A network dynamics approach to chemical reaction networks
NASA Astrophysics Data System (ADS)
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks.
Postma, Sjoerd G J; Vialshin, Ilia N; Gerritsen, Casper Y; Bao, Min; Huck, Wilhelm T S
2017-02-06
The creation of adaptive matter is heavily inspired by biological systems. However, it remains challenging to design complex material responses that are governed by reaction networks, which lie at the heart of cellular complexity. The main reason for this slow progress is the lack of a general strategy to integrate reaction networks with materials. Herein we use a systematic approach to preprogram the response of a hydrogel to a trigger, in this case the enzyme trypsin, which activates a reaction network embedded within the hydrogel. A full characterization of all the kinetic rate constants in the system enabled the construction of a computational model, which predicted different hydrogel responses depending on the input concentration of the trigger. The results of the simulation are in good agreement with experimental findings. Our methodology can be used to design new, adaptive materials of which the properties are governed by reaction networks of arbitrary complexity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.
Thanh, Vo Hong; Zunino, Roberto; Priami, Corrado
2017-01-01
Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
Turing instability in reaction-diffusion models on complex networks
NASA Astrophysics Data System (ADS)
Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya
2016-09-01
In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
Event-triggered synchronization for reaction-diffusion complex networks via random sampling
NASA Astrophysics Data System (ADS)
Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng
2018-04-01
In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; ...
2017-03-06
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less
Sensitivity and network topology in chemical reaction systems
NASA Astrophysics Data System (ADS)
Okada, Takashi; Mochizuki, Atsushi
2017-08-01
In living cells, biochemical reactions are catalyzed by specific enzymes and connect to one another by sharing substrates and products, forming complex networks. In our previous studies, we established a framework determining the responses to enzyme perturbations only from network topology, and then proved a theorem, called the law of localization, explaining response patterns in terms of network topology. In this paper, we generalize these results to reaction networks with conserved concentrations, which allows us to study any reaction system. We also propose network characteristics quantifying robustness. We compare E. coli metabolic network with randomly rewired networks, and find that the robustness of the E. coli network is significantly higher than that of the random networks.
Sharper Graph-Theoretical Conditions for the Stabilization of Complex Reaction Networks
Knight, Daniel; Shinar, Guy; Feinberg, Martin
2015-01-01
Across the landscape of all possible chemical reaction networks there is a surprising degree of stable behavior, despite what might be substantial complexity and nonlinearity in the governing differential equations. At the same time there are reaction networks, in particular those that arise in biology, for which richer behavior is exhibited. Thus, it is of interest to understand network-structural features whose presence enforces dull, stable behavior and whose absence permits the dynamical richness that might be necessary for life. We present conditions on a network’s Species-Reaction Graph that ensure a high degree of stable behavior, so long as the kinetic rate functions satisfy certain weak and natural constraints. These graph-theoretical conditions are considerably more incisive than those reported earlier. PMID:25600138
Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina
2011-01-01
Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier. Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.
Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina
2010-01-01
Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier.Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.
An intermediate level of abstraction for computational systems chemistry.
Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F
2017-12-28
Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.
2018-03-01
This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Yogambigai, J.; Kwon, O. M.
2018-03-01
Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.
Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Savara, Aditya; Hin, Celine
Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.
Blinov, Michael L.; Moraru, Ion I.
2011-01-01
Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833
Thermodynamics of random reaction networks.
Fischer, Jakob; Kleidon, Axel; Dittrich, Peter
2015-01-01
Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.
Thermodynamics of Random Reaction Networks
Fischer, Jakob; Kleidon, Axel; Dittrich, Peter
2015-01-01
Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751
Rational design of functional and tunable oscillating enzymatic networks
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.
2015-02-01
Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.
Active control of complex, multicomponent self-assembly processes
NASA Astrophysics Data System (ADS)
Schulman, Rebecca
The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.
Generic strategies for chemical space exploration.
Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F
2014-01-01
The chemical universe of molecules reachable from a set of start compounds by iterative application of a finite number of reactions is usually so vast, that sophisticated and efficient exploration strategies are required to cope with the combinatorial complexity. A stringent analysis of (bio)chemical reaction networks, as approximations of these complex chemical spaces, forms the foundation for the understanding of functional relations in Chemistry and Biology. Graphs and graph rewriting are natural models for molecules and reactions. Borrowing the idea of partial evaluation from functional programming, we introduce partial applications of rewrite rules. A framework for the specification of exploration strategies in graph-rewriting systems is presented. Using key examples of complex reaction networks from carbohydrate chemistry we demonstrate the feasibility of this high-level strategy framework. While being designed for chemical applications, the framework can also be used to emulate higher-level transformation models such as illustrated in a small puzzle game.
Controlling Complex Systems and Developing Dynamic Technology
NASA Astrophysics Data System (ADS)
Avizienis, Audrius Victor
In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit complex dynamics (e.g. both short- and long-term changes in conductivity) in response to applied voltage signals. Characterization of these atomic switch networks (ASNs) brought out interesting parallels to biological neural networks, including power-law scaling in the statistics of electrical signal propagation and dynamic self-organization of differentiated subnetworks. A reservoir computing (RC) strategy was employed to utilize measurements of electrical signals dynamically generated in ASNs to perform time-series memory and manipulation tasks including a parity test and arbitrary waveform generation. These results represent the useful integration of a complex network into a dynamic physical RC device.
SCScore: Synthetic Complexity Learned from a Reaction Corpus.
Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F
2018-02-26
Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.
Nuclear Forensics and Radiochemistry: Reaction Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.
Passivity of Directed and Undirected Complex Dynamical Networks With Adaptive Coupling Weights.
Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan; Wu, Jigang
2017-08-01
A complex dynamical network consisting of N identical neural networks with reaction-diffusion terms is considered in this paper. First, several passivity definitions for the systems with different dimensions of input and output are given. By utilizing some inequality techniques, several criteria are presented, ensuring the passivity of the complex dynamical network under the designed adaptive law. Then, we discuss the relationship between the synchronization and output strict passivity of the proposed network model. Furthermore, these results are extended to the case when the topological structure of the network is undirected. Finally, two examples with numerical simulations are provided to illustrate the correctness and effectiveness of the proposed results.
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.
Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M
2016-09-29
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.
2016-09-01
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.
Matsuura, Tomoaki; Tanimura, Naoki; Hosoda, Kazufumi; Yomo, Tetsuya; Shimizu, Yoshihiro
2017-01-01
To elucidate the dynamic features of a biologically relevant large-scale reaction network, we constructed a computational model of minimal protein synthesis consisting of 241 components and 968 reactions that synthesize the Met-Gly-Gly (MGG) peptide based on an Escherichia coli-based reconstituted in vitro protein synthesis system. We performed a simulation using parameters collected primarily from the literature and found that the rate of MGG peptide synthesis becomes nearly constant in minutes, thus achieving a steady state similar to experimental observations. In addition, concentration changes to 70% of the components, including intermediates, reached a plateau in a few minutes. However, the concentration change of each component exhibits several temporal plateaus, or a quasi-stationary state (QSS), before reaching the final plateau. To understand these complex dynamics, we focused on whether the components reached a QSS, mapped the arrangement of components in a QSS in the entire reaction network structure, and investigated time-dependent changes. We found that components in a QSS form clusters that grow over time but not in a linear fashion, and that this process involves the collapse and regrowth of clusters before the formation of a final large single cluster. These observations might commonly occur in other large-scale biological reaction networks. This developed analysis might be useful for understanding large-scale biological reactions by visualizing complex dynamics, thereby extracting the characteristics of the reaction network, including phase transitions. PMID:28167777
Holme, Petter; Huss, Mikael; Lee, Sang Hoon
2011-05-06
The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong-Qiang, E-mail: chenjzxy@126.com; Tian, Yuan
2017-03-15
Three Pb(II) complexes ([Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]·H{sub 2}O){sub n} (1), ([Pb{sub 4}(BOABA){sub 2}(µ{sub 4}-O)(H{sub 2}O){sub 2}]·H{sub 2}O){sub n} (2), and [Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]{sub n} (3) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb{sub 4}(µ{sub 4}-O)(COO){sub 6} SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1–3 have been investigated. - Graphicalmore » abstract: Three Pb(II) coordination polymers were obtained under the same reaction systems with different temperatures. Both of complexes 1 and 2 are 2D network. 3 presents a 3D framework based on Pb–O–C rods SBUs. The 2D to 3D structures transition between three complexes was achieved successfully by temperature control. - Highlights: • Three Pb(II) complexes were obtained under the same reaction systems with different temperatures. • Structural transition of the crystallization products is largely dependent on the reaction temperature. • The luminescence properties studies reveal that three complexes exhibit yellow fluorescence emission behavior, which might be good candidates for obtaining photoluminescent materials.« less
Rule-based modeling and simulations of the inner kinetochore structure.
Tschernyschkow, Sergej; Herda, Sabine; Gruenert, Gerd; Döring, Volker; Görlich, Dennis; Hofmeister, Antje; Hoischen, Christian; Dittrich, Peter; Diekmann, Stephan; Ibrahim, Bashar
2013-09-01
Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins. Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts. Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.W.
1992-01-01
Computational neural networks (CNNs) are a computational paradigm inspired by the brain's massively parallel network of highly interconnected neurons. The power of computational neural networks derives not so much from their ability to model the brain as from their ability to learn by example and to map highly complex, nonlinear functions, without the need to explicitly specify the functional relationship. Two central questions about CNNs were investigated in the context of predicting chemical reactions: (1) the mapping properties of neural networks and (2) the representation of chemical information for use in CNNs. Chemical reactivity is here considered an example ofmore » a complex, nonlinear function of molecular structure. CNN's were trained using modifications of the back propagation learning rule to map a three dimensional response surface similar to those typically observed in quantitative structure-activity and structure-property relationships. The computational neural network's mapping of the response surface was found to be robust to the effects of training sample size, noisy data and intercorrelated input variables. The investigation of chemical structure representation led to the development of a molecular structure-based connection-table representation suitable for neural network training. An extension of this work led to a BE-matrix structure representation that was found to be general for several classes of reactions. The CNN prediction of chemical reactivity and regiochemistry was investigated for electrophilic aromatic substitution reactions, Markovnikov addition to alkenes, Saytzeff elimination from haloalkanes, Diels-Alder cycloaddition, and retro Diels-Alder ring opening reactions using these connectivity-matrix derived representations. The reaction predictions made by the CNNs were more accurate than those of an expert system and were comparable to predictions made by chemists.« less
NASA Astrophysics Data System (ADS)
Loppini, Alessandro
2018-03-01
Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.
Shrestha, Kushal; Jakubikova, Elena
2015-08-20
Light-harvesting antennas are protein-pigment complexes that play a crucial role in natural photosynthesis. The antenna complexes absorb light and transfer energy to photosynthetic reaction centers where charge separation occurs. This work focuses on computational studies of the electronic structure of the pigment networks of light-harvesting complex I (LH1), LH1 with the reaction center (RC-LH1), and light-harvesting complex II (LH2) found in purple bacteria. As the pigment networks of LH1, RC-LH1, and LH2 contain thousands of atoms, conventional density functional theory (DFT) and ab initio calculations of these systems are not computationally feasible. Therefore, we utilize DFT in conjunction with the energy-based fragmentation with molecular orbitals method and a semiempirical approach employing the extended Hückel model Hamiltonian to determine the electronic properties of these pigment assemblies. Our calculations provide a deeper understanding of the electronic structure of natural light-harvesting complexes, especially their pigment networks, which could assist in rational design of artificial photosynthetic devices.
Short relaxation times but long transient times in both simple and complex reaction networks
Henry, Adrien; Martin, Olivier C.
2016-01-01
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726
Kumar, Girijesh; Gupta, Rajeev
2013-10-07
The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.
Cao, Youfang; Liang, Jie
2013-01-01
Critical events that occur rarely in biological processes are of great importance, but are challenging to study using Monte Carlo simulation. By introducing biases to reaction selection and reaction rates, weighted stochastic simulation algorithms based on importance sampling allow rare events to be sampled more effectively. However, existing methods do not address the important issue of barrier crossing, which often arises from multistable networks and systems with complex probability landscape. In addition, the proliferation of parameters and the associated computing cost pose significant problems. Here we introduce a general theoretical framework for obtaining optimized biases in sampling individual reactions for estimating probabilities of rare events. We further describe a practical algorithm called adaptively biased sequential importance sampling (ABSIS) method for efficient probability estimation. By adopting a look-ahead strategy and by enumerating short paths from the current state, we estimate the reaction-specific and state-specific forward and backward moving probabilities of the system, which are then used to bias reaction selections. The ABSIS algorithm can automatically detect barrier-crossing regions, and can adjust bias adaptively at different steps of the sampling process, with bias determined by the outcome of exhaustively generated short paths. In addition, there are only two bias parameters to be determined, regardless of the number of the reactions and the complexity of the network. We have applied the ABSIS method to four biochemical networks: the birth-death process, the reversible isomerization, the bistable Schlögl model, and the enzymatic futile cycle model. For comparison, we have also applied the finite buffer discrete chemical master equation (dCME) method recently developed to obtain exact numerical solutions of the underlying discrete chemical master equations of these problems. This allows us to assess sampling results objectively by comparing simulation results with true answers. Overall, ABSIS can accurately and efficiently estimate rare event probabilities for all examples, often with smaller variance than other importance sampling algorithms. The ABSIS method is general and can be applied to study rare events of other stochastic networks with complex probability landscape. PMID:23862966
NASA Astrophysics Data System (ADS)
Cao, Youfang; Liang, Jie
2013-07-01
Critical events that occur rarely in biological processes are of great importance, but are challenging to study using Monte Carlo simulation. By introducing biases to reaction selection and reaction rates, weighted stochastic simulation algorithms based on importance sampling allow rare events to be sampled more effectively. However, existing methods do not address the important issue of barrier crossing, which often arises from multistable networks and systems with complex probability landscape. In addition, the proliferation of parameters and the associated computing cost pose significant problems. Here we introduce a general theoretical framework for obtaining optimized biases in sampling individual reactions for estimating probabilities of rare events. We further describe a practical algorithm called adaptively biased sequential importance sampling (ABSIS) method for efficient probability estimation. By adopting a look-ahead strategy and by enumerating short paths from the current state, we estimate the reaction-specific and state-specific forward and backward moving probabilities of the system, which are then used to bias reaction selections. The ABSIS algorithm can automatically detect barrier-crossing regions, and can adjust bias adaptively at different steps of the sampling process, with bias determined by the outcome of exhaustively generated short paths. In addition, there are only two bias parameters to be determined, regardless of the number of the reactions and the complexity of the network. We have applied the ABSIS method to four biochemical networks: the birth-death process, the reversible isomerization, the bistable Schlögl model, and the enzymatic futile cycle model. For comparison, we have also applied the finite buffer discrete chemical master equation (dCME) method recently developed to obtain exact numerical solutions of the underlying discrete chemical master equations of these problems. This allows us to assess sampling results objectively by comparing simulation results with true answers. Overall, ABSIS can accurately and efficiently estimate rare event probabilities for all examples, often with smaller variance than other importance sampling algorithms. The ABSIS method is general and can be applied to study rare events of other stochastic networks with complex probability landscape.
Cao, Youfang; Liang, Jie
2013-07-14
Critical events that occur rarely in biological processes are of great importance, but are challenging to study using Monte Carlo simulation. By introducing biases to reaction selection and reaction rates, weighted stochastic simulation algorithms based on importance sampling allow rare events to be sampled more effectively. However, existing methods do not address the important issue of barrier crossing, which often arises from multistable networks and systems with complex probability landscape. In addition, the proliferation of parameters and the associated computing cost pose significant problems. Here we introduce a general theoretical framework for obtaining optimized biases in sampling individual reactions for estimating probabilities of rare events. We further describe a practical algorithm called adaptively biased sequential importance sampling (ABSIS) method for efficient probability estimation. By adopting a look-ahead strategy and by enumerating short paths from the current state, we estimate the reaction-specific and state-specific forward and backward moving probabilities of the system, which are then used to bias reaction selections. The ABSIS algorithm can automatically detect barrier-crossing regions, and can adjust bias adaptively at different steps of the sampling process, with bias determined by the outcome of exhaustively generated short paths. In addition, there are only two bias parameters to be determined, regardless of the number of the reactions and the complexity of the network. We have applied the ABSIS method to four biochemical networks: the birth-death process, the reversible isomerization, the bistable Schlögl model, and the enzymatic futile cycle model. For comparison, we have also applied the finite buffer discrete chemical master equation (dCME) method recently developed to obtain exact numerical solutions of the underlying discrete chemical master equations of these problems. This allows us to assess sampling results objectively by comparing simulation results with true answers. Overall, ABSIS can accurately and efficiently estimate rare event probabilities for all examples, often with smaller variance than other importance sampling algorithms. The ABSIS method is general and can be applied to study rare events of other stochastic networks with complex probability landscape.
A cascade reaction network mimicking the basic functional steps of adaptive immune response
NASA Astrophysics Data System (ADS)
Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong
2015-10-01
Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.
Control of fluxes in metabolic networks
Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu
2016-01-01
Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218
Steady states and stability in metabolic networks without regulation.
Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J
2016-07-21
Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological relevance we illustrate the results on the examples of the TCA cycle, the mevalonate pathway and the Calvin cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molnets: An Artificial Chemistry Based on Neural Networks
NASA Technical Reports Server (NTRS)
Colombano, Silvano; Luk, Johnny; Segovia-Juarez, Jose L.; Lohn, Jason; Clancy, Daniel (Technical Monitor)
2002-01-01
The fundamental problem in the evolution of matter is to understand how structure-function relationships are formed and increase in complexity from the molecular level all the way to a genetic system. We have created a system where structure-function relationships arise naturally and without the need of ad hoc function assignments to given structures. The idea was inspired by neural networks, where the structure of the net embodies specific computational properties. In this system networks interact with other networks to create connections between the inputs of one net and the outputs of another. The newly created net then recomputes its own synaptic weights, based on anti-hebbian rules. As a result some connections may be cut, and multiple nets can emerge as products of a 'reaction'. The idea is to study emergent reaction behaviors, based on simple rules that constitute a pseudophysics of the system. These simple rules are parameterized to produce behaviors that emulate chemical reactions. We find that these simple rules show a gradual increase in the size and complexity of molecules. We have been building a virtual artificial chemistry laboratory for discovering interesting reactions and for testing further ideas on the evolution of primitive molecules. Some of these ideas include the potential effect of membranes and selective diffusion according to molecular size.
Rubin, Jacob
1992-01-01
The feed forward (FF) method derives efficient operational equations for simulating transport of reacting solutes. It has been shown to be applicable in the presence of networks with any number of homogeneous and/or heterogeneous, classical reaction segments that consist of three, at most binary participants. Using a sequential (network type after network type) exploration approach and, independently, theoretical explanations, it is demonstrated for networks with classical reaction segments containing more than three, at most binary participants that if any one of such networks leads to a solvable transport problem then the FF method is applicable. Ways of helping to avoid networks that produce problem insolvability are developed and demonstrated. A previously suggested algebraic, matrix rank procedure has been adapted and augmented to serve as the main, easy-to-apply solvability test for already postulated networks. Four network conditions that often generate insolvability have been identified and studied. Their early detection during network formulation may help to avoid postulation of insolvable networks.
Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays
NASA Astrophysics Data System (ADS)
Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan
2015-03-01
The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j
Snowden, Thomas J; van der Graaf, Piet H; Tindall, Marcus J
2017-07-01
Complex models of biochemical reaction systems have become increasingly common in the systems biology literature. The complexity of such models can present a number of obstacles for their practical use, often making problems difficult to intuit or computationally intractable. Methods of model reduction can be employed to alleviate the issue of complexity by seeking to eliminate those portions of a reaction network that have little or no effect upon the outcomes of interest, hence yielding simplified systems that retain an accurate predictive capacity. This review paper seeks to provide a brief overview of a range of such methods and their application in the context of biochemical reaction network models. To achieve this, we provide a brief mathematical account of the main methods including timescale exploitation approaches, reduction via sensitivity analysis, optimisation methods, lumping, and singular value decomposition-based approaches. Methods are reviewed in the context of large-scale systems biology type models, and future areas of research are briefly discussed.
Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Riera-Fernández, Pablo; López-Díaz, Antonio; Pazos, Alejandro; González-Díaz, Humberto
2014-01-27
The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order k(th) (W(k)). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the W(k)(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated W(k)(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation).
Yoshimura, Takayoshi; Taketsugu, Tetsuya; Sawamura, Masaya
2017-01-01
We explored the reaction mechanism of the cationic rhodium(i)–BINAP complex catalysed isomerisation of allylic amines using the artificial force induced reaction method with the global reaction route mapping strategy, which enabled us to search for various reaction paths without assumption of transition states. The entire reaction network was reproduced in the form of a graph, and reasonable paths were selected from the complicated network using Prim’s algorithm. As a result, a new dissociative reaction mechanism was proposed. Our comprehensive reaction path search provided rationales for the E/Z and S/R selectivities of the stereoselective reaction. PMID:28970877
Bio-inspired nanocatalysts for the oxygen reduction reaction.
Grumelli, Doris; Wurster, Benjamin; Stepanow, Sebastian; Kern, Klaus
2013-01-01
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.
Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.
Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O
2004-12-01
As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Timescale analysis of rule-based biochemical reaction networks
Klinke, David J.; Finley, Stacey D.
2012-01-01
The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150
Pattern Formation on Networks: from Localised Activity to Turing Patterns
McCullen, Nick; Wagenknecht, Thomas
2016-01-01
Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339
van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A
2015-11-07
Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.
Ma, Hong-Wu; Zhao, Xue-Ming; Yuan, Ying-Jin; Zeng, An-Ping
2004-08-12
Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. http://genome.gbf.de/bioinformatics/
Reaction-diffusion processes and metapopulation models on duplex networks
NASA Astrophysics Data System (ADS)
Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong
2013-03-01
Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.
NASA Technical Reports Server (NTRS)
Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)
2001-01-01
Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.
A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
Röhl, Annika; Bockmayr, Alexander
2017-01-03
Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.
Control of fluxes in metabolic networks.
Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu
2016-07-01
Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. © 2016 Basler et al.; Published by Cold Spring Harbor Laboratory Press.
Nanomotor dynamics in a chemically oscillating medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Bryan, E-mail: bryan.robertson@mail.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca
2015-04-21
Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give risemore » to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.« less
Morgado, Gaspar; Gerngross, Daniel; Roberts, Tania M; Panke, Sven
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Klein, Michael T; Hou, Gang; Quann, Richard J; Wei, Wei; Liao, Kai H; Yang, Raymond S H; Campain, Julie A; Mazurek, Monica A; Broadbelt, Linda J
2002-01-01
A chemical engineering approach for the rigorous construction, solution, and optimization of detailed kinetic models for biological processes is described. This modeling capability addresses the required technical components of detailed kinetic modeling, namely, the modeling of reactant structure and composition, the building of the reaction network, the organization of model parameters, the solution of the kinetic model, and the optimization of the model. Even though this modeling approach has enjoyed successful application in the petroleum industry, its application to biomedical research has just begun. We propose to expand the horizons on classic pharmacokinetics and physiologically based pharmacokinetics (PBPK), where human or animal bodies were often described by a few compartments, by integrating PBPK with reaction network modeling described in this article. If one draws a parallel between an oil refinery, where the application of this modeling approach has been very successful, and a human body, the individual processing units in the oil refinery may be considered equivalent to the vital organs of the human body. Even though the cell or organ may be much more complicated, the complex biochemical reaction networks in each organ may be similarly modeled and linked in much the same way as the modeling of the entire oil refinery through linkage of the individual processing units. The integrated chemical engineering software package described in this article, BioMOL, denotes the biological application of molecular-oriented lumping. BioMOL can build a detailed model in 1-1,000 CPU sec using standard desktop hardware. The models solve and optimize using standard and widely available hardware and software and can be presented in the context of a user-friendly interface. We believe this is an engineering tool with great promise in its application to complex biological reaction networks. PMID:12634134
Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu
2005-04-21
Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.
Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki
2016-01-01
Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.
Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan
2010-12-28
Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.
Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.
Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily
2017-01-01
Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.
Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G
2016-07-01
We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.
Forward design of a complex enzyme cascade reaction
Hold, Christoph; Billerbeck, Sonja; Panke, Sven
2016-01-01
Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. PMID:27677244
Sealable femtoliter chamber arrays for cell-free biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retterer, Scott T.; Fowlkes, Jason Davidson; Collier, Charles Patrick
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g. global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) devicemore » contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Lastly, we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques to characterize CFPS gene circuits and their interactions with the cell-free environment.« less
Sealable femtoliter chamber arrays for cell-free biology
Retterer, Scott T.; Fowlkes, Jason Davidson; Collier, Charles Patrick; ...
2015-03-11
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g. global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) devicemore » contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Lastly, we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques to characterize CFPS gene circuits and their interactions with the cell-free environment.« less
Sen, Fatih; Boghossian, Ardemis A; Sen, Selda; Ulissi, Zachary W; Zhang, Jingqing; Strano, Michael S
2012-12-21
Single-molecule fluorescent microscopy allows semiconducting single-walled carbon nanotubes (SWCNTs) to detect the adsorption and desorption of single adsorbate molecules as a stochastic modulation of emission intensity. In this study, we identify and assign the signature of the complex decomposition and reaction pathways of riboflavin in the presence of the free radical scavenger Trolox using DNA-wrapped SWCNT sensors dispersed onto an aminopropyltriethoxysilane (APTES) coated surface. SWCNT emission is quenched by riboflavin-induced reactive oxygen species (ROS), but increases upon the adsorption of Trolox, which functions as a reductive brightening agent. Riboflavin has two parallel reaction pathways, a Trolox oxidizer and a photosensitizer for singlet oxygen and superoxide generation. The resulting reaction network can be detected in real time in the vicinity of a single SWCNT and can be completely described using elementary reactions and kinetic rate constants measured independently. The reaction mechanism results in an oscillatory fluorescence response from each SWCNT, allowing for the simultaneous detection of multiple reactants. A series-parallel kinetic model is shown to describe the critical points of these oscillations, with partition coefficients on the order of 10(-6)-10(-4) for the reactive oxygen and excited state species. These results highlight the potential for SWCNTs to characterize complex reaction networks at the nanometer scale.
Exhaustive identification of steady state cycles in large stoichiometric networks
Wright, Jeremiah; Wagner, Andreas
2008-01-01
Background Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. Results We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. Conclusion The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable. PMID:18616835
Design Constraints on a Synthetic Metabolism
Bilgin, Tugce; Wagner, Andreas
2012-01-01
A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design. PMID:22768162
Neural network modeling of the kinetics of SO2 removal by fly ash-based sorbent.
Raymond-Ooi, E H; Lee, K T; Mohamed, A R; Chu, K H
2006-01-01
The mechanistic modeling of the sulfation reaction between fly ash-based sorbent and SO2 is a challenging task due to a variety reasons including the complexity of the reaction itself and the inability to measure some of the key parameters of the reaction. In this work, the possibility of modeling the sulfation reaction kinetics using a purely data-driven neural network was investigated. Experiments on SO2 removal by a sorbent prepared from coal fly ash/CaO/CaSO4 were conducted using a fixed bed reactor to generate a database to train and validate the neural network model. Extensive SO2 removal data points were obtained by varying three process variables, namely, SO2 inlet concentration (500-2000 mg/L), reaction temperature (60-80 degreesC), and relative humidity (50-70%), as a function of reaction time (0-60 min). Modeling results show that the neural network can provide excellent fits to the SO2 removal data after considerable training and can be successfully used to predict the extent of SO2 removal as a function of time even when the process variables are outside the training domain. From a modeling standpoint, the suitably trained and validated neural network with excellent interpolation and extrapolation properties could have immediate practical benefits in the absence of a theoretical model.
Stochastic simulation and analysis of biomolecular reaction networks
Frazier, John M; Chushak, Yaroslav; Foy, Brent
2009-01-01
Background In recent years, several stochastic simulation algorithms have been developed to generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks. However, the effects of various stochastic simulation and data analysis conditions on the observed dynamics of complex biomolecular reaction networks have not recieved much attention. In order to investigate these issues, we employed a a software package developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the behavior of such systems. The behavior of a hypothetical two gene in vitro transcription-translation reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of the factors that influence the analysis and interpretation of these data. Results Specific issues affecting the analysis and interpretation of simulation data are investigated, including: (1) the effect of time interval on data presentation and time-weighted averaging of molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of number of simulations on precision of model predictions, and (4) implications of stochastic simulations on optimization procedures. Conclusion The two main factors affecting the analysis of stochastic simulations are: (1) the selection of time intervals to compute or average state variables and (2) the number of simulations generated to evaluate the system behavior. PMID:19534796
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-01-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845
Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.
2016-11-21
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less
Haraldsdóttir, Hulda S; Fleming, Ronan M T
2016-11-01
Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.
FCDECOMP: decomposition of metabolic networks based on flux coupling relations.
Rezvan, Abolfazl; Marashi, Sayed-Amir; Eslahchi, Changiz
2014-10-01
A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.
Enzymatic reactions in confined environments
NASA Astrophysics Data System (ADS)
Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter
2016-05-01
Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.
Mimoza: web-based semantic zooming and navigation in metabolic networks.
Zhukova, Anna; Sherman, David J
2015-02-26
The complexity of genome-scale metabolic models makes them quite difficult for human users to read, since they contain thousands of reactions that must be included for accurate computer simulation. Interestingly, hidden similarities between groups of reactions can be discovered, and generalized to reveal higher-level patterns. The web-based navigation system Mimoza allows a human expert to explore metabolic network models in a semantically zoomable manner: The most general view represents the compartments of the model; the next view shows the generalized versions of reactions and metabolites in each compartment; and the most detailed view represents the initial network with the generalization-based layout (where similar metabolites and reactions are placed next to each other). It allows a human expert to grasp the general structure of the network and analyze it in a top-down manner Mimoza can be installed standalone, or used on-line at http://mimoza.bordeaux.inria.fr/ , or installed in a Galaxy server for use in workflows. Mimoza views can be embedded in web pages, or downloaded as COMBINE archives.
Wolff, Sara M; Ellison, Melinda J; Hao, Yue; Cockrum, Rebecca R; Austin, Kathy J; Baraboo, Michael; Burch, Katherine; Lee, Hyuk Jin; Maurer, Taylor; Patil, Rocky; Ravelo, Andrea; Taxis, Tasia M; Truong, Huan; Lamberson, William R; Cammack, Kristi M; Conant, Gavin C
2017-06-08
Grazing mammals rely on their ruminal microbial symbionts to convert plant structural biomass into metabolites they can assimilate. To explore how this complex metabolic system adapts to the host animal's diet, we inferred a microbiome-level metabolic network from shotgun metagenomic data. Using comparative genomics, we then linked this microbial network to that of the host animal using a set of interface metabolites likely to be transferred to the host. When the host sheep were fed a grain-based diet, the induced microbial metabolic network showed several critical differences from those seen on the evolved forage-based diet. Grain-based (e.g., concentrate) diets tend to be dominated by a smaller set of reactions that employ metabolites that are nearer in network space to the host's metabolism. In addition, these reactions are more central in the network and employ substrates with shorter carbon backbones. Despite this apparent lower complexity, the concentrate-associated metabolic networks are actually more dissimilar from each other than are those of forage-fed animals. Because both groups of animals were initially fed on a forage diet, we propose that the diet switch drove the appearance of a number of different microbial networks, including a degenerate network characterized by an inefficient use of dietary nutrients. We used network simulations to show that such disparate networks are not an unexpected result of a diet shift. We argue that network approaches, particularly those that link the microbial network with that of the host, illuminate aspects of the structure of the microbiome not seen from a strictly taxonomic perspective. In particular, different diets induce predictable and significant differences in the enzymes used by the microbiome. Nonetheless, there are clearly a number of microbiomes of differing structure that show similar functional properties. Changes such as a diet shift uncover more of this type of diversity.
Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.
Lai, Wei; Ren, Lei; Tang, Qian; Qu, Xiangmeng; Li, Jiang; Wang, Lihua; Li, Li; Fan, Chunhai; Pei, Hao
2018-06-22
The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Khammash, Mustafa
2014-01-01
Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed. PMID:24968191
METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters.
Geffers, Lars; Tetzlaff, Benjamin; Cui, Xiao; Yan, Jun; Eichele, Gregor
2013-01-01
METscout (http://metscout.mpg.de) brings together metabolism and gene expression landscapes. It is a MySQL relational database linking biochemical pathway information with 3D patterns of gene expression determined by robotic in situ hybridization in the E14.5 mouse embryo. The sites of expression of ∼1500 metabolic enzymes and of ∼350 solute carriers (SLCs) were included and are accessible as single cell resolution images and in the form of semi-quantitative image abstractions. METscout provides several graphical web-interfaces allowing navigation through complex anatomical and metabolic information. Specifically, the database shows where in the organism each of the many metabolic reactions take place and where SLCs transport metabolites. To link enzymatic reactions and transport, the KEGG metabolic reaction network was extended to include metabolite transport. This network in conjunction with spatial expression pattern of the network genes allows for a tracing of metabolic reactions and transport processes across the entire body of the embryo.
Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S
2018-06-21
The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.
Programmable chemical controllers made from DNA.
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
NASA Astrophysics Data System (ADS)
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2014-01-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language', and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents. PMID:24077029
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.
Simulation and fitting of complex reaction network TPR: The key is the objective function
Savara, Aditya Ashi
2016-07-07
In this research, a method has been developed for finding improved fits during simulation and fitting of data from complex reaction network temperature programmed reactions (CRN-TPR). It was found that simulation and fitting of CRN-TPR presents additional challenges relative to simulation and fitting of simpler TPR systems. The method used here can enable checking the plausibility of proposed chemical mechanisms and kinetic models. The most important finding was that when choosing an objective function, use of an objective function that is based on integrated production provides more utility in finding improved fits when compared to an objective function based onmore » the rate of production. The response surface produced by using the integrated production is monotonic, suppresses effects from experimental noise, requires fewer points to capture the response behavior, and can be simulated numerically with smaller errors. For CRN-TPR, there is increased importance (relative to simple reaction network TPR) in resolving of peaks prior to fitting, as well as from weighting of experimental data points. Using an implicit ordinary differential equation solver was found to be inadequate for simulating CRN-TPR. Lastly, the method employed here was capable of attaining improved fits in simulation and fitting of CRN-TPR when starting with a postulated mechanism and physically realistic initial guesses for the kinetic parameters.« less
When You Can’t Beat ’em, Join ’em: Leveraging ComplexityScience for Innovative Solutions
2017-08-21
chemical reactions : • Belousov-Zhabotinskii reaction ... Engineering (ARE) Technical Interchange Meeting by: Dr. Josef Schaff, NAVAIR 4.5 DISTRIBUTION STATEMENT A • Commander’s intent: Networked Navy & the intent...Physics undergrad, software engineering jobs in comms, video games, robotics • Started NAWCAD (NADC) as a computer scientist / engineer
Leveraging Modeling Approaches: Reaction Networks and Rules
Blinov, Michael L.; Moraru, Ion I.
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349
Leveraging modeling approaches: reaction networks and rules.
Blinov, Michael L; Moraru, Ion I
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Understanding (And Perhaps Influencing) How Instructional TV Works.
ERIC Educational Resources Information Center
Adcock, Douglas
1979-01-01
Explains the complex production and distribution networks that make up instructional television; encourages teachers to make their needs and reactions known to producers through the proper channels of authority. (MAI)
Revealing networks from dynamics: an introduction
NASA Astrophysics Data System (ADS)
Timme, Marc; Casadiego, Jose
2014-08-01
What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.
Yuan, Quan; McHenry, Charles S
2009-11-13
In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, Fanny; Peck, Ariana; Salzman, Julia
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
RNA–protein binding kinetics in an automated microfluidic reactor
Ridgeway, William K.; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R.
2009-01-01
Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA–protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic ‘Riboreactor’ has been designed and constructed to facilitate the study of kinetics of RNA–protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA–protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome. PMID:19759214
Stamova, Ivanka; Stamov, Gani
2017-12-01
In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.
The large-scale organization of metabolic networks
NASA Astrophysics Data System (ADS)
Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.
2000-10-01
In a cell or microorganism, the processes that generate mass, energy, information transfer and cell-fate specification are seamlessly integrated through a complex network of cellular constituents and reactions. However, despite the key role of these networks in sustaining cellular functions, their large-scale structure is essentially unknown. Here we present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems. This may indicate that metabolic organization is not only identical for all living organisms, but also complies with the design principles of robust and error-tolerant scale-free networks, and may represent a common blueprint for the large-scale organization of interactions among all cellular constituents.
Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays.
Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan
2015-03-19
The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.
Metabolic networks in motion: 13C-based flux analysis
Sauer, Uwe
2006-01-01
Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism. PMID:17102807
DNA-Based Dynamic Reaction Networks.
Fu, Ting; Lyu, Yifan; Liu, Hui; Peng, Ruizi; Zhang, Xiaobing; Ye, Mao; Tan, Weihong
2018-05-21
Deriving from logical and mechanical interactions between DNA strands and complexes, DNA-based artificial reaction networks (RNs) are attractive for their high programmability, as well as cascading and fan-out ability, which are similar to the basic principles of electronic logic gates. Arising from the dream of creating novel computing mechanisms, researchers have placed high hopes on the development of DNA-based dynamic RNs and have strived to establish the basic theories and operative strategies of these networks. This review starts by looking back on the evolution of DNA dynamic RNs; in particular' the most significant applications in biochemistry occurring in recent years. Finally, we discuss the perspectives of DNA dynamic RNs and give a possible direction for the development of DNA circuits. Copyright © 2018. Published by Elsevier Ltd.
Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.
Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy
2017-05-01
Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W 11 O 38 } ≡ {W 11 } under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W 12 O 42 } ≡ {W 12 }, {W 22 O 74 } ≡ {W 22 } 1a, {W 34 O 116 } ≡ {W 34 } 2a, and {W 36 O 120 } ≡ {W 36 } 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W 11 }-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to nonspecialists.
Coding the Assembly of Polyoxotungstates with a Programmable Reaction System
2017-01-01
Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system “off equilibrium” and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete “one-pot” reactions that produce the building block{W11O38} ≡ {W11} under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W12O42} ≡ {W12}, {W22O74} ≡ {W22} 1a, {W34O116} ≡ {W34} 2a, and {W36O120} ≡ {W36} 3a, using pH and ultraviolet–visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W11}-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a “fixed” set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to nonspecialists. PMID:28414229
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-10-01
Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.
A mathematical model for foreign body reactions in 2D.
Su, Jianzhong; Gonzales, Humberto Perez; Todorov, Michail; Kojouharov, Hristo; Tang, Liping
2011-02-01
The foreign body reactions are commonly referred to the network of immune and inflammatory reactions of human or animals to foreign objects placed in tissues. They are basic biological processes, and are also highly relevant to bioengineering applications in implants, as fibrotic tissue formations surrounding medical implants have been found to substantially reduce the effectiveness of devices. Despite of intensive research on determining the mechanisms governing such complex responses, few mechanistic mathematical models have been developed to study such foreign body reactions. This study focuses on a kinetics-based predictive tool in order to analyze outcomes of multiple interactive complex reactions of various cells/proteins and biochemical processes and to understand transient behavior during the entire period (up to several months). A computational model in two spatial dimensions is constructed to investigate the time dynamics as well as spatial variation of foreign body reaction kinetics. The simulation results have been consistent with experimental data and the model can facilitate quantitative insights for study of foreign body reaction process in general.
Stoichiometric network theory for nonequilibrium biochemical systems.
Qian, Hong; Beard, Daniel A; Liang, Shou-dan
2003-02-01
We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.
Experimental determination of group flux control coefficients in metabolic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.
1998-04-20
Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmentalmore » perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.« less
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Structural modulation of silver complexes and their distinctive catalytic properties.
Zhao, Yue; Chen, Kai; Fan, Jian; Okamura, Taka-aki; Lu, Yi; Luo, Li; Sun, Wei-Yin
2014-02-07
A family of silver(I) complexes, [Ag2(L)2(OOCCF3)2] (1), [Ag(L)0.5(OOCCF3)] (2), [Ag(L)2](OOCCF3)(H2O)2 (3), was obtained by reactions of 4,4'-di(2-oxazolinyl)biphenyl (L) and AgOOCCF3 in different reaction media. Compound 1 has a 1D chain structure with alternative connections between the Ag(I) and L ligand. When the crystal nucleation inductor, pyrazine, was added into the reaction system, complex 2 was isolated with no pyrazine observed in its structure. In 2, the 1D inorganic chains formed by Ag(I) cations and OOCCF3(-) anions were connected by the L ligand to produce a 2D network. When a different inductor, imidazole, was added into the reaction system, 3 with (4,4) topology was synthesized, and again no imidazole was found in 3. When 1-3 were used as catalysts for cycloaddition reactions between imino esters and methyl acrylate, 3 affords the highest yield, in which the particular size of the channels in 3 led to its selective catalytic performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Madeleine; Stanley, Ann Marie; Wang, Guangshun
Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domainmore » of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.« less
Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya
2005-05-01
The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.
NASA Astrophysics Data System (ADS)
Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.
2015-12-01
The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.
Unraveling reaction pathways and specifying reaction kinetics for complex systems.
Vinu, R; Broadbelt, Linda J
2012-01-01
Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.
Definitions of Complexity are Notoriously Difficult
NASA Astrophysics Data System (ADS)
Schuster, Peter
Definitions of complexity are notoriously difficult if not impossible at all. A good working hypothesis might be: Everything is complex that is not simple. This is precisely the way in which we define nonlinear behavior. Things appear complex for different reasons: i) Complexity may result from lack of insight, ii) complexity may result from lack of methods, and (iii) complexity may be inherent to the system. The best known example for i) is celestial mechanics: The highly complex Pythagorean epicycles become obsolete by the introduction of Newton's law of universal gravitation. To give an example for ii), pattern formation and deterministic chaos became not really understandable before extensive computer simulations became possible. Cellular metabolism may serve as an example for iii) and is caused by the enormous complexity of biochemical reaction networks with up to one hundred individual reaction fluxes. Nevertheless, only few fluxes are dominant in the sense that using Pareto optimal values for them provides near optimal values for all the others...
Straube, Ronny
2017-12-01
Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.
Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel
2015-01-01
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402
Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...
2015-04-22
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
A scalable moment-closure approximation for large-scale biochemical reaction networks
Kazeroonian, Atefeh; Theis, Fabian J.; Hasenauer, Jan
2017-01-01
Abstract Motivation: Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The number of state variables of these approximating models, however, grows at least quadratically with the number of biochemical species. This limits their application to small- and medium-sized processes. Results: In this article, we present a scalable moment-closure approximation (sMA) for the simulation of statistical moments of large-scale stochastic processes. The sMA exploits the structure of the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields approximating models whose number of state variables depends predominantly on local properties, i.e. the average node degree of the reaction network, instead of the overall network size. The resulting complexity reduction is assessed by studying a range of medium- and large-scale biochemical reaction networks. To evaluate the approximation accuracy and the improvement in computational efficiency, we study models for JAK2/STAT5 signalling and NFκB signalling. Our method is applicable to generic biochemical reaction networks and we provide an implementation, including an SBML interface, which renders the sMA easily accessible. Availability and implementation: The sMA is implemented in the open-source MATLAB toolbox CERENA and is available from https://github.com/CERENADevelopers/CERENA. Contact: jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881983
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
Elementary Reactions and Their Role in Gas-Phase Prebiotic Chemistry
Balucani, Nadia
2009-01-01
The formation of complex organic molecules in a reactor filled with gaseous mixtures possibly reproducing the primitive terrestrial atmosphere and ocean demonstrated more than 50 years ago that inorganic synthesis of prebiotic molecules is possible, provided that some form of energy is provided to the system. After that groundbreaking experiment, gas-phase prebiotic molecules have been observed in a wide variety of extraterrestrial objects (including interstellar clouds, comets and planetary atmospheres) where the physical conditions vary widely. A thorough characterization of the chemical evolution of those objects relies on a multi-disciplinary approach: 1) observations allow us to identify the molecules and their number densities as they are nowadays; 2) the chemistry which lies behind their formation starting from atoms and simple molecules is accounted for by complex reaction networks; 3) for a realistic modeling of such networks, a number of experimental parameters are needed and, therefore, the relevant molecular processes should be fully characterized in laboratory experiments. A survey of the available literature reveals, however, that much information is still lacking if it is true that only a small percentage of the elementary reactions considered in the models have been characterized in laboratory experiments. New experimental approaches to characterize the relevant elementary reactions in laboratory are presented and the implications of the results are discussed. PMID:19564951
Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.
Zion, Noam; Friedman, Ariel; Levy, Naomi; Elbaz, Lior
2018-04-23
One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Networks in cognitive science.
Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H
2013-07-01
Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences. Copyright © 2013 Elsevier Ltd. All rights reserved.
Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting; ...
2018-03-28
Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less
Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting
Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less
A General Map of Iron Metabolism and Tissue-specific Subnetworks
Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.
2009-01-01
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358
NASA Astrophysics Data System (ADS)
Pan, Xiaoliang; Schwartz, Steven
2015-03-01
It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.
ERIC Educational Resources Information Center
Greeson, Johanna K. P.; Briggs, Ernestine C.; Kisiel, Cassandra L.; Layne, Christopher M.; Ake, George S., III; Ko, Susan J.; Gerrity, Ellen T.; Steinberg, Alan M.; Howard, Michael L.; Pynoos, Robert S.; Fairbank, John A.
2011-01-01
Many children in the child welfare system (CWS) have histories of recurrent interpersonal trauma perpetrated by caregivers early in life often referred to as "complex trauma". Children in the CWS also experience a diverse range of reactions across multiple areas of functioning that are associated with such exposure. Nevertheless, few CWSs…
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics.
Yang, Qian; Sing-Long, Carlos A; Reed, Evan J
2017-08-01
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
Sing-Long, Carlos A.
2017-01-01
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates. PMID:28989618
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
Yang, Qian; Sing-Long, Carlos A.; Reed, Evan J.
2017-06-19
Here, we propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. Conversely, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our methodmore » on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. Furthermore, we describe a framework in this work that paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.« less
Simulation of large-scale rule-based models
Colvin, Joshua; Monine, Michael I.; Faeder, James R.; Hlavacek, William S.; Von Hoff, Daniel D.; Posner, Richard G.
2009-01-01
Motivation: Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. Results: DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein–protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of StochSim. DYNSTOC differs from StochSim by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. Availability: DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at http://public.tgen.org/dynstoc/. Contact: dynstoc@tgen.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19213740
Delay-induced Turing-like waves for one-species reaction-diffusion model on a network
NASA Astrophysics Data System (ADS)
Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio
2015-09-01
A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.
Dondi, Daniele; Merli, Daniele; Albini, Angelo; Zeffiro, Alberto; Serpone, Nick
2012-05-01
When a chemical system is submitted to high energy sources (UV, ionizing radiation, plasma sparks, etc.), as is expected to be the case of prebiotic chemistry studies, a plethora of reactive intermediates could form. If oxygen is present in excess, carbon dioxide and water are the major products. More interesting is the case of reducing conditions where synthetic pathways are also possible. This article examines the theoretical modeling of such systems with random-generated chemical networks. Four types of random-generated chemical networks were considered that originated from a combination of two connection topologies (viz., Poisson and scale-free) with reversible and irreversible chemical reactions. The results were analyzed taking into account the number of the most abundant products required for reaching 50% of the total number of moles of compounds at equilibrium, as this may be related to an actual problem of complex mixture analysis. The model accounts for multi-component reaction systems with no a priori knowledge of reacting species and the intermediates involved if system components are sufficiently interconnected. The approach taken is relevant to an earlier study on reactions that may have occurred in prebiotic systems where only a few compounds were detected. A validation of the model was attained on the basis of results of UVC and radiolytic reactions of prebiotic mixtures of low molecular weight compounds likely present on the primeval Earth.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Kaltenbacher, Barbara; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351
Hoppe, Andreas; Hoffmann, Sabrina; Holzhütter, Hermann-Georg
2007-01-01
Background In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions. Results To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of Escherichia coli (931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state. Conclusion Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered. PMID:17543097
Minimum reaction network necessary to describe Ar/CF4 plasma etch
NASA Astrophysics Data System (ADS)
Helpert, Sofia; Chopra, Meghali; Bonnecaze, Roger T.
2018-03-01
Predicting the etch and deposition profiles created using plasma processes is challenging due to the complexity of plasma discharges and plasma-surface interactions. Volume-averaged global models allow for efficient prediction of important processing parameters and provide a means to quickly determine the effect of a variety of process inputs on the plasma discharge. However, global models are limited based on simplifying assumptions to describe the chemical reaction network. Here a database of 128 reactions is compiled and their corresponding rate constants collected from 24 sources for an Ar/CF4 plasma using the platform RODEo (Recipe Optimization for Deposition and Etching). Six different reaction sets were tested which employed anywhere from 12 to all 128 reactions to evaluate the impact of the reaction database on particle species densities and electron temperature. Because many the reactions used in our database had conflicting rate constants as reported in literature, we also present a method to deal with those uncertainties when constructing the model which includes weighting each reaction rate and filtering outliers. By analyzing the link between a reaction's rate constant and its impact on the predicted plasma densities and electron temperatures, we determine the conditions at which a reaction is deemed necessary to the plasma model. The results of this study provide a foundation for determining which minimal set of reactions must be included in the reaction set of the plasma model.
Attainable region analysis for continuous production of second generation bioethanol
2013-01-01
Background Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate. PMID:24286451
Attainable region analysis for continuous production of second generation bioethanol.
Scott, Felipe; Conejeros, Raúl; Aroca, Germán
2013-11-29
Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate.
Multiscale Simulations of Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, D. M.; Bakarji, J.
2014-12-01
Discrete, particle-based simulations offer distinct advantages when modeling solute transport and chemical reactions. For example, Brownian motion is often used to model diffusion in complex pore networks, and Gillespie-type algorithms allow one to handle multicomponent chemical reactions with uncertain reaction pathways. Yet such models can be computationally more intensive than their continuum-scale counterparts, e.g., advection-dispersion-reaction equations. Combining the discrete and continuum models has a potential to resolve the quantity of interest with a required degree of physicochemical granularity at acceptable computational cost. We present computational examples of such "hybrid models" and discuss the challenges associated with coupling these two levels of description.
Master stability functions reveal diffusion-driven pattern formation in networks
NASA Astrophysics Data System (ADS)
Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo
2018-03-01
We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.
Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.
Blackmond, Donna G
2015-09-02
The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.
Parallelization of Nullspace Algorithm for the computation of metabolic pathways
Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel
2011-01-01
Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581
Second Law of Thermodynamics Applied to Metabolic Networks
NASA Technical Reports Server (NTRS)
Nigam, R.; Liang, S.
2003-01-01
We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.
2010-01-01
Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space. PMID:20230643
The 'wired' universe of organic chemistry.
Grzybowski, Bartosz A; Bishop, Kyle J M; Kowalczyk, Bartlomiej; Wilmer, Christopher E
2009-04-01
The millions of reactions performed and compounds synthesized by organic chemists over the past two centuries connect to form a network larger than the metabolic networks of higher organisms and rivalling the complexity of the World Wide Web. Despite its apparent randomness, the network of chemistry has a well-defined, modular architecture. The network evolves in time according to trends that have not changed since the inception of the discipline, and thus project into chemistry's future. Analysis of organic chemistry using the tools of network theory enables the identification of most 'central' organic molecules, and for the prediction of which and how many molecules will be made in the future. Statistical analyses based on network connectivity are useful in optimizing parallel syntheses, in estimating chemical reactivity, and more.
Modeling and simulating networks of interdependent protein interactions.
Stöcker, Bianca K; Köster, Johannes; Zamir, Eli; Rahmann, Sven
2018-05-21
Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).
Conditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.
2016-01-01
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817
Conditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...
2016-06-23
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less
Conditions for duality between fluxes and concentrations in biochemical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less
Adiabatic coarse-graining and simulations of stochastic biochemical networks
Sinitsyn, N. A.; Hengartner, Nicolas; Nemenman, Ilya
2009-01-01
We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach is similar to the Born–Oppenheimer approximation in quantum mechanics and follows from the stochastic path integral representation of the cumulant generating function of reaction events. In applications with a small number of chemical reactions, it produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, interpretable representation and can be used for high-accuracy, low-complexity coarse-grained numerical simulations. As an example, we derive the coarse-grained description for a chain of biochemical reactions and show that the coarse-grained and the microscopic simulations agree, but the former is 3 orders of magnitude faster. PMID:19525397
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2017-03-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
Ricard, Jacques
2010-01-01
The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)
Lewicki, James P.; Fox, Christina A.; Worsley, Marcus A.
2015-05-15
With the new impetus towards the development of hierarchical graphene and CNT macro-assemblies for application in fields such as advanced energy storage, catalysis and electronics; there is much renewed interest in organic carbon-based sol–gel processes as a synthetically convenient and versatile means of forming three dimensional, covalently bonded organic/inorganic networks. Such matrices can act as highly effective precursors, scaffolds or molecular ‘glues’ for the assembly of a wide variety of functional carbon macro-assemblies. However, despite the utility and broad use of organic sol–gel processes – such as the ubiquitous resorcinol-formaldehyde (RF) reaction, there are details of the reaction chemistries ofmore » these important sol–gel processes that remain poorly understood at present. It is therefore both timely and necessary to examine these reactions in more detail using modern analytical techniques in order to gain a more rigorous understanding of the mechanisms by which these organic networks form. The goal of such studies is to obtain improved and rational control over the organic network structure, in order to better direct and tailor the architecture of the final inorganic carbon matrix. In this study we have investigated in detail, the mechanism of the organic sol–gel network forming reaction of resorcinol and formaldehyde from a structural and kinetic standpoint, by using a combination of real-time high field solution state nuclear magnetic resonance (NMR), low field NMR relaxometry and differential scanning calorimetry (DSC). These investigations have allowed us to track the network formation processes in real-time, gain both detailed structural information on the mechanisms of the RF sol–gel process and a quantitative assessment of the kinetics of the global network formation process. Here, it has been shown that the mechanism, by which the RF organic network forms, proceeds via an initial exothermic step correlated to the formation of a free aromatic aldehyde. The network growth reaction then proceeds in a statistical manner following a first order Arrhenius type kinetic relationship – characteristic of a typical thermoset network poly-condensation process. Finally, despite the relative complexity and ill-defined nature of the formaldehyde staring material, the final network structure is to a large extent, governed by the substitution pattern of the resorcinol molecule.« less
Filho, Humberto A; Machicao, Jeaneth; Bruno, Odemir M
2018-01-01
Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology.
Filho, Humberto A.; Machicao, Jeaneth
2018-01-01
Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology. PMID:29734359
Signalling Network Construction for Modelling Plant Defence Response
Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina
2012-01-01
Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided. PMID:23272172
The microbial nitrogen-cycling network.
Kuypers, Marcel M M; Marchant, Hannah K; Kartal, Boran
2018-05-01
Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.
Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks
NASA Astrophysics Data System (ADS)
Smith, Eric; Krishnamurthy, Supriya
2017-12-01
Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical meaning of deficiency not only for first-moment conditions but for all orders in fluctuations.
Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.
Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J
2008-10-01
Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.
A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound
NASA Astrophysics Data System (ADS)
Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.
2012-10-01
A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.
Poyraz, Selcuk; Cerkez, Idris; Huang, Tung Shi; Liu, Zhen; Kang, Litao; Luo, Jujie; Zhang, Xinyu
2014-11-26
Through a facile and effective seeding polymerization reaction via a one-step redox/complexation process, which took place in aqueous medium at ambient temperature, silver nanoparticles (Ag NPs) embedded polyaniline nanofiber (PANI NF) networks were synthesized as antibacterial agents. During the reaction, not only NF morphology formation of the resulting conducting polymers (CPs) but also amplification of the aqueous silver nitrate (AgNO3) solutions' oxidative potentials were managed by vanadium pentoxide (V2O5) sol-gel nanofibers, which acted as well-known nanofibrous seeding agents and the auxiliary oxidative agent at the same time. The PANI/Ag nanocomposites were proven to exhibit excellent antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Antibacterial property performance and average life span of the nanocomposite network were optimized through the homogeneous distribution/embedment of Ag NPs within one-dimensional (1-D) PANI NF matrix. The antibacterial efficacy tests and nanocomposite material characterization results further indicated that the sole components of PANI/Ag have a synergistic effect to each other in terms of antibacterial property. Thus, this well-known catalytic seeding approach via a one-step oxidative polymerization reaction can be considered as a general methodology and a substantial fabrication tool to synthesize Ag NP decorated nanofibrillar PANI networks as advanced antibacterial agents.
Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-03-22
Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-01-01
Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking. PMID:21445339
NASA Astrophysics Data System (ADS)
Henri, Christopher; Fernàndez-Garcia, Daniel
2015-04-01
Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
NASA Astrophysics Data System (ADS)
Henri, Christopher V.; Fernàndez-Garcia, Daniel
2014-09-01
Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
Abrams , Robert H.; Loague, Keith; Kent, Douglas B.
1998-01-01
The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.
Vranish, James N; Das, Deepika; Barondeau, David P
2016-11-18
Iron-sulfur (Fe-S) clusters are protein cofactors that are required for many essential cellular functions. Fe-S clusters are synthesized and inserted into target proteins by an elaborate biosynthetic process. The insensitivity of most Fe-S assembly and transfer assays requires high concentrations for components and places major limits on reaction complexity. Recently, fluorophore labels were shown to be effective at reporting cluster content for Fe-S proteins. Here, the incorporation of this labeling approach allowed the design and interrogation of complex Fe-S cluster biosynthetic reactions that mimic in vivo conditions. A bacterial Fe-S assembly complex, composed of the cysteine desulfurase IscS and scaffold protein IscU, was used to generate [2Fe-2S] clusters for transfer to mixtures of putative intermediate carrier and acceptor proteins. The focus of this study was to test whether the monothiol glutaredoxin, Grx4, functions as an obligate [2Fe-2S] carrier protein in the Fe-S cluster distribution network. Interestingly, [2Fe-2S] clusters generated by the IscS-IscU complex transferred to Grx4 at rates comparable to previous assays using uncomplexed IscU as a cluster source in chaperone-assisted transfer reactions. Further, we provide evidence that [2Fe-2S]-Grx4 delivers clusters to multiple classes of Fe-S targets via direct ligand exchange in a process that is both dynamic and reversible. Global fits of cluster transfer kinetics support a model in which Grx4 outcompetes terminal target proteins for IscU-bound [2Fe-2S] clusters and functions as an intermediate cluster carrier. Overall, these studies demonstrate the power of chemically conjugated fluorophore reporters for unraveling mechanistic details of biological metal cofactor assembly and distribution networks.
NASA Astrophysics Data System (ADS)
Hun Yeon, Ju; Chan, Karen Y. T.; Wong, Ting-Chia; Chan, Kelvin; Sutherland, Michael R.; Ismagilov, Rustem F.; Pryzdial, Edward L. G.; Kastrup, Christian J.
2015-05-01
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Zorina-Tikhonova, Ekaterina N; Chistyakov, Aleksandr S; Kiskin, Mikhail A; Sidorov, Aleksei A; Dorovatovskii, Pavel V; Zubavichus, Yan V; Voronova, Eugenia D; Godovikov, Ivan A; Korlyukov, Alexander A; Eremenko, Igor L; Vologzhanina, Anna V
2018-05-01
Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures ( e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N -donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4'-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H 2 O) cleavage.
Abbasi Tarighat, Maryam
2016-02-01
Simultaneous spectrophotometric determination of a mixture of overlapped complexes of Fe(3+), Mn(2+), Cu(2+), and Zn(2+) ions with 2-(3-hydroxy-1-phenyl-but-2-enylideneamino) pyridine-3-ol(HPEP) by orthogonal projection approach-feed forward neural network (OPA-FFNN) and continuous wavelet transform-feed forward neural network (CWT-FFNN) is discussed. Ionic complexes HPEP were formulated with varying reagent concentration, pH and time of color formation for completion of complexation reactions. It was found that, at 5.0 × 10(-4) mol L(-1) of HPEP, pH 9.5 and 10 min after mixing the complexation reactions were completed. The spectral data were analyzed using partial response plots, and identified non-linearity modeled using FFNN. Reducing the number of OPA-FFNN and CWT-FFNN inputs were simplified using dissimilarity pure spectra of OPA and selected wavelet coefficients. Once the pure dissimilarity plots ad optimal wavelet coefficients are selected, different ANN models were employed for the calculation of the final calibration models. The performance of these two approaches were tested with regard to root mean square errors of prediction (RMSE %) values, using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to the simultaneous determination of metal ions in different vegetable and foodstuff samples. The results show that, OPA-FFNN and CWT-FFNN were effective in simultaneously determining Fe(3+), Mn(2+), Cu(2+), and Zn(2+) concentration. Also, concentrations of metal ions in the samples were determined by flame atomic absorption spectrometry (FAAS). The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetic profiling of prolinate-catalyzed α-amination of aldehydes.
Hein, Jason E; Armstrong, Alan; Blackmond, Donna G
2011-08-19
Deconvolution of the role of off-cycle species from the desired catalytic cycle leads to an optimized protocol for the prolinate-catalyzed amination of aldehydes. The scope of complex reaction networks will be greatly broadened by understanding ancillary rate processes that influence the productive catalytic pathway. © 2011 American Chemical Society
Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plechac, Petr; Vlachos, Dionisios G.
We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less
Exact model reduction of combinatorial reaction networks
Conzelmann, Holger; Fey, Dirk; Gilles, Ernst D
2008-01-01
Background Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models. Results We introduce methods that extend and complete the already introduced approach. For instance, we provide techniques to handle the formation of multi-scaffold complexes as well as receptor dimerization. Furthermore, we discuss a new modeling approach that allows the direct generation of exactly reduced model structures. The developed methods are used to reduce a model of EGF and insulin receptor crosstalk comprising 5,182 ordinary differential equations (ODEs) to a model with 87 ODEs. Conclusion The methods, presented in this contribution, significantly enhance the available methods to exactly reduce models of combinatorial reaction networks. PMID:18755034
Extreme reaction times determine fluctuation scaling in human color vision
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-11-01
In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.
Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations
NASA Astrophysics Data System (ADS)
Iliadis, Christian; Longland, Richard; Coc, Alain; Timmes, F. X.; Champagne, Art E.
2015-03-01
Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.
Model-based design of RNA hybridization networks implemented in living cells
Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter
2017-01-01
Abstract Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. PMID:28934501
Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
2013-01-01
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381
A Design Principle for an Autonomous Post-translational Pattern Formation.
Sugai, Shuhei S; Ode, Koji L; Ueda, Hiroki R
2017-04-25
Previous autonomous pattern-formation models often assumed complex molecular and cellular networks. This theoretical study, however, shows that a system composed of one substrate with multisite phosphorylation and a pair of kinase and phosphatase can generate autonomous spatial information, including complex stripe patterns. All (de-)phosphorylation reactions are described with a generic Michaelis-Menten scheme, and all species freely diffuse without pre-existing gradients. Computational simulation upon >23,000,000 randomly generated parameter sets revealed the design motifs of cyclic reaction and enzyme sequestration by slow-diffusing substrates. These motifs constitute short-range positive and long-range negative feedback loops to induce Turing instability. The width and height of spatial patterns can be controlled independently by distinct reaction-diffusion processes. Therefore, multisite reversible post-translational modification can be a ubiquitous source for various patterns without requiring other complex regulations such as autocatalytic regulation of enzymes and is applicable to molecular mechanisms for inducing subcellular localization of proteins driven by post-translational modifications. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Model identification of signal transduction networks from data using a state regulator problem.
Gadkar, K G; Varner, J; Doyle, F J
2005-03-01
Advances in molecular biology provide an opportunity to develop detailed models of biological processes that can be used to obtain an integrated understanding of the system. However, development of useful models from the available knowledge of the system and experimental observations still remains a daunting task. In this work, a model identification strategy for complex biological networks is proposed. The approach includes a state regulator problem (SRP) that provides estimates of all the component concentrations and the reaction rates of the network using the available measurements. The full set of the estimates is utilised for model parameter identification for the network of known topology. An a priori model complexity test that indicates the feasibility of performance of the proposed algorithm is developed. Fisher information matrix (FIM) theory is used to address model identifiability issues. Two signalling pathway case studies, the caspase function in apoptosis and the MAP kinase cascade system, are considered. The MAP kinase cascade, with measurements restricted to protein complex concentrations, fails the a priori test and the SRP estimates are poor as expected. The apoptosis network structure used in this work has moderate complexity and is suitable for application of the proposed tools. Using a measurement set of seven protein concentrations, accurate estimates for all unknowns are obtained. Furthermore, the effects of measurement sampling frequency and quality of information in the measurement set on the performance of the identified model are described.
Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang
2017-01-01
Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.
Optimal information transfer in enzymatic networks: A field theoretic formulation
NASA Astrophysics Data System (ADS)
Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.
2017-07-01
Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.
Enzyme-free nucleic acid dynamical systems.
Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David
2017-12-15
Chemistries exhibiting complex dynamics-from inorganic oscillators to gene regulatory networks-have been long known but either cannot be reprogrammed at will or rely on the sophisticated enzyme chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract chemical reaction networks have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems by identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base-pairing interactions alone suffice for complex chemical dynamics and that autonomous molecular systems can be designed via molecular programming languages. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Reaction Mechanism of Isopentenyl Phosphate Kinase: A QM/MM Study.
McClory, James; Timson, David J; Singh, Warispreet; Zhang, Jian; Huang, Meilan
2017-12-14
Isopentenyl phosphate kinase (IPK) catalyzes the Mg 2+ -ATP dependent phosphorylation reactions to produce isopentenyl diphosphate, an important precursor in the synthesis of isopentenols. However, the position of the divalent metal ion in the crystal structures of IPK in complex with ATP and its native substrate IP has not been definitively resolved, and as a result ambiguity surrounds the catalytic mechanism of IP, limiting its exploitation as a biofuel and in drug design. Here we report the catalytically competent structure in complex with the metal ion Mg 2+ and elucidate the phosphorylation reaction mechanism using molecular dynamic simulations and density functional theory-based quantum mechanics/molecular mechanics calculations (B97d/AMBER99). Comparing the substrate-bound and substrate-free IPK complexes, we observed that substrate binding results in significant conformational change of three residues Lys204, Glu207, and Lys211 located on the αG helix to form a strong salt bridge network with Asp145, which in turn tethers the invariant Ser142 via H-bond interaction. The conformational change shuts the subtrate entrance channel formed between the αG and αE helices. Further, we demonstrate the phosphorylation reaction occurs with a reaction barrier of 17.58 kcal/mol, which is in agreement with the previous experimental kinetic data. We found that a highly conserved Gly8 on a glycine-rich loop, together with Lys14, stabilizes the transition state.
Analysis and Reduction of Complex Networks Under Uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghanem, Roger G
2014-07-31
This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC teammore » consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.« less
Giuseppone, Nicolas; Schmitt, Jean-Louis; Schwartz, Evan; Lehn, Jean-Marie
2005-04-20
Sc(OTf)(3) efficiently catalyzes the self-sufficient transimination reaction between various types of C=N bonds in organic solvents, with turnover frequencies up to 3600 h(-)(1) and rate accelerations up to 6 x 10(5). The mechanism of the crossover reaction in mixtures of amines and imines is studied, comparing parallel individual reactions with coupled equilibria. The intrinsic kinetic parameters for isolated reactions cannot simply be added up when several components are mixed, and the behavior of the system agrees with the presence of a unique mediator that constitutes the core of a network of competing reactions. In mixed systems, every single amine or imine competes for the same central hub, in accordance with their binding affinity for the catalyst metal ion center. More generally, the study extends the basic principles of constitutional dynamic chemistry to interconnected chemical transformations and provides a step toward dynamic systems of increasing complexity.
Conditions for extinction events in chemical reaction networks with discrete state spaces.
Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert
2018-05-01
We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.
NASA Astrophysics Data System (ADS)
Fellner, Klemens; Tang, Bao Quoc
2018-06-01
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
NASA Astrophysics Data System (ADS)
Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia
2009-09-01
Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.
Chemistry with spatial control using particles and streams†
Kalinin, Yevgeniy V.; Murali, Adithya
2012-01-01
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348
Dynamics and thermodynamics of open chemical networks
NASA Astrophysics Data System (ADS)
Esposito, Massimiliano
Open chemical networks (OCN) are large sets of coupled chemical reactions where some of the species are chemostated (i.e. continuously restored from the environment). Cell metabolism is a notable example of OCN. Two results will be presented. First, dissipation in OCN operating in nonequilibrium steady-states strongly depends on the network topology (algebraic properties of the stoichiometric matrix). An application to oligosaccharides exchange dynamics performed by so-called D-enzymes will be provided. Second, at low concentration the dissipation of OCN is in general inaccurately predicted by deterministic dynamics (i.e. nonlinear rate equations for the species concentrations). In this case a description in terms of the chemical master equation is necessary. A notable exception is provided by so-called deficiency zero networks, i.e. chemical networks with no hidden cycles present in the graph of reactant complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yong S.; Singh, Rahul; Zhang, Jing
2016-01-01
Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five ..beta..-O-4 and two ..alpha..-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for ..beta..-O-4 compounds and ..alpha..-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation.more » The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the ..beta..-ether linked and ..alpha..-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both ..beta..-O-4 and ..alpha..-O-4 linkages.« less
Community Size Effects on Epidemic Spreading in Multiplex Social Networks.
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals' alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals' risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals' protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
Model-based design of RNA hybridization networks implemented in living cells.
Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso
2017-09-19
Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less
Formal reasoning about systems biology using theorem proving
Hasan, Osman; Siddique, Umair; Tahar, Sofiène
2017-01-01
System biology provides the basis to understand the behavioral properties of complex biological organisms at different levels of abstraction. Traditionally, analysing systems biology based models of various diseases have been carried out by paper-and-pencil based proofs and simulations. However, these methods cannot provide an accurate analysis, which is a serious drawback for the safety-critical domain of human medicine. In order to overcome these limitations, we propose a framework to formally analyze biological networks and pathways. In particular, we formalize the notion of reaction kinetics in higher-order logic and formally verify some of the commonly used reaction based models of biological networks using the HOL Light theorem prover. Furthermore, we have ported our earlier formalization of Zsyntax, i.e., a deductive language for reasoning about biological networks and pathways, from HOL4 to the HOL Light theorem prover to make it compatible with the above-mentioned formalization of reaction kinetics. To illustrate the usefulness of the proposed framework, we present the formal analysis of three case studies, i.e., the pathway leading to TP53 Phosphorylation, the pathway leading to the death of cancer stem cells and the tumor growth based on cancer stem cells, which is used for the prognosis and future drug designs to treat cancer patients. PMID:28671950
Mechanistic Representation of Soil C Dynamics: for Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Riley, W. J.; Bisht, G.
2013-12-01
Arctic and sub-Arctic soils store vast amounts of carbon, approximately 1700 billion metric tones of frozen organic carbon. This carbon is susceptible to release to the atmosphere due to environmental changes (e.g., rapidly evolving landscape, warming); however, the mechanisms responsible for this susceptibility of soil organic matter (SOM) are not well understood, and uncertainties exist in terms of their representation in Earth System models. The representation of SOM dynamics in Earth System Models is critical for future climate prediction. To investigate the impacts of various physical (e.g., multi-phase transport, sorption, desorption, temperature), chemical (e.g., pH), and biological (e.g., microbial activity, enzyme dynamics) factors on SOM stability, we have developed CENTURY-like (describing labile and recalcitrant pools) and complex (describing multiple archetypal polymers and monomers C substrate groups) reaction networks. These reaction networks are integrated in a three-dimensional, multi-phase reactive transport solver (PFLOTRAN) and include representations of bacterial and fungal activity as well as population dynamics, gaseous and aqueous advection, and adsorption and desorption. We test and compare these reaction networks in PFLOTRAN to accurately predict depth-resolved soil organic matter (SOM) in the subsurface. We present results showing impacts of abiotic controls (e.g., surface interactions and temperature) on the long-term stabilization of SOM under permafrost conditions.
Computing chemical organizations in biological networks.
Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter
2008-07-15
Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.
Tang, Jin-Yun; Riley, William J.
2017-09-05
Several land biogeochemical models used for studying carbon–climate feedbacks have begun explicitly representing microbial dynamics. However, to our knowledge, there has been no theoretical work on how to achieve a consistent scaling of the complex biogeochemical reactions from microbial individuals to populations, communities, and interactions with plants and mineral soils. We focus here on developing a mathematical formulation of the substrate–consumer relationships for consumer-mediated redox reactions of the form A + B E→ products, where products could be, e.g., microbial biomass or bioproducts. Under the quasi-steady-state approximation, these substrate–consumer relationships can be formulated as the computationally difficult full equilibrium chemistrymore » problem or approximated analytically with the dual Monod (DM) or synthesizing unit (SU) kinetics. We find that DM kinetics is scaling inconsistently for reaction networks because (1) substrate limitations are not considered, (2) contradictory assumptions are made regarding the substrate processing rate when transitioning from single- to multi-substrate redox reactions, and (3) the product generation rate cannot be scaled from one to multiple substrates. In contrast, SU kinetics consistently scales the product generation rate from one to multiple substrates but predicts unrealistic results as consumer abundances reach large values with respect to their substrates. We attribute this deficit to SU's failure to incorporate substrate limitation in its derivation. To address these issues, we propose SUPECA (SU plus the equilibrium chemistry approximation – ECA) kinetics, which consistently imposes substrate and consumer mass balance constraints. We show that SUPECA kinetics satisfies the partition principle, i.e., scaling invariance across a network of an arbitrary number of reactions (e.g., as in Newton's law of motion and Dalton's law of partial pressures). We tested SUPECA kinetics with the equilibrium chemistry solution for some simple problems and found SUPECA outperformed SU kinetics. As an example application, we show that a steady-state SUPECA-based approach predicted an aerobic soil respiration moisture response function that agreed well with laboratory observations. We conclude that, as an extension to SU and ECA kinetics, SUPECA provides a robust mathematical representation of complex soil substrate–consumer interactions and can be applied to improve Earth system model (ESM) land models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jin-Yun; Riley, William J.
Several land biogeochemical models used for studying carbon–climate feedbacks have begun explicitly representing microbial dynamics. However, to our knowledge, there has been no theoretical work on how to achieve a consistent scaling of the complex biogeochemical reactions from microbial individuals to populations, communities, and interactions with plants and mineral soils. We focus here on developing a mathematical formulation of the substrate–consumer relationships for consumer-mediated redox reactions of the form A + B E→ products, where products could be, e.g., microbial biomass or bioproducts. Under the quasi-steady-state approximation, these substrate–consumer relationships can be formulated as the computationally difficult full equilibrium chemistrymore » problem or approximated analytically with the dual Monod (DM) or synthesizing unit (SU) kinetics. We find that DM kinetics is scaling inconsistently for reaction networks because (1) substrate limitations are not considered, (2) contradictory assumptions are made regarding the substrate processing rate when transitioning from single- to multi-substrate redox reactions, and (3) the product generation rate cannot be scaled from one to multiple substrates. In contrast, SU kinetics consistently scales the product generation rate from one to multiple substrates but predicts unrealistic results as consumer abundances reach large values with respect to their substrates. We attribute this deficit to SU's failure to incorporate substrate limitation in its derivation. To address these issues, we propose SUPECA (SU plus the equilibrium chemistry approximation – ECA) kinetics, which consistently imposes substrate and consumer mass balance constraints. We show that SUPECA kinetics satisfies the partition principle, i.e., scaling invariance across a network of an arbitrary number of reactions (e.g., as in Newton's law of motion and Dalton's law of partial pressures). We tested SUPECA kinetics with the equilibrium chemistry solution for some simple problems and found SUPECA outperformed SU kinetics. As an example application, we show that a steady-state SUPECA-based approach predicted an aerobic soil respiration moisture response function that agreed well with laboratory observations. We conclude that, as an extension to SU and ECA kinetics, SUPECA provides a robust mathematical representation of complex soil substrate–consumer interactions and can be applied to improve Earth system model (ESM) land models.« less
NASA Astrophysics Data System (ADS)
Tang, Jin-Yun; Riley, William J.
2017-09-01
Several land biogeochemical models used for studying carbon-climate feedbacks have begun explicitly representing microbial dynamics. However, to our knowledge, there has been no theoretical work on how to achieve a consistent scaling of the complex biogeochemical reactions from microbial individuals to populations, communities, and interactions with plants and mineral soils. We focus here on developing a mathematical formulation of the substrate-consumer relationships for consumer-mediated redox reactions of the form A + BE→ products, where products could be, e.g., microbial biomass or bioproducts. Under the quasi-steady-state approximation, these substrate-consumer relationships can be formulated as the computationally difficult full equilibrium chemistry problem or approximated analytically with the dual Monod (DM) or synthesizing unit (SU) kinetics. We find that DM kinetics is scaling inconsistently for reaction networks because (1) substrate limitations are not considered, (2) contradictory assumptions are made regarding the substrate processing rate when transitioning from single- to multi-substrate redox reactions, and (3) the product generation rate cannot be scaled from one to multiple substrates. In contrast, SU kinetics consistently scales the product generation rate from one to multiple substrates but predicts unrealistic results as consumer abundances reach large values with respect to their substrates. We attribute this deficit to SU's failure to incorporate substrate limitation in its derivation. To address these issues, we propose SUPECA (SU plus the equilibrium chemistry approximation - ECA) kinetics, which consistently imposes substrate and consumer mass balance constraints. We show that SUPECA kinetics satisfies the partition principle, i.e., scaling invariance across a network of an arbitrary number of reactions (e.g., as in Newton's law of motion and Dalton's law of partial pressures). We tested SUPECA kinetics with the equilibrium chemistry solution for some simple problems and found SUPECA outperformed SU kinetics. As an example application, we show that a steady-state SUPECA-based approach predicted an aerobic soil respiration moisture response function that agreed well with laboratory observations. We conclude that, as an extension to SU and ECA kinetics, SUPECA provides a robust mathematical representation of complex soil substrate-consumer interactions and can be applied to improve Earth system model (ESM) land models.
Network design and analysis for multi-enzyme biocatalysis.
Blaß, Lisa Katharina; Weyler, Christian; Heinzle, Elmar
2017-08-10
As more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells. We present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative. We present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.
Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
Surasani, V.; Li, L.
2011-12-01
Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.
NASA Astrophysics Data System (ADS)
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
Krumholz, Elias W.; Libourel, Igor G. L.
2015-01-01
Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773
Spreading of infection in a two species reaction-diffusion process in networks
NASA Astrophysics Data System (ADS)
Korosoglou, Paschalis; Kittas, Aristotelis; Argyrakis, Panos
2010-12-01
We study the dynamics of the infection of a two mobile species reaction from a single infected agent in a population of healthy agents. Historically, the main focus for infection propagation has been through spreading phenomena, where a random location of the system is initially infected and then propagates by successfully infecting its neighbor sites. Here both the infected and healthy agents are mobile, performing classical random walks. This may be a more realistic picture to such epidemiological models, such as the spread of a virus in communication networks of routers, where data travel in packets, the communication time of stations in ad hoc mobile networks, information spreading (such as rumor spreading) in social networks, etc. We monitor the density of healthy particles ρ(t) , which we find in all cases to be an exponential function in the long-time limit in two-dimensional and three-dimensional lattices and Erdős-Rényi (ER) and scale-free (SF) networks. We also investigate the scaling of the crossover time tc from short- to long-time exponential behavior, which we find to be a power law in lattices and ER networks. This crossover is shown to be absent in SF networks, where we reveal the role of the connectivity of the network in the infection process. We compare this behavior to ER networks and lattices and highlight the significance of various connectivity patterns, as well as the important differences of this process in the various underlying geometries, revealing a more complex behavior of ρ(t) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang
The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scalesmore » of interest.« less
On understanding nuclear reaction network flows with branchings on directed graphs
NASA Astrophysics Data System (ADS)
Meyer, Bradley S.
2018-04-01
Nuclear reaction network flow diagrams are useful for understanding which reactions are governing the abundance changes at a particular time during nucleosynthesis. This is especially true when the flows are largely unidirectional, such as during the s-process of nucleosynthesis. In explosive nucleosynthesis, when reaction flows are large, and when forward reactions are nearly balanced by their reverses, reaction flows no longer give a clear picture of the abundance evolution in the network. This paper presents a way of understanding network evolution in terms of sums of branchings on a directed graph, which extends the concept of reaction flows to allow for multiple reaction pathways.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Thermodynamics of Computational Copying in Biochemical Systems
NASA Astrophysics Data System (ADS)
Ouldridge, Thomas E.; Govern, Christopher C.; ten Wolde, Pieter Rein
2017-04-01
Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics.
Correlation between elastic and plastic deformations of partially cured epoxy networks
NASA Astrophysics Data System (ADS)
Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik
2018-05-01
The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.
New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda
2014-01-01
Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.
Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws
Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.
2014-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389
Theorems and application of local activity of CNN with five state variables and one port.
Xiong, Gang; Dong, Xisong; Xie, Li; Yang, Thomas
2012-01-01
Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus (HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear systems.
A compositional framework for reaction networks
NASA Astrophysics Data System (ADS)
Baez, John C.; Pollard, Blake S.
Reaction networks, or equivalently Petri nets, are a general framework for describing processes in which entities of various kinds interact and turn into other entities. In chemistry, where the reactions are assigned ‘rate constants’, any reaction network gives rise to a nonlinear dynamical system called its ‘rate equation’. Here we generalize these ideas to ‘open’ reaction networks, which allow entities to flow in and out at certain designated inputs and outputs. We treat open reaction networks as morphisms in a category. Composing two such morphisms connects the outputs of the first to the inputs of the second. We construct a functor sending any open reaction network to its corresponding ‘open dynamical system’. This provides a compositional framework for studying the dynamics of reaction networks. We then turn to statics: that is, steady state solutions of open dynamical systems. We construct a ‘black-boxing’ functor that sends any open dynamical system to the relation that it imposes between input and output variables in steady states. This extends our earlier work on black-boxing for Markov processes.
FERN - a Java framework for stochastic simulation and evaluation of reaction networks.
Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf
2008-08-29
Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new systems biology applications. Finally, complex scenarios requiring intervention during the simulation progress can be modelled easily with FERN.
Krumholz, Elias W; Libourel, Igor G L
2015-07-31
Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Strategies and Rubrics for Teaching Complex Systems Theory to Novices (Invited)
NASA Astrophysics Data System (ADS)
Fichter, L. S.
2010-12-01
Bifurcation. Self-similarity. Fractal. Sensitive dependent. Agents. Self-organized criticality. Avalanche behavior. Power laws. Strange attractors. Emergence. The language of complexity is fundamentally different from the language of equilibrium. If students do not know these phenomena, and what they tell us about the pulse of dynamic systems, complex systems will be opaque. A complex system is a group of agents. (individual interacting units, like birds in a flock, sand grains in a ripple, or individual friction units along a fault zone), existing far from equilibrium, interacting through positive and negative feedbacks, following simple rules, forming interdependent, dynamic, evolutionary networks. Complex systems produce behaviors that cannot be predicted deductively from knowledge of the behaviors of the individual components themselves; they must be experienced. What complexity theory demonstrates is that, by following simple rules, all the agents end up coordinating their behavior—self organizing—so that what emerges is not chaos, but meaningful patterns. How can we introduce Freshman, non-science, general education students to complex systems theories, in 3 to 5 classes; in a way they really get it, and can use the principles to understand real systems? Complex systems theories are not a series of unconnected or disconnected equations or models; they are developed as narratives that makes sense of how all the pieces and properties are interrelated. The principles of complex systems must be taught as deliberately and systematically as the equilibrium principles normally taught; as, say, the systematic training from pre-algebra and geometry to algebra. We have developed a sequence of logically connected narratives (strategies and rubrics) that introduce complex systems principles using models that can be simulated in a computer, in class, in real time. The learning progression has a series of 12 models (e.g. logistic system, bifurcation diagrams, genetic algorithms, etc.) leading to 19 learning outcomes that encompass most of the universality properties that characterize complex systems. They are developed in a specific order to achieve specific ends of understanding. We use these models in various depths and formats in courses ranging from gened courses, to evolutionary systems and environmental systems, to upper level geology courses. Depending on the goals of a course, the learning outcomes can be applied to understanding many other complex systems; e.g. oscillating chemical reactions (reaction-diffusion and activator-inhibitor systems), autocatalytic networks, hysteresis (bistable) systems, networks, and the rise/collapse of complex societies. We use these and other complex systems concepts in various classes to talk about the origin of life, ecosystem organization, game theory, extinction events, and environmental system behaviors. The applications are almost endless. The complete learning progression with models, computer programs, experiments, and learning outcomes is available at: www.jmu.edu/geology/ComplexEvolutionarySystems/
Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas
2015-01-01
All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881
De la Fuente, Ildefonso M.; Cortes, Jesus M.; Pelta, David A.; Veguillas, Juan
2013-01-01
Background The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. Methodology/Principal Findings In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. Conclusions/Significance We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed. PMID:23554883
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul
2018-04-01
The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.
Interconnectivity of human cellular metabolism and disease prevalence
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2010-12-01
Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.
Model validation of simple-graph representations of metabolism
Holme, Petter
2009-01-01
The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012
Learning Universal Computations with Spikes
Thalmeier, Dominik; Uhlmann, Marvin; Kappen, Hilbert J.; Memmesheimer, Raoul-Martin
2016-01-01
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. PMID:27309381
Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang
2015-01-01
The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634
Knowledge representation in metabolic pathway databases.
Stobbe, Miranda D; Jansen, Gerbert A; Moerland, Perry D; van Kampen, Antoine H C
2014-05-01
The accurate representation of all aspects of a metabolic network in a structured format, such that it can be used for a wide variety of computational analyses, is a challenge faced by a growing number of researchers. Analysis of five major metabolic pathway databases reveals that each database has made widely different choices to address this challenge, including how to deal with knowledge that is uncertain or missing. In concise overviews, we show how concepts such as compartments, enzymatic complexes and the direction of reactions are represented in each database. Importantly, also concepts which a database does not represent are described. Which aspects of the metabolic network need to be available in a structured format and to what detail differs per application. For example, for in silico phenotype prediction, a detailed representation of gene-protein-reaction relations and the compartmentalization of the network is essential. Our analysis also shows that current databases are still limited in capturing all details of the biology of the metabolic network, further illustrated with a detailed analysis of three metabolic processes. Finally, we conclude that the conceptual differences between the databases, which make knowledge exchange and integration a challenge, have not been resolved, so far, by the exchange formats in which knowledge representation is standardized.
Ding, Yuduan; Chang, Jiwei; Ma, Qiaoli; Chen, Lingling; Liu, Shuzhen; Jin, Shuai; Han, Jingwen; Xu, Rangwei; Zhu, Andan; Guo, Jing; Luo, Yi; Xu, Juan; Xu, Qiang; Zeng, YunLiu; Deng, Xiuxin
2015-01-01
Citrus (Citrus spp.), a nonclimacteric fruit, is one of the most important fruit crops in global fruit industry. However, the biological behavior of citrus fruit ripening and postharvest senescence remains unclear. To better understand the senescence process of citrus fruit, we analyzed data sets from commercial microarrays, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry and validated physiological quality detection of four main varieties in the genus Citrus. Network-based approaches of data mining and modeling were used to investigate complex molecular processes in citrus. The Citrus Metabolic Pathway Network and correlation networks were constructed to explore the modules and relationships of the functional genes/metabolites. We found that the different flesh-rind transport of nutrients and water due to the anatomic structural differences among citrus varieties might be an important factor that influences fruit senescence behavior. We then modeled and verified the citrus senescence process. As fruit rind is exposed directly to the environment, which results in energy expenditure in response to biotic and abiotic stresses, nutrients are exported from flesh to rind to maintain the activity of the whole fruit. The depletion of internal substances causes abiotic stresses, which further induces phytohormone reactions, transcription factor regulation, and a series of physiological and biochemical reactions. PMID:25802366
Switchable cucurbituril-bipyridine beacons.
Sinha, Mantosh K; Reany, Ofer; Parvari, Galit; Karmakar, Ananta; Keinan, Ehud
2010-08-09
4-Aminobipyridine derivatives form strong inclusion complexes with cucurbit[6]uril, exhibiting remarkably large enhancements in fluorescence intensity and quantum yields. The remarkable complexation-induced pK(a) shift (DeltapK(a)=3.3) highlights the strong charge-dipole interaction upon binding. The reversible binding phenomenon can be used for the design of switchable beacons that can be incorporated into cascades of binding networks. This concept is demonstrated herein by three different applications: 1) a switchable fluorescent beacon for chemical sensing of transition metals and other ligands; 2) direct measurement of binding constants between cucurbit[6]uril and various nonfluorescent guest molecules; and 3) quantitative monitoring of biocatalytic reactions and determination of their kinetic parameters. The latter application is illustrated by the hydrolysis of an amide catalyzed by penicillin G acylase and by the elimination reaction of a beta-cabamoyloxy ketone catalyzed by aldolase antibody 38C2.
Greeson, Johanna K P; Briggs, Ernestine C; Kisiel, Cassandra L; Layne, Christopher M; Ake, George S; Ko, Susan J; Gerrity, Ellen T; Steinberg, Alan M; Howard, Michael L; Pynoos, Robert S; Fairbank, John A
2011-01-01
Many children in the child welfare system (CWS) have histories of recurrent interpersonal trauma perpetrated by caregivers early in life often referred to as complex trauma. Children in the CWS also experience a diverse range of reactions across multiple areas of functioning that are associated with such exposure. Nevertheless, few CWSs routinely screen for trauma exposure and associated symptoms beyond an initial assessment of the precipitating event. This study examines trauma histories, including complex trauma exposure (physical abuse, sexual abuse, emotional abuse, neglect, domestic violence), posttraumatic stress, and behavioral and emotional problems of 2,251 youth (age 0 to 21; M = 9.5, SD = 4.3) in foster care who were referred to a National Child Traumatic Stress Network site for treatment. High prevalence rates of complex trauma exposure were observed: 70.4% of the sample reported at least two of the traumas that constitute complex trauma; 11.7% of the sample reported all 5 types. Compared to youth with other types of trauma, those with complex trauma histories had significantly higher rates of internalizing problems, posttraumatic stress, and clinical diagnoses, and differed on some demographic variables. Implications for child welfare practice and future research are discussed.
Defect reaction network in Si-doped InAs. Numerical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulkmore » InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank« less
Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A.
2014-01-01
Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there. PMID:24778263
Envisioning, quantifying, and managing thermal regimes on river networks
Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.
Kou, Hui-Zhong; Sato, Osamu
2007-11-12
The reaction of Mn2+ with [Cr(ox)3]3- in the presence of the spin-crossover [Co(terpy)2]2+ cation gives rise to a 1D [Co(terpy)2][Mn(H2O)ClCr(ox)3].H2O.0.5MeOH (1) or a 2D [Co(terpy)2][Mn(H2O)Cr(ox)3]2.5H2O.0.5MeOH (2). The trimetallic complexes display dominant ferromagnetic behavior, and spin-crossover of [Co(terpy)2]2+ is suppressed by the chemical pressure of the polymeric oxalate-bridged network.
Toward the automated generation of genome-scale metabolic networks in the SEED.
DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron
2007-04-26
Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the stage for the automated generation of substantially complete metabolic networks for over 400 complete genome sequences currently in the SEED. With each genome that is processed using our tools, the database of common components grows to cover more of the diversity of metabolic pathways. This increases the likelihood that components of reaction networks for subsequently processed genomes can be retrieved from the database, rather than assembled and verified manually.
Mrabet, Yassine; Semmar, Nabil
2010-05-01
Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
Martí-Rujas, Javier; Kawano, Masaki
2013-02-19
Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.
Romero-Fernández, M Pilar; Babiano, Reyes; Cintas, Pedro
2018-04-01
Under neutral conditions, spontaneous mirror symmetry breaking has been occasionally reported for aldol reactions starting from achiral reagents and conditions. Chiral induction might be interpreted in terms of autocatalysis exerted by chiral mono-aldol or bis-aldol products as source of initial enantiomeric excesses, which may account for such experimental observations. We describe here a thorough Density Functional Theory (DFT) study on this complex and otherwise difficult problem, which provides some insights into this phenomenon. The picture adds further rationale to an in-depth analysis by Moyano et al, who showed the isolation and characterization of bis-aldol adducts and their participation in a complex network of reversible steps. However, the lack of enantiodiscrimination (ees vanish rapidly in solution) suggests, according to the present results, a weak association in complexes formed by the catalysts and substrates. The latter would also be consistent with almost flat transition states having similar heights for competitive catalyst-bound transition structures (actually, we were unable to locate them at the level explored). Overall, neither autocatalysis as once conjectured nor mutual inhibition of enantiomers appears to be operating mechanisms. Asymmetric amplification in early stages harnessing unavoidable enantiomeric imbalances in reaction mixtures of chiral products represents a plausible interpretation. © 2018 Wiley Periodicals, Inc.
He, Changfei; Shi, Shaowei; Wu, Xuefei; Russell, Thomas P; Wang, Dong
2018-06-06
The interfacial broadening between two different epoxy networks having different moduli was nanomechanically mapped. The interfacial broadening of the two networks produced an interfacial zone having a gradient in the concentration and, hence, properties of the original two networks. This interfacial broadening of the networks leads to the generation of a new network with a segmental composition corresponding to a mixture of the original two network segments. The intermixing of the two, by nature of the exchange reactions, was on the segmental level. By mapping the time dependence of the variation in the modulus at different temperatures, the kinetics of the exchange reaction was measured and, by varying the temperature, the activation energy of the exchange reaction was determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk
Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly,more » we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly connected nature of the chromophore network and the presence of multiple EET pathways, features which might easily be built into artificial photosynthetic systems.« less
Modeling the chemistry of complex petroleum mixtures.
Quann, R J
1998-01-01
Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.
Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124
Martinez-Macias, Claudia; Chen, Mingyang; Dixon, David A.; ...
2015-07-03
We formed a family of HY zeolite-supported cationic organoiridium carbonyl complexes by reaction of Ir(CO) 2(acac) (acac=acetylacetonate) to form supported Ir(CO) 2 complexes, which were treated at 298K and 1atm with flowing gas-phase reactants, including C 2H 4, H 2, (CO)-C-12, (CO)-C-13, and D 2O. Mass spectrometry was used to identify effluent gases, and infrared and X-ray absorption spectroscopies were used to characterize the supported species, with the results bolstered by DFT calculations. The support is crystalline and presents a nearly uniform array of bonding sites for the iridium species, so these were characterized by a high degree of uniformity,more » which allowed a precise determination of the species involved in the replacement, for example, of one CO ligand of each Ir(CO) 2 complex with ethylene. The supported species include the following: Ir(CO) 2, Ir(CO)(C 2H 4) 2, Ir(CO)(C 2H 4), Ir(CO)(C 2H 5), and (tentatively) Ir(CO)(H). The data determine a reaction network involving all of these species.« less
Rule-based modeling with Virtual Cell
Schaff, James C.; Vasilescu, Dan; Moraru, Ion I.; Loew, Leslie M.; Blinov, Michael L.
2016-01-01
Summary: Rule-based modeling is invaluable when the number of possible species and reactions in a model become too large to allow convenient manual specification. The popular rule-based software tools BioNetGen and NFSim provide powerful modeling and simulation capabilities at the cost of learning a complex scripting language which is used to specify these models. Here, we introduce a modeling tool that combines new graphical rule-based model specification with existing simulation engines in a seamless way within the familiar Virtual Cell (VCell) modeling environment. A mathematical model can be built integrating explicit reaction networks with reaction rules. In addition to offering a large choice of ODE and stochastic solvers, a model can be simulated using a network free approach through the NFSim simulation engine. Availability and implementation: Available as VCell (versions 6.0 and later) at the Virtual Cell web site (http://vcell.org/). The application installs and runs on all major platforms and does not require registration for use on the user’s computer. Tutorials are available at the Virtual Cell website and Help is provided within the software. Source code is available at Sourceforge. Contact: vcell_support@uchc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27497444
Stochastic flux analysis of chemical reaction networks
2013-01-01
Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153
Stochastic flux analysis of chemical reaction networks.
Kahramanoğulları, Ozan; Lynch, James F
2013-12-07
Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.
Modular verification of chemical reaction network encodings via serializability analysis
Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew
2015-01-01
Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906
Klimovskaia, Anna; Ganscha, Stefan; Claassen, Manfred
2016-12-01
Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants. We have assessed the structure learning capabilities of the reactionet lasso on synthetic data for the complete TRAIL induced apoptosis signaling cascade comprising 70 reactions. We find that the reactionet lasso is able to efficiently recover the structure of these reaction systems, ab initio, with high sensitivity and specificity. With only < 1% false discoveries, the reactionet lasso is able to recover 45% of all true reactions ab initio among > 6000 possible reactions and over 102000 network topologies. In conjunction with information rich single cell technologies such as single cell RNA sequencing or mass cytometry, the reactionet lasso will enable large-scale structure learning, particularly in areas with partial network structure knowledge, such as cancer biology, and thereby enable the detection of pathological alterations of reaction networks. We provide software to allow for wide applicability of the reactionet lasso.
Expanding the informational chemistries of life: peptide/RNA networks
NASA Astrophysics Data System (ADS)
Taran, Olga; Chen, Chenrui; Omosun, Tolulope O.; Hsieh, Ming-Chien; Rha, Allisandra; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-11-01
The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond. This article is part of the themed issue 'Reconceptualizing the origins of life'.
An integrated cell-free metabolic platform for protein production and synthetic biology
Jewett, Michael C; Calhoun, Kara A; Voloshin, Alexei; Wuu, Jessica J; Swartz, James R
2008-01-01
Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements. PMID:18854819
Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D
2008-12-25
The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.
NASA Astrophysics Data System (ADS)
Rao, Francesco; Caflisch, Amedeo
2004-03-01
Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)
NASA Astrophysics Data System (ADS)
Wang, Duo-Zhi; Wang, Xin-Fang; Du, Jia-Qiang; Dong, Jun-Liang; Xie, Fei
2018-02-01
We report the synthesis and characterization of five transition metal coordination polymers (CPs) based on M(II) (M: Co, Ni and Cu), 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L) ligand. They are formulated as {[Co2(HL)2(H2O)3(SO4)]·H2O}n (1), {[Co2(HL)2(H2O)2]·SiF6}n (2), {[Ni2(HL)2(H2O)3(SO4)]·2H2O}n (3), {[Ni2(HL)2(H2O)4]·H2O·SiF6}n (4), {[Cu2(HL)2(H2O)2]·SiF6}n (5). The complexes 1-5 structure were characterized by single-crystal X-ray diffraction, elemental analyses, infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). Complexes 1-5 are two-dimensional (2D) network type coordination polymers that 1-3, 5 crystallize in monoclinic system within the centrosymmetric space group P2(1)/c, and 4 in triclinic system P-1 space group, they show the same coordination modes (κ1-κ1)-(κ1)-(κ1)-μ3 in coordination polymers. Complexes 1 and 3 expand to three-dimensional framework by means of hydrogen bond interactions, and can be rationalized to be three-connected {63} topological network, while 2, 4, 5 exhibit the topological network with a four-connected {44·62} topological sql network. The luminescent properties (for complexes 1, 2) and UV diffuse reflectance (for complexes 1-5) in the solid state at room temperature were also investigated and discussed. Complexes 1-5 act as effective heterogeneous catalysts, under mild conditions, for the homocoupling reaction of 4-substituted aryl iodides bearing electron-donating groups (-CH3, -OCH3).
A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)
Mourão, Márcio A.; Srividhya, Jeyaraman; McSharry, Patrick E.; Crampin, Edmund J.; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1). PMID:22096591
A graphical user interface for a method to infer kinetics and network architecture (MIKANA).
Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2016-01-01
Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.
A biological approach to assembling tissue modules through endothelial capillary network formation.
Riesberg, Jeremiah J; Shen, Wei
2015-09-01
To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
The compositional and evolutionary logic of metabolism
NASA Astrophysics Data System (ADS)
Braakman, Rogier; Smith, Eric
2013-02-01
Metabolism is built on a foundation of organic chemistry, and employs structures and interactions at many scales. Despite these sources of complexity, metabolism also displays striking and robust regularities in the forms of modularity and hierarchy, which may be described compactly in terms of relatively few principles of composition. These regularities render metabolic architecture comprehensible as a system, and also suggests the order in which layers of that system came into existence. In addition metabolism also serves as a foundational layer in other hierarchies, up to at least the levels of cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, motivates us to interpret metabolism as a source of causation or constraint on many forms of organization in the biosphere. Many of the forms of modularity and hierarchy exhibited by metabolism are readily interpreted as stages in the emergence of catalytic control by living systems over organic chemistry, sometimes recapitulating or incorporating geochemical mechanisms. We identify as modules, either subsets of chemicals and reactions, or subsets of functions, that are re-used in many contexts with a conserved internal structure. At the small molecule substrate level, module boundaries are often associated with the most complex reaction mechanisms, catalyzed by highly conserved enzymes. Cofactors form a biosynthetically and functionally distinctive control layer over the small-molecule substrate. The most complex members among the cofactors are often associated with the reactions at module boundaries in the substrate networks, while simpler cofactors participate in widely generalized reactions. The highly tuned chemical structures of cofactors (sometimes exploiting distinctive properties of the elements of the periodic table) thereby act as ‘keys’ that incorporate classes of organic reactions within biochemistry. Module boundaries provide the interfaces where change is concentrated, when we catalogue extant diversity of metabolic phenotypes. The same modules that organize the compositional diversity of metabolism are argued, with many explicit examples, to have governed long-term evolution. Early evolution of core metabolism, and especially of carbon-fixation, appears to have required very few innovations, and to have used few rules of composition of conserved modules, to produce adaptations to simple chemical or energetic differences of environment without diverse solutions and without historical contingency. We demonstrate these features of metabolism at each of several levels of hierarchy, beginning with the small-molecule metabolic substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.
Mathematical approach to nonlocal interactions using a reaction-diffusion system.
Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu
2017-06-01
In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.
Memory functions reveal structural properties of gene regulatory networks
Perez-Carrasco, Ruben
2018-01-01
Gene regulatory networks (GRNs) control cellular function and decision making during tissue development and homeostasis. Mathematical tools based on dynamical systems theory are often used to model these networks, but the size and complexity of these models mean that their behaviour is not always intuitive and the underlying mechanisms can be difficult to decipher. For this reason, methods that simplify and aid exploration of complex networks are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projection. By first converting a thermodynamic state ensemble model of gene regulation into mass action reactions we derive a general method that produces a set of time evolution equations for a subset of components of a network. The influence of the rest of the network, the bulk, is captured by memory functions that describe how the subnetwork reacts to its own past state via components in the bulk. These memory functions provide probes of near-steady state dynamics, revealing information not easily accessible otherwise. We illustrate the method on a simple cross-repressive transcriptional motif to show that memory functions not only simplify the analysis of the subnetwork but also have a natural interpretation. We then apply the approach to a GRN from the vertebrate neural tube, a well characterised developmental transcriptional network composed of four interacting transcription factors. The memory functions reveal the function of specific links within the neural tube network and identify features of the regulatory structure that specifically increase the robustness of the network to initial conditions. Taken together, the study provides evidence that Zwanzig-Mori projections offer powerful and effective tools for simplifying and exploring the behaviour of GRNs. PMID:29470492
On the precision of quasi steady state assumptions in stochastic dynamics
NASA Astrophysics Data System (ADS)
Agarwal, Animesh; Adams, Rhys; Castellani, Gastone C.; Shouval, Harel Z.
2012-07-01
Many biochemical networks have complex multidimensional dynamics and there is a long history of methods that have been used for dimensionality reduction for such reaction networks. Usually a deterministic mass action approach is used; however, in small volumes, there are significant fluctuations from the mean which the mass action approach cannot capture. In such cases stochastic simulation methods should be used. In this paper, we evaluate the applicability of one such dimensionality reduction method, the quasi-steady state approximation (QSSA) [L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem. Z 49, 333369 (1913)] for dimensionality reduction in case of stochastic dynamics. First, the applicability of QSSA approach is evaluated for a canonical system of enzyme reactions. Application of QSSA to such a reaction system in a deterministic setting leads to Michaelis-Menten reduced kinetics which can be used to derive the equilibrium concentrations of the reaction species. In the case of stochastic simulations, however, the steady state is characterized by fluctuations around the mean equilibrium concentration. Our analysis shows that a QSSA based approach for dimensionality reduction captures well the mean of the distribution as obtained from a full dimensional simulation but fails to accurately capture the distribution around that mean. Moreover, the QSSA approximation is not unique. We have then extended the analysis to a simple bistable biochemical network model proposed to account for the stability of synaptic efficacies; the substrate of learning and memory [J. E. Lisman, "A mechanism of memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase," Proc. Natl. Acad. Sci. U.S.A. 82, 3055-3057 (1985)], 10.1073/pnas.82.9.3055. Our analysis shows that a QSSA based dimensionality reduction method results in errors as big as two orders of magnitude in predicting the residence times in the two stable states.
Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R
2005-01-28
The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.
Multi-equilibrium property of metabolic networks: SSI module.
Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan
2011-06-20
Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.
Multi-equilibrium property of metabolic networks: SSI module
2011-01-01
Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Osamu, E-mail: sakai.o@e.usp.ac.jp; Nobuto, Kyosuke; Miyagi, Shigeyuki
Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH{sub 3} in the global chemical reaction, and difference of an index for each radical species between casesmore » with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.« less
An efficient graph theory based method to identify every minimal reaction set in a metabolic network
2014-01-01
Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal reaction sets and useful to employ with genome-scale metabolic networks. PMID:24594118
Design of multi-phase dynamic chemical networks
NASA Astrophysics Data System (ADS)
Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-08-01
Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.
Complex Autocatalysis in Simple Chemistries.
Virgo, Nathaniel; Ikegami, Takashi; McGregor, Simon
2016-01-01
Life on Earth must originally have arisen from abiotic chemistry. Since the details of this chemistry are unknown, we wish to understand, in general, which types of chemistry can lead to complex, lifelike behavior. Here we show that even very simple chemistries in the thermodynamically reversible regime can self-organize to form complex autocatalytic cycles, with the catalytic effects emerging from the network structure. We demonstrate this with a very simple but thermodynamically reasonable artificial chemistry model. By suppressing the direct reaction from reactants to products, we obtain the simplest kind of autocatalytic cycle, resulting in exponential growth. When these simple first-order cycles are prevented from forming, the system achieves superexponential growth through more complex, higher-order autocatalytic cycles. This leads to nonlinear phenomena such as oscillations and bistability, the latter of which is of particular interest regarding the origins of life.
Copper-catalyzed azide alkyne cycloaddition polymer networks
NASA Astrophysics Data System (ADS)
Alzahrani, Abeer Ahmed
The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo-CuAAC reaction and a chain-growth acrylate homopolymerization were demonstrated and used to form branched polymer structures. A bulk, organic soluble initiation system consisting of a Cu(II) salt and a primary amine was also examined in both model reactions and in bulk polymerizations. The system was shown to be highly efficient, leading to nearly complete CuAAC polymerization at ambient temperature. Increasing the ratio of amine to copper from 1 to 4 increases the CuAAC reaction rate significantly from 4 mM/min for 1:1 ratio of Cu(II):hexyalmine to 14mM/min for 1:4 ratio. The concentration dependence of the amine on the reaction rate enables the polymerization rate to be controlled simply by manipulating the hexylamine concentration. Sequential thiol--acrylate and photo-CuAAC click reactions were utilized to form two-stage reactive polymer networks capable of generating wrinkles in a facile manner. The click thiol-Michael addition reaction was utilized to form a cross-linked polymer with residual, reactive alkyne sites that remained tethered throughout the network. The latent, unreacted alkyne sites are subsequently reacted with diazide monomers via a photoinduced Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to increase the cross-link density. Increased cross-linking raised the modulus and glass transition temperature from 1.6 MPa and 2 °C after the thiol-acrylate reaction to 4.4 MPa and 22 °C after the CuAAC reaction, respectively. The double click reaction approach led to micro-wrinkles with well-controlled wavelength and amplitude of 8.50 +/- 1.6 and 1.4 μm, respectively, for a polymer with a 1280 μm total film thickness. Additionally, this approach further enables spatial selectivity of wrinkle formation by photo-patterning. The CuAAC-based polymerization was also used to design smart, responsive porous materials from well-defined CuAAC networks, which possesses a high glass transition temperature (Tg= 115°C) due to the formation of the triazole linkages. The toughness, recovery, fixity, and shape memory attributes of this material were examined. The unique recovery behavior of the porous CuAAC material is characterized by its ability to recover plastic deformation upon heating. The tough and stiff nature of the glassy CuAAC polymer networks translates into desirable high compressive strain shape memory foams. The CuAAC foam exhibited excellent shape-memory behavior and was able to recover through each of five successive cycles of 80% compression at ambient temperature, presenting a significant volume change and resistance to fracture. In addition, the glassy CuAAC foam was able to withstand more than 10 cycles of compression to 50% strain and subsequent recovery at ambient temperature, indicative of ductile behavior in the glassy state.
Computer Assisted Design, Prediction, and Execution of Economical Organic Syntheses
NASA Astrophysics Data System (ADS)
Gothard, Nosheen Akber
The synthesis of useful organic molecules via simple and cost-effective routes is a core challenge in organic chemistry. In industry or academia, organic chemists use their chemical intuition, technical expertise and published procedures to determine an optimal pathway. This approach, not only takes time and effort, but also is cost prohibitive. Many potential optimal routes scratched on paper fail to get experimentally tested. In addition, with new methods being discovered daily are often overlooked by established techniques. This thesis reports a computational technique that assist the discovery of economical synthetic routes to useful organic targets. Organic chemistry exists as a network where chemicals are connected by reactions, analogous to citied connected by roads in a geographic map. This network topology of organic reactions in the network of organic chemistry (NOC) allows the application of graph-theory to devise algorithms for synthetic optimization of organic targets. A computational approach comprised of customizable algorithms, pre-screening filters, and existing chemoinformatic techniques is capable of answering complex questions and perform mechanistic tasks desired by chemists such as optimization of organic syntheses. One-pot reactions are central to modern synthesis since they save resources and time by avoiding isolation, purification, characterization, and production of chemical waste after each synthetic step. Sometimes, such reactions are identified by chance or, more often, by careful inspection of individual steps that are to be wired together. Algorithms are used to discover one-pot reactions and validated experimentally. Which demonstrate that the computationally predicted sequences can indeed by carried out experimentally in good overall yields. The experimental examples are chosen to from small networks of reactions around useful chemicals such as quinoline scaffolds, quinoline-based inhibitors of phosphoinositide 3-kinase delta (PI3Kdelta) enzyme, and thiophene derivatives. In this way, we replace individual synthetic connections with two-, three-, or even four-step one-pot sequences. Lastly, the computational method is utilized to devise hypothetical synthetic route to popular pharmaceutical drugs like NaproxenRTM and TaxolRTM. The algorithmically generated optimal pathways are evaluated with chemistry logic. By applying labor/cost factor It was revealed that not all shorter synthesis routes are economical, sometimes "Longest way round is the shortest way home" lengthier routes are found to be more economical and environmentally friendly.
Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus
2016-01-01
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.
Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus
2016-01-01
Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074
NASA Astrophysics Data System (ADS)
Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam
2015-09-01
We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.
The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclearmore » Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.« less
A new network representation of the metabolism to detect chemical transformation modules.
Sorokina, Maria; Medigue, Claudine; Vallenet, David
2015-11-14
Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Ioppolo, S.; Lamberts, T.; Zhen, J. F.; Cuppen, H. M.; Linnartz, H.
2012-08-01
Hydroxylamine (NH2OH) is one of the potential precursors of complex pre-biotic species in space. Here, we present a detailed experimental study of hydroxylamine formation through nitric oxide (NO) surface hydrogenation for astronomically relevant conditions. The aim of this work is to investigate hydroxylamine formation efficiencies in polar (water-rich) and non-polar (carbon monoxide-rich) interstellar ice analogues. A complex reaction network involving both final (N2O, NH2OH) and intermediate (HNO, NH2O., etc.) products is discussed. The main conclusion is that hydroxyl-amine formation takes place via a fast and barrierless mechanism and it is found to be even more abundantly formed in a water-rich environment at lower temperatures. In parallel, we experimentally verify the non-formation of hydroxylamine upon UV photolysis of NO ice at cryogenic temperatures as well as the non-detection of NC- and NCO-bond bearing species after UV processing of NO in carbon monoxide-rich ices. Our results are implemented into an astrochemical reaction model, which shows that NH2OH is abundant in the solid phase under dark molecular cloud conditions. Once NH2OH desorbs from the ice grains, it becomes available to form more complex species (e.g., glycine and β-alanine) in gas phase reaction schemes.
Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang
2016-08-01
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.
Kinetic Evidence of an Apparent Negative Activation Enthalpy in an Organocatalytic Process
Han, Xiao; Lee, Richmond; Chen, Tao; Luo, Jie; Lu, Yixin; Huang, Kuo-Wei
2013-01-01
A combined kinetic and computational study on our tryptophan-based bifunctional thiourea catalyzed asymmetric Mannich reactions reveals an apparent negative activation enthalpy. The formation of the pre-transition state complex has been unambiguously confirmed and these observations provide an experimental support for the formation of multiple hydrogen bonding network between the substrates and the catalyst. Such interactions allow the creation of a binding cavity, a key factor to install high enantioselectivity. PMID:23990028
Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration
NASA Astrophysics Data System (ADS)
Joshi, Kaushik; Chaudhuri, Santanu
2017-01-01
Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-08-01
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
NASA Astrophysics Data System (ADS)
Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik
2015-09-01
One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g-1 and excellent cycling performance with ~87.3% capacitance retention over 5000 cycles.One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g-1 and excellent cycling performance with ~87.3% capacitance retention over 5000 cycles. Electronic supplementary information (ESI) available: Experimental data includes optical images, TGA, magnified pore distribution curves and supercapacitor device of the MCNF and Mn_MCNF. See DOI: 10.1039/C5NR03616J
Gan, Qintao; Lv, Tianshi; Fu, Zhenhua
2016-04-01
In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.
Anderer, Carolin; Delwa de Alarcón, Natalie; Näther, Christian; Bensch, Wolfgang
2014-12-15
By following a new synthetic approach, which is based on the in situ formation of a basic medium by the reaction between the strong base Sb(V)S4 (3-) and the weak acid H2 O, it was possible to prepare three layered thioantimonate(III) compounds of composition [TM(2,2'-bipyridine)3 ][Sb6 S10 ] (TM=Ni, Fe) and [Ni(4,4'-dimethyl-2,2'-bipyridine)3 ][Sb6 S10 ] under hydrothermal conditions featuring two different thioantimonate(III) network topologies. The antimony source, Na3 SbS4 ⋅ 9 H2 O, undergoes several decomposition reactions and produces the Sb(III) S3 species, which condenses to generate the layered anion. The application of transition-metal complexes avoids crystallization of dense phases. The reactions are very fast compared to conventional hydrothermal/solvothermal syntheses and are much less sensitive to changes of the reaction parameters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.
Chen, Xueying; Zhao, Min; Qu, Hong
2015-01-01
T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Abdul Razak, Ibrahim; Refahi, Masoud; Moghimi, Abolghasem; Rosli, Mohd Mustaqim
2015-09-01
The complex [DAPH][H3O][Cu(dipic)2]·3H2O, (1) (dipicH2 = 2,6-pyridinedicarboxylic acid and DAP = 2,3-diaminophenazine) was prepared from the reaction of Cu(NO3)2·2H2O with mixture of o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid in water. The complex was characterized by FTIR, elemental analysis, UV-Vis and the single-crystal X-ray diffraction. The crystal system is monoclinic with the space group P21/c. This complex is stabilized in the solid state by an extensive network of hydrogen bonds between crystallized water, anionic and cationic fragments, which form a three-dimensional network. Furthermore, hydrogen bonds, π⋯π and Csbnd O⋯π stacking interactions seem to be effective in stabilizing the crystal structures. The protonation constants of dipic (L) and DAP (Q), the equilibrium constants for the dipic-DAP proton transfer system and the stoichiometry and stability constants of binary complexes including each of ligands (dipic, DAP) in presence Cu2+ ion, ternary complexes including, both of ligands (dipic-DAP) in presence of metal ion were calculated in aqueous solutions by potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the most complexes species in solution was found to be very similar to the solid-state of cited metal ion complex.
Environmental versatility promotes modularity in genome-scale metabolic networks.
Samal, Areejit; Wagner, Andreas; Martin, Olivier C
2011-08-24
The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.
Murabito, Ettore; Verma, Malkhey; Bekker, Martijn; Bellomo, Domenico; Westerhoff, Hans V.; Teusink, Bas; Steuer, Ralf
2014-01-01
Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models. PMID:25268481
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter
2013-01-01
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796
Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng
2016-05-19
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met(5)]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met(5)]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
NASA Astrophysics Data System (ADS)
Liu, Zhaoqun; Wang, Lingling; Zhou, Zhi; Sun, Ying; Wang, Mengqiang; Wang, Hao; Hou, Zhanhui; Gao, Dahai; Gao, Qiang; Song, Linsheng
2016-05-01
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met5]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met5]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
Reconstruction of Tissue-Specific Metabolic Networks Using CORDA
Schultz, André; Qutub, Amina A.
2016-01-01
Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765
Sheng, Yin; Zhang, Hao; Zeng, Zhigang
2017-10-01
This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.
Selected-node stochastic simulation algorithm
NASA Astrophysics Data System (ADS)
Duso, Lorenzo; Zechner, Christoph
2018-04-01
Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.
Computer-assisted design for scaling up systems based on DNA reaction networks.
Aubert, Nathanaël; Mosca, Clément; Fujii, Teruo; Hagiya, Masami; Rondelez, Yannick
2014-04-06
In the past few years, there have been many exciting advances in the field of molecular programming, reaching a point where implementation of non-trivial systems, such as neural networks or switchable bistable networks, is a reality. Such systems require nonlinearity, be it through signal amplification, digitalization or the generation of autonomous dynamics such as oscillations. The biochemistry of DNA systems provides such mechanisms, but assembling them in a constructive manner is still a difficult and sometimes counterintuitive process. Moreover, realistic prediction of the actual evolution of concentrations over time requires a number of side reactions, such as leaks, cross-talks or competitive interactions, to be taken into account. In this case, the design of a system targeting a given function takes much trial and error before the correct architecture can be found. To speed up this process, we have created DNA Artificial Circuits Computer-Assisted Design (DACCAD), a computer-assisted design software that supports the construction of systems for the DNA toolbox. DACCAD is ultimately aimed to design actual in vitro implementations, which is made possible by building on the experimental knowledge available on the DNA toolbox. We illustrate its effectiveness by designing various systems, from Montagne et al.'s Oligator or Padirac et al.'s bistable system to new and complex networks, including a two-bit counter or a frequency divider as well as an example of very large system encoding the game Mastermind. In the process, we highlight a variety of behaviours, such as enzymatic saturation and load effect, which would be hard to handle or even predict with a simpler model. We also show that those mechanisms, while generally seen as detrimental, can be used in a positive way, as functional part of a design. Additionally, the number of parameters included in these simulations can be large, especially in the case of complex systems. For this reason, we included the possibility to use CMA-ES, a state-of-the-art optimization algorithm that will automatically evolve parameters chosen by the user to try to match a specified behaviour. Finally, because all possible functionality cannot be captured by a single software, DACCAD includes the possibility to export a system in the synthetic biology markup language, a widely used language for describing biological reaction systems. DACCAD can be downloaded online at http://www.yannick-rondelez.com/downloads/.
Multilayer Network Analysis of Nuclear Reactions
NASA Astrophysics Data System (ADS)
Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding
2016-08-01
The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.
Yang, Yi; Hu, Xiao-Pan; Ma, Bin-Guang
2017-02-28
Bradyrhizobium diazoefficiens is a rhizobium able to convert atmospheric nitrogen into ammonium by establishing mutualistic symbiosis with soybean. It has been recognized as an important parent strain for microbial agents and is widely applied in agricultural and environmental fields. In order to study the metabolic properties of symbiotic nitrogen fixation and the differences between a free-living cell and a symbiotic bacteroid, a genome-scale metabolic network of B. diazoefficiens USDA110 was constructed and analyzed. The metabolic network, iYY1101, contains 1031 reactions, 661 metabolites, and 1101 genes in total. Metabolic models reflecting free-living and symbiotic states were determined by defining the corresponding objective functions and substrate input sets, and were further constrained by high-throughput transcriptomic and proteomic data. Constraint-based flux analysis was used to compare the metabolic capacities and the effects on the metabolic targets of genes and reactions between the two physiological states. The results showed that a free-living rhizobium possesses a steady state flux distribution for sustaining a complex supply of biomass precursors while a symbiotic bacteroid maintains a relatively condensed one adapted to nitrogen-fixation. Our metabolic models may serve as a promising platform for better understanding the symbiotic nitrogen fixation of this species.
A moment-convergence method for stochastic analysis of biochemical reaction networks.
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Concordant Chemical Reaction Networks and the Species-Reaction Graph
Shinar, Guy; Feinberg, Martin
2015-01-01
In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network’s Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368
Shahsavari, Hamid R; Fereidoonnezhad, Masood; Niazi, Maryam; Mosavi, S Talaat; Habib Kazemi, Sayed; Kia, Reza; Shirkhan, Shima; Abdollahi Aghdam, Siamak; Raithby, Paul R
2017-02-14
The preparation and characterization of new heteronuclear-platinum(ii) complexes containing a 1,1'-bis(diphenylphosphino)ferrocene (dppf) ligand are described. The reaction of the known starting complex [PtMe(κ 2 N,C-bipyO-H)(SMe 2 )], A, in which bipyO-H is a cyclometalated rollover 2,2'-bipyridine N-oxide, with the dppf ligand in a 2 : 1 ratio or an equimolar ratio led to the formation of the corresponding binuclear complex [Pt 2 Me 2 (κ 2 N,C-bipyO-H) 2 (μ-dppf)], 1, or the mononuclear complex [PtMe(κ 1 C-bipyO-H)(dppf)], 2, respectively. According to the reaction conditions, the dppf ligand in 1 and 2 behaves as either a bridging or chelating ligand. All complexes were characterized by NMR spectroscopy. The solid-state structure of 2 was determined by the single-crystal X-ray diffraction method and it was shown that the chelating dppf ligand in this complex was arranged in a "synclinal-staggered" conformation. Also, the occurrence of intermolecular C-H Cp O bipyO-H interactions in the solid-state gave rise to an extended 1-D network. The electronic absorption spectra and the electrochemical behavior of these complexes are discussed. Density functional theory (DFT) was used for geometry optimization of the singlet states in solution and for electronic structure calculations. The analysis of the molecular orbital (MO) compositions in terms of occupied and unoccupied fragment orbitals in 2 was performed.
A Compartmentalized Out-of-Equilibrium Enzymatic Reaction Network for Sustained Autonomous Movement
2016-01-01
Every living cell is a compartmentalized out-of-equilibrium system exquisitely able to convert chemical energy into function. In order to maintain homeostasis, the flux of metabolites is tightly controlled by regulatory enzymatic networks. A crucial prerequisite for the development of lifelike materials is the construction of synthetic systems with compartmentalized reaction networks that maintain out-of-equilibrium function. Here, we aim for autonomous movement as an example of the conversion of feedstock molecules into function. The flux of the conversion is regulated by a rationally designed enzymatic reaction network with multiple feedforward loops. By compartmentalizing the network into bowl-shaped nanocapsules the output of the network is harvested as kinetic energy. The entire system shows sustained and tunable microscopic motion resulting from the conversion of multiple external substrates. The successful compartmentalization of an out-of-equilibrium reaction network is a major first step in harnessing the design principles of life for construction of adaptive and internally regulated lifelike systems. PMID:27924313
Aerobic metabolism underlies complexity and capacity
Koch, Lauren G; Britton, Steven L
2008-01-01
The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307
Adaptive Chemical Networks under Non-Equilibrium Conditions: The Evaporating Droplet.
Armao, Joseph J; Lehn, Jean-Marie
2016-10-17
Non-volatile solutes in an evaporating drop experience an out-of-equilibrium state due to non-linear concentration effects and complex flow patterns. Here, we demonstrate a small molecule chemical reaction network that undergoes a rapid adaptation response to the out-of-equilibrium conditions inside the droplet leading to control over the molecular constitution and spatial arrangement of the deposition pattern. Adaptation results in a pronounced coffee stain effect and coupling to chemical concentration gradients within the drop is demonstrated. Amplification and suppression of network species are readily identifiable with confocal fluorescence microscopy. We anticipate that these observations will contribute to the design and exploration of out-of-equilibrium chemical systems, as well as be useful towards the development of point-of-care medical diagnostics and controlled deposition of small molecules through inkjet printing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-01-01
Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA). The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a simple and accurate means of performing stochastic model reduction and hence it is expected to be of widespread utility in studying the dynamics of large noisy reaction networks, as is common in computational and systems biology. PMID:22583770
Sureshkumar, Devarajulu; Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu
2013-11-15
A recyclable asymmetric metal-based catalyst is a rare entity among the vast collection of asymmetric catalysts developed so far. Recently we found that the combination of a self-assembling metal-based asymmetric catalyst and multiwalled carbon nanotubes (MWNTs) produced a highly active and recyclable catalyst in which the catalytically active metal complex was dispersed in the MWNT network. Herein we describe an improved preparation procedure and full details of a Nd/Na heterobimetallic complex confined in MWNTs. Facilitated self-assembly of the catalyst with MWNTs avoided the sacrificial use of excess chiral ligand for the formation of the heterobimetallic complex, improving the loading ratio of the catalyst components. Eighty-five percent of the catalyst components were incorporated onto MWNTs to produce the confined catalyst, which was a highly efficient and recyclable catalyst for the anti-selective asymmetric nitroaldol reaction. The requisite precautions for the catalyst preparation to elicit reproducible catalytic performance are summarized. Superior catalytic profiles over the prototype catalyst without MWNTs were revealed in the synthesis of optically active 1,2-nitroalkanols, which are key intermediates for the synthesis of therapeutics.
Systematic assignment of thermodynamic constraints in metabolic network models
Kümmel, Anne; Panke, Sven; Heinemann, Matthias
2006-01-01
Background The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models. Results We present an algorithm that – based on thermodynamics, network topology and heuristic rules – automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to disable thermodynamically infeasible energy production. Conclusion Although not being fully comprehensive, our algorithm for systematic reaction direction assignment could define a significant number of irreversible reactions automatically with low computational effort. We envision that the presented algorithm is a valuable part of a computational framework that assists the automated reconstruction of genome-scale metabolic models. PMID:17123434
Computational models of airway branching morphogenesis.
Varner, Victor D; Nelson, Celeste M
2017-07-01
The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand
2018-02-01
Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.
Reaction schemes visualized in network form: the syntheses of strychnine as an example.
Proudfoot, John R
2013-05-24
Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.
Johnston, Matthew D
2017-12-01
Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.
Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H
2011-07-21
Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that hydrated DNA bases become highly S(N)2 active on epoxide systems and the occurrence of such reactions can inflict permanent damage to the DNA.
Consistent dust and gas models for protoplanetary disks. II. Chemical networks and rates
NASA Astrophysics Data System (ADS)
Kamp, I.; Thi, W.-F.; Woitke, P.; Rab, C.; Bouma, S.; Ménard, F.
2017-11-01
Aims: We aim to define a small and large chemical network which can be used for the quantitative simultaneous analysis of molecular emission from the near-IR to the submm. We also aim to revise reactions of excited molecular hydrogen, which are not included in UMIST, to provide a homogeneous database for future applications. Methods: We have used the thermo-chemical disk modeling code ProDiMo and a standard T Tauri disk model to evaluate the impact of various chemical networks, reaction rate databases and sets of adsorption energies on a large sample of chemical species and emerging line fluxes from the near-IR to the submm wavelength range. Results: We find large differences in the masses and radial distribution of ice reservoirs when considering freeze-out on bare or polar ice coated grains. Most strongly the ammonia ice mass and the location of the snow line (water) change. As a consequence molecules associated to the ice lines such as N2H+ change their emitting region; none of the line fluxes in the sample considered here changes by more than 25% except CO isotopologues, CN and N2H+ lines. The three-body reaction N+H2+M plays a key role in the formation of water in the outer disk. Besides that, differences between the UMIST 2006 and 2012 database change line fluxes in the sample considered here by less than a factor of two (a subset of low excitation CO and fine structure lines stays even within 25%); exceptions are OH, CN, HCN, HCO+ and N2H+ lines. However, different networks such as OSU and KIDA 2011 lead to pronounced differences in the chemistry inside 100 au and thus affect emission lines from high excitation CO, OH and CN lines. H2 is easily excited at the disk surface and state-to-state reactions enhance the abundance of CH+ and to a lesser extent HCO+. For sub-mm lines of HCN, N2H+ and HCO+, a more complex larger network is recommended. Conclusions: More work is required to consolidate data on key reactions leading to the formation of water, molecular ions such as HCO+ and N2H+ as well as the nitrogen chemistry. This affects many of the key lines used in the interpretation of disk observations. Differential analysis of various disk models using the same chemical input data will be more robust than the interpretation of absolute fluxes.
Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.
Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum
2007-09-15
The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.
Rapid neutral-neutral reactions at low temperatures: a new network and first results for TMC-1
NASA Astrophysics Data System (ADS)
Smith, Ian W. M.; Herbst, Eric; Chang, Qiang
2004-05-01
There is now ample evidence from an assortment of experiments, especially those involving the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) technique, that a variety of neutral-neutral reactions possess no activation energy barrier and are quite rapid at very low temperatures. These reactions include both radical-radical systems and, more surprisingly, systems involving an atom or a radical and one `stable' species. Generalizing from the small but growing number of systems studied in the laboratory, we estimate reaction rate coefficients for a larger number of such reactions and include these estimates in a new network of gas-phase reactions for use in low-temperature interstellar chemistry. Designated osu.2003, the new network is available on the World Wide Web and will be continually updated. A table of new results for molecular abundances in the dark cloud TMC-1 (CP) is provided and compared with results from an older (new standard model; nsm) network.
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Methanol synthesis on ZnO(0001{sup ¯}). IV. Reaction mechanisms and electronic structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, Johannes, E-mail: johannes.frenzel@theochem.rub.de; Marx, Dominik
2014-09-28
Methanol synthesis from CO and H{sub 2} over ZnO, which requires high temperatures and high pressures giving rise to a complex interplay of physical and chemical processes over this heterogeneous catalyst surface, is investigated using ab initio simulations. The redox properties of the surrounding gas phase are known to directly impact on the catalyst properties and thus, set the overall catalytic reactivity of this easily reducible oxide material. In Paper III of our series [J. Kiss, J. Frenzel, N. N. Nair, B. Meyer, and D. Marx, J. Chem. Phys. 134, 064710 (2011)] we have qualitatively shown that for the partiallymore » hydroxylated and defective ZnO(0001{sup ¯}) surface there exists an intricate network of surface chemical reactions. In the present study, we employ advanced molecular dynamics techniques to resolve in detail this reaction network in terms of elementary steps on the defective surface, which is in stepwise equilibrium with the gas phase. The two individual reduction steps were investigated by ab initio metadynamics sampling of free energy landscapes in three-dimensional reaction subspaces. By also sampling adsorption and desorption processes and thus molecular species that are in the gas phase but close to the surface, our approach successfully generated several alternative pathways of methanol synthesis. The obtained results suggest an Eley-Rideal mechanism for both reduction steps, thus involving “near-surface” molecules from the gas phase, to give methanol preferentially over a strongly reduced catalyst surface, while important side reactions are of Langmuir-Hinshelwood type. Catalyst re-reduction by H{sub 2} stemming from the gas phase is a crucial process after each reduction step in order to maintain the catalyst's activity toward methanol formation and to close the catalytic cycle in some reaction channels. Furthermore, the role of oxygen vacancies, side reactions, and spectator species is investigated and mechanistic details are discussed based on extensive electronic structure analysis.« less
Forth, Thomas; McConkey, Glenn A; Westhead, David R
2010-09-15
An application has been developed to help with the creation and editing of Systems Biology Markup Language (SBML) format metabolic networks up to the organism scale. Networks are defined as a collection of Kyoto Encyclopedia of Genes and Genomes (KEGG) LIGAND reactions with an optional associated Enzyme Classification (EC) number for each reaction. Additional custom reactions can be defined by the user. Reactions within the network can be assigned flux constraints and compartmentalization is supported for each reaction in addition to the support for reactions that occur across compartment boundaries. Exported networks are fully SBML L2V4 compatible with an optional L2V1 export for compatibility with old versions of the COBRA toolbox. The software runs in the free Microsoft Access 2007 Runtime (Microsoft Inc.), which is included with the installer and works on Windows XP SP2 or better. Full source code is viewable in the full version of Access 2007 or 2010. Users must have a license to use the KEGG LIGAND database (free academic licensing is available). Please go to www.bioinformatics.leeds.ac.uk/~pytf/metnetmaker for software download, help and tutorials.
Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A
2017-08-04
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
What does systems biology mean for drug development?
Schrattenholz, André; Soskić, Vukić
2008-01-01
The complexity and flexibility of cellular architectures is increasingly recognized by impressive progress on the side of molecular analytics, i.e. proteomics, genomics and metabolomics. One of the messages from systems biology is that the number of molecular species in cellular networks is orders of magnitude bigger than anticipated by genomic analysis, in particular by fast posttranslational modifications of proteins. The requirements to manage external signals, integrate spatiotemporal signal transduction inside an organism and at the same time optimizing networks of biochemical and chemical reactions result in chemically extremely fine tuned molecular entities. Chemical side reactions of enzymatic activity, like e.g. random oxidative damage of proteins by free radicals during aging constantly introduce epigenetic alterations of protein targets. These events gradually and on an individual stochastic scale, keep modifying activities of these targets, and their affinities and selectivities towards biological and pharmacological ligands. One further message is that many of the key reactions in living systems are essentially based on interactions of low affinities and even low selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. So, in complex disorders like cancer or neurodegenerative diseases, which are rooted in relatively subtle and multimodal dysfunction of important physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which still dominate the pharmaceutical industry increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade and the treatment of "complex diseases" remains a most pressing medical need. Currently a change of paradigm can be observed with regard to a new focus on agents that modulate multiple targets simultaneously. Targeting cellular function as a system rather than on the level of the single protein molecule significantly increases the size of the drugable proteome and is expected to introduce novel classes of multi-target drugs with fewer adverse effects and toxicity. Multiple target approaches have recently been used to design medications against atherosclerosis, cancer, depression, psychosis and neurodegenerative diseases. A focussed approach towards "systemic" drugs will certainly require the development of novel computational and mathematical concepts for appropriate modelling of complex data and extraction of "screenable" information from biological systems essentially ruled by deterministic chaotic processes on a background of individual stochasticity.
NASA Astrophysics Data System (ADS)
Morelli, Marco J.; Allen, Rosalind J.; Tǎnase-Nicola, Sorin; ten Wolde, Pieter Rein
2008-01-01
In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove protein-DNA and/or protein-protein association-dissociation reactions from the reaction set using various coarse-graining strategies. We determine the effects on the steady-state probability distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA interactions may not. We also find that it is important to use the chemical master equation rather than macroscopic rate equations to compute effective propensity functions for the coarse-grained reactions.
Nieto, Sonia; Dragna, Justin M.; Anslyn, Eric V.
2010-01-01
A protocol for the rapid determination of the absolute configuration and enantiomeric excess of α-chiral primary amines with potential applications in asymmetric reaction discovery has been developed. The protocol requires derivatization of α-chiral primary amines via condensation with pyridine carboxaldehyde to quantitatively yield the corresponding imine. The Cu(I) complex with 2,2'-bis (diphenylphosphino)-1,1'-dinaphthyl (BINAP -CuI) with the imine yields a metal-to-ligand-charge-transfer band (MLCT) in the visible region of the circular dichroism spectrum upon binding. Diastereomeric host-guest complexes give CD signals of the same signs, but different amplitudes, allowing for differentiation of enantiomers. Processing the primary optical data from the CD spectrum with linear discriminant analysis (LDA) allows for the determination of absolute configuration and identification of the amines, and processing with a supervised multi-layer perceptron artifical neural network (MLP-ANN) allows for the simultaneous determination of ee and concentration. The primary optical data necessary to determine the ee of unknown samples is obtained in 2 minutes per sample. To demonstrate the utility of the protocol in asymmetric reaction discovery, the ee's and concentrations for an asymmetric metal catalyzed reaction are determined. The potential of the protocol's application in high-throughput screening (HTS) of ee is discussed. PMID:19946914
Concordant Chemical Reaction Networks
Shinar, Guy; Feinberg, Martin
2015-01-01
We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063
RuleMonkey: software for stochastic simulation of rule-based models
2010-01-01
Background The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Results Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. Conclusions RuleMonkey enables the simulation of rule-based models for which the underlying reaction networks are large. It is typically faster than DYNSTOC for benchmark problems that we have examined. RuleMonkey is freely available as a stand-alone application http://public.tgen.org/rulemonkey. It is also available as a simulation engine within GetBonNie, a web-based environment for building, analyzing and sharing rule-based models. PMID:20673321
Lattice Boltzmann simulation of CO2 reactive transport in network fractured media
NASA Astrophysics Data System (ADS)
Tian, Zhiwei; Wang, Junye
2017-08-01
Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.
The Variance Reaction Time Model
ERIC Educational Resources Information Center
Sikstrom, Sverker
2004-01-01
The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, XU
2009-08-01
It is shown that many real complex networks share distinctive features, such as the small-world effect and the heterogeneous property of connectivity of vertices, which are different from random networks and regular lattices. Although these features capture the important characteristics of complex networks, their applicability depends on the style of networks. To unravel the universal characteristics many complex networks have in common, we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the average 'density' (ρ(r)) of complex networks follows a better power-law function as a function of distance r with the exponent df, which is defined as the fractal dimension, in some real complex networks. Furthermore, we study the relation between df and the shortcuts Nadd in small-world networks and the size N in regular lattices. Our present work provides a new perspective to understand the dependence of the fractal dimension df on the complex network structure.
SkyNet: Modular nuclear reaction network library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-10-01
The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.
Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi
2015-09-07
Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R.
2005-02-01
A neural network/trajectory approach is presented for the development of accurate potential-energy hypersurfaces that can be utilized to conduct ab initio molecular dynamics (AIMD) and Monte Carlo studies of gas-phase chemical reactions, nanometric cutting, and nanotribology, and of a variety of mechanical properties of importance in potential microelectromechanical systems applications. The method is sufficiently robust that it can be applied to a wide range of polyatomic systems. The overall method integrates ab initio electronic structure calculations with importance sampling techniques that permit the critical regions of configuration space to be determined. The computed ab initio energies and gradients are then accurately interpolated using neural networks (NN) rather than arbitrary parametrized analytical functional forms, moving interpolation or least-squares methods. The sampling method involves a tight integration of molecular dynamics calculations with neural networks that employ early stopping and regularization procedures to improve network performance and test for convergence. The procedure can be initiated using an empirical potential surface or direct dynamics. The accuracy and interpolation power of the method has been tested for two cases, the global potential surface for vinyl bromide undergoing unimolecular decomposition via four different reaction channels and nanometric cutting of silicon. The results show that the sampling methods permit the important regions of configuration space to be easily and rapidly identified, that convergence of the NN fit to the ab initio electronic structure database can be easily monitored, and that the interpolation accuracy of the NN fits is excellent, even for systems involving five atoms or more. The method permits a substantial computational speed and accuracy advantage over existing methods, is robust, and relatively easy to implement.
Combining SVM and flame radiation to forecast BOF end-point
NASA Astrophysics Data System (ADS)
Wen, Hongyuan; Zhao, Qi; Xu, Lingfei; Zhou, Munchun; Chen, Yanru
2009-05-01
Because of complex reactions in Basic Oxygen Furnace (BOF) for steelmaking, the main end-point control methods of steelmaking have insurmountable difficulties. Aiming at these problems, a support vector machine (SVM) method for forecasting the BOF steelmaking end-point is presented based on flame radiation information. The basis is that the furnace flame is the performance of the carbon oxygen reaction, because the carbon oxygen reaction is the major reaction in the steelmaking furnace. The system can acquire spectrum and image data quickly in the steelmaking adverse environment. The structure of SVM and the multilayer feed-ward neural network are similar, but SVM model could overcome the inherent defects of the latter. The model is trained and forecasted by using SVM and some appropriate variables of light and image characteristic information. The model training process follows the structure risk minimum (SRM) criterion and the design parameter can be adjusted automatically according to the sampled data in the training process. Experimental results indicate that the prediction precision of the SVM model and the executive time both meet the requirements of end-point judgment online.
Mapping and discrimination of networks in the complexity-entropy plane
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.
Monnard, Pierre-Alain
2016-01-01
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. PMID:27827919
A two-dimensional hydrogen-bonded water layer in the structure of a cobalt(III) cubane complex.
Qi, Ji; Zhai, Xiang-Sheng; Zhu, Hong-Lin; Lin, Jian-Li
2014-02-01
A tetranuclear Co(III) oxide complex with cubane topology, tetrakis(2,2'-bipyridine-κ(2)N,N')di-μ2-carbonato-κ(4)O:O'-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2'-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.
Insensitive dependence of delay-induced oscillation death on complex networks
NASA Astrophysics Data System (ADS)
Zou, Wei; Zheng, Xing; Zhan, Meng
2011-06-01
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.
Modeling Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Spycher, N.; Belding, E.; Curthoys, K.; Ginn, T. R.
2005-12-01
Mining of precious metals since the late 1800's have left Lake Coeur d'Alene (LCdA) sediments heavily enriched with toxic metals, including Cd, Cu, Pb, and Zn. Indigenous microbes however are capable of catalyzing reactions that detoxify the benthic and aqueous lake environments, and thus constitute an important driving component in the biogeochemical cycles of these metals. Here we report on the development of a quantitative model of transport, fate, exposure and effects of toxic compounds on benthic microbial communities at LCdA. First, chemical data from the LCdA area have been compiled from multiple sources to investigate trends in chemical occurrence, as well as to define model boundary conditions. The model is structured as 1-D diffusive reactive transport model to simulate spatial and temporal distribution of metals through the benthic sediments. Inorganic reaction processes included in the model are aqueous speciation, surface complexation, mineral precipitation/dissolution and abiotic redox reactions. Simulations with and without surface complexation are carried out to evaluate the effect of sorption and the conservative behaviour of metals within the benthic sediments under abiotic and purely diffusive transport. The 1-D inorganic diffusive transport model is then coupled to a biotic reaction network including consortium biodegradation kinetics with multiple electron acceptors, product toxicity, and energy partitioning. Multiyear simulations are performed, with water column chemistry established as a boundary condition from extant data, to explore the role of biogeochemical dynamics on benthic fluxes of metals in the long term.
Weeding, Emma; Houle, Jason
2010-01-01
Modeling tools can play an important role in synthetic biology the same way modeling helps in other engineering disciplines: simulations can quickly probe mechanisms and provide a clear picture of how different components influence the behavior of the whole. We present a brief review of available tools and present SynBioSS Designer. The Synthetic Biology Software Suite (SynBioSS) is used for the generation, storing, retrieval and quantitative simulation of synthetic biological networks. SynBioSS consists of three distinct components: the Desktop Simulator, the Wiki, and the Designer. SynBioSS Designer takes as input molecular parts involved in gene expression and regulation (e.g. promoters, transcription factors, ribosome binding sites, etc.), and automatically generates complete networks of reactions that represent transcription, translation, regulation, induction and degradation of those parts. Effectively, Designer uses DNA sequences as input and generates networks of biomolecular reactions as output. In this paper we describe how Designer uses universal principles of molecular biology to generate models of any arbitrary synthetic biological system. These models are useful as they explain biological phenotypic complexity in mechanistic terms. In turn, such mechanistic explanations can assist in designing synthetic biological systems. We also discuss, giving practical guidance to users, how Designer interfaces with the Registry of Standard Biological Parts, the de facto compendium of parts used in synthetic biology applications. PMID:20639523
A moment-convergence method for stochastic analysis of biochemical reaction networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in termsmore » of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.« less
NASA Astrophysics Data System (ADS)
Kourdis, Panayotis D.; Steuer, Ralf; Goussis, Dimitris A.
2010-09-01
Large-scale models of cellular reaction networks are usually highly complex and characterized by a wide spectrum of time scales, making a direct interpretation and understanding of the relevant mechanisms almost impossible. We address this issue by demonstrating the benefits provided by model reduction techniques. We employ the Computational Singular Perturbation (CSP) algorithm to analyze the glycolytic pathway of intact yeast cells in the oscillatory regime. As a primary object of research for many decades, glycolytic oscillations represent a paradigmatic candidate for studying biochemical function and mechanisms. Using a previously published full-scale model of glycolysis, we show that, due to fast dissipative time scales, the solution is asymptotically attracted on a low dimensional manifold. Without any further input from the investigator, CSP clarifies several long-standing questions in the analysis of glycolytic oscillations, such as the origin of the oscillations in the upper part of glycolysis, the importance of energy and redox status, as well as the fact that neither the oscillations nor cell-cell synchronization can be understood in terms of glycolysis as a simple linear chain of sequentially coupled reactions.
Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)
2015-01-01
A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247
Pérez, Alexander J; Wesche, Frank; Adihou, Hélène; Bode, Helge B
2016-01-11
Many methods have been devised over the decades to trace precursors of specific molecules in cellular environments as, for example, in biosynthesis studies. The advent of click chemistry has facilitated the powerful combination of tracing and at the same time sieving the highly complex metabolome for compounds derived from simple or complex starting materials, especially when the click reaction takes place on a solid support. While the principle of solid-phase click reactions has already been successfully applied for selective protein and peptide enrichment, the successful enrichment of much smaller primary and secondary metabolites, showing great structural diversity and undergoing many different biosynthetic steps, has seen only little development. For bacterial secondary metabolism, a far broader tolerance for "clickable" precursors was observed than in ribosomal proteinogenesis, thus making this method a surprisingly valuable tool for the tracking and discovery of compounds within the cellular biochemical network. The implementation of this method has led to the identification of several new compounds from the bacterial genera Photorhabdus and Xenorhabdus, clearly proving its power. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zimányi, László; Khoroshyy, Petro; Mair, Thomas
2010-06-01
In the present work we demonstrate that FTIR-spectroscopy is a powerful tool for the time resolved and noninvasive measurement of multi-substrate/product interactions in complex metabolic networks as exemplified by the oscillating glycolysis in a yeast extract. Based on a spectral library constructed from the pure glycolytic intermediates, chemometric analysis of the complex spectra allowed us the identification of many of these intermediates. Singular value decomposition and multiple level wavelet decomposition were used to separate drifting substances from oscillating ones. This enabled us to identify slow and fast variables of glycolytic oscillations. Most importantly, we can attribute a qualitative change in the positive feedback regulation of the autocatalytic reaction to the transition from homogeneous oscillations to travelling waves. During the oscillatory phase the enzyme phosphofructokinase is mainly activated by its own product ADP, whereas the transition to waves is accompanied with a shift of the positive feedback from ADP to AMP. This indicates that the overall energetic state of the yeast extract determines the transition between spatially homogeneous oscillations and travelling waves.
MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.
Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk
2016-03-18
Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .
Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert
2017-01-01
Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.
Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasai, Hiroaki; Arai, Takayoshi; Shibasaki, Masakatsu
1994-02-23
In this communication, we report about a new lithium-free BINOL-lanthanum complex, which is quite effective in catalytic asymmetric Michael reaction. We have succeeded in developing effective asymmetric base catalysts, in particular, asymmetric ester enolate catalysts for asymmetric Michael reactions. Two asymmetric lanthanum complexes are now available, namely, BINOL-lanthanum-lithium complex, which is quite effective in catalytic asymmetric nitrosaldol reactions, and a new lithium-free BINOL-lanthanum ester enolate complex, that is very effective in catalytic asymmetric Michael reactions. The two complexes complement each other in their ability to catalyze asymmetric nitroaldol and asymmetric Michael reactions. 14 refs., 1 fig., 2 tabs.
Sampling from complex networks using distributed learning automata
NASA Astrophysics Data System (ADS)
Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza
2014-02-01
A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.
McBride, Matthew K; Podgorski, Maciej; Chatani, Shunsuke; Worrell, Brady T; Bowman, Christopher N
2018-06-21
Ductile, cross-linked films were folded as a means to program temporary shapes without the need for complex heating cycles or specialized equipment. Certain cross-linked polymer networks, formed here with the thiol-isocyanate reaction, possessed the ability to be pseudoplastically deformed below the glass transition, and the original shape was recovered during heating through the glass transition. To circumvent the large forces required to plastically deform a glassy polymer network, we have utilized folding, which localizes the deformation in small creases, and achieved large dimensional changes with simple programming procedures. In addition to dimension changes, three-dimensional objects such as swans and airplanes were developed to demonstrate applying origami principles to shape memory. We explored the fundamental mechanical properties that are required to fold polymer sheets and observed that a yield point that does not correspond to catastrophic failure is required. Unfolding occurred during heating through the glass transition, indicating the vitrification of the network that maintained the temporary, folded shape. Folding was demonstrated as a powerful tool to simply and effectively program ductile shape-memory polymers without the need for thermal cycling.
Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam
2011-05-09
In situ gelable interpenetrating double-network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule cross-linkers and that do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-cross-linkings through exploiting the disparity of their reaction times. Compared with the autogelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed 3D network in a short time span. Compared with typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell, and the results reveal that the hydrogels are noncytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response.
Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam
2011-01-01
In situ gelable interpenetrating double network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule crosslinkers and do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-crosslinkings through exploiting the disparity of their reaction times. Compare to the auto-gelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed three-dimensional network in a short time span. Compare to typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell and the results reveal that the hydrogels are non-cytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response. PMID:21410248
SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.
Katsuragi, Tetsuo; Ono, Naoaki; Yasumoto, Keiichi; Altaf-Ul-Amin, Md; Hirai, Masami Y; Sriyudthsak, Kansuporn; Sawada, Yuji; Yamashita, Yui; Chiba, Yukako; Onouchi, Hitoshi; Fujiwara, Toru; Naito, Satoshi; Shiraishi, Fumihide; Kanaya, Shigehiko
2013-05-01
Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.
Furuhama, A; Aoki, Y; Shiraishi, H
2012-01-01
To understand the key factor for fish toxicity of 11 α,β-unsaturated carbonyl aldehydes and ketones, we used quantum chemical calculations to investigate their Michael reactions with methanethiol or glutathione. We used two reaction schemes, with and without an explicit water molecule (Scheme-1wat and Scheme-0wat, respectively), to account for the effects of a catalytic water molecule on the reaction pathway. We determined the energies of the reactants, transition states (TS), and products, as well as the activation energies of the reactions. The acute fish toxicities of nine of the carbonyl compounds were evaluated to correlate with their hydrophobicities; no correlation was observed for acrolein and crotonaldehyde. The most toxic compound, acrolein, had the lowest activation energy. The activation energy of the reaction could be estimated with Scheme-1wat but not with Scheme-0wat. The complexity of the reaction pathways of the compounds was reflected in the difficulty of the TS structure searches when Scheme-1wat was used with the polarizable continuum model. The theoretical estimations of activation energies of α,β-unsaturated carbonyl compounds with catalytic molecules or groups including hydrogen-bond networks may complement traditional tools for predicting the acute aquatic toxicities of compounds that cannot be easily obtained experimentally.
Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.
2014-12-01
Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.
Mechanisms regulating skin immunity and inflammation.
Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O
2014-05-01
Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.
Gong, Anmin; Liu, Jianping; Chen, Si; Fu, Yunfa
2018-01-01
To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.
Wang, Bin; Zhao, Jingjing; Wu, Zheng; Shang, Wei; Xiang, Jie; Cao, Rui; Li, Haifang; Chen, Junjie; Zhang, Hui; Yan, Ting
2016-07-05
The effects of eccentricity on the attentional modulation of visual discrimination have been widely studied; however, the substrate of this complex phenomenon is poorly understood. Here, we provided a measure of the effects of eccentricity on three attentional networks: alerting, orienting, and executive attention. Participants (N = 63) were tested with a modified attention network test that included an additional eccentricity variation; this test allowed us to investigate the efficiency of the attentional networks at near and far eccentricities. Compared with targets at the near eccentricity, targets at the far eccentricity generally elicited significantly longer reaction times. We also found the far eccentricity was associated with smaller orienting effect scores and larger executive control scores than the near eccentricity. Interestingly, at the near eccentricity, executive control scores were larger when the spatial information was neutral (no cue, center cue, and double cue), but at the far eccentricity, the scores were larger when the spatial information was valid (spatial cue). We propose that the allocation of attentional resources differed among these cue conditions and influenced the interference caused by conflicting information. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhi-Hao; Zhao, Yue; Chen, Shui-Sheng
Seven new coordination polymers [Zn(H{sub 2}L)(mbdc)] (1), [Zn(H{sub 3}L)(btc)] (2), [Zn(H{sub 2}L)(Hbtc)] (3), [Zn(H{sub 2}L)(Hbtc)]·H{sub 2}O (4), [Zn{sub 2}(H{sub 2}L)(btc)(μ{sub 2}-OH)] (5), [Cd(H{sub 2}L)(mbdc)] (6) and [Cd{sub 3}(H{sub 2}L){sub 2}(btc){sub 2}(H{sub 2}O)]·5H{sub 2}O (7) were synthesized by reactions of the corresponding metal salt with rigid ligand 1,3-di(1H-imidazol-4-yl)benzene (H{sub 2}L) and different carboxylic acids of 1,3-benzenedicarboxylic acid (H{sub 2}mbdc) and benzene-1,3,5-tricarboxylic acid (H{sub 3}btc), respectively. The results of X-ray crystallographic analysis indicate that complex 1 is 1D chain while 2 is a (3,3)-connected 2D network with Point (Schläfli) symbol of (4,8{sup 2}). Complexes 3 and 6 are 2D networks, 4 ismore » a 3-fold interpenetrating 3D framework with Point (Schläfli) symbol of (6{sup 5},8) and 5 is a (3,8)-connected 2D network with Point (Schläfli) symbol of (3,4{sup 2}){sub 2}(3{sup 4},4{sup 6},5{sup 6},6{sup 8},7{sup 3},8), while 7 is a (3,10)-connected 3D net with Schläfli symbol of (3,4,5){sub 2}(3{sup 4},4{sup 8},5{sup 18},6{sup 12},7{sup 2},8). The thermal stability and photoluminescence of the complexes were investigated. Furthermore, DFT calculations were performed for 2–4 to discuss the temperature controlled self-assembly of the complexes. - Graphical abstract: Seven new coordination polymers with multicarboxylate and rigid ditopic 4-imidazole containing ligands have been obtained and found to show different structures and topologies. - Highlights: • Metal complexes with diverse structures of 1D chain, 2D network and 3D framework. • Mixed ligands of 1,3-di(1H-imidazol-4-yl)benzene and multicarboxylate. • Photoluminescence property.« less
Computational catalyst screening: Scaling, bond-order and catalysis
Abild-Pedersen, Frank
2015-10-01
Here, the design of new and better heterogeneous catalysts needed to accommodate the growing demand for energy from renewable sources is an important challenge for coming generations. Most surface catalyzed processes involve a large number of complex reaction networks and the energetics ultimately defines the turn-over-frequency and the selectivity of the process. In order not to get lost in the large quantities of data, simplification schemes that still contain the key elements of the reaction are required. Adsorption and transition state scaling relations constitutes such a scheme that not only maps the reaction relevant information in terms of few parametersmore » but also provides an efficient way of screening for new materials in a continuous multi-dimensional energy space. As with all relations they impose certain restrictions on what can be achieved and in this paper, I show why these limitations exist and how we can change the behavior through an energy-resolved approach that still maintains the screening capabilities needed in computational catalysis.« less
Iwata, Michio; Miyawaki-Kuwakado, Atsuko; Yoshida, Erika; Komori, Soichiro; Shiraishi, Fumihide
2018-02-02
In a mathematical model, estimation of parameters from time-series data of metabolic concentrations in cells is a challenging task. However, it seems that a promising approach for such estimation has not yet been established. Biochemical Systems Theory (BST) is a powerful methodology to construct a power-law type model for a given metabolic reaction system and to then characterize it efficiently. In this paper, we discuss the use of an S-system root-finding method (S-system method) to estimate parameters from time-series data of metabolite concentrations. We demonstrate that the S-system method is superior to the Newton-Raphson method in terms of the convergence region and iteration number. We also investigate the usefulness of a translocation technique and a complex-step differentiation method toward the practical application of the S-system method. The results indicate that the S-system method is useful to construct mathematical models for a variety of metabolic reaction networks. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-05-01
We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions.
Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli
Somavanshi, Rahul; Ghosh, Bhaswar; Sourjik, Victor
2016-01-01
The phosphotransferase system (PTS) plays a pivotal role in the uptake of multiple sugars in Escherichia coli and many other bacteria. In the cell, individual sugar-specific PTS branches are interconnected through a series of phosphotransfer reactions, thus creating a global network that not only phosphorylates incoming sugars but also regulates a number of cellular processes. Despite the apparent importance of the PTS network in bacterial physiology, the holistic function of the network in the cell remains unclear. Here we used Förster resonance energy transfer (FRET) to investigate the PTS network in E. coli, including the dynamics of protein interactions and the processing of different stimuli and their transmission to the chemotaxis pathway. Our results demonstrate that despite the seeming complexity of the cellular PTS network, its core part operates in a strikingly simple way, sensing the overall influx of PTS sugars irrespective of the sugar identity and distributing this information equally through all studied branches of the network. Moreover, it also integrates several other specific metabolic inputs. The integrated output of the PTS network is then transmitted linearly to the chemotaxis pathway, in stark contrast to the amplification of conventional chemotactic stimuli. Finally, we observe that default uptake through the uninduced PTS network correlates well with the quality of the carbon source, apparently representing an optimal regulatory strategy. PMID:27557415
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
Smith, Robert W; van Rosmalen, Rik P; Martins Dos Santos, Vitor A P; Fleck, Christian
2018-06-19
Models of metabolism are often used in biotechnology and pharmaceutical research to identify drug targets or increase the direct production of valuable compounds. Due to the complexity of large metabolic systems, a number of conclusions have been drawn using mathematical methods with simplifying assumptions. For example, constraint-based models describe changes of internal concentrations that occur much quicker than alterations in cell physiology. Thus, metabolite concentrations and reaction fluxes are fixed to constant values. This greatly reduces the mathematical complexity, while providing a reasonably good description of the system in steady state. However, without a large number of constraints, many different flux sets can describe the optimal model and we obtain no information on how metabolite levels dynamically change. Thus, to accurately determine what is taking place within the cell, finer quality data and more detailed models need to be constructed. In this paper we present a computational framework, DMPy, that uses a network scheme as input to automatically search for kinetic rates and produce a mathematical model that describes temporal changes of metabolite fluxes. The parameter search utilises several online databases to find measured reaction parameters. From this, we take advantage of previous modelling efforts, such as Parameter Balancing, to produce an initial mathematical model of a metabolic pathway. We analyse the effect of parameter uncertainty on model dynamics and test how recent flux-based model reduction techniques alter system properties. To our knowledge this is the first time such analysis has been performed on large models of metabolism. Our results highlight that good estimates of at least 80% of the reaction rates are required to accurately model metabolic systems. Furthermore, reducing the size of the model by grouping reactions together based on fluxes alters the resulting system dynamics. The presented pipeline automates the modelling process for large metabolic networks. From this, users can simulate their pathway of interest and obtain a better understanding of how altering conditions influences cellular dynamics. By testing the effects of different parameterisations we are also able to provide suggestions to help construct more accurate models of complete metabolic systems in the future.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2007-01-01
The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2009-01-01
The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915
Hamilton, Joshua J; Reed, Jennifer L
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.
Hamilton, Joshua J.; Reed, Jennifer L.
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here. PMID:22666308
DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.
Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less
DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia
Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.
2017-01-16
Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less
Reis, Matthias; Kromer, Justus A; Klipp, Edda
2018-01-20
Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.
Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A
2011-08-01
Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.
Investigations of photosynthetic light harvesting by two-dimensional electronic spectroscopy
NASA Astrophysics Data System (ADS)
Read, Elizabeth Louise
Photosynthesis begins with the harvesting of sunlight by antenna pigments, organized in a network of pigment-protein complexes that rapidly funnel energy to photochemical reaction centers. The intricate design of these systems---the widely varying structural motifs of pigment organization within proteins and protein organization within a larger, cooperative network---underlies the remarkable speed and efficiency of light harvesting. Advances in femtosecond laser spectroscopy have enabled researchers to follow light energy on its course through the energetic levels of photosynthetic systems. Now, newly-developed femtosecond two-dimensional electronic spectroscopy reveals deeper insight into the fundamental molecular interactions and dynamics that emerge in these structures. The following chapters present investigations of a number of natural light-harvesting complexes using two-dimensional electronic spectroscopy. These studies demonstrate the various types of information contained in experimental two-dimensional spectra, and they show that the technique makes it possible to probe pigment-protein complexes on the length- and time-scales relevant to their functioning. New methods are described that further extend the capabilities of two-dimensional electronic spectroscopy, for example, by independently controlling the excitation laser pulse polarizations. The experiments, coupled with theoretical simulation, elucidate spatial pathways of energy flow, unravel molecular and electronic structures, and point to potential new quantum mechanical mechanisms of light harvesting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Fuke, E-mail: wufuke@mail.hust.edu.cn; Tian, Tianhai, E-mail: tianhai.tian@sci.monash.edu.au; Rawlings, James B., E-mail: james.rawlings@wisc.edu
The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in themore » work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.« less
Wang, Hui-Fang; Liu, Zhi-Pan
2008-08-20
Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.
NASA Astrophysics Data System (ADS)
Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang
2008-05-01
Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.
The Biomolecular Interaction Network Database and related tools 2005 update
Alfarano, C.; Andrade, C. E.; Anthony, K.; Bahroos, N.; Bajec, M.; Bantoft, K.; Betel, D.; Bobechko, B.; Boutilier, K.; Burgess, E.; Buzadzija, K.; Cavero, R.; D'Abreo, C.; Donaldson, I.; Dorairajoo, D.; Dumontier, M. J.; Dumontier, M. R.; Earles, V.; Farrall, R.; Feldman, H.; Garderman, E.; Gong, Y.; Gonzaga, R.; Grytsan, V.; Gryz, E.; Gu, V.; Haldorsen, E.; Halupa, A.; Haw, R.; Hrvojic, A.; Hurrell, L.; Isserlin, R.; Jack, F.; Juma, F.; Khan, A.; Kon, T.; Konopinsky, S.; Le, V.; Lee, E.; Ling, S.; Magidin, M.; Moniakis, J.; Montojo, J.; Moore, S.; Muskat, B.; Ng, I.; Paraiso, J. P.; Parker, B.; Pintilie, G.; Pirone, R.; Salama, J. J.; Sgro, S.; Shan, T.; Shu, Y.; Siew, J.; Skinner, D.; Snyder, K.; Stasiuk, R.; Strumpf, D.; Tuekam, B.; Tao, S.; Wang, Z.; White, M.; Willis, R.; Wolting, C.; Wong, S.; Wrong, A.; Xin, C.; Yao, R.; Yates, B.; Zhang, S.; Zheng, K.; Pawson, T.; Ouellette, B. F. F.; Hogue, C. W. V.
2005-01-01
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. PMID:15608229
Detecting breakdown points in metabolic networks.
Tagore, Somnath; De, Rajat K
2011-12-14
A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways. It is also seen that if any one of the paths for production of the same metabolite is hampered, an alternate path tries to overcome this defect and helps in combating the damage. Certain physical, chemical or genetic change in any of the precursor substrate of a biochemical reaction may damage the production of the ultimate product. We employ a quantitative approach for simulating this phenomena of causing a physical change in the biochemical reactions by performing external perturbations to 12 metabolic pathways under carbohydrate metabolism in Saccharomyces cerevisae as well as 14 metabolic pathways under carbohydrate metabolism in Homo sapiens. Here, we investigate the relationship between structure and degree of compatibility of metabolites against external perturbations, i.e., robustness. Robustness can also be further used to identify the extent to which a metabolic pathway can resist a mutation event. Biological networks with a certain connectivity distribution may be very resilient to a particular attack but not to another. The goal of this work is to determine the exact boundary of network breakdown due to both random and targeted attack, thereby analyzing its robustness. We also find that compared to various non-standard models, metabolic networks are exceptionally robust. Here, we report the use of a 'Resilience-based' score for enumerating the concept of 'network-breakdown'. We also use this approach for analyzing metabolite essentiality providing insight into cellular robustness that can be further used for future drug development. We have investigated the behavior of metabolic pathways under carbohydrate metabolism in S. cerevisae and H. sapiens against random and targeted attack. Both random as well as targeted resilience were calculated by formulating a measure, that we termed as 'Resilience score'. Datasets of metabolites were collected for 12 metabolic pathways belonging to carbohydrate metabolism in S. cerevisae and 14 metabolic pathways belonging to carbohydrate metabolism in H. sapiens from Kyoto Encyclopedia for Genes and Genomes (KEGG). Copyright © 2011 Elsevier Ltd. All rights reserved.
Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H
2006-11-15
The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.
Capturing the essence of a metabolic network: a flux balance analysis approach.
Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan
2009-10-07
As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.
[Attentional impairment in children with attention deficit and hyperactivity disorder].
Abbes, Zeineb; Bouden, Asma; Amado, Isabelle; Chantal Bourdel, Marie; Tabbane, Karim; Béchir Halayem, Mohamed
2009-10-01
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous disorder currently defined by clinical history and behavioral report of impairment. The Attention Network test (ANT) gives measures of different aspects of the complex process of attention. We ask if children with Attention Deficit Hyperactivity Disorder (ADHD) will show a characteristic pattern of deficits on this test. The sample included 40 children (M=9 years) who performed the "Attention network test". Children with an ADHD diagnosis (N=20) were compared to a control group (N=20). The group of children with ADHD showed slower reaction times in all conditions (mean RT=866 ms; SD=234,063). Children with ADHD showed a significant impairment in their executive control system compared to healthy subjects, with slower reaction times in incongruent conditions and lower accuracy scores (RT=1064 ms; F(1.38) p=0.02). Our results showed that spatial orienting and alerting in ADHD was no different than controls (p=0,68). ADHD group showed a greater variable response (p=0,0001). The present study showed that impairment in executive control system and variability measures are the characteristic pattern of deficits in children with ADHD.
Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.
Sridharan, Gautham Vivek; Bruinsma, Bote Gosse; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut
2017-11-13
Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.
Arene-chromium tricarbonyl complexes in the Pauson-Khand reaction.
Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Pérez-Castells, Javier
2005-12-09
[reactions: see text] We show the use of arene-chromium tricarbonyl complexes in intra- and intermolecular Pauson-Khand reactions. Both styrene and ethynylbenzene complexes react with alkynes and olefins. The synthesis of enynes connected through chromium-complexed aromatic rings is developed. The intramolecular Pauson-Khand reaction occurs in a totally diastereoselective manner.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Thinking on building the network cardiovasology of Chinese medicine.
Yu, Gui; Wang, Jie
2012-11-01
With advances in complex network theory, the thinking and methods regarding complex systems have changed revolutionarily. Network biology and network pharmacology were built by applying network-based approaches in biomedical research. The cardiovascular system may be regarded as a complex network, and cardiovascular diseases may be taken as the damage of structure and function of the cardiovascular network. Although Chinese medicine (CM) is effective in treating cardiovascular diseases, its mechanisms are still unclear. With the guidance of complex network theory, network biology and network pharmacology, network-based approaches could be used in the study of CM in preventing and treating cardiovascular diseases. A new discipline-network cardiovasology of CM was, therefore, developed. In this paper, complex network theory, network biology and network pharmacology were introduced and the connotation of "disease-syndrome-formula-herb" was illustrated from the network angle. Network biology could be used to analyze cardiovascular diseases and syndromes and network pharmacology could be used to analyze CM formulas and herbs. The "network-network"-based approaches could provide a new view for elucidating the mechanisms of CM treatment.
An information dimension of weighted complex networks
NASA Astrophysics Data System (ADS)
Wen, Tao; Jiang, Wen
2018-07-01
The fractal and self-similarity are important properties in complex networks. Information dimension is a useful dimension for complex networks to reveal these properties. In this paper, an information dimension is proposed for weighted complex networks. Based on the box-covering algorithm for weighted complex networks (BCANw), the proposed method can deal with the weighted complex networks which appear frequently in the real-world, and it can get the influence of the number of nodes in each box on the information dimension. To show the wide scope of information dimension, some applications are illustrated, indicating that the proposed method is effective and feasible.
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.
Sheng, Yin; Zeng, Zhigang
2018-07-01
This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
New Class of Hybrid Materials for Detection, Capture, and "On-Demand" Release of Carbon Monoxide.
Pitto-Barry, Anaïs; Lupan, Alexandru; Ellingford, Christopher; Attia, Amr A A; Barry, Nicolas P E
2018-04-25
Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N 2 ) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g., boiling points). Carbon monoxide is also a major poison in fuel cells because of its adsorption onto the active sites of the catalysts. It is therefore of the utmost economic importance to discover new materials that enable effective CO capture and release under mild conditions. However, methods to specifically absorb and easily release CO in the presence of contaminants, such as water, nitrogen, carbon dioxide, and oxygen, at ambient temperature are not available. Here, we report the simple and versatile fabrication of a new class of hybrid materials that allows capture and release of carbon monoxide under mild conditions. We found that carborane-containing metal complexes encapsulated in networks made of poly(dimethylsiloxane) react with CO, even when immersed in water, leading to dramatic color and infrared signature changes. Furthermore, we found that the CO can be easily released from the materials by simply dipping the networks into an organic solvent for less than 1 min, at ambient temperature and pressure, which not only offers a straightforward recycling method, but also a new method for the "on-demand" release of carbon monoxide. We illustrated the utilization of the on-demand release of CO from the networks by carrying out a carbonylation reaction on an electron-deficient metal complex that led to the formation of the CO-adduct, with concomitant recycling of the gel. We anticipate that our sponge-like materials and scalable methodology will open up new avenues for the storage, transport, and controlled release of CO, the silent killer and a major industrial poison.
Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.
Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe
2016-06-22
The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SSER: Species specific essential reactions database.
Labena, Abraham A; Ye, Yuan-Nong; Dong, Chuan; Zhang, Fa-Z; Guo, Feng-Biao
2017-04-19
Essential reactions are vital components of cellular networks. They are the foundations of synthetic biology and are potential candidate targets for antimetabolic drug design. Especially if a single reaction is catalyzed by multiple enzymes, then inhibiting the reaction would be a better option than targeting the enzymes or the corresponding enzyme-encoding gene. The existing databases such as BRENDA, BiGG, KEGG, Bio-models, Biosilico, and many others offer useful and comprehensive information on biochemical reactions. But none of these databases especially focus on essential reactions. Therefore, building a centralized repository for this class of reactions would be of great value. Here, we present a species-specific essential reactions database (SSER). The current version comprises essential biochemical and transport reactions of twenty-six organisms which are identified via flux balance analysis (FBA) combined with manual curation on experimentally validated metabolic network models. Quantitative data on the number of essential reactions, number of the essential reactions associated with their respective enzyme-encoding genes and shared essential reactions across organisms are the main contents of the database. SSER would be a prime source to obtain essential reactions data and related gene and metabolite information and it can significantly facilitate the metabolic network models reconstruction and analysis, and drug target discovery studies. Users can browse, search, compare and download the essential reactions of organisms of their interest through the website http://cefg.uestc.edu.cn/sser .
Reaction kinetics in open reactors and serial transfers between closed reactors
NASA Astrophysics Data System (ADS)
Blokhuis, Alex; Lacoste, David; Gaspard, Pierre
2018-04-01
Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model.
Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van den Berg, Helma; Conner, Mark; van der Maas, Han L J
2016-01-01
This article introduces the Causal Attitude Network (CAN) model, which conceptualizes attitudes as networks consisting of evaluative reactions and interactions between these reactions. Relevant evaluative reactions include beliefs, feelings, and behaviors toward the attitude object. Interactions between these reactions arise through direct causal influences (e.g., the belief that snakes are dangerous causes fear of snakes) and mechanisms that support evaluative consistency between related contents of evaluative reactions (e.g., people tend to align their belief that snakes are useful with their belief that snakes help maintain ecological balance). In the CAN model, the structure of attitude networks conforms to a small-world structure: evaluative reactions that are similar to each other form tight clusters, which are connected by a sparser set of "shortcuts" between them. We argue that the CAN model provides a realistic formalized measurement model of attitudes and therefore fills a crucial gap in the attitude literature. Furthermore, the CAN model provides testable predictions for the structure of attitudes and how they develop, remain stable, and change over time. Attitude strength is conceptualized in terms of the connectivity of attitude networks and we show that this provides a parsimonious account of the differences between strong and weak attitudes. We discuss the CAN model in relation to possible extensions, implication for the assessment of attitudes, and possibilities for further study. (c) 2015 APA, all rights reserved).
Fuzzy Entropy Method for Quantifying Supply Chain Networks Complexity
NASA Astrophysics Data System (ADS)
Zhang, Jihui; Xu, Junqin
Supply chain is a special kind of complex network. Its complexity and uncertainty makes it very difficult to control and manage. Supply chains are faced with a rising complexity of products, structures, and processes. Because of the strong link between a supply chain’s complexity and its efficiency the supply chain complexity management becomes a major challenge of today’s business management. The aim of this paper is to quantify the complexity and organization level of an industrial network working towards the development of a ‘Supply Chain Network Analysis’ (SCNA). By measuring flows of goods and interaction costs between different sectors of activity within the supply chain borders, a network of flows is built and successively investigated by network analysis. The result of this study shows that our approach can provide an interesting conceptual perspective in which the modern supply network can be framed, and that network analysis can handle these issues in practice.
Thermodynamically Feasible Kinetic Models of Reaction Networks
Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts the concepts of potentials and forces from irreversible thermodynamics to kinetic modeling. In the proposed formalism, the thermokinetic potential of a compound is proportional to its concentration. The proportionality factor is a compound-specific parameter called capacity. The thermokinetic force of a reaction is a function of the potentials. Every reaction has a resistance that is the ratio of thermokinetic force and reaction rate. For mass-action type kinetics, the resistances are constant. Since it relies on the thermodynamic concept of potentials and forces, the TKM formalism structurally observes detailed balance for all values of capacities and resistances. Thus, it provides an easy way to formulate physically feasible, kinetic models of biological reaction networks. The TKM formalism is useful for modeling large biological networks that are subject to many detailed balance relations. PMID:17208985
Modeling cellular compartmentation in one-carbon metabolism
Scotti, Marco; Stella, Lorenzo; Shearer, Emily J.; Stover, Patrick J.
2015-01-01
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable. PMID:23408533
A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.
Woo, Sung Sik; Kim, Jaewook; Sarpeshkar, Rahul
2018-04-01
Prior work has shown that compact analog circuits can faithfully represent and model fundamental biomolecular circuits via efficient log-domain cytomorphic transistor equivalents. Such circuits have emphasized basis functions that are dominant in genetic transcription and translation networks and deoxyribonucleic acid (DNA)-protein binding. Here, we report a system featuring digitally programmable 0.35 μm BiCMOS analog cytomorphic chips that enable arbitrary biochemical reaction networks to be exactly represented thus enabling compact and easy composition of protein networks as well. Since all biomolecular networks can be represented as chemical reaction networks, our protein networks also include the former genetic network circuits as a special case. The cytomorphic analog protein circuits use one fundamental association-dissociation-degradation building-block circuit that can be configured digitally to exactly represent any zeroth-, first-, and second-order reaction including loading, dynamics, nonlinearity, and interactions with other building-block circuits. To address a divergence issue caused by random variations in chip fabrication processes, we propose a unique way of performing computation based on total variables and conservation laws, which we instantiate at both the circuit and network levels. Thus, scalable systems that operate with finite error over infinite time can be built. We show how the building-block circuits can be composed to form various network topologies, such as cascade, fan-out, fan-in, loop, dimerization, or arbitrary networks using total variables. We demonstrate results from a system that combines interacting cytomorphic chips to simulate a cancer pathway and a glycolysis pathway. Both simulations are consistent with conventional software simulations. Our highly parallel digitally programmable analog cytomorphic systems can lead to a useful design, analysis, and simulation tool for studying arbitrary large-scale biological networks in systems and synthetic biology.
Topological and kinetic determinants of the modal matrices of dynamic models of metabolism
2017-01-01
Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329
Approaching human language with complex networks
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).
Megchelenbrink, Wout; Huynen, Martijn; Marchiori, Elena
2014-01-01
Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction's flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.
Creation and perturbation of planar networks of chemical oscillators
Tompkins, Nathan; Cambria, Matthew Carl; Wang, Adam L.; Heymann, Michael; Fraden, Seth
2015-01-01
Methods for creating custom planar networks of diffusively coupled chemical oscillators and perturbing individual oscillators within the network are presented. The oscillators consist of the Belousov-Zhabotinsky (BZ) reaction contained in an emulsion. Networks of drops of the BZ reaction are created with either Dirichlet (constant-concentration) or Neumann (no-flux) boundary conditions in a custom planar configuration using programmable illumination for the perturbations. The differences between the observed network dynamics for each boundary condition are described. Using light, we demonstrate the ability to control the initial conditions of the network and to cause individual oscillators within the network to undergo sustained period elongation or a one-time phase delay. PMID:26117136
Time-ordered product expansions for computational stochastic system biology.
Mjolsness, Eric
2013-06-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.
NASA Astrophysics Data System (ADS)
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Pallerla, Mahesh K; Yap, Glenn P A; Fox, Joseph M
2008-08-15
Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to mu-bonded, five-carbon "flyover" carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes.
Exploration of cellular reaction systems.
Kirkilionis, Markus
2010-01-01
We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.
Path finding methods accounting for stoichiometry in metabolic networks
2011-01-01
Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601
NASA Astrophysics Data System (ADS)
Samoilov, Michael; Plyasunov, Sergey; Arkin, Adam P.
2005-02-01
Stochastic effects in biomolecular systems have now been recognized as a major physiologically and evolutionarily important factor in the development and function of many living organisms. Nevertheless, they are often thought of as providing only moderate refinements to the behaviors otherwise predicted by the classical deterministic system description. In this work we show by using both analytical and numerical investigation that at least in one ubiquitous class of (bio)chemical-reaction mechanisms, enzymatic futile cycles, the external noise may induce a bistable oscillatory (dynamic switching) behavior that is both quantitatively and qualitatively different from what is predicted or possible deterministically. We further demonstrate that the noise required to produce these distinct properties can itself be caused by a set of auxiliary chemical reactions, making it feasible for biological systems of sufficient complexity to generate such behavior internally. This new stochastic dynamics then serves to confer additional functional modalities on the enzymatic futile cycle mechanism that include stochastic amplification and signaling, the characteristics of which could be controlled by both the type and parameters of the driving noise. Hence, such noise-induced phenomena may, among other roles, potentially offer a novel type of control mechanism in pathways that contain these cycles and the like units. In particular, observations of endogenous or externally driven noise-induced dynamics in regulatory networks may thus provide additional insight into their topology, structure, and kinetics. network motif | signal transduction | chemical reaction | synthetic biology | systems biology
Sriyudthsak, Kansuporn; Iwata, Michio; Hirai, Masami Yokota; Shiraishi, Fumihide
2014-06-01
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.
2017-12-01
Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.
Identification of lethal reactions in the Esherichia coli metabolic network: Graph theory approach
NASA Astrophysics Data System (ADS)
Ghim, C.-M.; Goh, K.-I.; Kahng, B.; Kim, D.
2004-03-01
As a first step toward holistic modeling of cells, we analyze the biochemical reactions occurring in the genome-scale metabolism of Esherichia coli. To this end, we construct a directed bipartite graph by assigning metabolite or reaction to each node. We apply various measures of centrality, a well-known concept in the graph theory, and their modifications to the metabolic network, finding that there exist lethal reactions involved in the central metabolism. Such lethal reactions or associated enzymes under diverse environments in silico are identified and compared with earlier results obtained from flux balance analysis.
Graphite grain-size spectrum and molecules from core-collapse supernovae
NASA Astrophysics Data System (ADS)
Clayton, Donald D.; Meyer, Bradley S.
2018-01-01
Our goal is to compute the abundances of carbon atomic complexes that emerge from the C + O cores of core-collapse supernovae. We utilize our chemical reaction network in which every atomic step of growth employs a quantum-mechanically guided reaction rate. This tool follows step-by-step the growth of linear carbon chain molecules from C atoms in the oxygen-rich C + O cores. We postulate that once linear chain molecules reach a sufficiently large size, they isomerize to ringed molecules, which serve as seeds for graphite grain growth. We demonstrate our technique for merging the molecular reaction network with a parallel program that can follow 1017 steps of C addition onto the rare seed species. Due to radioactivity within the C + O core, abundant ambient oxygen is unable to convert C to CO, except to a limited degree that actually facilitates carbon molecular ejecta. But oxygen severely minimizes the linear-carbon-chain abundances. Despite the tiny abundances of these linear-carbon-chain molecules, they can give rise to a small abundance of ringed-carbon molecules that serve as the nucleations on which graphite grain growth builds. We expand the C + O-core gas adiabatically from 6000 K for 109 s when reactions have essentially stopped. These adiabatic tracks emulate the actual expansions of the supernova cores. Using a standard model of 1056 atoms of C + O core ejecta having O/C = 3, we calculate standard ejection yields of graphite grains of all sizes produced, of the CO molecular abundance, of the abundances of linear-carbon molecules, and of Buckminsterfullerene. None of these except CO was expected from the C + O cores just a few years past.
Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V
2016-05-01
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688
Approaching human language with complex networks.
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Visibility in the topology of complex networks
NASA Astrophysics Data System (ADS)
Tsiotas, Dimitrios; Charakopoulos, Avraam
2018-09-01
Taking its inspiration from the visibility algorithm, which was proposed by Lacasa et al. (2008) to convert a time-series into a complex network, this paper develops and proposes a novel expansion of this algorithm that allows generating a visibility graph from a complex network instead of a time-series that is currently applicable. The purpose of this approach is to apply the idea of visibility from the field of time-series to complex networks in order to interpret the network topology as a landscape. Visibility in complex networks is a multivariate property producing an associated visibility graph that maps the ability of a node "to see" other nodes in the network that lie beyond the range of its neighborhood, in terms of a control-attribute. Within this context, this paper examines the visibility topology produced by connectivity (degree) in comparison with the original (source) network, in order to detect what patterns or forces describe the mechanism under which a network is converted to a visibility graph. The overall analysis shows that visibility is a property that increases the connectivity in networks, it may contribute to pattern recognition (among which the detection of the scale-free topology) and it is worth to be applied to complex networks in order to reveal the potential of signal processing beyond the range of its neighborhood. Generally, this paper promotes interdisciplinary research in complex networks providing new insights to network science.
Trame, MN; Lesko, LJ
2015-01-01
A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289
Briat, Corentin; Gupta, Ankit; Khammash, Mustafa
2018-06-01
The ability of a cell to regulate and adapt its internal state in response to unpredictable environmental changes is called homeostasis and this ability is crucial for the cell's survival and proper functioning. Understanding how cells can achieve homeostasis, despite the intrinsic noise or randomness in their dynamics, is fundamentally important for both systems and synthetic biology. In this context, a significant development is the proposed antithetic integral feedback (AIF) motif, which is found in natural systems, and is known to ensure robust perfect adaptation for the mean dynamics of a given molecular species involved in a complex stochastic biomolecular reaction network. From the standpoint of applications, one drawback of this motif is that it often leads to an increased cell-to-cell heterogeneity or variance when compared to a constitutive (i.e. open-loop) control strategy. Our goal in this paper is to show that this performance deterioration can be countered by combining the AIF motif and a negative feedback strategy. Using a tailored moment closure method, we derive approximate expressions for the stationary variance for the controlled network that demonstrate that increasing the strength of the negative feedback can indeed decrease the variance, sometimes even below its constitutive level. Numerical results verify the accuracy of these results and we illustrate them by considering three biomolecular networks with two types of negative feedback strategies. Our computational analysis indicates that there is a trade-off between the speed of the settling-time of the mean trajectories and the stationary variance of the controlled species; i.e. smaller variance is associated with larger settling-time. © 2018 The Author(s).
Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
Qian, Hong; Beard, Daniel A
2005-04-22
The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsch, Ralph, E-mail: rwelsch@uni-bielefeld.de; Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de
2015-02-14
Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction are calculated in full and reduced dimensionality on a recent neural network potential [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. The quantum dynamics calculation employs the quantum transition state concept and the multi-layer multi-configurational time-dependent Hartree approach and rigorously studies the reaction for vanishing total angular momentum (J = 0). The calculations investigate the accuracy of the neutral network potential and study the effect resulting from a reduced-dimensional treatment. Very good agreement is found betweenmore » the present results obtained on the neural network potential and previous results obtained on a Shepard interpolated potential energy surface. The reduced-dimensional calculations only consider motion in eight degrees of freedom and retain the C{sub 3v} symmetry of the methyl fragment. Considering reaction starting from the vibrational ground state of methane, the reaction probabilities calculated in reduced dimensionality are moderately shifted in energy compared to the full-dimensional ones but otherwise agree rather well. Similar agreement is also found if reaction probabilities averaged over similar types of vibrational excitation of the methane reactant are considered. In contrast, significant differences between reduced and full-dimensional results are found for reaction probabilities starting specifically from symmetric stretching, asymmetric (f{sub 2}-symmetric) stretching, or e-symmetric bending excited states of methane.« less
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2010-11-01
Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.
Scheler, Gabriele
2013-01-01
We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.
Pallerla, Mahesh K.; Yap, Glenn P. A.; Fox, Joseph M.
2009-01-01
Described are the X-ray crystallographic and spectral properties of Co-complexes that were isolated from two Pauson-Khand reactions of chiral cyclopropenes. These are the first examples of isolated Co-complexes derived from the putative alkene-insertion intermediates of Pauson-Khand reactions. The binuclear Co-complexes are coordinated to μ-bonded, five-carbon “flyover” carbene ligands. It is proposed that the complexes result from cyclopropane fragmentation subsequent to alkene insertion. The observation of these metal complexes provides a rationale for the origin of regioselectivity in Pauson-Khand reactions of cyclopropenes. PMID:18637694
Metabolism and evolution: A comparative study of reconstructed genome-level metabolic networks
NASA Astrophysics Data System (ADS)
Almaas, Eivind
2008-03-01
The availability of high-quality annotations of sequenced genomes has made it possible to generate organism-specific comprehensive maps of cellular metabolism. Currently, more than twenty such metabolic reconstructions are publicly available, with the majority focused on bacteria. A typical metabolic reconstruction for a bacterium results in a complex network containing hundreds of metabolites (nodes) and reactions (links), while some even contain more than a thousand. The constrain-based optimization approach of flux-balance analysis (FBA) is used to investigate the functional characteristics of such large-scale metabolic networks, making it possible to estimate an organism's growth behavior in a wide variety of nutrient environments, as well as its robustness to gene loss. We have recently completed the genome-level metabolic reconstruction of Yersinia pseudotuberculosis, as well as the three Yersinia pestis biovars Antiqua, Mediaevalis, and Orientalis. While Y. pseudotuberculosis typically only causes fever and abdominal pain that can mimic appendicitis, the evolutionary closely related Y. pestis strains are the aetiological agents of the bubonic plague. In this presentation, I will discuss our results and conclusions from a comparative study on the evolution of metabolic function in the four Yersiniae networks using FBA and related techniques, and I will give particular focus to the interplay between metabolic network topology and evolutionary flexibility.
The Topology of a Discussion: The #Occupy Case.
Gargiulo, Floriana; Bindi, Jacopo; Apolloni, Andrea
2015-01-01
We analyse a large sample of the Twitter activity that developed around the social movement 'Occupy Wall Street', to study the complex interactions between the human communication activity and the semantic content of a debate. We use a network approach based on the analysis of the bipartite graph @Users-#Hashtags and of its projections: the 'semantic network', whose nodes are hashtags, and the 'users interest network', whose nodes are users. In the first instance, we find out that discussion topics (#hashtags) present a high structural heterogeneity, with a relevant role played by the semantic hubs that are responsible to guarantee the continuity of the debate. In the users' case, the self-organisation process of users' activity, leads to the emergence of two classes of communicators: the 'professionals' and the 'amateurs'. Both the networks present a strong community structure, based on the differentiation of the semantic topics, and a high level of structural robustness when certain sets of topics are censored and/or accounts are removed. By analysing the characteristics of the dynamical networks we can distinguish three phases of the discussion about the movement. Each phase corresponds to a specific moment of the movement: from declaration of intent, organisation and development and the final phase of political reactions. Each phase is characterised by the presence of prototypical #hashtags in the discussion.
Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M
2017-05-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).
Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.
2017-01-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513
Liu, Yun; Wang, Huixiang; Liu, Qingping; Qu, Haiyun; Liu, Baohong; Yang, Pengyuan
2010-11-07
A microfluidic reactor has been developed for rapid enhancement of protein digestion by constructing an alumina network within a poly(ethylene terephthalate) (PET) microchannel. Trypsin is stably immobilized in a sol-gel network on the PET channel surface after pretreatment, which produces a protein-resistant interface to reduce memory effects, as characterized by X-ray fluorescence spectrometry and electroosmotic flow. The gel-derived network within a microchannel provides a large surface-to-volume ratio stationary phase for highly efficient proteolysis of proteins existing both at a low level and in complex extracts. The maximum reaction rate of the encapsulated trypsin reactor, measured by kinetic analysis, is much faster than in bulk solution. Due to the microscopic confinement effect, high levels of enzyme entrapment and the biocompatible microenvironment provided by the alumina gel network, the low-level proteins can be efficiently digested using such a microreactor within a very short residence time of a few seconds. The on-chip microreactor is further applied to the identification of a mixture of proteins extracted from normal mouse liver cytoplasm sample via integration with 2D-LC-ESI-MS/MS to show its potential application for large-scale protein identification.
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
NASA Astrophysics Data System (ADS)
Čech, Radek; Mačutek, Ján; Žabokrtský, Zdeněk
2011-10-01
Syntax of natural language has been the focus of linguistics for decades. The complex network theory, being one of new research tools, opens new perspectives on syntax properties of the language. Despite numerous partial achievements, some fundamental problems remain unsolved. Specifically, although statistical properties typical for complex networks can be observed in all syntactic networks, the impact of syntax itself on these properties is still unclear. The aim of the present study is to shed more light on the role of syntax in the syntactic network structure. In particular, we concentrate on the impact of the syntactic function of a verb in the sentence on the complex network structure. Verbs play the decisive role in the sentence structure (“local” importance). From this fact we hypothesize the importance of verbs in the complex network (“global” importance). The importance of verb in the complex network is assessed by the number of links which are directed from the node representing verb to other nodes in the network. Six languages (Catalan, Czech, Dutch, Hungarian, Italian, Portuguese) were used for testing the hypothesis.
Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting
2015-07-07
Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.
Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting
2015-01-01
Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881
Fate and transport of uranium (VI) in weathered saprolite
Kim, Young-Jin; Brooks, Scott C.; Zhang, Fan; ...
2014-11-09
We conducted batch and column experiments to investigate sorption and transport of uranium (U) in the presence of saprolite derived from interbedded shale, limestone, and sandstone sequences. Sorption kinetics were measured at two initial concentrations (C0; 1, 10 mM) and three soil:solution ratios (Rs/w; 0.005, 0.25, 2 kg/L) at pH 4.5 (pH of the saprolite). The rate of U loss from solution (mmole/L/h) increased with increasing Rs/w. Uranium sorption exhibited a fast phase with 80% sorption in the first eight hours for all C0 and Rs/w values and a slow phase during which the reaction slowly approached (pseudo) equilibrium overmore » the next seven days. The pH-dependency of U sorption was apparent in pH sorption edges. U(VI) sorption increased over the pH range 4e6, then decreased sharply at pH > 7.5. U(VI) sorption edges were well described by a surface complexation model using calibrated parameters and the reaction network proposed by Waite et al. (1994). Sorption isotherms measured using the same Rs/w and pH values showed a solids concentration effect where U(VI) sorption capacity and affinity decreased with increasing solids concentration. Moreover, this effect may have been due to either particle aggregation or competition between U(VI) and exchangeable cations for sorption sites. The surface complexation model with calibrated parameters was able to predict the general sorption behavior relatively well, but failed to reproduce solid concentration effects, implying the importance of appropriate design if batch experiments are to be utilized for dynamic systems. Transport of U(VI) through the packed column was significantly retarded. We also conducted transport simulations using the reactive transport model HydroGeoChem (HGC) v5.0 that incorporated the surface complexation reaction network used to model the batch data. Model parameters reported by Waite et al. (1994) provided a better prediction of U transport than optimized parameters derived from our sorption edges. The results presented in this study highlight the challenges in defining appropriate conditions for batch-type experiments used to extrapolate parameters for transport models, and also underline a gap in our ability to transfer batch results to transport simulations.« less
Nakamura, Koji; Murray, Robert J; Joseph, Jeffrey I; Peppas, Nicholas A; Morishita, Mariko; Lowman, Anthony M
2004-03-24
Hydrogels of poly(methacrylic acid-g-ethylene glycol) were prepared using different reaction water contents in order to vary the network mesh size, swelling behavior and insulin loading/release kinetics. Gels prepared with greater reaction solvent contents swelled to a greater degree and had a larger network mesh size. All of the hydrogels were able to incorporate insulin and protected it from release in acidic media. At higher pH (7.4), the release rates increased with reaction solvent content. Using a closed loop animal model, all of the insulin loaded formulations produced significant insulin absorption in the upper small intestine combined with hypoglycemic effects. In these studies, bioavailabilities ranged from 4.6% to 7.2% and were dependent on reaction solvent content.
Introduction: Cancer Gene Networks.
Clarke, Robert
2017-01-01
Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary differential equations and related tools to create dynamic, semi-mechanistic models of low dimensional data including gene/protein signaling as a function of time/dose. More recently, the integration of imaging technologies into predictive multiscale modeling has begun to extend further the scales across which data can be obtained and used to gain insight into system function.There are several goals for predictive multiscale modeling including the more academic pursuit of understanding how the system or local feature thereof is regulated or functions, to the more practical or translational goals of identifying predictive (selecting which patient should receive which drug/therapy) or prognostic (disease progress and outcome in an individual patient) biomarkers and/or identifying network vulnerabilities that represent potential targets for therapeutic benefit with existing drugs (including drug repurposing) or for the development of new drugs. These various goals are not necessarily mutually exclusive or inclusive. Within this volume, readers will find examples of many of the activities noted above. Each chapter contains practical and/or methodological insights to guide readers in the design and interpretation of their own and published work.
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik
2015-10-14
One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g(-1) and excellent cycling performance with ∼87.3% capacitance retention over 5000 cycles.
Digital microfluidics: A promising technique for biochemical applications
NASA Astrophysics Data System (ADS)
Wang, He; Chen, Liguo; Sun, Lining
2017-12-01
Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.
Jamali, Sirous; Nabavizadeh, S Masoud; Rashidi, Mehdi
2008-06-16
The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.
Pt-Mechanistic Study of the β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes
Alexanian, Erik J.; Hartwig, John F.
2010-01-01
A detailed mechanistic investigation of the thermal reactions of a series of bisphosphine alkylplatinum(II) enolate complexes is reported. The reactions of methylplatinum enolate complexes in the presence of added phosphine form methane and either free or coordinated enone, depending on the steric properties of the enone. Kinetic studies were conducted to determine the relationship between the rates and mechanism of β-hydrogen elimination from enolate complexes and the rates and mechanism of β-hydrogen elimination from alkyl complexes. The rates of reactions of the enolates were inversely dependent on the concentration of added phosphine, indicating that β-hydrogen elimination from the enolate complexes occurs after reversible dissociation of a phosphine. A normal, primary kinetic isotope effect was measured, and this effect was consistent with rate-limiting β-hydrogen elimination or C-H bond-forming reductive elimination to form methane. Reactions of substituted enolate complexes were also studied to determine the effect of the steric and electronic properties of the enolate complexes on the rates of β-hydrogen elimination. These studies showed that reactions of the alkylplatinum enolate complexes were retarded by electron-withdrawing substituents on the enolate and that reactions of enolate complexes possessing alkyl substituents at the β-position occurred at rates that were similar to those of complexes lacking alkyl substituents at this position. Despite the trend in electronic effects on the rates of reactions of enolate complexes and the substantial electronic differences between an enolate and an alkyl ligand, the rates of decomposition of the enolate complexes were similar to those of the analogous alkyl complexes. To the extent that the rates of reaction of the two types of complex are different, those involving β-hydrogen elimination from the enolate ligand were faster. A difference between the identity of the rate-determining step for decomposition of the two classes of complexes and an effect of stereochemistry on the selectivity for β-hydrogen elimination are possible origins of the observed phenomena. PMID:18954048
Yang, Jin; Hlavacek, William S.
2011-01-01
Rule-based models, which are typically formulated to represent cell signaling systems, can now be simulated via various network-free simulation methods. In a network-free method, reaction rates are calculated for rules that characterize molecular interactions, and these rule rates, which each correspond to the cumulative rate of all reactions implied by a rule, are used to perform a stochastic simulation of reaction kinetics. Network-free methods, which can be viewed as generalizations of Gillespie’s method, are so named because these methods do not require that a list of individual reactions implied by a set of rules be explicitly generated, which is a requirement of other methods for simulating rule-based models. This requirement is impractical for rule sets that imply large reaction networks (i.e., long lists of individual reactions), as reaction network generation is expensive. Here, we compare the network-free simulation methods implemented in RuleMonkey and NFsim, general-purpose software tools for simulating rule-based models encoded in the BioNetGen language. The method implemented in NFsim uses rejection sampling to correct overestimates of rule rates, which introduces null events (i.e., time steps that do not change the state of the system being simulated). The method implemented in RuleMonkey uses iterative updates to track rule rates exactly, which avoids null events. To ensure a fair comparison of the two methods, we developed implementations of the rejection and rejection-free methods specific to a particular class of kinetic models for multivalent ligand-receptor interactions. These implementations were written with the intention of making them as much alike as possible, minimizing the contribution of irrelevant coding differences to efficiency differences. Simulation results show that performance of the rejection method is equal to or better than that of the rejection-free method over wide parameter ranges. However, when parameter values are such that ligand-induced aggregation of receptors yields a large connected receptor cluster, the rejection-free method is more efficient. PMID:21832806
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.
Fang, Yan; Yashin, Victor V; Dickerson, Samuel J; Balazs, Anna C
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors
NASA Astrophysics Data System (ADS)
Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Monte Carlo simulation of a simple gene network yields new evolutionary insights.
Andrecut, M; Cloud, D; Kauffman, S A
2008-02-07
Monte Carlo simulations of a genetic toggle switch show that its behavior can be more complex than analytic models would suggest. We show here that as a result of the interplay between frequent and infrequent reaction events, such a switch can have more stable states than an analytic model would predict, and that the number and character of these states depend to a large extent on the propensity of transcription factors to bind to and dissociate from promoters. The effects of gene duplications differ even more; in analytic models, these seem to result in the disappearance of bi-stability and thus a loss of the switching function, but a Monte Carlo simulation shows that they can result in the appearance of new stable states without the loss of old ones, and thus in an increase of the complexity of the switch's behavior which may facilitate the evolution of new cellular functions. These differences are of interest with respect to the evolution of gene networks, particularly in clonal lines of cancer cells, where the duplication of active genes is an extremely common event, and often seems to result in the appearance of viable new cellular phenotypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankel, Marlies, E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk; Connor, J. N. L., E-mail: m.hankel@uq.edu.au, E-mail: j.n.l.connor@manchester.ac.uk
2015-07-15
A valuable tool for understanding the dynamics of direct reactions is Nearside-Farside (NF) scattering theory. It makes a decomposition of the (resummed) partial wave series for the scattering amplitude, both for the differential cross section (DCS) and the Local Angular Momentum (LAM). This paper makes the first combined application of these techniques to complex-mode reactions. We ask if NF theory is a useful tool for their identification, in particular, can it distinguish complex-mode from direct-mode reactions? We also ask whether NF theory can identify NF interference oscillations in the full DCSs of complex-mode reactions. Our investigation exploits the fact thatmore » accurate quantum scattering matrix elements have recently become available for complex-mode reactions. We first apply NF theory to two simple models for the scattering amplitude of a complex-mode reaction: One involves a single Legendre polynomial; the other involves a single Legendre function of the first kind, whose form is suggested by complex angular momentum theory. We then study, at fixed translational energies, four state-to-state complex-mode reactions. They are: S({sup 1}D) + HD → SH + D, S({sup 1}D) + DH → SD + H, N({sup 2}D) +H{sub 2} → NH + H, and H{sup +} + D{sub 2} → HD + D{sup +}. We compare the NF results for the DCSs and LAMs with those for a state-to-state direct reaction, namely, F + H{sub 2} → FH + H. We demonstrate that NF theory is a valuable tool for identifying and analyzing the dynamics of complex-mode reactions.« less
Detecting complexes from edge-weighted PPI networks via genes expression analysis.
Zhang, Zehua; Song, Jian; Tang, Jijun; Xu, Xinying; Guo, Fei
2018-04-24
Identifying complexes from PPI networks has become a key problem to elucidate protein functions and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity. Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization. We propose a novel method to identify complexes on PPI networks, based on different co-expression information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI networks. Then, we propose some significant features, such as graph information and gene expression analysis, to filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two experimental yeast PPI networks. On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS network, our method has F-Measure and S n values of 0.3774 and 0.3453. Comparing to existing methods, our method improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, S n value by at least 0.0771. Experiments show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI networks, with the prediction quality improved in terms of evaluation criteria.
A Petri net approach to the study of persistence in chemical reaction networks.
Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D
2007-12-01
Persistence is the property, for differential equations in R(n), that solutions starting in the positive orthant do not approach the boundary of the orthant. For chemical reactions and population models, this translates into the non-extinction property: provided that every species is present at the start of the reaction, no species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and verifies these conditions on various systems which arise in the modeling of cell signaling pathways.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
Computational analysis of complex systems: Applications to population dynamics and networks
NASA Astrophysics Data System (ADS)
Molnar, Ferenc
In most complex evolving systems, we can often find a critical subset of the constituents that can initiate a global change in the entire system. For example, in complex networks, a critical subset of nodes can efficiently spread information, influence, or control dynamical processes over the entire network. Similarly, in nonlinear dynamics, we can locate key variables, or find the necessary parameters, to reach the attraction basin of a desired global state. In both cases, a fundamental goal is finding the ability to efficiently control these systems. We study two distinct complex systems in this dissertation, exploring these topics. First, we analyze a population dynamics model describing interactions of sex-structured population groups. Specifically, we analyze how a sex-linked genetic trait's ecological consequence (population survival or extinction) can be influenced by the presence of sex-specific cultural mortality traits, motivated by the desire to expand the theoretical understanding of the role of biased sex ratios in organisms. We analyze dynamics within a single population group, as well as between competing groups. We find that there is a finite range of sex ratio bias that can be maintained in stable equilibrium by sex-specific mortalities. We also find that the outcome of an invasion and the ensuing between-group competition depends not on larger equilibrium group densities, but on the higher allocation of sex-ratio genes. When we extend the model with diffusive dispersal, we find that a critical patch size for achieving positive growth only exists if the population expands into an empty environment. If a resident population is already present that can be exploited by the invading group, then any small seed of invader can advance from rarity, in the mean-field approximation, as long as the local competition dynamics favors the invader's survival. Most spatial models assume initial populations with a uniform distribution inside a finite patch; a simple, but not a cost-efficient approach. We show, using a novel application of simulated annealing, that a specific, non-trivial shape of spatial distribution can minimize the total cost of successful invasion, i.e., the cost of ecological restoration. Further, our approach can be generalized to essentially any reaction-diffusion model with diffusive spreading. In the second part of the dissertation we conduct an extensive study of minimum dominating sets (MDS) in complex networks; particularly, in scale-free networks. MDS is the smallest subset of nodes in a network that can reach every other node as nearest neighbors, thus it provides a key subset of nodes that play critical role in controllability and observability of social, biological, and technological networks. Continued interest in network control, monitoring and influencing of complex networks motivates our research of understanding the properties and practical application-related issues of the MDS. Our study of the scaling behavior reveals that the size of MDS always scales linearly with network size, as long as the power-law degree exponent gamma of the degree distribution is larger than 2. However, when gamma<2, a domination transition occurs, allowing the MDS size to become O(1), leading to easily dominated networks, under certain structural conditions. Motivated by practical applicability in large networks, we develop a new dominating set selection method, derived from probabilistic node selection techniques, which can select small dominating sets without complete network topology information. We also show that the effectiveness of our method, as well as the effectiveness of other heuristics of dominating set selection, strongly depends on the assortativity of networks. Finally, we conduct a numerical study to analyze the fraction of nodes that remain dominated, after the network is damaged, and some nodes are removed. We find that dominating sets optimized for small size are particularly vulnerable to damage; a significant amount of "domination coverage" may be lost if key dominator nodes are deleted. However, we also find that increasing the redundancy of dominating sets by adding a few well-picked nodes can successfully increase the post-damage dominated fraction of the network. Based on this idea, we develop two algorithms to build dominating sets with flexible balance between size and damage resilience.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing
2014-05-06
The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.
Guo, Lei; Yan, Bing; Liu, Jin-Liang
2011-05-14
New kinds of organic-inorganic hybrid materials consisting of rare earth (Eu(3+), Tb(3+)) complexes covalently bonded to a silica-based network have been obtained by a sol-gel approach. Three novel versatile molecular building blocks containing sulfoxide organic units have been synthesized by methylene modification reaction, which are used as the ligands of rare earth ions and also as siloxane network precursors. The obtained hybrids are characterized by chemical analysis and spectroscopic methods such as FTIR and UV; XRD and SEM. Photoluminescence measurements on the prepared hybrids were performed showing the intra-4f(n) emission in the visible (Eu(3+), Tb(3+)) region and in all the cases being sensitized by the sulfoxide ligands. The emission quantum efficiency and the Judd-Ofelt intensity parameters of Eu(3+) hybrid materials were also investigated in detail.
Nano-scale hydrogen-bond network improves the durability of greener cements
Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.
2013-01-01
More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676
A Novel BA Complex Network Model on Color Template Matching
Han, Risheng; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235
A novel BA complex network model on color template matching.
Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.
Trinchero, Paolo; Puigdomenech, Ignasi; Molinero, Jorge; Ebrahimi, Hedieh; Gylling, Björn; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido
2017-05-01
We present an enhanced continuum-based approach for the modelling of groundwater flow coupled with reactive transport in crystalline fractured rocks. In the proposed formulation, flow, transport and geochemical parameters are represented onto a numerical grid using Discrete Fracture Network (DFN) derived parameters. The geochemical reactions are further constrained by field observations of mineral distribution. To illustrate how the approach can be used to include physical and geochemical complexities into reactive transport calculations, we have analysed the potential ingress of oxygenated glacial-meltwater in a heterogeneous fractured rock using the Forsmark site (Sweden) as an example. The results of high-performance reactive transport calculations show that, after a quick oxygen penetration, steady state conditions are attained where abiotic reactions (i.e. the dissolution of chlorite and the homogeneous oxidation of aqueous iron(II) ions) counterbalance advective oxygen fluxes. The results show that most of the chlorite becomes depleted in the highly conductive deformation zones where higher mineral surface areas are available for reactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Covalently crosslinked diels-alder polymer networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John
2011-09-01
This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis ofmore » the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.« less
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.
Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Complex and differential glial responses in Alzheimer's disease and ageing.
Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei
2016-01-01
Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
NASA Astrophysics Data System (ADS)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-01
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less
Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia
2012-06-21
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
Advances in the Theory of Complex Networks
NASA Astrophysics Data System (ADS)
Peruani, Fernando
An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.
The Validity of Quasi-Steady-State Approximations in Discrete Stochastic Simulations
Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R.
2014-01-01
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales. PMID:25099817
A Novel Approach for Modeling Chemical Reaction in Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Sozen, Mehmet; Majumdar, Alok
2002-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a computer code developed at NASA Marshall Space Flight Center for analyzing steady state and transient flow rates, pressures, temperatures, and concentrations in a complex flow network. The code, which performs system level simulation, can handle compressible and incompressible flows as well as phase change and mixture thermodynamics. Thermodynamic and thermophysical property programs, GASP, WASP and GASPAK provide the necessary data for fluids such as helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, water, a hydrogen, isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, several refrigerants, nitrogen trifluoride and ammonia. The program which was developed out of need for an easy to use system level simulation tool for complex flow networks, has been used for the following purposes to name a few: Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump Secondary Flow Circuits, Axial Thrust Balance of the Fastrac Engine Turbopump, Pressurized Propellant Feed System for the Propulsion Test Article at Stennis Space Center, X-34 Main Propulsion System, X-33 Reaction Control System and Thermal Protection System, and International Space Station Environmental Control and Life Support System design. There has been an increasing demand for implementing a combustion simulation capability into GFSSP in order to increase its system level simulation capability of a liquid rocket propulsion system starting from the propellant tanks up to the thruster nozzle for spacecraft as well as launch vehicles. The present work was undertaken for addressing this need. The chemical equilibrium equations derived from the second law of thermodynamics and the energy conservation equation derived from the first law of thermodynamics are solved simultaneously by a Newton-Raphson method. The numerical scheme was implemented as a User Subroutine in GFSSP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia
In this study, the adsorption of N 2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N 2 in H 2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N 2. Four supported species formed in various flowing gases: Ir(N 2), Ir(N 2)(N 2), Ir(C 2H 5)(N 2), and Ir(H)(N 2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N 2, Ir(N 2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N 2)more » formed transiently in flowing CO, and in the presence of H 2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less
Yuan, Guozan; Shan, Weilong; Qiao, Xuelong; Ma, Li; Huo, Yanping
2014-07-01
Five new Zn(II) complexes, namely [Zn(3)(L)(6)] (1), [Zn(2)(Cl)(2)(L)(2) (py)(2)] (2), [Zn(2)(Br)(2) (L)(2)(py)(2)] (3), [Zn(L)(2)(py)] (4), and [Zn(2)(OAc)(2)(L)(2)(py)(2)] (5), were prepared by the solvothermal reaction of ZnX(2) (X(-) =Cl(-), Br(-), F(-), and OAc(-)) salts with a 8-hydroxyquinolinate ligand (HL) that contained a trifluorophenyl group. All of the complexes were characterized by elemental analysis, IR spectroscopy, and powder and single-crystal X-ray crystallography. The building blocks exhibited unprecedented structural diversification and their self-assembly afforded one mononuclear, three binuclear, and one trinuclear Zn(II) structures in response to different anions and solvent systems. Complexes 1-5 featured four types of supramolecular network controlled by non-covalent interactions, such as π⋅⋅⋅π-stacking, C-H⋅⋅⋅π, hydrogen-bonding, and halogen-related interactions. Investigation of their photoluminescence properties exhibited disparate emission wavelengths, lifetimes, and quantum yields in the solid state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bashardanesh, Zahedeh; Lötstedt, Per
2018-03-01
In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.
Elucidation of Diels-Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Phuong T. M.; McAtee, Jesse R.; Watson, Donald A.
2012-12-12
The reaction of 2,5-dimethylfuran and ethylene to produce p-xylene represents a potentially important route for the conversion of biomass to high-value organic chemicals. Current preparation methods suffer from low selectivity and produce a number of byproducts. Using modern separation and analytical techniques, the structures of many of the byproducts produced in this reaction when HY zeolite is employed as a catalyst have been identified. From these data, a detailed reaction network is proposed, demonstrating that hydrolysis and electrophilic alkylation reactions compete with the desired Diels–Alder/dehydration sequence. This information will allow the rational identification of more selective catalysts and more selectivemore » reaction conditions.« less
Complex network construction based on user group attention sequence
NASA Astrophysics Data System (ADS)
Zhang, Gaowei; Xu, Lingyu; Wang, Lei
2018-04-01
In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-01-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
NASA Astrophysics Data System (ADS)
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Online Community Detection for Large Complex Networks
Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian
2014-01-01
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683
Pruning artificial neural networks using neural complexity measures.
Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F
2008-10-01
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.