n)(16)O(o)(32)S(s)), it is not necessary to deconvolve the natural abundance distribution for each partially deuterated peptide during HDX data reduction.
Wang, Yu Annie; Wu, Di; Auclair, Jared R; Salisbury, Joseph P; Sarin, Richa; Tang, Yang; Mozdzierz, Nicholas J; Shah, Kartik; Zhang, Anna Fan; Wu, Shiaw-Lin; Agar, Jeffery N; Love, J Christopher; Love, Kerry R; Hancock, William S
2017-12-05
With the advent of biosimilars to the U.S. market, it is important to have better analytical tools to ensure product quality from batch to batch. In addition, the recent popularity of using a continuous process for production of biopharmaceuticals, the traditional bottom-up method, alone for product characterization and quality analysis is no longer sufficient. Bottom-up method requires large amounts of material for analysis and is labor-intensive and time-consuming. Additionally, in this analysis, digestion of the protein with enzymes such as trypsin could induce artifacts and modifications which would increase the complexity of the analysis. On the other hand, a top-down method requires a minimum amount of sample and allows for analysis of the intact protein mass and sequence generated from fragmentation within the instrument. However, fragmentation usually occurs at the N-terminal and C-terminal ends of the protein with less internal fragmentation. Herein, we combine the use of the complementary techniques, a top-down and bottom-up method, for the characterization of human growth hormone degradation products. Notably, our approach required small amounts of sample, which is a requirement due to the sample constraints of small scale manufacturing. Using this approach, we were able to characterize various protein variants, including post-translational modifications such as oxidation and deamidation, residual leader sequence, and proteolytic cleavage. Thus, we were able to highlight the complementarity of top-down and bottom-up approaches, which achieved the characterization of a wide range of product variants in samples of human growth hormone secreted from Pichia pastoris.
Fibrin Formation, Structure and Properties
Weisel, John W.; Litvinov, Rustem I.
2017-01-01
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin. PMID:28101869
Tsiatsiani, Liana; Giansanti, Piero; Scheltema, Richard A; van den Toorn, Henk; Overall, Christopher M; Altelaar, A F Maarten; Heck, Albert J R
2017-02-03
A key step in shotgun proteomics is the digestion of proteins into peptides amenable for mass spectrometry. Tryptic peptides can be readily sequenced and identified by collision-induced dissociation (CID) or higher-energy collisional dissociation (HCD) because the fragmentation rules are well-understood. Here, we investigate LysargiNase, a perfect trypsin mirror protease, because it cleaves equally specific at arginine and lysine residues, albeit at the N-terminal end. LysargiNase peptides are therefore practically tryptic-like in length and sequence except that following ESI, the two protons are now both positioned at the N-terminus. Here, we compare side-by-side the chromatographic separation properties, gas-phase fragmentation characteristics, and (phospho)proteome sequence coverage of tryptic (i.e., (X) n K/R) and LysargiNase (i.e., K/R(X) n ) peptides using primarily electron-transfer dissociation (ETD) and, for comparison, HCD. We find that tryptic and LysargiNase peptides fragment nearly as mirror images. For LysargiNase predominantly N-terminal peptide ions (c-ions (ETD) and b-ions (HCD)) are formed, whereas for trypsin, C-terminal fragment ions dominate (z-ions (ETD) and y-ions (HCD)) in a homologous mixture of complementary ions. Especially during ETD, LysargiNase peptides fragment into low-complexity but information-rich sequence ladders. Trypsin and LysargiNase chart distinct parts of the proteome, and therefore, the combined use of these enzymes will benefit a more in-depth and reliable analysis of (phospho)proteomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa
The title compound, C 20H 37N 3O 4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.
Professional Development of Principals. ERIC Digest.
ERIC Educational Resources Information Center
Fenwick, Leslie T.; Pierce, Mildred C.
Contemporary models of school reform acknowledge the principal as the passport to school success and the manager of an increasingly complex organization. This digest asserts that principals benefit from professional development that examines best practices, provides coaching support, encourages risk taking designed to improve student learning,…
Individual mammalian mucosal glucosidase subunits digest various starch structures differently
USDA-ARS?s Scientific Manuscript database
Starch digestion in the human body requires two luminal enzymes,salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities related to the maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) complexes. Starch consists of two polysaccharides, amylose (AM) and ...
Identification of the Calmodulin-Binding Domains of Fas Death Receptor
Chang, Bliss J.; Samal, Alexandra B.; Vlach, Jiri; Fernandez, Timothy F.; Brooke, Dewey; Prevelige, Peter E.; Saad, Jamil S.
2016-01-01
The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas–mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209–239 (Fas-Pep1) and 251–288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD–CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway. PMID:26735300
Sastradipura, D F; Nakanishi, H; Tsukuba, T; Nishishita, K; Sakai, H; Kato, Y; Gotow, T; Uchiyama, Y; Yamamoto, K
1998-05-01
Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.
[Specific problems posed by carbohydrate utilization in the rainbow trout].
Bergot, F
1979-01-01
Carbohydrate incorporation in trout diets arises problems both at digestive and metabolic levels. Digestive utilization of carbohydrate closely depends on their molecular weight. In addition, in the case of complex carbohydrates (starches), different factors such as the level of incorporation, the amount consumed and the physical state of starch influence the digestibility. The measurement of digestibility in itself is confronted with methodological difficulties. The way the feces are collected can affect the digestion coefficient. Dietary carbohydrates actually serve as a source of energy. Nevertheless, above a certain level in the diet, intolerance phenomena may appear. The question that arises now is to establish the optimal part that carbohydrates can take in the metabolizable energy of a given diet.
Augustine, David J; Springer, Tim L
2013-06-01
Potential competition between native and domestic herbivores is a major consideration influencing the management and conservation of native herbivores in rangeland ecosystems. In grasslands of the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are widely viewed as competitors with cattle but are also important for biodiversity conservation due to their role in creating habitat for other native species. We examined spatiotemporal variation in prairie dog effects on growing-season forage quality and quantity using measurements from three colony complexes in Colorado and South Dakota and from a previous study of a fourth complex in Montana. At two complexes experiencing below-average precipitation, forage availability both on and off colonies was so low (12-54 g/m2) that daily forage intake rates of cattle were likely constrained by instantaneous intake rates and daily foraging time. Under these dry conditions, prairie dogs (1) substantially reduced forage availability, thus further limiting cattle daily intake rates, and (2) had either no or a small positive effect on forage digestibility. Under such conditions, prairie dogs are likely to compete with cattle in direct proportion to their abundance. For two complexes experiencing above-average precipitation, forage quantity on and off colonies (77-208 g/m2) was sufficient for daily forage intake of cattle to be limited by digestion rather than instantaneous forage intake. At one complex where prairie dogs enhanced forage digestibility and [N] while having no effect on forage quantity, prairie dogs are predicted to facilitate cattle mass gains regardless of prairie dog abundance. At the second complex where prairie dogs enhanced digestibility and [N] but reduced forage quantity, effects on cattle can vary from competition to facilitation depending on prairie dog abundance. Our findings show that the high spatiotemporal variation in vegetation dynamics characteristic of semiarid grasslands is paralleled by variability in the magnitude of competition between native and domestic grazers. Competitive interactions evident during dry periods may be partially or wholly offset by facilitation during periods when forage digestibility is enhanced and forage quantity does not limit the daily intake rate of cattle.
Engineering Digestion: Multiscale Processes of Food Digestion.
Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim
2016-03-01
Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®
Kumura, H; Ishido, T; Shimazaki, K
2011-02-01
Several attempts have been made to incorporate whey proteins into curd to increase cheese yield. For some types of cheese, degradation of whey proteins that have been incorporated into the curd would be required to obtain acceptable flavor and texture. On the basis of the high potential for protease synthesis in Aspergillus oryzae, sodium nitrate as a nitrogen source in a minimal medium for fungi, known as Czapek-Dox medium, was replaced with whey protein isolate to induce the protease to hydrolyze whey protein using A. oryzae AHU7146. A solid-phase medium adjusted to pH 6 was suitable for this purpose when incubation was carried out at 25°C for 2 wk. The application of column chromatography enabled the resolution of 3 proteolytic components (1, 2, and 3). With respect to optimal temperature and zymographic analysis, component 1 was similar to component 3. In contrast, component 2 was less abundant than the other components and exhibited activity in the alkaline pH region. The degradation of β-lactoglobulin and α-lactalbumin in whey protein isolate solution by the crude enzyme was primarily attributed to the action of components 1 and 3, based on HPLC analysis and the N-terminal amino acid sequences; however, zymography demonstrated evident proteolysis due to component 2. Because heat-denatured whey protein aggregates were digestible by the crude enzyme, the proteolytic system from A. oryzae has the potential as an additive to stimulate the ripening of cheese enriched with whey protein. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chiral recognition in amyloid fiber growth.
Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald
2016-05-01
Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.
2010-08-01
Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.
Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas
2012-01-01
Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.
Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas
2009-06-09
The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex.
ERIC Educational Resources Information Center
Who's Who among American High School Students, Lake Forest, IL.
The college admissions process and the college selection process are complex and much debated procedures which confront more than 50% of high school seniors in the United States. The purpose of this digest is to help students explore options available in choosing a suitable postsecondary education. For example the advantages of large or small…
Effect of cooling step on starch digestibility and other properties of parboiled rice.
USDA-ARS?s Scientific Manuscript database
Retrogradation and the formation of amylose-lipid complex have been reported to contribute to reduced digestibility of starch in parboiled rice. This study looked at the prospect of including a low-temperature holding step in the parboiling process to enhance retrogradation, and subsequently reduce ...
Diversity Digest. Volume 9, Number 3
ERIC Educational Resources Information Center
Musil, Caryn McTighe, Ed.; Hovland, Kevin, Ed.
2006-01-01
This issue of "Diversity Digest" grows out of one recent effort to raise the visibility of science in diversity and global learning initiatives. Articles in this issue include: (1) Science, Diversity, and Global Learning: Untangling Complex Problems (Kevin Hovland); (2) Breaking the Pyramid: Putting Science in the Core (Darcy Kelley);…
Søreide, Kjetil
2008-08-01
Of all the body systems, the gastrointestinal (GI) tract is the most exposed to proteinases. Proteolytic activity must thus be tightly regulated in the face of diverse environmental challenges, because unrestrained or excessive proteolysis leads to pathological GI conditions. The protease-activated receptor-2 (PAR-2) is expressed in numerous cell types within the GI tract, suggesting both multiple functions and numerous modes of receptor activation. Although best known as a pancreatic digestive enzyme, trypsin has also been found in other tissues and various cancers. Of interest, trypsin and PAR-2 act together in an autocrine loop that promotes proliferation, invasion and metastasis in neoplasia through various mechanisms. Trypsin and PAR-2 seem to act both directly and indirectly through activation of other proteinase cascades, including metalloproteinases. PAR-2 activation can participate in inflammatory reactions, be protective to mucosal surfaces, send or inhibit nociceptive messages, modify gut motility or secretory functions, and stimulate cell proliferation and motility. Several studies point to a role for the PARs in disease processes of the GI tract and pancreas ranging from inflammatory bowel disease, symptoms associated with irritable bowel syndrome, pain in pancreatitis, development of colon and other GI cancers, and even infectious colitis. Proteinases should not only be considered from the traditional view as digestive or degradative enzymes in the gut, but additionally as signalling molecules that actively participate in the spectrum of physiology and diseased states of the GI tract.
Do, Nhung; Weindl, Günther; Grohmann, Lisa; Salwiczek, Mario; Koksch, Beate; Korting, Hans Christian; Schäfer-Korting, Monika
2014-05-01
Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pandey, Prabhash K; Jamal, Farrukh
2014-11-01
A trypsin inhibitor purified from the seeds of Tamarindus indica by Sephadex G-75, DEAE-Sepharose and Trypsin-Sepharose CL-4B columns was studied for its antifeedant, larvicidal, pupicidal and growth inhibitory activities against Helicoverpa armigera larvae. Tamarindus trypsin inhibitor (TTI) exhibited inhibitory activity towards total gut proteolytic enzymes of H. armigera (~87%) and bovine trypsin (~84%). Lethal doses which caused mortality and weight reduction by 50% were 1% w/w and 0.50% w/w, respectively. IC50 of TTI against Helicoverpa midgut proteases and bovine trypsin were ~2.10 µg/ml and 1.68 µg/ml respectively. In larval feeding studies the 21 kDa Kunitz-type protein was found to retard growth and development, prolonged the larval-pupal development durations along with adversely affecting the fertility and fecundity of H. armigera. In artificial diet at 0.5% w/w TTI, the efficiency of conversion of ingested food as well as of digested food, relative growth rate, growth index declined whereas approximate digestibility, metabolic cost, relative consumption rate, consumption index and total developmental period enhanced for H. armigera larvae. These results suggest that TTI has toxic and adverse effect on the developmental physiology of H. armigera and could be useful in controlling the pest H. armigera. Copyright © 2014 Elsevier Inc. All rights reserved.
Leonaviciute, Gintare; Zupančič, Ožbej; Prüfert, Felix; Rohrer, Julia; Bernkop-Schnürch, Andreas
2016-07-11
The aim of this study is the development of self-emulsifying drug delivery systems (SEDDS) differing in amounts of ester substructures and to evaluate their stability in presence of pancreatic lipase and protective effect against luminal enzymatic metabolism using leuprorelin as model peptide drug. Hydrophobic leuprolide oleate was incorporated into three different SEDDS formulations and their stability towards pancreatic lipases was investigated utilizing a dynamic in vitro digestion model. Protective effect of SEDDS in respect to peptide drug stability against proteolytic enzymes, trypsin and α-chymotrypsin, was determined via HPLC. Results of in vitro digestion demonstrated that 80% of SEDDS containing the highest amount of ester linkages was degraded within 60min. In comparison to that, SEDDS without ester bonds showed no degradation. With increasing oil droplets hydrolysis the remaining amount of peptide encapsulated into formulation decreased. Furthermore, after 180min incubation with trypsin up to 33.5% and with α-chymotrypsin up to 60.5% of leuprolide oleate was intact while leuprorelin acetate aqueous solution was completely metabolized by trypsin within 120min and by α-chymotrypsin within 5min. Protective effect in environment containing lipases was lower due to oil phase degradation, however, the amount of peptide in ester-free SEDDS was remarkably higher compared to SEDDS susceptible to lipases. The present study revealed that SEDDS stable towards hydrolysis is able to exhibit a protective effect for oral peptide delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Fraser, John K.; Hicok, Kevin C.; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M.
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing. PMID:24761343
Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch.
Wang, Hongwei; Liu, Yufan; Chen, Ling; Li, Xiaoxi; Wang, Jun; Xie, Fengwei
2018-03-01
The digestibility and structural changes of rice starch induced by heat-moisture treatment (HMT) were investigated, and the relationships among the moisture content-starch structure-starch digestibility were revealed. HMT could simultaneously disorder and reassemble the rice starch molecules across multi-scale lengths and convert some fractions of rapidly-digestible starch (RDS) into slowly-digestible starch (SDS) and resistant starch (RS). In particular, the HMT rice starch with less than 30% moisture content showed a higher SDS+RS content (25.0%). During HMT, SDS and RS were preferably formed by the degraded starch molecules with M w between 4×10 5 and 4×10 6 g/mol, single helices and amylose-lipids complexes that were formed by degraded starch chains with higher thermal stability and crystalline lamellae with greater thicknesses. Thus, our research suggests a potential approach using HMT to control the digestion of starch products with desired digestibility. Copyright © 2017. Published by Elsevier Ltd.
Crystallographic Insights into the Autocatalytic Assembly Mechanism of a Bacteriophage Tail Spike
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Ye; Leiman, Petr G.; Li, Long
2010-02-03
The tailed bacteriophage phi29 has 12 'appendages' (gene product 12, gp12) attached to its neck region that participate in host cell recognition and entry. In the cell, monomeric gp12 undergoes proteolytic processing that releases the C-terminal domain during assembly into trimers. We report here crystal structures of the protein before and after catalytic processing and show that the C-terminal domain of gp12 is an 'autochaperone' that aids trimerization. We also show that autocleavage of the C-terminal domain is a posttrimerization event that is followed by a unique ATP-dependent release. The posttranslationally modified N-terminal part has three domains that function tomore » attach the appendages to the phage, digest the cell wall teichoic acids, and bind irreversibly to the host, respectively. Structural and sequence comparisons suggest that some eukaryotic and bacterial viruses as well as bacterial adhesins might have a similar maturation mechanism as is performed by phi29 gp12 for Bacillus subtilis.« less
The Diverse Forms of Lactose Intolerance and the Putative Linkage to Several Cancers
Amiri, Mahdi; Diekmann, Lena; von Köckritz-Blickwede, Maren; Naim, Hassan Y.
2015-01-01
Lactase-phlorizin hydrolase (LPH) is a membrane glycoprotein and the only β-galactosidase of the brush border membrane of the intestinal epithelium. Besides active transcription, expression of the active LPH requires different maturation steps of the polypeptide through the secretory pathway, including N- and O-glycosylation, dimerization and proteolytic cleavage steps. The inability to digest lactose due to insufficient lactase activity results in gastrointestinal symptoms known as lactose intolerance. In this review, we will concentrate on the structural and functional features of LPH protein and summarize the cellular and molecular mechanism required for its maturation and trafficking. Then, different types of lactose intolerance are discussed, and the molecular aspects of lactase persistence/non-persistence phenotypes are investigated. Finally, we will review the literature focusing on the lactase persistence/non-persistence populations as a comparative model in order to determine the protective or adverse effects of milk and dairy foods on the incidence of colorectal, ovarian and prostate cancers. PMID:26343715
The Diverse Forms of Lactose Intolerance and the Putative Linkage to Several Cancers.
Amiri, Mahdi; Diekmann, Lena; von Köckritz-Blickwede, Maren; Naim, Hassan Y
2015-08-28
Lactase-phlorizin hydrolase (LPH) is a membrane glycoprotein and the only β-galactosidase of the brush border membrane of the intestinal epithelium. Besides active transcription, expression of the active LPH requires different maturation steps of the polypeptide through the secretory pathway, including N- and O-glycosylation, dimerization and proteolytic cleavage steps. The inability to digest lactose due to insufficient lactase activity results in gastrointestinal symptoms known as lactose intolerance. In this review, we will concentrate on the structural and functional features of LPH protein and summarize the cellular and molecular mechanism required for its maturation and trafficking. Then, different types of lactose intolerance are discussed, and the molecular aspects of lactase persistence/non-persistence phenotypes are investigated. Finally, we will review the literature focusing on the lactase persistence/non-persistence populations as a comparative model in order to determine the protective or adverse effects of milk and dairy foods on the incidence of colorectal, ovarian and prostate cancers.
Tandem SUMO fusion vectors for improving soluble protein expression and purification.
Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo
2015-12-01
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.
Franceschini, N; Amicosante, G; Perilli, M; Maccarrone, M; Oratore, A; van Beeumen, J; Frère, J M
1991-01-01
The N-terminal sequences of the two major beta-lactamases produced by Citrobacter diversus differed only by the absence of the first residue in form II and the loss of five amino acid residues at the C-terminal end. Limited proteolysis of the homogeneous form I protein yielded a variety of enzymatically active products. In the major product obtained after the action of papain, the first three N-terminal residues of form I had been cleaved, whereas at the C-terminal end the treated enzyme lacked five residues. However, this cannot explain the different behaviours of form I, form II and papain digestion product upon chromatofocusing. Form I, which was sequenced up to position 56, exhibited a very high degree of similarity with a Klebsiella oxytoca beta-lactamase. The determined sequence, which contained the active serine residue, demonstrated that the chromosome-encoded beta-lactamase of Citrobacter diversus belong to class A. Images Fig. 2. PMID:2039443
Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen; Jiménez, Mercedes; López, Daniel
2013-01-01
In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2. PMID:24223975
Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen; Jiménez, Mercedes; López, Daniel
2013-01-01
In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.
Groves, Kate; Cryar, Adam; Walker, Michael; Quaglia, Milena
2018-01-01
Assessing the recovery of food allergens from solid processed matrixes is one of the most difficult steps that needs to be overcome to enable the accurate quantification of protein allergens by immunoassay and MS. A feasibility study is described herein applying International System of Units (SI)-traceably quantified milk protein solutions to assess recovery by an improved extraction method. Untargeted MS analysis suggests that this novel extraction method can be further developed to provide high recoveries for a broad range of food allergens. A solution of α-casein was traceably quantified to the SI for the content of α-S1 casein. Cookie dough was prepared by spiking a known amount of the SI-traceable quantified solution into a mixture of flour, sugar, and soya spread, followed by baking. A novel method for the extraction of protein food allergens from solid matrixes based on proteolytic digestion was developed, and its performance was compared with the performance of methods reported in the literature.
Cysteine cathepsin S processes leptin, inactivating its biological activity.
Oliveira, Marcela; Assis, Diego M; Paschoalin, Thaysa; Miranda, Antonio; Ribeiro, Eliane B; Juliano, Maria A; Brömme, Dieter; Christoffolete, Marcelo Augusto; Barros, Nilana M T; Carmona, Adriana K
2012-08-01
Leptin is a 16 kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.
Isobe, Minoru; Kuse, Masaki; Tani, Naoki; Fujii, Tatsuya; Matsuda, Tsukasa
2008-01-01
Symplectin is a photoprotein from a luminous squid, Symplectoteuthis oualaniensis. It has a luminous substrate, dehydrocoelenterazine (DCZ), linked through a thioether bond with a cysteine residue. We have proven the binding site of luminous substrate in symplectin by using an artificial analogue of DCZ, ortho-fluoro-DCZ (F-DCZ). F-DCZ-symplectin emitting strong blue light was reconstituted from apo-symplectin and F-DCZ. Proteolytic digestion of the reconstituted F-DCZ-symplectin afforded peptides including C390GLK-F-DCZ (amide), which was detected with a house assembled nano-LC-ESI-Q-TOF-MS. The chromo-peptide derived from the F-DCZ-symplectin after luminescence showed the lower molecular mass than that before the luminescence by 12 mass units, corresponding to the loss of one carbon atom upon emitting light. Thus, we have concluded that F-DCZ analogue binds to Cys390 in symplectin so as to emit light. PMID:18997450
Conlon, J M; Eriksson, B; Grimelius, L; Oberg, K; Thim, L
1987-11-15
By using only reverse-phase h.p.l.c., three fragments of prosomatostatin were isolated from an extract of a human pancreatic neuroendocrine tumour that produced somatostatin, vasoactive intestinal polypeptide and gastrin-releasing peptide. The amino acid composition of the peptides indicated that they represented prosomatostatin-(1-63)-peptide, prosomatostain-(65-76)-peptide and prosomatostatin-(79-92)-peptide (somatostatin-14). The identity of prosomatostatin-(1-63)-peptide was confirmed by characterization of the products of digestion with Armillaria mellea (honey fungus) proteinase. Partial micro-sequencing of prosomatostatin-(1-63)-peptide showed that the Gly24-Ala25 bond of preprosomatostatin was the site of cleavage of the signal peptide. Thus human prosomatostatin is a protein of 92 amino acid residues that is proteolytically cleaved in a pancreatic tumour at the site of a dibasic-residue (arginine-lysine) processing site and at a single-monobasic-residue (arginine) processing site.
NASA Technical Reports Server (NTRS)
Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia
2002-01-01
Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.
Koehnlein, Eloá Angélica; Koehnlein, Érica Marcela; Corrêa, Rúbia Carvalho Gomes; Nishida, Verônica Sayuri; Correa, Vanesa Gesser; Bracht, Adelar; Peralta, Rosane Marina
2016-09-01
This work compares the phenolic contents and the total antioxidant capacity of the 36 most popular Brazilian foods submitted to aqueous extraction or in vitro digestion. The purpose was to evaluate the extent by which digestion differs from the simple aqueous extraction procedures of several food matrices. After in vitro digestion, cereals, legumes, vegetables, tuberous vegetables, chocolates and fruits showed higher phenolic contents and higher antioxidant activities than those obtained by aqueous extraction. Contrarily, the digestion caused a reduction in the phenolic contents and antioxidant activities of beverages (red wine, coffee and yerba mate). Our results suggest that the phenolics of food groups with solid and complex matrix are protected against enzymatic action and alteration in pH during the digestion, what does not occur in liquid food matrices such as the beverages. This fact would overestimate the antioxidant activities of beverages submitted solely to aqueous extraction.
Fontaine, Anne-Sophie; Bout, Siobhán; Barrière, Yves; Vermerris, Wilfred
2003-12-31
Cell wall digestibility is an important determinant of forage quality, but the relationship between cell wall composition and digestibility is poorly understood. We analyzed the neutral detergent fiber (NDF) fraction of nine maize inbred lines and one brown midrib3 mutant with pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). Among 29 pyrolysis fragments that were quantified, two carbohydrate-derived and six lignin-derived fragments showed statistically significant genetic variation. The pyrolysis products 4-vinyl phenol and 2,6-dimethoxy-4-vinyl phenol were negatively correlated with digestibility, whereas furfural and 3-(4-hydroxyphenyl)-3-oxopropanal showed a positive correlation with digestibility. Linear discriminant analysis of the pyrolysis data resulted in the resolution of groups of inbred lines with different digestibility properties based on their chemical composition. These analyses reveal that digestibility is governed by complex interactions between different cell wall compounds, but that several pyrolysis fragments can be used as markers to distinguish between maize lines with different digestibility.
Markis, Flora; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam; Slatter, Paul; Eshtiaghi, Nicky
2016-09-01
Predicting the flow behaviour, most notably, the apparent viscosity and yield stress of sludge mixtures inside the anaerobic digester is essential because it helps optimize the mixing system in digesters. This paper investigates the rheology of sludge mixtures as a function of digested sludge volume fraction. Sludge mixtures exhibited non-Newtonian, shear thinning, yield stress behaviour. The apparent viscosity and yield stress of sludge mixtures prepared at the same total solids concentration was influenced by the interactions within the digested sludge and increased with the volume fraction of digested sludge - highlighted using shear compliance and shear modulus of sludge mixtures. However, when a thickened primary - secondary sludge mixture was mixed with dilute digested sludge, the apparent viscosity and yield stress decreased with increasing the volume fraction of digested sludge. This was caused by the dilution effect leading to a reduction in the hydrodynamic and non-hydrodynamic interactions when dilute digested sludge was added. Correlations were developed to predict the apparent viscosity and yield stress of the mixtures as a function of the digested sludge volume fraction and total solids concentration of the mixtures. The parameters of correlations can be estimated using pH of sludge. The shear and complex modulus were also modelled and they followed an exponential relationship with increasing digested sludge volume fraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effects of food components on the digestion of DNA by pepsin.
Zhang, Yanfang; Wang, Xingyu; Pan, Xiaoming; Liu, Yu; Wang, Hanqing; Dong, Ping; Liang, Xingguo
2016-11-01
Recently, our study found that naked nucleic acids (NAs) can be digested by pepsin. To better understand the fate of dietary DNA in the digestive tract, in this study we investigated the effects of several food compositions on its digestion. The results showed that protein inhibited the digestion of DNA when the protein:DNA ratio was higher than 80:1 (m/m). DNA found in nucleoprotein (NA), which more closely resembles the state of DNA in food, was as efficiently digested as naked DNA. When the carbohydrate:DNA ratio was 50:1-140:1 (m/m), mono-, di- and polysaccharides did not inhibit DNA digestion. NaCl exhibited an inhibitory effect at 300 mM, whereas divalent cations (Ca(2+ )and Mg(2+)) exerted a much stronger inhibitory effect even at 50 mM. The polycation compounds (e.g. chitosan and spermine) showed a significant inhibitory effect at N/P (NH3(+)/PO4(-)) = 10:1. The close relationship between food composition and DNA digestion suggests that dietary habits and food complexes are important for understanding the in vivo fate of the ingested DNA in the digestive tract.
Frogs as integrative models for understanding digestive organ development and evolution
Womble, Mandy; Pickett, Melissa; Nascone-Yoder, Nanette
2016-01-01
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laev is and Eleutherodactylouscoqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines. PMID:26851628
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico.
Borja, Miguel; Neri-Castro, Edgar; Castañeda-Gaytán, Gamaliel; Strickland, Jason L; Parkinson, Christopher L; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Lomonte, Bruno; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca
2018-01-08
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes ( Crotalus scutulatus scutulatus ) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE ( n = 28) and Hide Powder Azure proteolytic analysis ( n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico
Castañeda-Gaytán, Gamaliel; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca
2018-01-01
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A2s (PLA2s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present. PMID:29316683
Emergent behaviour in a chlorophenol-mineralising three-tiered microbial ‘food web’
Wade, M.J.; Pattinson, R.W.; Parker, N.G.; Dolfing, J.
2016-01-01
Anaerobic digestion enables the water industry to treat wastewater as a resource for generating energy and recovering valuable by-products. The complexity of the anaerobic digestion process has motivated the development of complex models. However, this complexity makes it intractable to pin-point stability and emergent behaviour. Here, the widely used Anaerobic Digestion Model No. 1 (ADM1) has been reduced to its very backbone, a syntrophic two-tiered microbial ‘food chain’ and a slightly more complex three-tiered microbial ‘food web’, with their stability analysed as a function of the inflowing substrate concentration and dilution rate. Parameterised for phenol and chlorophenol degradation, steady-states were always stable and non-oscillatory. Low input concentrations of chlorophenol were sufficient to maintain chlorophenol- and phenol-degrading populations but resulted in poor conversion and a hydrogen flux that was too low to sustain hydrogenotrophic methanogens. The addition of hydrogen and phenol boosted the populations of all three organisms, resulting in the counterintuitive phenomena that (i) the phenol degraders were stimulated by adding hydrogen, even though hydrogen inhibits phenol degradation, and (ii) the dechlorinators indirectly benefitted from measures that stimulated their hydrogenotrophic competitors; both phenomena hint at emergent behaviour. PMID:26551153
Wanapat, M.; Kang, S.; Khejornsart, P.; Wanapat, S.
2013-01-01
Four rumen-fistulated crossbred beef cattle (Brahman native) were randomly assigned according to a 4×4 Latin square design experiment to be fed plant herb supplements in their concentrate mixture. The treatments were: without herb supplementation (Control), lemongrass meal supplementation at 100 g/d (L), lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d (LP), and lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d with garlic powder 40 g/d (LPG), respectively. Based on the present study, the DMI and apparent digestibility of DM, OM, aNDF and ADF were not affected by dietary herb supplementation while CP digestibility tended to be decreased by herb supplement. Moreover, NH3-N and BUN were decreased in all herb supplemented treatments and there was a tendency to an increase in ruminal pH in all herb supplemented groups. While there was no change in TVFA and C4 among lemongrass treatments, C2 was decreased in all herb supplemented treatments while C3 was increased. Methane production by calculation was the lowest in the LP and LPG groups. Population sizes of bacteria and protozoa were decreased in all herb supplemented groups, but not fungal zoospores. In all supplemented groups, total viable and proteolytic bacteria were decreased, while amylolytic and cellulolytic bacteria were similar. More importantly, in all herb supplemented groups, there were higher N balances, while there was no difference among treatments on purine derivative (PD) excretion or microbial N. Based on the results above, it could be concluded that there was no negative effect on ruminal fermentation characteristics and nutrient utilization by plant herb supplement, but protozoal population and CH4 production were reduced. Thus, lemongrass alone or in combination with peppermint and garlic powder could be used as feed additives to improve rumen fermentation efficiency. PMID:25049893
Ahn, J-E; Lovingshimer, M R; Salzman, R A; Presnail, J K; Lu, A L; Koiwa, H; Zhu-Salzman, K
2007-06-01
Cowpea bruchids, when challenged by consumption of the soybean cysteine protease inhibitor scN, reconfigure expression of their major CmCP digestive proteases and resume normal feeding and development. Previous evidence indicated that insects selectively induced CmCPs from subfamily B, that were more efficient in autoprocessing and possessed not only higher proteolytic, but also scN-degrading activities. In contrast, dietary scN only marginally up-regulated genes from the more predominant CmCP subfamily A that were inferior to subfamily B. To gain further molecular insight into this adaptive adjustment, we performed domain swapping between the two respective subfamily members B1 and A16, the latter unable to autoprocess or degrade scN even after intermolecular processing. Swapping the propeptides did not qualitatively alter autoprocessing in either protease isoform. Incorporation of either the N- (pAmBA) or C-terminal (pAmAB) mature B1 segment into A16, however, was sufficient to prime autoprocessing of A16 to its mature form. Further, the swap at the N-terminal mature A16 protein region (pAmBA) resulted in four amino acid changes. Replacement of these amino acid residues by the corresponding B1 residues, singly and pair-wise, revealed that autoprocessing activation in pAmBA resulted from cumulative and/or coordinated individual effects. Bacterially expressed isolated propeptides (pA16 and pB1) differed in their ability to inhibit mature B1 enzyme. Lower inhibitory activity in pB1 is likely attributable to its lack of protein stability. This instability in the cleaved propeptide is necessary, although insufficient by itself, for scN-degradation by the mature B1 enzyme. Taken together, cowpea bruchids modulate proteolysis of their digestive enzymes by controlling proCmCP cleavage and propeptide stability, which explains at least in part the plasticity cowpea bruchids demonstrate in response to protease inhibitors.
Rose, M C; Kaufman, B; Martin, B M
1989-05-15
Human tracheobronchial mucin was isolated from lung mucosal gel by chromatography on Sepharose 4B in the presence of dissociating and reducing agents, and its thiol residues were carboxyamidomethylated with iodo[1(-14)C]acetamide. The 14C-carboxyamido-methylated mucin was purified by chromatography on Sepharose 2B. No low molecular weight components were detected by molecular sieve chromatography or polyacrylamide gel electrophoresis in the presence of dissociating and reducing agents or by analytical density centrifugation in CsCl/guanidinium chloride. After digestion of the purified 14C-mucin with trypsin-L-1-tosylamido-2-phenylethyl chloromethyl ketone, three fractions (TR-1, TR-2, and TR-3) were observed by chromatography on Sepharose 4B. TR-1, a 260-kDa mucin glycopeptide fragment, contained all of the neutral hexose and blood group activity and 20% of the radioactivity in the undigested mucin. TR-1 was refractory to a second incubation with trypsin but could be digested by papain or Pronase to a smaller mucin glycopeptide fraction, as judged by the slight decrease in apparent molecular weight on Sepharose CL-4B. These mucin glycopeptides contained approximately 50% of the radioactivity in the TR-1 fraction, indicating that the glycosylated domains of carboxyamidomethylated tracheobronchial mucin contained thiol residues. The remainder of the radioactivity from papain or Pronase digests of TR-1 eluted, like the TR-3 fractions, in the salt fraction on Sepharose CL-4B. Peptide mapping of the nonglycosylated TR-3 fraction by TLC and high voltage electrophoresis yielded six principal and several less intensely stained ninhydrin reactive components, with the radiolabel concentrated in one of the latter peptides. Peptide purification of the TR-3 fraction by high pressure liquid chromatography on a C18 reverse phase column demonstrated the presence of four major peptides, with TR-3A being the dominant component. The TR-3D peptide contained S-carboxy-aminomethylcysteine and had 69% sequence similarity to the sgs-7 salivary glue protein of Drosophila.
Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng
2015-12-10
Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.
A novel image processing method to determine the nutritional condition of lobsters.
Berillis, P; Simon, C; Mente, E; Sofos, F; Karapanagiotidis, I T
2013-02-01
The digestive gland of crustacean is involved in various metabolic activities, including the synthesis and secretion of digestive enzymes that begin the process of food digestion, intracellular digestion and absorption of nutrients, storage of reserves, and disposal of waste products. It consists of two glandular lobes which extensively subdivide to form a complex of blind-ending tubules, whose size, surface area, and digestive cells are associated with intracellular digestion and the nutritional status of the organism. The aim of this paper was to study the morphology of the digestive gland in various lobster species and calculate the surface area of tubules, lumen and digestive cells (R-, F-, and B-cells) and their ratios to total tubule surface area. The similarity in ratios obtained in this study between individual lobsters suggests that the method developed in this study can be successfully applied to a range of species. This study describes a novel image processing algorithm for the automatic measurement of the hepatopancreas structure using stained cross sections of digestive gland tubules. The proposed new methodology could be used for studying the physiology and nutrient metabolism of lobsters and other crustaceans. The computer-aided analysis described in this paper is accurate for the quantitative assessment of the lobster's digestive gland structure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cardelli, J A; Bush, J M; Ebert, D; Freeze, H H
1990-05-25
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.
Laparoscopic and robot-assisted laparoscopic digestive surgery: Present and future directions
Rodríguez-Sanjuán, Juan C; Gómez-Ruiz, Marcos; Trugeda-Carrera, Soledad; Manuel-Palazuelos, Carlos; López-Useros, Antonio; Gómez-Fleitas, Manuel
2016-01-01
Laparoscopic surgery is applied today worldwide to most digestive procedures. In some of them, such as cholecystectomy, Nissen’s fundoplication or obesity surgery, laparoscopy has become the standard in practice. In others, such as colon or gastric resection, the laparoscopic approach is frequently used and its usefulness is unquestionable. More complex procedures, such as esophageal, liver or pancreatic resections are, however, more infrequently performed, due to the high grade of skill necessary. As a result, there is less clinical evidence to support its implementation. In the recent years, robot-assisted laparoscopic surgery has been increasingly applied, again with little evidence for comparison with the conventional laparoscopic approach. This review will focus on the complex digestive procedures as well as those whose use in standard practice could be more controversial. Also novel robot-assisted procedures will be updated. PMID:26877605
Teaching about Africa. ERIC Digest No. 36.
ERIC Educational Resources Information Center
Merryfield, Merry M.
Recognizing the need to strengthen education about Africa in United States schools and to enable teachers to present complex issues about apartheid, political stability, and cultural conflict, this digest addresses the issue of how teachers can improve their teaching about Africa. The article poses 3 questions: (1) Why is it important to teach…
Knowledge Management for Higher Education. ERIC Digest.
ERIC Educational Resources Information Center
Milam, John H., Jr.
This digest describes the emerging study of Knowledge Management (KM), a field that has much to offer administrators in higher education. KM principles recognize that it is important for organizations to "know what they know." It is the organized complexity of collaborative work to share and use information across all aspects of an…
USDA-ARS?s Scientific Manuscript database
Starch is the major source of food glucose, and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while anot...
Amoako, Derrick B; Awika, Joseph M
2016-10-01
Excess calorie intake is a growing global problem. This study investigated effect of complexing partially gelatinized starch with condensed tannins on in vitro starch digestibility. Extracts from tannin and non-tannin sorghum, and cellulose control, were reacted with normal and waxy maize starch in 30% (30E) and 50% ethanol (50E) solutions at 70°C/20min. More tannins complexed with the 30E than 50E starches (mean 6.2 vs 3.5mg/g, respectively). In the 30E treatments, tannins significantly increased crystallinity, pasting temperature, peak viscosity, and slow digesting starch (from 100 to 274mg/g) in normal, but not waxy starch, suggesting intragranular cross-linking with amylose. Tannins doubled resistant starch (RS) to approx. 300mg/g in both starches. In 50E treatments, tannins made both maize starches behave like raw potato starch (>90% RS), suggesting granule surface interactions dominated. Non-tannin treatments generally behaved similar to cellulose. Condensed tannins could be used to favorably alter starch digestion profile. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chernyshova, M P; Alen'kina, S A; Nikitina, V E; Ignatov, V V
2005-01-01
It was found that Azospirillum brasilensis strain Sp7 is able to produce extracellular proteolytic enzymes. The enzymes were active within a broad range of pH values, with two peaks of activity being located in the acid and alkaline pH areas; required calcium ions; and exhibited substrate specificity with respect to azogelatin. Zymography allowed at least four proteolytic enzymes with molecular weights of 32, 45, 52, and 174 kDa to be detected in A. brasilense Sp7 culture liquid. It was shown that the lectin from A. brasilense Sp7 can inhibit proteolytic enzymes.
A Peptidomics Strategy to Elucidate the Proteolytic Pathways that Inactivate Peptide Hormones
Tinoco, Arthur D.; Kim, Yun-Gon; Tagore, Debarati M.; Wiwczar, Jessica; Lane, William S.; Danial, Nika N.; Saghatelian, Alan
2011-01-01
Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS)-based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay—a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e. GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones. PMID:21299233
Cozannet, Pierre; Kidd, Michael T; Montanhini Neto, Roberto; Geraert, Pierre-André
2017-08-01
This study was carried out to evaluate the effect of a multi-carbohydrase complex (MCC) rich in xylanase (Xyl) and arabinofuranosidase (Abf) on overall broiler feed digestibility in broilers. Energy utilization and digestibility of dry matter (DM), organic matter (OM), protein, starch, fat, and insoluble and soluble fibers were measured using the mass-balance method. The experiment was carried out on 120 broilers (3-week-old chickens). Broilers were distributed over 8 treatments to evaluate the effect of the dietary arabinoxylan content and nutrient density with and without MCC (Rovabio® Advance). The graded content of arabinoxylan (AX) was obtained using different raw materials (wheat, rye, barley, and dried distillers' wheat). Diet-energy density was modified with added fat. Measurements indicated that nutrient density and AX content had a significant effect on most digestibility parameters. Apparent metabolizable energy (AME) was significantly increased (265 kcal kg-1) by MCC. The addition of MCC also resulted in significant improvement in the digestibility of all evaluated nutrients, with average improvements of 3.0, 3.3, 3.2, 3.0, 6.2, 2.9, 5.8, and 3.8% units for DM, OM, protein, starch, fat, insoluble and soluble fibers, and energy utilization, respectively. The interaction between MCC and diet composition was significant for the digestibility of OM, fat, protein, and energy. Nutrient digestibility and diet AME were negatively correlated with AX content (P < 0.001). However, the addition of MCC resulted in a reduction of this negative effect (P < 0.001). The AME of diets with and without the addition of MCC were successfully predicted by the diet digestible nutrient (i.e., starch, protein, fat, insoluble and soluble fibers) content with and without MCC (R2 = 0.87; RSD = 78 kcal kg-1). This study confirms that the presence of AX in wheat-based diets and wheat-based diets with other cereals and cereal by-products reduces nutrient digestibility in broiler chickens. Furthermore, the dietary addition of MCC, which is rich in Xyn and Abf, reduced deleterious effect of fiber and improved overall nutrient digestibility in broiler diets. © 2017 Poultry Science Association Inc.
Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.
2015-01-01
Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432
Guevara, M A; Bauer, L L; Garleb, K A; Fahey, G C; de Godoy, M R C
2015-05-01
The objectives were to quantify gastrointestinal tolerance, total tract nutrient digestibility, and serum lipid profiles of dogs as affected by α-cyclodextrin (ACD) supplementation and to validate the accuracy of fat analyses techniques using novel ACD-fat complexes. The ACD was hydrolyzed and free sugars and hydrolyzed monosaccharides were quantified using high performance liquid chromatography. Known amount of fats were complexed with ACD, and fat content of complexes were determined using the ether extraction and acid-hydrolyzed fat methods. Nine mixed-breed hounds were used in a crossover design with 3 periods of 10 d each, including 6 d for diet adaptation and 4 d for fecal collection. Dogs were fed twice daily a diet with poultry byproduct meal and brewer's rice as the main ingredients, and chromic oxide (0.2%) was included as a digestion marker. Dogs were supplemented with either 0, 3, or 6 g of ACD diluted in 15 mL of water twice per day for a total of 0, 6, and 12 g ACD per day. The ACD had a very low free sugar concentration and, once hydrolyzed, released only glucose, as expected. Average daily food intake, fecal output (DM basis), and fecal scores were not significantly different among treatments. Body weight and condition score and serum triglycerides and cholesterol concentrations remained unaltered throughout the duration of the experiment. Dry matter, OM, and fat digestibility coefficients were lower (P < 0.05) for both treatment groups compared to the control. The acid-hydrolyzed fat method was valid to measure fat that was bound to ACD. Intake of ACD lowered fat digestibility somewhat but not to the extent previously reported, without affecting serum lipid concentrations or outcomes related to tolerance. Therefore, ACD supplementation resulted in a small decrease in fat digestibility, but ACD supplementation might have potential in modifying serum lipid profiles.
Gallardo, Pedro; Olivares, Alberto; Martínez-Yáñez, Rosario; Caamal-Monsreal, Claudia; Domingues, Pedro M.; Mascaró, Maite; Sánchez, Ariadna; Pascual, Cristina; Rosas, Carlos
2017-01-01
Digestive physiology is one of the bottlenecks of octopus aquaculture. Although, there are successful experimentally formulated feeds, knowledge of the digestive physiology of cephalopods is fragmented, and focused mainly on Octopus vulgaris. Considering that the digestive physiology could vary in tropical and sub-tropical species through temperature modulations of the digestive dynamics and nutritional requirements of different organisms, the present review was focused on the digestive physiology timing of Octopus maya and Octopus mimus, two promising aquaculture species living in tropical (22–30°C) and sub-tropical (15–24°C) ecosystems, respectively. We provide a detailed description of how soluble and complex nutrients are digested, absorbed, and assimilated in these species, describing the digestive process and providing insight into how the environment can modulate the digestion and final use of nutrients for these and presumably other octopus species. To date, research on these octopus species has demonstrated that soluble protein and other nutrients flow through the digestive tract to the digestive gland in a similar manner in both species. However, differences in the use of nutrients were noted: in O. mimus, lipids were mobilized faster than protein, while in O. maya, the inverse process was observed, suggesting that lipid mobilization in species that live in relatively colder environments occurs differently to those in tropical ecosystems. Those differences are related to the particular adaptations of animals to their habitat, and indicate that this knowledge is important when formulating feed for octopus species. PMID:28620313
Connective tissue growth factor is a substrate of ADAM28
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki
2010-11-26
Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinomamore » cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.« less
DNA AND THE FINE STRUCTURE OF SYNAPTIC CHROMOSOMES IN THE DOMESTIC ROOSTER (GALLUS DOMESTICUS)
Coleman, James R.; Moses, Montrose J.
1964-01-01
The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material. PMID:14228519
Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus.
Perera, Erick; Moyano, F J; Díaz, M; Perdomo-Morales, R; Montero-Alejo, V; Alonso, E; Carrillo, O; Galich, G S
2008-07-01
We characterized major digestive enzymes in Panulirus argus using a combination of biochemical assays and substrate-(SDS or native)-PAGE. Protease and amylase activities were found in the gastric juice while esterase and lipase activities were higher in the digestive gland. Trypsin-like activity was higher than chymotrypsin-like activity in the gastric juice and digestive gland. Stability and optimal conditions for digestive enzyme activities were examined under different pHs, temperature and ionic strength. The use of protease inhibitors showed the prevalence of serine proteases and metalloproteases. Results for serine proteases were corroborated by zymograms where several isotrypsins-like (17-21 kDa) and isochymotrypsin-like enzymes (23-38 kDa) were identified. Amylases (38-47 kDa) were detected in zymograms and a complex array of non-specific esterases isoenzymes was found in the digestive gland. Isoenzyme polymorphism was found for trypsin, amylase, and esterase. This study is the first to evidence the biochemical bases of the plasticity in feeding habits of P. argus. Distribution and properties of enzymes provided some indication on how the digestion takes place and constitute baseline data for further studies on the digestion physiology of spiny lobsters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.
1987-01-01
The Institute of Gas Technology has been operating a 1200-gallon, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida. This digester development work is part of a larger effort sponsored by the Gas Research Institute to provide an effective community waste treatment and energy recovery concept for smaller communities. As a result, an economically attractive, water hyacinth-based wastewater treatment system was developed that includes the digestion of water hyacinth and sludge to methane. A further extension of the community waste treatment concept is to include agricultural wastes in the energy recovery scheme. Therefore, duringmore » 1986 a test program was initiated to obtain data on the digestion of sorghum in the solids concentrating digester. Performance data was collected at both mesophilic and thermophilic operating conditions at total organic loading rates of 0.25 and 0.5 pounds per cubic foot of digester volume per day, respectively. Excellent methane yields were obtained during twelve months of stable and uninterrupted operation. This paper summarizes the performance data obtained on sorghum in this digester. 7 refs., 6 figs., 6 tabs.« less
Churion, Kelly A; Rogers, Robert E; Bayless, Kayla J; Bondos, Sarah E
2016-12-01
Separation of full-length protein from proteolytic products is challenging, since the properties used to isolate the protein can also be present in proteolytic products. Many separation techniques risk non-specific protein adhesion and/or require a lot of time, enabling continued proteolysis and aggregation after lysis. We demonstrate that proteolytic products aggregate for two different proteins. As a result, full-length protein can be rapidly separated from these fragments by filter flow-through purification, resulting in a substantial protein purity enhancement. This rapid approach is likely to be useful for intrinsically disordered proteins, whose repetitive sequence composition and flexible nature can facilitate aggregation. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of endogenous proteins and lipids on starch digestibility in rice flour.
Ye, Jiangping; Hu, Xiuting; Luo, Shunjing; McClements, David Julian; Liang, Lu; Liu, Chengmei
2018-04-01
The composition and structure of the food matrix can have a major impact on the digestion. The aim of this work was to investigate the effects of endogenous proteins and lipids on starch digestibility in rice flour, with an emphasis on establishing the underlying physicochemical mechanisms involved. Native long-grain indica rice flour and rice flour with the lipids and/or proteins removed were subjected to a simulated digestion in vitro. A significant increase in starch digestibility was observed after removal of proteins, lipids, or both. The starch digestibility of the rice flour without lipids was slightly lower than that without proteins, even though the proteins content was about 10-fold higher than the lipids content. Microstructural analysis suggested that the proteins and lipids were normally attached to the surfaces of the starch granules in the native rice flour, thus inhibiting their contact with digestive enzymes. Moreover, the proteins and lipids restricted the swelling of the starch granules, which may have decreased their digestion by reducing their surface areas. In addition, amylose-lipid complex was detected in the rice flour, which is also known to slow down starch digestion. These results have important implications for the design of foods with improved nutritional profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Miersch, Claudia; Stange, Katja; Röntgen, Monika
2018-06-01
Muscle stem cells, termed satellite cells (SC), and SC-derived myogenic progenitor cells (MPC) are involved in postnatal muscle growth, regeneration, and muscle adaptability. They can be released from their natural environment by mechanical disruption and tissue digestion. The literature contains several isolation protocols for porcine SC/MPC including various digestion procedures, but comparative studies are missing. In this report, classic trypsinization and a more complex trypsin, collagenase, and DNase (TCD) digestion were performed with skeletal muscle tissue from 4- to 5-d-old piglets. The two digestion procedures were compared regarding cell yield, viability, myogenic purity, and in vitro cell function. The TCD digestion tended to result in higher cell yields than digestion with solely trypsin (statistical trend p = 0.096), whereas cell size and viability did not differ. Isolated myogenic cells from both digestion procedures showed comparable proliferation rates, expressed the myogenic marker Desmin, and initiated myogenic differentiation in vitro at similar levels. Thus, TCD digestion tended to liberate slightly more cells without changes in the tested in vitro properties of the isolated cells. Both procedures are adequate for the isolation of SC/MPC from juvenile porcine muscles but the developmental state of the animal should always be considered.
Frogs as integrative models for understanding digestive organ development and evolution.
Womble, Mandy; Pickett, Melissa; Nascone-Yoder, Nanette
2016-03-01
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barboza, P S; Bennett, A; Lignot, J-H; Mackie, R I; McWhorter, T J; Secor, S M; Skovgaard, N; Sundset, M A; Wang, T
2010-01-01
The digestive system is the interface between the supply of food for an animal and the demand for energy and nutrients to maintain the body, to grow, and to reproduce. Digestive systems are not morphologically static but rather dynamically respond to changes in the physical and chemical characteristics of the diet and the level of food intake. In this article, we discuss three themes that affect the ability of an animal to alter digestive function in relation to novel substrates and changing food supply: (1) the fermentative digestion in herbivores, (2) the integration of cardiopulmonary and digestive functions, and (3) the evolution of dietary specialization. Herbivores consume, digest, and detoxify complex diets by using a wide variety of enzymes expressed by bacteria, predominantly in the phyla Firmicutes and Bacteroidetes. Carnivores, such as snakes that feed intermittently, sometimes process very large meals that require compensatory adjustments in blood flow, acid secretion, and regulation of acid-base homeostasis. Snakes and birds that specialize in simple diets of prey or nectar retain their ability to digest a wider selection of prey. The digestive system continues to be of interest to comparative physiologists because of its plasticity, both phenotypic and evolutionary, and because of its widespread integration with other physiological systems, including thermoregulation, circulation, ventilation, homeostasis, immunity, and reproduction.
Insights into Digestion and Absorption of Major Nutrients in Humans
ERIC Educational Resources Information Center
Goodman, Barbara E.
2010-01-01
Nutrient digestion and absorption is necessary for the survival of living organisms and has evolved into the complex and specific task of the gastrointestinal (GI) system. While most people simply assume that their GI tract will work properly to use nutrients, provide energy, and release wastes, few nonscientists know the details about how various…
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) with an enzyme, or enzyme-buffer combination on diet digestibility and feedlot performance. Experimental treatments are; 1) untreated SWDG (control), 2) addition of an enzyme complex to SWDG (enzyme...
Passanha, Pearl; Esteves, Sandra R; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J
2013-11-01
The production of polyhydroxyalkanoates (PHAs) using digestate liquor as culture media is a novel application to extend the existing uses of digestates. In this study, two micro-filtered digestates (0.22 μm) were evaluated as a source of complex culture media for the production of PHA by Cupriavidus necator as compared to a conventional media. Culture media using a mixture of micro-filtered liquors from food waste and from wheat feed digesters showed a maximum PHA accumulation of 12.29 g/l PHA, with 90% cell dry weight and a yield of 0.48 g PHA/g VFA consumed, the highest reported to date for C. necator studies. From the analysis of the starting and residual media, it was concluded that ammonia, potassium, magnesium, sulfate and phosphate provided in the digestate liquors were vital for the initial growth of C. necator whereas copper, iron and nickel may have played a significant role in PHA accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sequential Injection Analysis for Optimization of Molecular Biology Reactions
Allen, Peter B.; Ellington, Andrew D.
2011-01-01
In order to automate the optimization of complex biochemical and molecular biology reactions, we developed a Sequential Injection Analysis (SIA) device and combined this with a Design of Experiment (DOE) algorithm. This combination of hardware and software automatically explores the parameter space of the reaction and provides continuous feedback for optimizing reaction conditions. As an example, we optimized the endonuclease digest of a fluorogenic substrate, and showed that the optimized reaction conditions also applied to the digest of the substrate outside of the device, and to the digest of a plasmid. The sequential technique quickly arrived at optimized reaction conditions with less reagent use than a batch process (such as a fluid handling robot exploring multiple reaction conditions in parallel) would have. The device and method should now be amenable to much more complex molecular biology reactions whose variable spaces are correspondingly larger. PMID:21338059
Guimarães Drummond E Silva, Fernanda; Miralles, Beatriz; Hernández-Ledesma, Blanca; Amigo, Lourdes; Iglesias, Amadeu Hoshi; Reyes Reyes, Felix Guillermo; Netto, Flavia Maria
2017-02-01
The impact of the naturally present phenolic compounds and/or proteins on the antioxidant capacity of flaxseed products (phenolic fraction, protein concentrates, and hydrolysates) before and after simulated gastrointestinal digestion was studied. For that, whole and phenolic reduced products were assessed. Four glycosylated phenolic compounds (secoisolariciresinol and ferulic, p-coumaric, and caffeic acids) were identified in flaxseed products. Phenolic fraction exerts the highest antioxidant capacity that increased by alkaline hydrolysis and by simulated gastrointestinal digestion. The action of Alcalase and digestive enzymes resulted in an increase of the antioxidant capacity of whole and phenolic reduced products. Principal component analysis showed that proteinaceous samples act as antioxidant is by H + transfer, while those samples containing phenolic compounds exert their effects by both electron donation and H + transfer mechanisms. Protein/peptide-phenolic complexation, confirmed by fluorescence spectra, exerted a positive effect on the antioxidant capacity, mainly in protein concentrates.
Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L
2013-01-01
A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process.
Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis
Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes
2013-01-01
Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092
Iqbal, Junaid; Rajani, Mehak; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2013-05-01
Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood-brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.
NASA Astrophysics Data System (ADS)
Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael
2016-06-01
Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.
NASA Astrophysics Data System (ADS)
Franc, Vojtech; Zhu, Jing; Heck, Albert J. R.
2018-03-01
The human complement hetero-trimeric C8αβγ (C8) protein assembly ( 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8β. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. [Figure not available: see fulltext.
Tyrosine sulfation in precursors of collagen V.
Fessler, L I; Brosh, S; Chapin, S; Fessler, J H
1986-04-15
Radioactive labeling of p-collagens V, collagens V, and, to a small extent, of procollagen V occurred when [35S]sulfate was incubated with tendons or primary tendon cell cultures, or blood vessels and crops of 17- to 19-day-old chick embryos, or with lung slices from neonatal rats. Most or all of this label is in the form of 1 or more sulfated tyrosine residues/chain of p alpha 1(V), alpha 1(V), p alpha 1'(V), alpha 1'(V), p alpha 2(V), and alpha 2(V), and it remains attached through purification by dialysis, ammonium sulfate precipitation, CsCl-GdnCl2 equilibrium buoyant density and velocity sedimentations, ion-exchange chromatography, and sodium dodecyl sulfate gel electrophoresis. Radioactive tyrosine sulfate was identified in alkaline hydrolysates of these collagen V chains, after labeling the tissues with either [35S]sulfate or [3H]tyrosine, by electrophoretic and chromatographic comigration with a tyrosine sulfate standard. Tunicamycin A1, which inhibits the attachment of N-linked complex carbohydrate, did not interfere with the sulfation process. The tyrosine sulfate is located in a noncollagenous domain, which is probably adjacent to the amino end of the collagen helix, and is retained throughout the physiological proteolytic processing of procollagens V. After digestion with Staphylococcus aureus V8 protease, 35S-labeled p alpha 1(V) and alpha 1(V) chains gave the same map of labeled peptides, and this differed from the map given by p alpha 1'(V) and alpha 1'(V) chains. Little sulfation of p alpha 2(V) and alpha 2(V) chains occurs. The implications of these observations for the structure and properties of procollagens V and their derivatives are considered.
Mining proteomic data to expose protein modifications in Methanosarcina mazei strain Gö1
Leon, Deborah R.; Ytterberg, A. Jimmy; Boontheung, Pinmanee; ...
2015-03-05
Proteomic tools identify constituents of complex mixtures, often delivering long lists of identified proteins. The high-throughput methods excel at matching tandem mass spectrometry data to spectra predicted from sequence databases. Unassigned mass spectra are ignored, but could, in principle, provide valuable information on unanticipated modifications and improve protein annotations while consuming limited quantities of material. Strategies to “mine” information from these discards are presented, along with discussion of features that, when present, provide strong support for modifications. In this study we mined LC-MS/MS datasets of proteolytically-digested concanavalin A pull down fractions from Methanosarcina mazei Gö1 cell lysates. Analyses identified 154more » proteins. Many of the observed proteins displayed post-translationally modified forms, including O-formylated and methyl-esterified segments that appear biologically relevant (i.e., not artifacts of sample handling). Interesting cleavages and modifications (e.g., S-cyanylation and trimethylation) were observed near catalytic sites of methanogenesis enzymes. Of 31 Methanosarcina protein N-termini recovered by concanavalin A binding or from a previous study, only M. mazei S-layer protein MM1976 and its M. acetivorans C2A orthologue, MA0829, underwent signal peptide excision. Experimental results contrast with predictions from algorithms SignalP 3.0 and Exprot, which were found to over-predict the presence of signal peptides. Proteins MM0002, MM0716, MM1364, and MM1976 were found to be glycosylated, and employing chromatography tailored specifically for glycopeptides will likely reveal more. This study supplements limited, existing experimental datasets of mature archaeal N-termini, including presence or absence of signal peptides, translation initiation sites, and other processing. Methanosarcina surface and membrane proteins are richly modified.« less
Characterization of the biosynthesis, processing, and sorting of human HBP/CAP37/azurocidin.
Lindmark, A; Garwicz, D; Rasmussen, P B; Flodgaard, H; Gullberg, U
1999-10-01
Azurocidin is a multifunctional endotoxin-binding serine protease homolog synthesized during the promyelocytic stage of neutrophil development. To characterize the biosynthesis and processing of azurocidin, cDNA encoding human preproazurocidin was stably transfected to the rat basophilic leukemia cell line RBL-1 and the murine myeloblast-like cell line 32D cl3; cell lines previously utilized to study the related proteins cathepsin G and proteinase 3. After 30 min of pulse radiolabeling, two forms of newly synthesized proazurocidin (34.5 and 37 kDa), differing in carbohydrate content but with protein cores of identical sizes, were recognized. With time, the 34.5-kDa form disappeared, while the 37-kDa form was further processed proteolytically, as judged by digestion with N-glycosidase F. Conversion of high-mannose oligosaccharides into complex forms was shown by acquisition of complete resistance to endoglycosidase H. Radiosequence analysis demonstrated that the amino-terminal seven amino acid propeptide of proazurocidin was removed in a stepwise manner during processing; initial removal of five amino acids was followed by cleavage of a dipeptide. Presence of the protease inhibitors Gly-Phe-diazomethyl ketone, bestatin, or leupeptin inhibited only the cleavage of the dipeptide, thus indicating the involvement of at least two amino-terminal processing enzymes. Translocation of azurocidin to granules was shown by subcellular fractionation. Similar results, with efficient biosynthesis, processing, and targeting to granules in both cell lines, were obtained with a mutant form of human preproazurocidin lacking the amino-terminal heptapropeptide. In conclusion, this investigation is an important addition to our previous studies on related azurophil granule proteins, and provides novel information concerning the biosynthesis and distinctive amino-terminal processing of human azurocidin.
High resolution top-down experimental strategies on the Orbitrap platform.
Scheffler, Kai; Viner, Rosa; Damoc, Eugen
2018-03-20
Top-down mass spectrometry (MS) strategies allow in-depth characterization of proteins by fragmentation of the entire molecule(s) inside a mass spectrometer without requiring prior proteolytic digestion. Importantly, the fragmentation techniques on commercially available mass spectrometers have become more versatile over the past decade, with different characteristics in regards to the type and wealth of fragment ions that can be obtained while preserving labile protein post-translational modifications. Due to these and other improvements, top-down MS has become of broader interest and has started to be applied in more disciplines, such as the quality control of recombinant proteins, analysis and characterization of biopharmaceuticals, and clinical biochemistry to probe protein forms as potential disease biomarkers. This article provides a technical overview and guidance for data acquisition strategies on the Orbitrap platform for single proteins and low complexity protein mixtures. A protein standard mixture composed of six recombinant proteins is also introduced and analysis strategies are discussed in detail. The article provides a detailed overview and guidance on how to choose from the variety of available methods for protein characterization by top-down analysis on the Orbitrap platform. Technical details are provided explaining important observations and phenomena when working with intact proteins and data from a number of different samples should serve to provide a solid understanding on how experiments were and should be setup and to set the right expectations on the outcome of these types of experiments. Additionally, a new intact protein standard sample is introduced that will help as a QC sample to check the instrument's hardware and method setup conditions as a requirement for obtaining high quality data from biologically relevant samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Comprehensive Analysis of Protein Modifications by Top-down Mass Spectrometry
Zhang, Han; Ge, Ying
2012-01-01
Mass spectrometry (MS)-based proteomics is playing an increasingly important role in cardiovascular research. Proteomics includes not only identification and quantification of proteins, but also the characterization of protein modifications such as post-translational modifications and sequence variants. The conventional bottom-up approach, involving proteolytic digestion of proteins into small peptides prior to MS analysis, is routinely used for protein identification and quantification with high throughput and automation. Nevertheless, it has limitations in the analysis of protein modifications mainly due to the partial sequence coverage and loss of connections among modifications on disparate portions of a protein. An alternative approach, top-down MS, has emerged as a powerful tool for the analysis of protein modifications. The top-down approach analyzes whole proteins directly, providing a “bird’s eye” view of all existing modifications. Subsequently, each modified protein form can be isolated and fragmented in the mass spectrometer to locate the modification site. The incorporation of the non-ergodic dissociation methods such as electron capture dissociation (ECD) greatly enhances the top-down capabilities. ECD is especially useful for mapping labile post-translational modifications which are well-preserved during the ECD fragmentation process. Top-down MS with ECD has been successfully applied to cardiovascular research with the unique advantages in unraveling the molecular complexity, quantifying modified protein forms, complete mapping of modifications with full sequence coverage, discovering unexpected modifications, and identifying and quantifying positional isomers and determining the order of multiple modifications. Nevertheless, top-down MS still needs to overcome some technical challenges to realize its full potential. Herein, we reviewed the advantages and challenges of top-down methodology with a focus on its application in cardiovascular research. PMID:22187450
Zheng, Xiaoyang; Baker, Haven; Hancock, William S
2006-07-07
Advances in proteomics are continuing to expand the ability to analyze the serum proteome. In recent years, it has been realized that in addition to the circulating proteins, human serum also contains a large number of peptides. Many of these peptides are believed to be fragments of larger proteins that have been at least partially degraded by various enzymes such as metalloproteases. Identifying these peptides from a small amount of serum/plasma is difficult due to the complexity of the sample, the low levels of these peptides, and the difficulties in getting a protein identification from a single peptide. In this study, we modified previously published protocols for using centrifugal ultrafiltration, and unlike past studies did not digest the filtrate with trypsin with the intent of identifying endogenous peptides with this method. The filtrate fraction was concentrated and analyzed by a reversed phase-high performance liquid chromatography system connected to a nanospray ionization hybrid ion trap-Fourier transform mass spectrometer (LTQ-FTMS). The mass accuracy of this instrument allows confidence for identifying the protein precursors by a single peptide. The utility of this approach was demonstrated by the identification of over 300 unique peptides with 2 ppm or better mass accuracy per serum sample. With confident identifications, the origin and function of native serum peptides can be more seriously explored. Interestingly, over 34 peptide ladders were observed from over 17 serum proteins. This indicates that a cascade of proteolytic processes affects the serum peptidome. To examine whether this result was an artifact of serum, matched plasma and serum samples were analyzed with similar peptide ladders found in each.
Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia
2012-10-01
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.
Díaz Lozano, Isabel María; De Pablos, Luis Miguel; Longhi, Silvia Andrea; Zago, María Paola; Schijman, Alejandro Gabriel; Osuna, Antonio
2017-01-01
The exovesicles (EVs) are involved in pathologic host-parasite immune associations and have been recently used as biomarkers for diagnosis of infectious diseases. The release of EVs by Trypanosoma cruzi, the causative agent of Chagas disease, has recently been described, with different protein cargoes including the MASP multigene family of proteins MASPs are specific to this parasite and characterized by a conserved C-terminal (C-term) region and an N-terminal codifying for a signal peptide (SP). In this investigation, we identified immature MASP proteins containing the MASP SP in EVs secreted by the infective forms of the parasite. Those EVs are responsible for the formation of immune complexes (ICs) containing anti-MASP SP IgGs in patients with different (cardiac, digestive and asymptomatic) chronic Chagas disease manifestations. Moreover, purified EVs as well as the MASP SP inhibit the action of the complement system and also show a significant association with the humoral response in patients with digestive pathologies. These findings reveal a new route for the secretion of MASP proteins in T. cruzi, which uses EVs as vehicles for immature and misfolded proteins, forming circulating immune complexes. Such complexes could be used in the prognosis of digestive pathologies of clinical forms of Chagas disease. PMID:28294160
Proteomic changes in Corbicula fluminea exposed to wastewater from a psychiatric hospital.
Bebianno, M J; Sroda, S; Gomes, T; Chan, P; Bonnafe, E; Budzinski, H; Geret, F
2016-03-01
The increase use of pharmaceutical compounds in veterinary practice and human population results in the ubiquitous presence of these compounds in aquatic ecosystems. Because pharmaceuticals are highly bioactive, there is concern about their toxicological effects in aquatic organisms. Therefore, the aim of this study was to assess the effects of an effluent from a psychiatric hospital (containing a complex mixture of 25 pharmaceutical compounds from eleven therapeutic classes) on the freshwater clam Corbicula fluminea using a proteomic approach. The exposure of C. fluminea to this complex effluent containing anxiolytics, analgesics, lipid regulators, beta blockers, antidepressants, antiepileptics, antihistamines, antihypertensives, antiplatelets and antiarrhythmics induced protein changes after 1 day of exposure in clam gills and digestive gland more evident in the digestive gland. These changes included increase in the abundance of proteins associated with structural (actin and tubulin), cellular functions (calreticulin, proliferating cell nuclear antigen (PCNA), T complex protein 1 (TCP1)) and metabolism (aldehyde dehydrogenase (ALDH), alcohol dehydrogenase, 6 phosphogluconate dehydrogenase). Results from this study indicate that calreticulin, PCNA, ALDH and alcohol dehydrogenase in the digestive gland and T complex protein 1 (TCP1)) and 6 phosphogluconate dehydrogenase in the gills represent useful biomarkers for the ecotoxicological characterization of psychiatric hospital effluents in this species.
NASA Astrophysics Data System (ADS)
Díaz Lozano, Isabel María; de Pablos, Luis Miguel; Longhi, Silvia Andrea; Zago, María Paola; Schijman, Alejandro Gabriel; Osuna, Antonio
2017-03-01
The exovesicles (EVs) are involved in pathologic host-parasite immune associations and have been recently used as biomarkers for diagnosis of infectious diseases. The release of EVs by Trypanosoma cruzi, the causative agent of Chagas disease, has recently been described, with different protein cargoes including the MASP multigene family of proteins MASPs are specific to this parasite and characterized by a conserved C-terminal (C-term) region and an N-terminal codifying for a signal peptide (SP). In this investigation, we identified immature MASP proteins containing the MASP SP in EVs secreted by the infective forms of the parasite. Those EVs are responsible for the formation of immune complexes (ICs) containing anti-MASP SP IgGs in patients with different (cardiac, digestive and asymptomatic) chronic Chagas disease manifestations. Moreover, purified EVs as well as the MASP SP inhibit the action of the complement system and also show a significant association with the humoral response in patients with digestive pathologies. These findings reveal a new route for the secretion of MASP proteins in T. cruzi, which uses EVs as vehicles for immature and misfolded proteins, forming circulating immune complexes. Such complexes could be used in the prognosis of digestive pathologies of clinical forms of Chagas disease.
Cheng, Rongzhu; Feng, Qi; Ortwerth, Beryl J
2006-05-01
We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude that the majority of the major modified amino acids present in early stage brunescent Indian cataract lens proteins appear to arise as a result of ascorbic acid modification, and are presumably advanced glycation end-products.
Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.
2015-01-01
One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912
Tholen, Stefan; Biniossek, Martin L.; Gansz, Martina; Gomez-Auli, Alejandro; Bengsch, Fee; Noel, Agnes; Kizhakkedathu, Jayachandran N.; Boerries, Melanie; Busch, Hauke; Reinheckel, Thomas; Schilling, Oliver
2013-01-01
Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb−/−, and Ctsl−/− mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl−/− skin revealed increased levels of the cysteine protease inhibitors cystatin B and cystatin M/E, increased cathepsin D, and an accumulation of the extracellular glycoprotein periostin. Immunohistochemistry located periostin predominantly in the hypodermal connective tissue of Ctsl−/− skin. The proteomic identification of proteolytic cleavage sites within skin proteins revealed numerous processing sites that are underrepresented in Ctsl−/− or Ctsb−/− samples. Notably, few of the affected cleavage sites shared the canonical Ctsl or Ctsb specificity, providing further evidence of a complex proteolytic network in the skin. Novel processing sites in proteins such as dermokine and Notch-1 were detected. Simultaneous analysis of acetylated protein N termini showed prototypical mammalian N-alpha acetylation. These results illustrate an influence of both Ctsb and Ctsl on the murine skin proteome and degradome, with the phenotypic consequences of the absence of either protease differing considerably. PMID:23233448
Chasseriaud, Laura; Miot-Sertier, Cécile; Coulon, Joana; Iturmendi, Nerea; Moine, Virginie; Albertin, Warren; Bely, Marina
2015-12-01
The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins. Copyright © 2015. Published by Elsevier B.V.
Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*
Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.
2014-01-01
Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel
2013-02-05
Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimersmore » as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.« less
Finotti, Paola
2006-08-01
Much attention has been given to the role played by serine proteases in the development and worsening of vascular complications in Type 1 diabetes mellitus. A generalized increase in proteolytic activity, either due to a true increase in concentration of specific proteases or defects of their protease inhibitors, represents an early marker of diabetes. However, the precise molecular mechanism whereby an unopposed proteolytic activity leads to overt vascular alterations has not fully been elucidated as yet. The picture is further complicated by the fact that, although sharing the same function, serine proteases constitute a structurally heterogeneous class of molecules. Besides classical proteases, for most part belonging to coagulative and fibrinolytic systems, other unrelated molecules exhibit serine-like protease activity and are capable of triggering both inflammatory and immune reactions. The specific role of these non classical serine proteases in the complex pathogenesis of diabetes and its vascular complications is attracting a new investigative interest, as these molecules may represent additional therapeutic targets. This review will focus on most recent acquisitions on this issue relevant to Type 1 diabetes.
Splitting the chromosome: cutting the ties that bind sister chromatids.
Nasmyth, K; Peters, J M; Uhlmann, F
2000-05-26
In eukaryotic cells, sister DNA molecules remain physically connected from their production at S phase until their separation during anaphase. This cohesion is essential for the separation of sister chromatids to opposite poles of the cell at mitosis. It also permits chromosome segregation to take place long after duplication has been completed. Recent work has identified a multisubunit complex called cohesin that is essential for connecting sisters. Proteolytic cleavage of one of cohesin's subunits may trigger sister separation at the onset of anaphase.
Curzi, Matías J; Zavala, Jorge A; Spencer, Joseph L; Seufferheld, Manfredo J
2012-01-01
Western corn rootworm (Diabrotica virgifera) (WCR) depends on the continuous availability of corn. Broad adoption of annual crop rotation between corn (Zea mays) and nonhost soybean (Glycine max) exploited WCR biology to provide excellent WCR control, but this practice dramatically reduced landscape heterogeneity in East-central Illinois and imposed intense selection pressure. This selection resulted in behavioral changes and “rotation-resistant” (RR) WCR adults. Although soybeans are well defended against Coleopteran insects by cysteine protease inhibitors, RR-WCR feed on soybean foliage and remain long enough to deposit eggs that will hatch the following spring and larvae will feed on roots of planted corn. Other than documenting changes in insect mobility and egg laying behavior, 15 years of research have failed to identify any diagnostic differences between wild-type (WT)- and RR-WCR or a mechanism that allows for prolonged RR-WCR feeding and survival in soybean fields. We documented differences in behavior, physiology, digestive protease activity (threefold to fourfold increases), and protease gene expression in the gut of RR-WCR adults. Our data suggest that higher constitutive activity levels of cathepsin L are part of the mechanism that enables populations of WCR to circumvent soybean defenses, and thus, crop rotation. These new insights into the mechanism of WCR tolerance of soybean herbivory transcend the issue of RR-WCR diagnostics and management to link changes in insect gut proteolytic activity and behavior with landscape heterogeneity. The RR-WCR illustrates how agro-ecological factors can affect the evolution of insects in human-altered ecosystems. PMID:22957201
Jellyfish as vectors of bacterial disease for farmed salmon (Salmo salar).
Ferguson, Hugh W; Delannoy, Christian M J; Hay, Stephen; Nicolson, James; Sutherland, David; Crumlish, Margaret
2010-05-01
Swarms or blooms of jellyfish are increasingly problematic and can result in high mortality rates of farmed fish. Small species of jellyfish, such as Phialella quadrata (13 mm in diameter), are capable of passing through the mesh of sea cages and being sucked into the mouth of fish during respiration. Results of the current study show that the initial damage to gills of farmed Atlantic salmon, likely produced by nematocyst-derived toxins from the jellyfish, was compounded by secondary bacterial infection with Tenacibaculum maritimum. Results also demonstrate that these filamentous bacteria were present on the mouth of the jellyfish and that their DNA sequences were almost identical to those of bacteria present on the salmon gills. This suggests that the bacterial lesions were not the result of an opportunistic infection of damaged tissue, as previously thought. Instead, P. quadrata is probably acting as a vector for this particular bacterial pathogen, and it is the first time that evidence to support such a link has been presented. No prior literature describing the presence of bacteria associated with jellyfish, except studies about their decay, could be found. It is not known if all jellyfish of this and other species carry similar bacteria or the relationship to each other. Their source, the role they play under other circumstances, and indeed whether the jellyfish were themselves diseased are also not known. The high proteolytic capabilities of T. maritimum mean that partially digested gill tissues were readily available to the jellyfish, which rely heavily on intracellular digestion for their nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdin, E.M.; Lynn, S.P.; Fields, B.N.
1988-02-01
The authors used the mammalian reoviruses to determine the molecular basis of the clearance of a virus from the bloodstream by specific organs. Reovirus serotypes 1 (T1) and 3 (T3) were radiolabeled with ({sup 35}S)methionine or {sup 125}I, and the viruses were injected intravenously into weanling rats. The distribution of radioactivity within the animals was determined at various times after the injection. Both viruses were cleared rapidly from the bloodstream and concentrated in different organs. Reovirus T1 was found predominantly in the lungs and liver, whereas T3 was found predominantly in the liver, with very little virus in the lungs.more » Using intertypic reassortants, they determined that the T1 S1 gene, which encodes the viral hemagglutinin ({sigma}1 protein), is responsible for the difference in uptake of T1 and T3 by the lungs. The genetic mapping was extended by using several approaches. (i) T1 subjected to limited proteolytic digestion with chymotrypsin was cleared efficiently by the lungs despite the removal of {sigma}3 and digestion of {mu}1C to {delta}. (ii) Uptake of T1 by the lungs was totally inhibited by incubation of T1 with an anti-{sigma}1 monoclonal antibody or its Fab fragment before injection. (iii) A reovirus T1 variant in the {sigma}1 protein was poorly taken up by the lungs. These data indicate that clearance of reovirus from the bloodstream by the lungs is dependent on the presence of the T1 or {sigma}1 protein.« less
Cryar, Adam; Pritchard, Caroline; Burkitt, William; Walker, Michael; O'Connor, Gavin; Burns, Duncan Thorburn; Quaglia, Milena
2013-01-01
Current routine food allergen quantification methods, which are based on immunochemistry, offer high sensitivity but can suffer from issues of specificity and significant variability of results. MS approaches have been developed, but currently lack metrological traceability. A feasibility study on the application of metrologically traceable MS-based reference procedures was undertaken. A proof of concept involving proteolytic digestion and isotope dilution MS for quantification of protein allergens in a food matrix was undertaken using lysozyme in wine as a model system. A concentration of lysozyme in wine of 0.95 +/- 0.03 microg/g was calculated based on the concentrations of two peptides, confirming that this type of analysis is viable at allergenically meaningful concentrations. The challenges associated with this promising method were explored; these included peptide stability, chemical modification, enzymatic digestion, and sample cleanup. The method is suitable for the production of allergen in food certified reference materials, which together with the achieved understanding of the effects of sample preparation and of the matrix on the final results, will assist in addressing the bias of the techniques routinely used and improve measurement confidence. Confirmation of the feasibility of MS methods for absolute quantification of an allergenic protein in a food matrix with results traceable to the International System of Units is a step towards meaningful comparison of results for allergen proteins among laboratories. This approach will also underpin risk assessment and risk management of allergens in the food industry, and regulatory compliance of the use of thresholds or action levels when adopted.
Complex dynamics in the Leslie-Gower type of the food chain system with multiple delays
NASA Astrophysics Data System (ADS)
Guo, Lei; Song, Zi-Gen; Xu, Jian
2014-08-01
In this paper, we present a Leslie-Gower type of food chain system composed of three species, which are resource, consumer, and predator, respectively. The digestion time delays corresponding to consumer-eat-resource and predator-eat-consumer are introduced for more realistic consideration. It is called the resource digestion delay (RDD) and consumer digestion delay (CDD) for simplicity. Analyzing the corresponding characteristic equation, the stabilities of the boundary and interior equilibrium points are studied. The food chain system exhibits the species coexistence for the small values of digestion delays. Large RDD/CDD may destabilize the species coexistence and induce the system dynamic into recurrent bloom or system collapse. Further, the present of multiple delays can control species population into the stable coexistence. To investigate the effect of time delays on the recurrent bloom of species population, the Hopf bifurcation and periodic solution are investigated in detail in terms of the central manifold reduction and normal form method. Finally, numerical simulations are performed to display some complex dynamics, which include multiple periodic solution and chaos motion for the different values of system parameters. The system dynamic behavior evolves into the chaos motion by employing the period-doubling bifurcation.
Dissolution of aerosol particles collected from nuclear facility plutonium production process
Xu, Ning; Martinez, Alexander; Schappert, Michael Francis; ...
2015-08-14
Here, a simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 °C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements.
Use of Intercostal Flap for Conservative Surgical Management of Complex Lower Esophageal Fistula.
du Pouget, L; Tuech, J J; Baste, J M
2015-01-01
Lower esophageal fistula is a rare complication after upper digestive tract surgery, but it is associated with high morbi-mortality. There is no consensus on therapeutic care, however when reoperation is necessary, a pedicled inter-costal flap from the thoracotomy can be easily harvested to patch a large defect or buttress a direct suture, saving -digestive reconstruction. This technique should be mastered by thoracic and general surgeons. We present here two cases of lower esophagus fistulas cured thanks to this intercostal flap, in which we avoided fistula recurrence with maintenance of digestive continuity. Copyright© Acta Chirurgica Belgica.
Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation
Renner, Florian; Lam, Stephen; Freuler, Felix; Gerrits, Bertran; Voshol, Johannes; Calzascia, Thomas; Régnier, Catherine H.; Renatus, Martin; Nikolay, Rainer; Israël, Laura; Bornancin, Frédéric
2017-01-01
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A. PMID:28052131
Stemmer, Nina; Strekalova, Elena; Djogo, Nevena; Plöger, Frank; Loers, Gabriele; Lutz, David; Buck, Friedrich; Michalak, Marek; Schachner, Melitta; Kleene, Ralf
2013-01-01
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca(2+)- and N-glycan-independent interaction is mediated by amino acids 330-344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330-344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.
Low-Carb Diet: Could It Help You Lose Weight?
... body uses carbohydrates as its main fuel source. Complex carbohydrates (starches) are broken down into simple sugars during ... known as blood sugar (glucose). In general, natural complex carbohydrates are digested more slowly and they have less ...
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2014-01-01
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.
Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He
2009-05-01
DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.
Particle size affects structural and in vitro digestion properties of cooked rice flours.
Farooq, Adil Muhammad; Li, Chao; Chen, Siqian; Fu, Xiong; Zhang, Bin; Huang, Qiang
2018-06-14
The aim of this study was to identify the contributions made by size fractions of four milled rice (i.e., waxy, white, black and brown rice) to structural and in vitro starch digestion properties after cooking. Rice grains were hammer-milled in a controlled manner, and the coarse (300-450 μm), medium (150-300 μm) and fine size (<150 μm) fractions were segregated through vertical sieving. All samples displayed monophasic digestograms, and starch digestion rate and extent for size fractionated rice flours were predicted through the Logarithm of Slope model. It was found that digestion rate and extent were markedly reduced with increasing particle size within each rice variety. Of the four rice varieties, non-waxy rice flour fractions showed lower digestion rate and extent compared to the waxy counterpart, possibly due to the formation starch-lipid complexes as judged by XRD with ca. 4%-8% V-type crystalline structure remained after cooking. We suggested that the less rigid morphological structure and almost amorphous conformation lead to the high digestion rate and extent during simulated intestinal starch digestion. These findings will help develop functional rice ingredients with desirable digestion behaviour and attenuated postprandial glycemic responses. Copyright © 2017. Published by Elsevier B.V.
Durairaj, Anita; Limbach, Patrick A.
2010-01-01
We have developed a method to screen for pseudouridines in complex mixtures of small RNAs using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). First, the unfractionated crude mixture of tRNAs is digested to completion with an endoribonuclease, such as RNase T1, and the digestion products are examined using MALDI-MS. Individual RNAs are identified by their signature digestion products, which arise through the detection of unique mass values after nuclease digestion. Next, the endonuclease digest is derivatized using N-cyclohexyl-N’-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CMCT), which selectively modifies all pseudouridine, thiouridine and 2-methylthio-6-isopentenyladenosine nucleosides. MALDI-MS determination of the CMCT-derivatized endonuclease digest reveals the presence of pseudouridine through a 252 Da mass increase over the underivatized digest. Proof-of-concept experiments were conducted using a mixture of Escherichia coli transfer RNAs and endoribonucleases T1 and A. More than 80% of the expected pseudouridines from this mixture were detected using this screening approach, even on a unfractionated sample of tRNAs. This approach should be particularly useful in the identification of putative pseudouridine synthases through detection of their target RNAs and can provide insight into specific small RNAs that may contain pseudouridine. PMID:18973194
da Silva, M C; Bertolini, M C; Ernandes, J R
2001-01-01
The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.
Azad, Gajendra Kumar; Tomar, Raghuvir Singh
2016-06-01
The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.
Martins, Z E; Pinho, O; Ferreira, I M P L V O
2018-05-01
The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.
Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate.
Franchino, Marta; Tigini, Valeria; Varese, Giovanna Cristina; Mussat Sartor, Rocco; Bona, Francesca
2016-11-01
Liquid digestate is considered as an important by-product of anaerobic digestion of agriculture wastes. Currently, it is very often directly spread on local agricultural land. Yet recently concerns on its environmental risk of this processing has begun to rise. On the other hand, investigations on the effectiveness of microalgae for wastewater treatment have started to consider also this complex matrix. In this study, we cultured the green alga Chlorella vulgaris in diluted digestate coming from the anaerobic digestion of pig slurry and corn, with the aim to significantly reduce its toxicity and its very high nutrient concentration. For this purpose, a battery of toxicity tests composed of four acute and two chronic bioassays was applied after the alga cultivation. Results were compared with those obtained in the initial characterization of the digestate. Results show that highly diluted piggery digestate can be a suitable medium for culturing microalgae, as we obtained a high removal efficiency (>90%) for ammonia, total nitrogen and phosphate, though after a few days phosphorus limitation occurred. Toxicity was significantly reduced for all the organisms tested. Possible solutions for optimizing this approach avoiding high dilution rates are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Lan, Ruixia; Tran, Hoainam; Kim, Inho
2017-03-01
Probiotics can serve as alternatives to antibiotics to increase the performance of weaning pigs, and the intake of probiotics is affected by dietary nutrient density. The objective of this study was to evaluate the effects of a probiotic complex in different nutrient density diets on growth performance, digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pigs. From day 22 to day 42, both high-nutrient-density and probiotic complex supplementation diets increased (P < 0.05) the average daily gain. On day 42, the apparent total tract digestibility (ATTD) of dry matter, nitrogen and gross energy (GE), blood urea nitrogen concentration and NH 3 and H 2 S emissions were increased (P < 0.05) in pigs fed high-nutrient-density diets. Pigs fed probiotic complex supplementation diets had higher (P < 0.05) ATTD of GE than pigs fed non-supplemented diets. Fecal Lactobacillus counts were increased whereas Escherichia coli counts and NH 3 and H 2 S emissions were decreased (P < 0.05) in pigs fed probiotic complex supplementation diets. Interactive effects on average daily feed intake (ADFI) were observed from day 22 to day 42 and overall, where probiotic complex improved ADFI more dramatically in low-nutrient-density diets. The beneficial effects of probiotic complex (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis and Clostridium butyricum) supplementation on ADFI is more dramatic with low-nutrient-density diets. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Nichols, Buford L; Avery, Stephen E; Quezada-Calvillo, Roberto; Kilani, Shadi B; Lin, Amy Hui-Mei; Burrin, Douglas G; Hodges, Benjamin E; Chacko, Shaji K; Opekun, Antone R; Hindawy, Marwa El; Hamaker, Bruce R; Oda, Sen-Ichi
2017-08-01
Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.
Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.
Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa
2014-10-01
Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.
Yalan Liu; Jinwu Wang; Michael P. Wolcott
2017-01-01
Currently, feedstock size effects on chemical pretreatment performance were not clear due to the complexity of the pretreatment process and multiple evaluation standards such as the sugar recovery in spent liquor or enzymatic digestibility. In this study, we evaluated the size effects by various ways: the sugar recovery and coproduct yields in spent liquor, the...
Stanyer, Lee; Jorgensen, Wenche; Hori, Osamu; Clark, John B; Heales, Simon J R
2008-09-01
The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000 microM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.
Lassé, Moritz; Ulluwishewa, Dulantha; Healy, Jackie; Thompson, Dion; Miller, Antonia; Roy, Nicole; Chitcholtan, Kenny; Gerrard, Juliet A
2016-02-01
The structural properties of amyloid fibrils combined with their highly functional surface chemistry make them an attractive new food ingredient, for example as highly effective gelling agents. However, the toxic role of amyloid fibrils in disease may cause some concern about their food safety because it has not been established unequivocally if consumption of food fibrils poses a health risk to consumers. Here we present a study of amyloid-like fibrils from whey, kidney bean, soy bean, and egg white to partially address this concern. Fibrils showed varied resistance to proteolytic digestion in vitro by either Proteinase K, pepsin or pancreatin. The toxicity of mature fibrils was measured in vitro and compared to native protein, early-stage-fibrillar protein, and sonicated fibrils in two immortalised human cancer cell lines, Caco-2 and Hec-1a. There was no reduction in the viability of either Caco-2 or Hec-1a cells after treatment with a fibril concentration of up to 0.25 mg/mL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bártková, J; Bártek, J; Lukás, Z; Vojtĕsek, B; Stasková, Z; Bursová, H; Pavlovská, R; Rejthar, A; Kovarík, J
1991-01-01
A comparative study with 21 recently raised monoclonal antibodies (3 of which are reported here for the first time) to human keratin polypeptides was performed on a wide range of paraffin-embedded tissues and tumors, aimed at the examination of effects of four different fixatives and protease pretreatment on the immunohistochemical detection of keratins. Our data demonstrated that: (a) formaldehyde-based fixatives modified by acidification and/or addition of methanol gave results superior to those achieved by routinely used formol saline; (b) relatively rare antibodies (4 out of 21) could be identified which gave reliable immunostaining patterns even on routine formalin-fixed material; (c) a proteolytic digestion step preceding the immunostaining was beneficial for the performance of the majority of antibodies in our panel. Additional options which could potentially lead to further improvement of keratin immunohistochemistry in paraffin embedded specimens are also suggested. This work provides the necessary basis for wider application of the anti-keratin antibodies of the C-series in both routine oncopathology and research-oriented retrospective studies.
Herrera, María Georgina; Pizzuto, Malvina; Lonez, Caroline; Rott, Karsten; Hütten, Andreas; Sewald, Norbert; Ruysschaert, Jean-Marie; Dodero, Veronica Isabel
2018-04-22
Gliadin, an immunogenic protein present in wheat, is not fully degraded by humans and after the normal gastric and pancreatic digestion, the immunodominant 33-mer gliadin peptide remains unprocessed. The 33-mer gliadin peptide is found in human faeces and urine, proving not only its proteolytic resistance in vivo but more importantly its transport through the entire human body. Here, we demonstrate that 33-mer supramolecular structures larger than 220 nm induce the overexpression of nuclear factor kappa B (NF-κB) via a specific Toll-like Receptor (TLR) 2 and (TLR) 4 dependent pathway and the secretion of pro-inflammatory cytokines such as IP-10/CXCL10 and TNF-α. Using helium ion microscopy, we elucidated the initial stages of oligomerisation of 33-mer gliadin peptide, showing that rod-like oligomers are nucleation sites for protofilament formation. The relevance of the 33-mer supramolecular structures in the early stages of the disease is paving new perspectives in the understanding of gluten-related disorders. Copyright © 2018. Published by Elsevier Inc.
Mode of action and membrane specificity of the antimicrobial peptide snakin-2
Herbel, Vera
2016-01-01
Antimicrobial peptides (AMPs) are a diverse group of short, cationic peptides which are naturally occurring molecules in the first-line defense of most living organisms. They represent promising candidates for the treatment of pathogenic microorganisms. Snakin-2 (SN2) from tomato (Solanum lycopersicum) is stabilized through six intramolecular disulphide bridges; it shows broad-spectrum antimicrobial activity against bacteria and fungi, and it agglomerates single cells prior to killing. In this study, we further characterized SN2 by providing time-kill curves and corresponding growth inhibition analysis of model organisms, such as E. coli or B. subtilis. SN2 was produced recombinantly in E. coli with thioredoxin as fusion protein, which was removed after affinity purification by proteolytic digestion. Furthermore, the target specificity of SN2 was investigated by means of hemolysis and hemagglutination assays; its effect on plant cell membranes of isolated protoplasts was investigated by microscopy. SN2 shows a non-specific pore-forming effect in all tested membranes. We suggest that SN2 could be useful as a preservative agent to protect food, pharmaceuticals, or cosmetics from decomposition by microbes. PMID:27190708
Bridging disulfides for stable and defined antibody drug conjugates.
Badescu, George; Bryant, Penny; Bird, Matthew; Henseleit, Korinna; Swierkosz, Julia; Parekh, Vimal; Tommasi, Rita; Pawlisz, Estera; Jurlewicz, Kosma; Farys, Monika; Camper, Nicolas; Sheng, XiaoBo; Fisher, Martin; Grygorash, Ruslan; Kyle, Andrew; Abhilash, Amrita; Frigerio, Mark; Edwards, Jeff; Godwin, Antony
2014-06-18
To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.
NASA Astrophysics Data System (ADS)
Arfani, Nurfitri; Nur, Fatmawati; Hafsan, Azrianingsih, Rodiyati
2017-05-01
Bacteriocin is a peptide that is easily degraded by proteolytic enzymes in the digestive systems of animals, including humans. It has antimicrobial activity against pathogenic bacteria. Lactobacillus sp. is one type of lactic acid bacteria (LAB) that occupies the intestines of ducks (Anas domesticus L.). The purpose of this research was to determine the optimum time of the highest protein production by Lactobacillus sp. and to determine inhibitory activity of bacteriocin against pathogenic bacteria (Escherichia coli and Staphylococcus aureus). Using the Bradford method, the results showed that the optimum time of highest bacteriocin production was after 36 hours of incubation, with a protein content of 0.93 mg/ml. The bacteriocin inhibitory activity against Escherichia coli showed that a protein concentration of 30% gave a maximum inhibition index of 1.1 mm, while for Staphylococcus aureus, a concentration of 70% gave a maximum inhibition index of 0.3 mm. Further research is required to determine the stationary state of bacteriocin production in this circumstance.
The butter flavorant, diacetyl, exacerbates β-amyloid cytotoxicity.
More, Swati S; Vartak, Ashish P; Vince, Robert
2012-10-15
Diacetyl (DA), an ubiquitous butter-flavoring agent, was found to influence several aspects of amyloid-β (Aβ) aggregation--one of the two primary pathologies associated with Alzheimer's disease. Thioflavin T fluorescence and circular dichroism spectroscopic measurements revealed that DA accelerates Aβ¹⁻⁴² aggregation into soluble and ultimately insoluble β-pleated sheet structures. DA was found to covalently bind to Arg⁵ of Aβ¹⁻⁴² through proteolytic digestion-mass spectrometric experiments. These biophysical and chemical effects translated into the potentiation of Aβ¹⁻⁴² cytotoxicity by DA toward SH-SY5Y cells in culture. DA easily traversed through a MDR1-MDCK cell monolayer, an in vitro model of the blood-brain barrier. Additionally, DA was found not only to be resistant to but also inhibitory toward glyoxalase I, the primary initiator of detoxification of amyloid-promoting reactive dicarbonyl species that are generated naturally in large amounts by neuronal tissue. In light of the chronic exposure of industry workers to DA, this study raises the troubling possibility of long-term neurological toxicity mediated by DA.
Coêlho, Diego F; Saturnino, Thais Peron; Fernandes, Fernanda Freitas; Mazzola, Priscila Gava; Silveira, Edgar; Tambourgi, Elias Basile
2016-01-01
Given the importance of protease's worldwide market, the determination of optimum conditions and the development of a standard protocol are critical during selection of a reliable method to determine its bioactivity. This paper uses quality control theory to validate a modified version of a method proposed by Charney and Tomarelli in 1947. The results obtained showed that using azocasein substrate bromelain had its optimum at 45°C and pH 9 (Glycine-NaOH 100 mM). We also quantified the limit of detection (LoD) and limit of quantification (LoQ) in the above-mentioned optimum (0.072 and 0.494 mg·mL(-1) of azocasein, resp.) and a calibration curve that correlates optical density with the amount of substrate digested. In all analysed samples, we observed a significant decrease in response after storage (around 17%), which suggests its use must be immediately after preparation. Thus, the protocol presented in this paper offers a significant improvement, given that subjective definitions are commonly used in the literature and this simple mathematical approach makes it clear and concise.
Mazzola, Priscila Gava
2016-01-01
Given the importance of protease's worldwide market, the determination of optimum conditions and the development of a standard protocol are critical during selection of a reliable method to determine its bioactivity. This paper uses quality control theory to validate a modified version of a method proposed by Charney and Tomarelli in 1947. The results obtained showed that using azocasein substrate bromelain had its optimum at 45°C and pH 9 (Glycine-NaOH 100 mM). We also quantified the limit of detection (LoD) and limit of quantification (LoQ) in the above-mentioned optimum (0.072 and 0.494 mg·mL−1 of azocasein, resp.) and a calibration curve that correlates optical density with the amount of substrate digested. In all analysed samples, we observed a significant decrease in response after storage (around 17%), which suggests its use must be immediately after preparation. Thus, the protocol presented in this paper offers a significant improvement, given that subjective definitions are commonly used in the literature and this simple mathematical approach makes it clear and concise. PMID:26925415
Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K
1992-01-01
The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169
Regulation of gamma-Secretase in Alzheimer's Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shuxia; Zhou, Hua; Walian, Peter
2007-02-07
The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol andmore » sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.« less
Mullaney, J M; Black, L W
1998-11-13
The phage-derived expression, packaging, and processing (PEPP) system was used to target foreign proteins into the bacteriophage capsid to probe the intracapsid environment and the structure of packaged DNA. Small proteins with minimal requirements for activity were selected, staphylococcal nuclease (SN) and green fluorescent protein (GFP). These proteins were targeted into the T4 head by means of IPIII (internal protein III) fusions or CTS (capsid targeting sequence) fusions. Additional evidence is provided that foreign proteins are targeted into T4 by the N-terminal ten amino acid residue consensus CTS of IPIII identified in previous work. Fusion proteins were produced within host bacteria by expression from plasmids or by produc tion from recombinant phage carrying the fusion genes. Packaged fusion proteins CTS IPIII SN, CTS IPIII TSN, CTS IPIII GFP, CTS IPIII TGFP, and CTS GFP, where [symbol: see text] indicates a linkage peptide sequence Leu(Ile)-N-Glu cleaved by the T4 head morphogenetic proteinase gp21 during head maturation, are observed to exhibit intracapsid activity. SN activity within the head is demonstrated by loss of phage viability and by digested genomic DNA patterns visualized by gel electrophoresis when viable phage are incubated in Ca2+. Green fluorescent phage result immediately after packaging GFP produced at 30 degreesC and below, and continue to give green fluorescence under 470 nm light after CsCl purification. Non-fluorescent GFP-fusions are produced in bacteria at 37 degreesC, and phage packaged with these proteins achieve a fluorescent state after incubation for several months at 4 degreesC. GFP-packaged phage and proheads analyzed by fluorescence spectroscopy show that the mature head and the DNA-empty prohead package identical numbers of GFP-fusion proteins. Encapsidated GFP and SN can be injected into bacteria and rapidly exhibit intracellular activity. In vivo SN digestion of encapsidated DNA gives an intriguing pattern of DNA fragments by gel analysis, predominantly a repeat pattern of 160 bp multiples, reminiscent of a nucleosome digestion ladder, This quasi-limit DNA digestion pattern, reached >100-fold more slowly than the loss of titer, is invariant over a range =10 to 200 molecules of SN packaged per head, and independent of proteolytic cleavage of SN from the IPIII portion of the fusion, favoring a discontinuous packaged DNA structure. Rods of B-form DNA could be envisioned as protected from digestion, whereas bent or kinked DNA would be more susceptible to the diffusible SN. Such discontinuous packaged DNA structures are favored for phage T4 by a number of lines of evidence. Copyright 1998 Academic Press.
Mkandawire, Nyambe L; Kaufman, Rhett C; Bean, Scott R; Weller, Curtis L; Jackson, David S; Rose, Devin J
2013-05-08
The purpose of this study was to investigate the effects of tannins on starch digestion in tannin-containing sorghum extracts and wholegrain flours from 12 sorghum varieties. Extracts reduced amylase activity in a tannin concentration-dependent manner when the extract was mixed with the enzyme before substrate (amylopectin) addition, with higher molecular weight tannins showing greater reduction. Conversely, when the extract and substrate were combined before enzyme addition an enhancement in amylase activity was experienced. In uncooked, cooked, and cooked and stored wholegrain sorghum flours, rapidly digestible, slowly digestible, and resistant starches were not correlated with tannin content or molecular weight distribution. Resistant starch increased from 6.5% to 22-26% when tannins were added to starch up to 50% (starch weight). Tannin extracts both reduced and enhanced amylase activity depending on conditions, and, while these trends were clear in extracts, the effects on starch digestion in wholegrain flours was more complex.
Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk.
O'Connor, Roberta M; Fung, Jennifer M; Sharp, Koty H; Benner, Jack S; McClung, Colleen; Cushing, Shelley; Lamkin, Elizabeth R; Fomenkov, Alexey I; Henrissat, Bernard; Londer, Yuri Y; Scholz, Matthew B; Posfai, Janos; Malfatti, Stephanie; Tringe, Susannah G; Woyke, Tanja; Malmstrom, Rex R; Coleman-Derr, Devin; Altamia, Marvin A; Dedrick, Sandra; Kaluziak, Stefan T; Haygood, Margo G; Distel, Daniel L
2014-11-25
Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.
Hoyte, Ashley C; Jamin, Augusta V; Koneru, Pratibha C; Kobe, Matthew J; Larue, Ross C; Fuchs, James R; Engelman, Alan N; Kvaratskhelia, Mamuka
2017-12-01
The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope1[OPEN
Tanabe, Noriaki; Clarke, Adrian K.
2016-01-01
The Hsp100-type chaperone Hsp93/ClpC has crucial roles in chloroplast biogenesis. In addition to its role in proteolysis in the stroma, biochemical and genetic evidence led to the hypothesis that this chaperone collaborates with the inner envelope TIC complex to power preprotein import. Recently, it was suggested that Hsp93, working together with the Clp proteolytic core, can confer a protein quality control mechanism at the envelope. Thus, the role of envelope-localized Hsp93, and the mechanism by which it participates in protein import, remain unclear. To analyze the function of Hsp93 in protein import independently of its ClpP association, we created a mutant of Hsp93 affecting its ClpP-binding motif (PBM) (Hsp93[P-]), which is essential for the chaperone’s interaction with the Clp proteolytic core. The Hsp93[P-] construct was ineffective at complementing the pale-yellow phenotype of hsp93 Arabidopsis (Arabidopsis thaliana) mutants, indicating that the PBM is essential for Hsp93 function. As expected, the PBM mutation negatively affected the degradation activity of the stromal Clp protease. The mutation also disrupted association of Hsp93 with the Clp proteolytic core at the envelope, without affecting the envelope localization of Hsp93 itself or its association with the TIC machinery, which we demonstrate to be mediated by a direct interaction with Tic110. Nonetheless, Hsp93[P-] expression did not detectably improve the protein import efficiency of hsp93 mutant chloroplasts. Thus, our results do not support the proposed function of Hsp93 in protein import propulsion, but are more consistent with the notion of Hsp93 performing a quality control role at the point of import. PMID:26586836
Petersen, Lauren M.
2014-01-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493
Intercellular Transfer of a Soluble Viral Superantigen
Reilly, Melissa; Mix, Denise; Reilly, Andrew A.; Yang Ye, Xiang; Winslow, Gary M.
2000-01-01
Mouse mammary tumor virus (MMTV) superantigens (vSAgs) can undergo intercellular transfer in vivo and in vitro such that a vSAg can be presented to T cells by major histocompatibility complex (MHC) class II proteins on antigen-presenting cells (APCs) that do not express the superantigen. This process may allow T-cell activation to occur prior to viral infection. Consistent with these findings, vSAg produced by Chinese hamster ovary (CHO) cells was readily transferred to class II IE and IA (H-2k and H-2d) proteins on a B-cell lymphoma or mouse splenocytes. Fixed class II-expressing acceptor cells were used to demonstrate that the vSAg, but not the class II proteins, underwent intercellular transfer, indicating that vSAg binding to class II MHC could occur directly at the cell surface. Intercellular transfer also occurred efficiently to splenocytes from endogenous retrovirus-free mice, indicating that other proviral proteins were not involved. Presentation of vSAg7 produced by a class II-negative, furin protease-deficient CHO variant (FD11) was unsuccessful, indicating that proteolytic processing was a requisite event and that proteolytic activity could not be provided by an endoprotease on the acceptor APC. Furthermore, vSAg presentation was effected using cell-free supernatant from class II-negative, vSAg-positive cells, indicating that a soluble molecule, most likely produced by proteolytic processing, was sufficient to stimulate T cells. Because the membrane-proximal endoproteolytic cleavage site in the vSAg (residues 68 to 71) was not necessary for intercellular transfer, the data support the notion that the carboxy-terminal endoproteolytic cleavage product is an active vSAg moiety. PMID:10954523
Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.
2014-07-29
To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less