Sample records for complex real-world event

  1. Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG

    PubMed Central

    Bigdely-Shamlo, Nima; Cockfield, Jeremy; Makeig, Scott; Rognon, Thomas; La Valle, Chris; Miyakoshi, Makoto; Robbins, Kay A.

    2016-01-01

    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies. PMID:27799907

  2. Event Management of RFID Data Streams: Fast Moving Consumer Goods Supply Chains

    NASA Astrophysics Data System (ADS)

    Mo, John P. T.; Li, Xue

    Radio Frequency Identification (RFID) is a wireless communication technology that uses radio-frequency waves to transfer information between tagged objects and readers without line of sight. This creates tremendous opportunities for linking real world objects into a world of "Internet of things". Application of RFID to Fast Moving Consumer Goods sector will introduce billions of RFID tags in the world. Almost everything is tagged for tracking and identification purposes. This phenomenon will impose a new challenge not only to the network capacity but also to the scalability of processing of RFID events and data. This chapter uses two national demonstrator projects in Australia as case studies to introduce an event managementframework to process high volume RFID data streams in real time and automatically transform physical RFID observations into business-level events. The model handles various temporal event patterns, both simple and complex, with temporal constraints. The model can be implemented in a data management architecture that allows global RFID item tracking and enables fast, large-scale RFID deployment.

  3. A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.

    PubMed

    Pinti, Paola; Merla, Arcangelo; Aichelburg, Clarisse; Lind, Frida; Power, Sarah; Swingler, Elizabeth; Hamilton, Antonia; Gilbert, Sam; Burgess, Paul W; Tachtsidis, Ilias

    2017-07-15

    Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is possible and that the present method can provide a novel solution to analyse real-world fNIRS data, filling the gap between real-life testing and functional neuroimaging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A study of the performance of patients with frontal lobe lesions in a financial planning task.

    PubMed

    Goel, V; Grafman, J; Tajik, J; Gana, S; Danto, D

    1997-10-01

    It has long been argued that patients with lesions in the prefrontal cortex have difficulties in decision making and problem solving in real-world, ill-structured situations, particularly problem types involving planning and look-ahead components. Recently, several researchers have questioned our ability to capture and characterize these deficits adequately using just the standard neuropsychological test batteries, and have called for tests that reflect real-world task requirements more accurately. We present data from 10 patients with focal lesions to the prefrontal cortex and 10 normal control subjects engaged in a real-world financial planning task. We also introduce a theoretical framework and methodology developed in the cognitive science literature for quantifying and analysing the complex data generated by problem-solving tasks. Our findings indicate that patient performance is impoverished at a global level but not at the local level. Patients have difficulty in organizing and structuring their problem space. Once they begin problem solving, they have difficulty in allocating adequate effort to each problem-solving phase. Patients also have difficulty dealing with the fact that there are no right or wrong answers nor official termination points in real-world planning problems. They also find it problematic to generate their own feedback. They invariably terminate the session before the details are fleshed out and all the goals satisfied. Finally, patients do not take full advantage of the fact that constraints on real-world problems are negotiable. However, it is not necessary to postulate a 'planning' deficit. It is possible to understand the patients' difficulties in real world planning tasks in terms of the following four accepted deficits: inadequate access to 'structured event complexes', difficulty in generalizing from particulars, failure to shift between 'mental sets', and poor judgment regarding adequacy and completeness of a plan.

  5. Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.

    PubMed

    Owens, Justin M; Angell, Linda; Hankey, Jonathan M; Foley, James; Ebe, Kazutoshi

    2015-09-01

    Distracted driving has become a topic of critical importance to driving safety research over the past several decades. Naturalistic driving data offer a unique opportunity to study how drivers engage with secondary tasks in real-world driving; however, the complexities involved with identifying and coding relevant epochs of naturalistic data have limited its accessibility to the general research community. This project was developed to help address this problem by creating an accessible dataset of driver behavior and situational factors observed during distraction-related safety-critical events and baseline driving epochs, using the Strategic Highway Research Program 2 (SHRP2) naturalistic dataset. The new NEST (Naturalistic Engagement in Secondary Tasks) dataset was created using crashes and near-crashes from the SHRP2 dataset that were identified as including secondary task engagement as a potential contributing factor. Data coding included frame-by-frame video analysis of secondary task and hands-on-wheel activity, as well as summary event information. In addition, information about each secondary task engagement within the trip prior to the crash/near-crash was coded at a higher level. Data were also coded for four baseline epochs and trips per safety-critical event. 1,180 events and baseline epochs were coded, and a dataset was constructed. The project team is currently working to determine the most useful way to allow broad public access to the dataset. We anticipate that the NEST dataset will be extraordinarily useful in allowing qualified researchers access to timely, real-world data concerning how drivers interact with secondary tasks during safety-critical events and baseline driving. The coded dataset developed for this project will allow future researchers to have access to detailed data on driver secondary task engagement in the real world. It will be useful for standalone research, as well as for integration with additional SHRP2 data to enable the conduct of more complex research. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  6. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions.

    PubMed

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-12-24

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources.

  7. Compound Event Barrier Coverage in Wireless Sensor Networks under Multi-Constraint Conditions

    PubMed Central

    Zhuang, Yaoming; Wu, Chengdong; Zhang, Yunzhou; Jia, Zixi

    2016-01-01

    It is important to monitor compound event by barrier coverage issues in wireless sensor networks (WSNs). Compound event barrier coverage (CEBC) is a novel coverage problem. Unlike traditional ones, the data of compound event barrier coverage comes from different types of sensors. It will be subject to multiple constraints under complex conditions in real-world applications. The main objective of this paper is to design an efficient algorithm for complex conditions that can combine the compound event confidence. Moreover, a multiplier method based on an active-set strategy (ASMP) is proposed to optimize the multiple constraints in compound event barrier coverage. The algorithm can calculate the coverage ratio efficiently and allocate the sensor resources reasonably in compound event barrier coverage. The proposed algorithm can simplify complex problems to reduce the computational load of the network and improve the network efficiency. The simulation results demonstrate that the proposed algorithm is more effective and efficient than existing methods, especially in the allocation of sensor resources. PMID:28029118

  8. Idiosyncratic responding during movie-watching predicted by age differences in attentional control

    PubMed Central

    Campbell, Karen L.; Shafto, Meredith A.; Wright, Paul; Tsvetanov, Kamen A.; Geerligs, Linda; Cusack, Rhodri; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Henson, Rik; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Price, Darren; Taylor, Jason; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Dixon, Marie; Barnes, Dan; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Tyler, Lorraine K.

    2015-01-01

    Much is known about how age affects the brain during tightly controlled, though largely contrived, experiments, but do these effects extrapolate to everyday life? Naturalistic stimuli, such as movies, closely mimic the real world and provide a window onto the brain's ability to respond in a timely and measured fashion to complex, everyday events. Young adults respond to these stimuli in a highly synchronized fashion, but it remains to be seen how age affects neural responsiveness during naturalistic viewing. To this end, we scanned a large (N = 218), population-based sample from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) during movie-watching. Intersubject synchronization declined with age, such that older adults' response to the movie was more idiosyncratic. This decreased synchrony related to cognitive measures sensitive to attentional control. Our findings suggest that neural responsivity changes with age, which likely has important implications for real-world event comprehension and memory. PMID:26359527

  9. Simulating Real-World Exposures during Emergency Events: Studying Effects of Indoor and Outdoor Releases in the Urban Dispersion Project in Upper Manhattan, NY

    EPA Science Inventory

    A prospective personal exposure study, involving indoor and outdoor releases, was conducted in upper Midtown Manhattan in New York City as part of the Urban Dispersion Program (UDP) focusing on atmospheric dispersion of chemicals in complex urban settings. The UDP experiments inv...

  10. Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene

    ERIC Educational Resources Information Center

    Bonner, David

    2010-01-01

    Connecting physics concepts with real-world events allows students to establish a strong conceptual foundation. When such events are particularly interesting to students, it can greatly impact their engagement and enthusiasm in an activity. Activities that involve studying real-world events of high interest can provide students a long-lasting…

  11. An Efficient Pattern Mining Approach for Event Detection in Multivariate Temporal Data

    PubMed Central

    Batal, Iyad; Cooper, Gregory; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos

    2015-01-01

    This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present Recent Temporal Pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the Minimal Predictive Recent Temporal Patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems. PMID:26752800

  12. You do not talk about Fight Club if you do not notice Fight Club: Inattentional blindness for a simulated real-world assault.

    PubMed

    Chabris, Christopher F; Weinberger, Adam; Fontaine, Matthew; Simons, Daniel J

    2011-01-01

    Inattentional blindness-the failure to see visible and otherwise salient events when one is paying attention to something else-has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having subjects run after a confederate along a route near which three other confederates staged a fight. At night only 35% of subjects noticed the fight; during the day 56% noticed. We manipulated the attentional load on the subjects and found that increasing the load significantly decreased noticing. These results provide evidence that inattentional blindness can occur during real-world situations, including the Boston case.

  13. Idiosyncratic responding during movie-watching predicted by age differences in attentional control.

    PubMed

    Campbell, Karen L; Shafto, Meredith A; Wright, Paul; Tsvetanov, Kamen A; Geerligs, Linda; Cusack, Rhodri; Tyler, Lorraine K

    2015-11-01

    Much is known about how age affects the brain during tightly controlled, though largely contrived, experiments, but do these effects extrapolate to everyday life? Naturalistic stimuli, such as movies, closely mimic the real world and provide a window onto the brain's ability to respond in a timely and measured fashion to complex, everyday events. Young adults respond to these stimuli in a highly synchronized fashion, but it remains to be seen how age affects neural responsiveness during naturalistic viewing. To this end, we scanned a large (N = 218), population-based sample from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) during movie-watching. Intersubject synchronization declined with age, such that older adults' response to the movie was more idiosyncratic. This decreased synchrony related to cognitive measures sensitive to attentional control. Our findings suggest that neural responsivity changes with age, which likely has important implications for real-world event comprehension and memory. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Multiple Influences of Semantic Memory on Sentence Processing: Distinct Effects of Semantic Relatedness on Violations of Real-World Event/State Knowledge and Animacy Selection Restrictions

    ERIC Educational Resources Information Center

    Paczynski, Martin; Kuperberg, Gina R.

    2012-01-01

    We aimed to determine whether semantic relatedness between an incoming word and its preceding context can override expectations based on two types of stored knowledge: real-world knowledge about the specific events and states conveyed by a verb, and the verb's broader selection restrictions on the animacy of its argument. We recorded event-related…

  15. Avatars, Virtual Reality Technology, and the U.S. Military: Emerging Policy Issues

    DTIC Science & Technology

    2008-04-09

    called “ Sentient Worldwide Simulation,” which will “mirror” real life and automatically follow real-world events in real time. Some virtual world...cities, with the final goal of creating a fully functioning virtual model of the entire world, which will be known as the Sentient Worldwide Simulation

  16. Real-World Multicenter Registry of Patients with Severe Coronary Artery Calcification Undergoing Orbital Atherectomy.

    PubMed

    Lee, Michael S; Shlofmitz, Evan; Kaplan, Barry; Alexandru, Dragos; Meraj, Perwaiz; Shlofmitz, Richard

    2016-08-01

    We evaluated the safety and efficacy of orbital atherectomy in real-world patients with severe coronary artery calcification (CAC). The presence of severe CAC increases the complexity of percutaneous coronary intervention as it may impede stent delivery and optimal stent expansion. Atherectomy may be an indispensable tool for uncrossable or undilatable lesions by modifying severe CAC. Although the ORBIT I and II trials report that orbital atherectomy was safe and effective for the treatment of severe CAC, patients with kidney disease, recent myocardial infarction, long diffuse disease, severe left ventricular dysfunction, and unprotected left main disease were excluded. This retrospective study included 458 consecutive patients with severe CAC who underwent orbital atherectomy followed by stenting from October 2013 to December 2015 at 3 centers. The primary endpoint of major adverse cardiac and cerebrovascular events at 30 days was 1.7%. Low rates of 30-day all-cause mortality (1.3%), myocardial infarction (1.1%), target vessel revascularization (0%), stroke (0.2%), and stent thrombosis (0.9%) were observed. Angiographic complications were low: perforation was 0.7%, dissection 0.9%, and no-reflow 0.7%. Emergency coronary artery bypass graft surgery was performed in 0.2% of patients. In the largest real-world study of patients who underwent orbital atherectomy, including high-risk patients who were not surgical candidates as well as those with very complex coronary anatomy, acute and short-term adverse clinical event rates were low. A randomized clinical trial is needed to identify the ideal treatment strategy for patients with severe CAC. © 2016 The Authors. Journal of Interventional Cardiology Published by Wiley Periodicals, Inc.

  17. Prediction and Characterization of High-Activity Events in Social Media Triggered by Real-World News.

    PubMed

    Kalyanam, Janani; Quezada, Mauricio; Poblete, Barbara; Lanckriet, Gert

    2016-01-01

    On-line social networks publish information on a high volume of real-world events almost instantly, becoming a primary source for breaking news. Some of these real-world events can end up having a very strong impact on on-line social networks. The effect of such events can be analyzed from several perspectives, one of them being the intensity and characteristics of the collective activity that it produces in the social platform. We research 5,234 real-world news events encompassing 43 million messages discussed on the Twitter microblogging service for approximately 1 year. We show empirically that exogenous news events naturally create collective patterns of bursty behavior in combination with long periods of inactivity in the network. This type of behavior agrees with other patterns previously observed in other types of natural collective phenomena, as well as in individual human communications. In addition, we propose a methodology to classify news events according to the different levels of intensity in activity that they produce. In particular, we analyze the most highly active events and observe a consistent and strikingly different collective reaction from users when they are exposed to such events. This reaction is independent of an event's reach and scope. We further observe that extremely high-activity events have characteristics that are quite distinguishable at the beginning stages of their outbreak. This allows us to predict with high precision, the top 8% of events that will have the most impact in the social network by just using the first 5% of the information of an event's lifetime evolution. This strongly implies that high-activity events are naturally prioritized collectively by the social network, engaging users early on, way before they are brought to the mainstream audience.

  18. You do not talk about Fight Club if you do not notice Fight Club: Inattentional blindness for a simulated real-world assault

    PubMed Central

    Chabris, Christopher F; Weinberger, Adam; Fontaine, Matthew; Simons, Daniel J

    2011-01-01

    Inattentional blindness—the failure to see visible and otherwise salient events when one is paying attention to something else—has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having subjects run after a confederate along a route near which three other confederates staged a fight. At night only 35% of subjects noticed the fight; during the day 56% noticed. We manipulated the attentional load on the subjects and found that increasing the load significantly decreased noticing. These results provide evidence that inattentional blindness can occur during real-world situations, including the Boston case. PMID:23145232

  19. Spontaneous mentalizing during an interactive real world task: an fMRI study.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2006-01-01

    There are moments in everyday life when we need to consider the thoughts and intentions of other individuals in order to act in a socially appropriate manner. Most of this mentalizing occurs spontaneously as we go about our business in the complexity of the real world. As such, studying the neural basis of spontaneous mentalizing has been virtually impossible. Here we devised a means to achieve this by employing a unique combination of functional magnetic resonance imaging (fMRI), a detailed and interactive virtual reality simulation of a bustling familiar city, and a retrospective verbal report protocol. We were able to provide insights into the content of spontaneous mentalizing events and identify the brain regions that underlie them. We found increased activity in a number of regions, namely the right posterior superior temporal sulcus, the medial prefrontal cortex and the right temporal pole associated with spontaneous mentalizing. Furthermore, we observed the right posterior superior temporal sulcus to be consistently active during several different subtypes of mentalizing events. By contrast, medial prefrontal cortex seemed to be particularly involved in thinking about agents that were visible in the environment. Our findings show that it is possible to investigate the neural basis of mentalizing in a manner closer to its true context, the real world, opening up intriguing possibilities for making comparisons with those who have mentalizing problems.

  20. Perils of using speed zone data to assess real-world compliance to speed limits.

    PubMed

    Chevalier, Anna; Clarke, Elizabeth; Chevalier, Aran John; Brown, Julie; Coxon, Kristy; Ivers, Rebecca; Keay, Lisa

    2017-11-17

    Real-world driving studies, including those involving speeding alert devices and autonomous vehicles, can gauge an individual vehicle's speeding behavior by comparing measured speed with mapped speed zone data. However, there are complexities with developing and maintaining a database of mapped speed zones over a large geographic area that may lead to inaccuracies within the data set. When this approach is applied to large-scale real-world driving data or speeding alert device data to determine speeding behavior, these inaccuracies may result in invalid identification of speeding. We investigated speeding events based on service provider speed zone data. We compared service provider speed zone data (Speed Alert by Smart Car Technologies Pty Ltd., Ultimo, NSW, Australia) against a second set of speed zone data (Google Maps Application Programming Interface [API] mapped speed zones). We found a systematic error in the zones where speed limits of 50-60 km/h, typical of local roads, were allocated to high-speed motorways, which produced false speed limits in the speed zone database. The result was detection of false-positive high-range speeding. Through comparison of the service provider speed zone data against a second set of speed zone data, we were able to identify and eliminate data most affected by this systematic error, thereby establishing a data set of speeding events with a high level of sensitivity (a true positive rate of 92% or 6,412/6,960). Mapped speed zones can be a source of error in real-world driving when examining vehicle speed. We explored the types of inaccuracies found within speed zone data and recommend that a second set of speed zone data be utilized when investigating speeding behavior or developing mapped speed zone data to minimize inaccuracy in estimates of speeding.

  1. Integrating international responses to complex emergencies, unconventional war, and terrorism.

    PubMed

    Burkle, Frederick M

    2005-01-01

    The world is experiencing unprecedented violence and threats of violence, taking the form of complex internal nation-state conflicts, unconventional or guerrilla warfare against established governments, and stateless threats of terrorism by potential biologic, chemical, and nuclear weapons. What happens locally has immediate ramifications internationally. Real and potential health consequences of these events have evoked global concerns and realization that capacities and capabilities to respond to such events require unparalleled integration, coordination, and cooperation of the international community. However, politics and the institutions singular governments form are inherently limited in their objectives and capability to effectively respond. Public health, broadly defined, must be recognized as a security and strategic requirement, one that serves to build a foundation for an international integrated response capacity.

  2. Tackling some of the most intricate geophysical challenges via high-performance computing

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.

    2016-12-01

    Recently, world has been witnessing significant enhancements in computing power of supercomputers. Computer clusters in conjunction with the advanced mathematical algorithms has set the stage for developing and applying powerful numerical tools to tackle some of the most intricate geophysical challenges that today`s engineers face. One such challenge is to understand how turbulent flows, in real-world settings, interact with (a) rigid and/or mobile complex bed bathymetry of waterways and sea-beds in the coastal areas; (b) objects with complex geometry that are fully or partially immersed; and (c) free-surface of waterways and water surface waves in the coastal area. This understanding is especially important because the turbulent flows in real-world environments are often bounded by geometrically complex boundaries, which dynamically deform and give rise to multi-scale and multi-physics transport phenomena, and characterized by multi-lateral interactions among various phases (e.g. air/water/sediment phases). Herein, I present some of the multi-scale and multi-physics geophysical fluid mechanics processes that I have attempted to study using an in-house high-performance computational model, the so-called VFS-Geophysics. More specifically, I will present the simulation results of turbulence/sediment/solute/turbine interactions in real-world settings. Parts of the simulations I present are performed to gain scientific insights into the processes such as sand wave formation (A. Khosronejad, and F. Sotiropoulos, (2014), Numerical simulation of sand waves in a turbulent open channel flow, Journal of Fluid Mechanics, 753:150-216), while others are carried out to predict the effects of climate change and large flood events on societal infrastructures ( A. Khosronejad, et al., (2016), Large eddy simulation of turbulence and solute transport in a forested headwater stream, Journal of Geophysical Research:, doi: 10.1002/2014JF003423).

  3. The impact of symptomatic mild traumatic brain injury on complex everyday activities and the link with alterations in cerebral functioning: Exploratory case studies.

    PubMed

    Bottari, Carolina; Gosselin, Nadia; Chen, Jen-Kai; Ptito, Alain

    2017-07-01

    The objective of the study was to explore the neurophysiological correlates of altered functional independence using functional magnetic resonance imaging (fMRI) and event-related potentials (ERP) after a mild traumatic brain injury (mTBI). The participants consisted of three individuals with symptomatic mTBI (3.9 ± 3.6 months post-mTBI) and 12 healthy controls. The main measures used were the Instrumental Activities of Daily Living (IADL) Profile observation-based assessment; a visual externally ordered working memory task combined to event-related potentials (ERP) and fMRI recordings; neuropsychological tests; post-concussion symptoms questionnaires; and the Activities of Daily Living (ADL) Profile interview. Compared to normal controls, all three patients had difficulty with a real-world complex budgeting activity due to deficits in planning, ineffective strategy use and/or a prolonged time to detect and correct errors. Reduced activations in the right mid-dorsolateral prefrontal cortex on fMRI as well as abnormal frontal or parietal components of the ERP occurred alongside these deficits. Results of this exploratory study suggest that reduced independence in complex everyday activities in symptomatic mTBI may be at least partly explained by a decrease in brain activation in the prefrontal cortex, abnormal ERP, or slower reaction times on working memory tasks. The study presents an initial attempt at combining research in neuroscience with ecological real-world evaluation research to further our understanding of the difficulties in complex everyday activities experienced by individuals with mTBI.

  4. Neural basis of processing threatening voices in a crowded auditory world

    PubMed Central

    Mothes-Lasch, Martin; Becker, Michael P. I.; Miltner, Wolfgang H. R.

    2016-01-01

    In real world situations, we typically listen to voice prosody against a background crowded with auditory stimuli. Voices and background can both contain behaviorally relevant features and both can be selectively in the focus of attention. Adequate responses to threat-related voices under such conditions require that the brain unmixes reciprocally masked features depending on variable cognitive resources. It is unknown which brain systems instantiate the extraction of behaviorally relevant prosodic features under varying combinations of prosody valence, auditory background complexity and attentional focus. Here, we used event-related functional magnetic resonance imaging to investigate the effects of high background sound complexity and attentional focus on brain activation to angry and neutral prosody in humans. Results show that prosody effects in mid superior temporal cortex were gated by background complexity but not attention, while prosody effects in the amygdala and anterior superior temporal cortex were gated by attention but not background complexity, suggesting distinct emotional prosody processing limitations in different regions. Crucially, if attention was focused on the highly complex background, the differential processing of emotional prosody was prevented in all brain regions, suggesting that in a distracting, complex auditory world even threatening voices may go unnoticed. PMID:26884543

  5. Drug-coated balloon angioplasty for de novo small vessel disease including chronic total occlusion and bifurcation in real-world clinical practice.

    PubMed

    Onishi, Takayuki; Onishi, Yuko; Kobayashi, Isshi; Umezawa, Shigeo; Niwa, Akihiro

    2018-06-18

    The aim of this study is to validate the efficacy of drug-coated balloons (DCBs) for real-world de novo small vessel diseases including chronic total occlusion and bifurcation. DCB angioplasty has been reported to be effective in the treatment of de novo small vessel disease. However, the number of reports that have focused on complex lesions is limited. This observational study comprised consecutive patients who underwent DCB angioplasty for de novo small vessel disease with a reference diameter of less than 2.5 mm by visual estimation. Outcome parameters included late lumen loss, restenosis rate, and major adverse cardiac events, such as cardiac death, non-fatal myocardial infarction, and target lesion revascularization (TLR). Fifty-two patients underwent DCB angioplasty for 59 lesions with a reference vessel diameter of 1.93 ± 0.63 mm. Thirty-eight of the lesions (69%) were classified as type B2/C, including chronic total occlusions (20%) and bifurcations (33%). At the 8-month follow-up, late lumen loss was - 0.01 ± 0.44 mm with a restenosis rate of 20%. No cardiac deaths or myocardial infarctions were reported and only 5 (9%) angiographically driven TLRs were reported. DCB angioplasty offered an acceptable 8-month lumen patency and a stable clinical outcome for real-world complex de novo coronary diseases.

  6. Real-time monitoring of clinical processes using complex event processing and transition systems.

    PubMed

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  7. On the break down of reality at superluminal velocities, Quantum entanglement and Singularities (Complex Universe)

    NASA Astrophysics Data System (ADS)

    Estakhr, Ahmad Reza

    2017-09-01

    In the real world nothing can move faster than the speed of light. But what convinces you that our world is all real? I realized that reality break down at superluminal velocities (By studying the physics of tachyonic neutrinos), Quantum entanglement and Singularities of Black Holes, I realized that infact our world is complex and has two parts, one part of the world is real (the part that nothing can move faster than the speed of light) but the other part of the world is imaginary. z = a + ib Einstein was wrong because he thought our world is completely real (Of course he was not alone in this belief almost all physicists believe that our world is completely real) Eventually his false interpretation of reality censored imaginary part of the universe. Einstein's Second Postulate of special theory of relativity was a misleading guide to the true nature of reality. He `expected' the true nature of reality will follow to his (false) postulate, But the true nature of reality is unlike what anyone ever `expected'!. Einstein twist facts to suit his theory of relativity instead of theories to suit facts!. This is a dramatic revisions to our conception of the theory of relativity, Reality is complex but We always perceive its real part.

  8. Food for Thought: Cross-Classification and Category Organization in a Complex Real-World Domain.

    ERIC Educational Resources Information Center

    Ross, Brian H.; Murphy, Gregory L.

    1999-01-01

    Seven studies involving 256 undergraduates examined how people represent, access, and make inferences about the real-world category domain, foods. Results give a detailed picture of the use of cross-classification in a complex domain. (SLD)

  9. One-year outcomes with the Taxus Liberté stent in the real world: the Taxus Olympia registry (phase I).

    PubMed

    Ahmed, Waqar Habib; Zambahari, Robaayah; Al-Rashdan, Ibrahim; Al Naeemi, Abdullah; Saeed, Fuad A; Mascioli, Stephen

    2008-12-01

    The Taxus Olympia registry is a prospective, postapproval registry collecting clinical outcomes data on patients receiving the Taxus Liberté paclitaxel-eluting stent during routine interventional cardiology practice. Between February and July 2005, 529 patients receiving the Taxus Liberté stent at 16 centers in the Middle East, South/Central America, and Asia/Pacific regions were enrolled in Phase I of Olympia. The primary end-point was Taxus Liberté stent-related cardiac events (cardiac death, MI, and revascularization) at 30 days postimplant. Additional clinical assessment was conducted at 6 and 12 months. Olympia phases II and III are in clinical follow-up and will be reported separately. One-year clinical follow-up is available for 98% of patients. Complex patients and lesions were prevalent, including: 50% diabetes mellitus, 49% multivessel disease, 30% multiple stenting, 48% AHA/ACC type B2/C lesions, 19% long lesions (>26 mm), and 40% small vessels (30 days postprocedure. One-year cardiac event rates among complex subpopulations (diabetics 5.0%, multiple stents 3.8%, long lesions 3.1%, and small vessels 2.9%) were comparable to the overall study population. In conclusion, this first report of real-world experience with the Taxus Liberté stent demonstrates the safety and clinical utility of this stent in the broader spectrum of coronary disease treated in everyday practice.

  10. Evaluation of the cognitive effects of travel technique in complex real and virtual environments.

    PubMed

    Suma, Evan A; Finkelstein, Samantha L; Reid, Myra; V Babu, Sabarish; Ulinski, Amy C; Hodges, Larry F

    2010-01-01

    We report a series of experiments conducted to investigate the effects of travel technique on information gathering and cognition in complex virtual environments. In the first experiment, participants completed a non-branching multilevel 3D maze at their own pace using either real walking or one of two virtual travel techniques. In the second experiment, we constructed a real-world maze with branching pathways and modeled an identical virtual environment. Participants explored either the real or virtual maze for a predetermined amount of time using real walking or a virtual travel technique. Our results across experiments suggest that for complex environments requiring a large number of turns, virtual travel is an acceptable substitute for real walking if the goal of the application involves learning or reasoning based on information presented in the virtual world. However, for applications that require fast, efficient navigation or travel that closely resembles real-world behavior, real walking has advantages over common joystick-based virtual travel techniques.

  11. Markov logic network based complex event detection under uncertainty

    NASA Astrophysics Data System (ADS)

    Lu, Jingyang; Jia, Bin; Chen, Genshe; Chen, Hua-mei; Sullivan, Nichole; Pham, Khanh; Blasch, Erik

    2018-05-01

    In a cognitive reasoning system, the four-stage Observe-Orient-Decision-Act (OODA) reasoning loop is of interest. The OODA loop is essential for the situational awareness especially in heterogeneous data fusion. Cognitive reasoning for making decisions can take advantage of different formats of information such as symbolic observations, various real-world sensor readings, or the relationship between intelligent modalities. Markov Logic Network (MLN) provides mathematically sound technique in presenting and fusing data at multiple levels of abstraction, and across multiple intelligent sensors to conduct complex decision-making tasks. In this paper, a scenario about vehicle interaction is investigated, in which uncertainty is taken into consideration as no systematic approaches can perfectly characterize the complex event scenario. MLNs are applied to the terrestrial domain where the dynamic features and relationships among vehicles are captured through multiple sensors and information sources regarding the data uncertainty.

  12. Modeling emergent border-crossing behaviors during pandemics

    NASA Astrophysics Data System (ADS)

    Santos, Eunice E.; Santos, Eugene; Korah, John; Thompson, Jeremy E.; Gu, Qi; Kim, Keum Joo; Li, Deqing; Russell, Jacob; Subramanian, Suresh; Zhang, Yuxi; Zhao, Yan

    2013-06-01

    Modeling real-world scenarios is a challenge for traditional social science researchers, as it is often hard to capture the intricacies and dynamisms of real-world situations without making simplistic assumptions. This imposes severe limitations on the capabilities of such models and frameworks. Complex population dynamics during natural disasters such as pandemics is an area where computational social science can provide useful insights and explanations. In this paper, we employ a novel intent-driven modeling paradigm for such real-world scenarios by causally mapping beliefs, goals, and actions of individuals and groups to overall behavior using a probabilistic representation called Bayesian Knowledge Bases (BKBs). To validate our framework we examine emergent behavior occurring near a national border during pandemics, specifically the 2009 H1N1 pandemic in Mexico. The novelty of the work in this paper lies in representing the dynamism at multiple scales by including both coarse-grained (events at the national level) and finegrained (events at two separate border locations) information. This is especially useful for analysts in disaster management and first responder organizations who need to be able to understand both macro-level behavior and changes in the immediate vicinity, to help with planning, prevention, and mitigation. We demonstrate the capabilities of our framework in uncovering previously hidden connections and explanations by comparing independent models of the border locations with their fused model to identify emergent behaviors not found in either independent location models nor in a simple linear combination of those models.

  13. Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene

    NASA Astrophysics Data System (ADS)

    Bonner, David

    2010-05-01

    Connecting physics concepts with real-world events allows students to establish a strong conceptual foundation. When such events are particularly interesting to students, it can greatly impact their engagement and enthusiasm in an activity. Activities that involve studying real-world events of high interest can provide students a long-lasting understanding and positive memorable experiences, both of which heighten the learning experiences of those students. One such activity, described in depth in this paper, utilizes a murder mystery and crime scene investigation as an application of basic projectile motion.

  14. A Propensity Score Matched Comparison of Clinical Outcomes in Atrial Fibrillation Patients Taking Vitamin K Antagonists: Comparing the "Real-World" vs Clinical Trials.

    PubMed

    Rivera-Caravaca, José Miguel; Esteve-Pastor, María Asunción; Marín, Francisco; Valdés, Mariano; Vicente, Vicente; Roldán, Vanessa; Lip, Gregory Y H

    2018-05-02

    To investigate the incidence and risk of adverse clinical outcomes in a "real- world" cohort of patients with atrial fibrillation (AF) anticoagulated with vitamin K antagonists (VKAs) from the Murcia AF Project in comparison with the warfarin arm of the randomized clinical trial (RCT) AMADEUS (Evaluating the Use of SR34006 Compared to Warfarin or Acenocoumarol in Patients With Atrial Fibrillation). We included 1361 patients with AF from the Murcia AF Project (recruitment from May 1, 2007, to December 1, 2007) and 2293 from the AMADEUS trial (started in September 2003 and primary completed in March 2006), all taking VKA treatment. After propensity score matching (PSM), we investigated differences in rates and risks of several events, including major bleeding, ischemic stroke, and all-cause mortality at 365 (interquartile range, 275-428) days of follow-up. After PSM there were 1324 patients for the comparative analysis, whereby annual event rates for most adverse events were significantly higher in the "real-world" population. Cox regression analyses demonstrated that the risk of primary outcomes was also increased in the "real-world" (vs RCT: hazard ratio [HR], 6.32; 95% CI, 2.84-14.03 for major bleeding; HR, 3.56, 95% CI, 1.22-10.42 for ischemic stroke; HR, 5.13, 95% CI, 3.02-8.69 for all-cause mortality). The risk of all other adverse events was higher in the real-world cohort, except for cardiovascular mortality. This study comparing the Murcia AF Project and the AMADEUS trial demonstrates that there is a great heterogeneity in both populations, which is translated into a higher risk of several adverse outcomes in the real-world cohort, including major bleeding, ischemic stroke, and mortality. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. The integration processing of the visual and auditory information in videos of real-world events: an ERP study.

    PubMed

    Liu, Baolin; Wang, Zhongning; Jin, Zhixing

    2009-09-11

    In real life, the human brain usually receives information through visual and auditory channels and processes the multisensory information, but studies on the integration processing of the dynamic visual and auditory information are relatively few. In this paper, we have designed an experiment, where through the presentation of common scenario, real-world videos, with matched and mismatched actions (images) and sounds as stimuli, we aimed to study the integration processing of synchronized visual and auditory information in videos of real-world events in the human brain, through the use event-related potentials (ERPs) methods. Experimental results showed that videos of mismatched actions (images) and sounds would elicit a larger P400 as compared to videos of matched actions (images) and sounds. We believe that the P400 waveform might be related to the cognitive integration processing of mismatched multisensory information in the human brain. The results also indicated that synchronized multisensory information would interfere with each other, which would influence the results of the cognitive integration processing.

  16. Preferential Inspection of Recent Real-World Events Over Future Events: Evidence from Eye Tracking during Spoken Sentence Comprehension

    PubMed Central

    Knoeferle, Pia; Carminati, Maria Nella; Abashidze, Dato; Essig, Kai

    2011-01-01

    Eye-tracking findings suggest people prefer to ground their spoken language comprehension by focusing on recently seen events more than anticipating future events: When the verb in NP1-VERB-ADV-NP2 sentences was referentially ambiguous between a recently depicted and an equally plausible future clipart action, listeners fixated the target of the recent action more often at the verb than the object that hadn’t yet been acted upon. We examined whether this inspection preference generalizes to real-world events, and whether it is (vs. isn’t) modulated by how often people see recent and future events acted out. In a first eye-tracking study, the experimenter performed an action (e.g., sugaring pancakes), and then a spoken sentence either referred to that action or to an equally plausible future action (e.g., sugaring strawberries). At the verb, people more often inspected the pancakes (the recent target) than the strawberries (the future target), thus replicating the recent-event preference with these real-world actions. Adverb tense, indicating a future versus past event, had no effect on participants’ visual attention. In a second study we increased the frequency of future actions such that participants saw 50/50 future and recent actions. During the verb people mostly inspected the recent action target, but subsequently they began to rely on tense, and anticipated the future target more often for future than past tense adverbs. A corpus study showed that the verbs and adverbs indicating past versus future actions were equally frequent, suggesting long-term frequency biases did not cause the recent-event preference. Thus, (a) recent real-world actions can rapidly influence comprehension (as indexed by eye gaze to objects), and (b) people prefer to first inspect a recent action target (vs. an object that will soon be acted upon), even when past and future actions occur with equal frequency. A simple frequency-of-experience account cannot accommodate these findings. PMID:22207858

  17. Clinical outcomes in real-world patients with small vessel disease treated with XIENCE V® everolimus-eluting stents: one year results from the XIENCE V® USA condition of approval post-market study.

    PubMed

    Hermiller, James B; Rutledge, David R; Mao, Vivian W; Zhao, Weiying; Wang, Jin; Gruberg, Luis; Lombardi, William; Sharma, Samin K; Krucoff, Mitchell W

    2014-07-01

    The purpose of this study was to evaluate the 1-year clinical outcomes of more complex XIENCE V USA real-world patients with small versus nonsmall vessel lesions. Patients with small vessel lesions undergoing coronary stent placement are at higher risk of major adverse cardiac events. Improved safety and efficacy of XIENCE V everolimus eluting stents (EES) have been previously demonstrated in selected low-risk small vessel populations in randomized clinical trials. The XIENCE V USA study was a condition of approval, single-arm study in unselected real-world patients. Baseline and 1-year clinical outcomes were compared between XIENCE V USA patients who received a single 2.5 mm stent (small vessel group, N = 838) and patients implanted with a single >2.5 mm stent (non-small vessel group, N = 2,015). Mean reference vessel diameter was 2.55 ± 0.36 and 3.25 ± 0.46 mm in the small and non-small vessel groups, respectively (P < 0.001). Small vessel group had more females, presented with a higher rate of diabetes, and had more complex lesion characteristics. The definite or probable ST rates analyzed using Kaplan-Meier method were low and not significantly different between the groups at 0.37 and 0.40% for the small and nonsmall vessel group (P = 0.88), respectively. The composite rate of cardiac death or MI was comparable at 4.5% for the small and 5.1% for the non-small vessel 1 groups (P = 0.57). The 1-year target lesion revascularization rate was also comparable in the small vessel group (3.8% vs. 3.0%, P = 0.35). Despite gender difference, higher prevalence of diabetes and more complex lesions in the small vessel groups, the 1-year clinical outcomes were similar in both small and nonsmall vessel groups. These results demonstrate the therapeutic benefit of XIENCE V EES in a real-world all inclusive patient population with small vessel disease. © 2013 Wiley Periodicals, Inc.

  18. Improvements Needed in U.S. Special Operations Command Global Battlestaff and Program Support Contract Oversight

    DTIC Science & Technology

    2013-04-26

    and 6-8 books annually. Some deliverables are due “as required.” This is because the mission of the IATF is dependent upon real-world events and...six lines of investigation (4.1.18). Some deliverables do not have specific due dates or schedules because the mission of the IATF is dependent upon...34 This is because the mission of the IATF is dependent upon real-world events and deliverables are linked to dynamic findings from the SOCOM GSC

  19. Cortical midline involvement in autobiographical memory

    PubMed Central

    Summerfield, Jennifer J.; Hassabis, Demis; Maguire, Eleanor A.

    2009-01-01

    Recollecting autobiographical memories of personal past experiences is an integral part of our everyday lives and relies on a distributed set of brain regions. Their occurrence externally in the real world (‘realness’) and their self-relevance (‘selfness’) are two defining features of these autobiographical events. Distinguishing between personally experienced events and those that happened to other individuals, and between events that really occurred and those that were mere figments of the imagination, is clearly advantageous, yet the respective neural correlates remain unclear. Here we experimentally manipulated and dissociated realness and selfness during fMRI using a novel paradigm where participants recalled self (autobiographical) and non-self (from a movie or television news clips) events that were either real or previously imagined. Distinct sub-regions within dorsal and ventral medial prefrontal cortex, retrosplenial cortex and along the parieto-occipital sulcus preferentially coded for events (real or imagined) involving the self. By contrast, recollection of autobiographical events that really happened in the external world activated different areas within ventromedial prefrontal cortex and posterior cingulate cortex. In addition, recall of externally experienced real events (self or non-self) was associated with increased activity in areas of dorsomedial prefrontal cortex and posterior cingulate cortex. Taken together our results permitted a functional deconstruction of anterior (medial prefrontal) and posterior (retrosplenial cortex, posterior cingulate cortex, precuneus) cortical midline regions widely associated with autobiographical memory but whose roles have hitherto been poorly understood. PMID:18973817

  20. Real-World Use of Apixaban for Stroke Prevention in Atrial Fibrillation: A Systematic Review and Meta-Analysis.

    PubMed

    Proietti, Marco; Romanazzi, Imma; Romiti, Giulio Francesco; Farcomeni, Alessio; Lip, Gregory Y H

    2018-01-01

    The use of oral anticoagulant therapy for stroke prevention in atrial fibrillation has been transformed by the availability of the nonvitamin K antagonist oral anticoagulants. Real-world studies on the use of nonvitamin K antagonist oral anticoagulants would help elucidate their effectiveness and safety in daily clinical practice. Apixaban was the third nonvitamin K antagonist oral anticoagulants introduced to clinical practice, and increasing real-world studies have been published. Our aim was to summarize current evidence about real-world studies on apixaban for stroke prevention in atrial fibrillation. We performed a systematic review and meta-analysis of all observational real-world studies comparing apixaban with other available oral anticoagulant drugs. From the original 9680 results retrieved, 16 studies have been included in the final meta-analysis. Compared with warfarin, apixaban regular dose was more effective in reducing any thromboembolic event (odds ratio: 0.77; 95% confidence interval: 0.64-0.93), but no significant difference was found for stroke risk. Apixaban was as effective as dabigatran and rivaroxaban in reducing thromboembolic events and stroke. The risk of major bleeding was significantly lower for apixaban compared with warfarin, dabigatran, and rivaroxaban (relative risk reduction, 38%, 35%, and 46%, respectively). Similarly, the risk for intracranial hemorrhage was significantly lower for apixaban than warfarin and rivaroxaban (46% and 54%, respectively) but not dabigatran. The risk of gastrointestinal bleeding was lower with apixaban when compared with all oral anticoagulant agents ( P <0.00001 for all comparisons). Use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found with apixaban compared with warfarin, dabigatran, and rivaroxaban. © 2017 American Heart Association, Inc.

  1. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    PubMed

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  2. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling

    PubMed Central

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of our proposed adaptive crawler and our stream division/recombination technique provides significant gains in event recall (44.44%) and event precision (9.57%). The addition of these sub-events or pieces, allows us to get closer to solving the event puzzle. PMID:29107976

  3. Piecing together the puzzle: Improving event content coverage for real-time sub-event detection using adaptive microblog crawling.

    PubMed

    Tokarchuk, Laurissa; Wang, Xinyue; Poslad, Stefan

    2017-01-01

    In an age when people are predisposed to report real-world events through their social media accounts, many researchers value the benefits of mining user generated content from social media. Compared with the traditional news media, social media services, such as Twitter, can provide more complete and timely information about the real-world events. However events are often like a puzzle and in order to solve the puzzle/understand the event, we must identify all the sub-events or pieces. Existing Twitter event monitoring systems for sub-event detection and summarization currently typically analyse events based on partial data as conventional data collection methodologies are unable to collect comprehensive event data. This results in existing systems often being unable to report sub-events in real-time and often in completely missing sub-events or pieces in the broader event puzzle. This paper proposes a Sub-event detection by real-TIme Microblog monitoring (STRIM) framework that leverages the temporal feature of an expanded set of news-worthy event content. In order to more comprehensively and accurately identify sub-events this framework first proposes the use of adaptive microblog crawling. Our adaptive microblog crawler is capable of increasing the coverage of events while minimizing the amount of non-relevant content. We then propose a stream division methodology that can be accomplished in real time so that the temporal features of the expanded event streams can be analysed by a burst detection algorithm. In the final steps of the framework, the content features are extracted from each divided stream and recombined to provide a final summarization of the sub-events. The proposed framework is evaluated against traditional event detection using event recall and event precision metrics. Results show that improving the quality and coverage of event contents contribute to better event detection by identifying additional valid sub-events. The novel combination of our proposed adaptive crawler and our stream division/recombination technique provides significant gains in event recall (44.44%) and event precision (9.57%). The addition of these sub-events or pieces, allows us to get closer to solving the event puzzle.

  4. The relative importance of real-time in-cab and external feedback in managing fatigue in real-world commercial transport operations.

    PubMed

    Fitzharris, Michael; Liu, Sara; Stephens, Amanda N; Lenné, Michael G

    2017-05-29

    Real-time driver monitoring systems represent a solution to address key behavioral risks as they occur, particularly distraction and fatigue. The efficacy of these systems in real-world settings is largely unknown. This article has three objectives: (1) to document the incidence and duration of fatigue in real-world commercial truck-driving operations, (2) to determine the reduction, if any, in the incidence of fatigue episodes associated with providing feedback, and (3) to tease apart the relative contribution of in-cab warnings from 24/7 monitoring and feedback to employers. Data collected from a commercially available in-vehicle camera-based driver monitoring system installed in a commercial truck fleet operating in Australia were analyzed. The real-time driver monitoring system makes continuous assessments of driver drowsiness based on eyelid position and other factors. Data were collected in a baseline period where no feedback was provided to drivers. Real-time feedback to drivers then occurred via in-cab auditory and haptic warnings, which were further enhanced by direct feedback by company management when fatigue events were detected by external 24/7 monitors. Fatigue incidence rates and their timing of occurrence across the three time periods were compared. Relative to no feedback being provided to drivers when fatigue events were detected, in-cab warnings resulted in a 66% reduction in fatigue events, with a 95% reduction achieved by the real-time provision of direct feedback in addition to in-cab warnings (p < 0.01). With feedback, fatigue events were shorter in duration a d occurred later in the trip, and fewer drivers had more than one verified fatigue event per trip. That the provision of feedback to the company on driver fatigue events in real time provides greater benefit than feedback to the driver alone has implications for companies seeking to mitigate risks associated with fatigue. Having fewer fatigue events is likely a reflection of the device itself and the accompanying safety culture of the company in terms of how the information is used. Data were analysed on a per-truck trip basis, and the findings are indicative of fatigue events in a large-scale commercial transport fleet. Future research ought to account for individual driver performance, which was not possible with the available data in this retrospective analysis. Evidence that real-time driver monitoring feedback is effective in reducing fatigue events is invaluable in the development of fleet safety policies, and of future national policy and vehicle safety regulations. Implications for automotive driver monitoring are discussed.

  5. Real-world crude incidence of hypoglycemia in adults with diabetes: Results of the InHypo-DM Study, Canada.

    PubMed

    Ratzki-Leewing, Alexandria; Harris, Stewart B; Mequanint, Selam; Reichert, Sonja M; Belle Brown, Judith; Black, Jason Edward; Ryan, Bridget L

    2018-01-01

    Very few real-world studies have been conducted to assess the incidence of diabetes-related hypoglycemia. Moreover, there is a paucity of studies that have investigated hypoglycemia among people taking secretagogues as a monotherapy or in combination with insulin. Accordingly, our research team developed and validated the InHypo-DM Person with Diabetes Mellitus Questionnaire (InHypo-DMPQ) with the aim of capturing the real-world incidence of self-reported, symptomatic hypoglycemia. The questionnaire was administered online to a national sample of Canadians (≥18 years old) with type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) treated with insulin and/or insulin secretagogues. Self-report data obtained from the InHypo-DMPQ were descriptively analyzed to ascertain the crude incidence proportions and annualized incidence densities (rates) of 30-day retrospective non-severe and 1-year retrospective severe hypoglycemia, including daytime and nocturnal events. A total of 552 people (T2DM: 83%; T1DM: 17%) completed the questionnaire. Over half (65.2%) of the total respondents reported experiencing at least one event (non-severe or severe) at an annualized crude incidence density of 35.1 events per person-year. The incidence proportion and rate of non-severe events were higher among people with T1DM versus T2DM (77% and 55.7 events per person-year vs 54% and 28.0 events per person-year). Severe hypoglycemia was reported by 41.8% of all respondents, at an average rate of 2.5 events per person-year. The results of the InHypo-DMPQ, the largest real-world investigation of hypoglycemia epidemiology in Canada, suggest that the incidence of hypoglycemia among adults with diabetes taking insulin and/or insulin secretagogues is higher than previously thought.

  6. Culture & Cognition Laboratory

    DTIC Science & Technology

    2011-05-01

    life: Real world social-interaction cooperative tasks are inherently unequal in difficulty. Re-scoring performance on unequal tasks in order to enable...real- world situations to which this model is intended to apply, it is possible for calls for help to not be heard, or for a potential help-provider to...not have clear, well-defined objectives. Since many complex real- worlds tasks are not well-defined, defining a realistic objective can be considered a

  7. Familiar real-world spatial cues provide memory benefits in older and younger adults.

    PubMed

    Robin, Jessica; Moscovitch, Morris

    2017-05-01

    Episodic memory, future thinking, and memory for scenes have all been proposed to rely on the hippocampus, and evidence suggests that these all decline in healthy aging. Despite this age-related memory decline, studies examining the effects of context reinstatement on episodic memory have demonstrated that reinstating elements of the encoding context of an event leads to better memory retrieval in both younger and older adults. The current study was designed to test whether more familiar, real-world contexts, such as locations that participants visited often, would improve the detail richness and vividness of memory for scenes, autobiographical events, and imagination of future events in young and older adults. The predicted age-related decline in internal details across all 3 conditions was accompanied by persistent effects of contextual familiarity, in which a more familiar spatial context led to increased detail and vividness of remembered scenes, autobiographical events, and, to some extent, imagined future events. This study demonstrates that autobiographical memory, imagination of the future, and scene memory are similarly affected by aging, and all benefit from being associated with more familiar (real-world) contexts, illustrating the stability of contextual reinstatement effects on memory throughout the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. A synthetic computational environment: To control the spread of respiratory infections in a virtual university

    NASA Astrophysics Data System (ADS)

    Ge, Yuanzheng; Chen, Bin; liu, Liang; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2018-02-01

    Individual-based computational environment provides an effective solution to study complex social events by reconstructing scenarios. Challenges remain in reconstructing the virtual scenarios and reproducing the complex evolution. In this paper, we propose a framework to reconstruct a synthetic computational environment, reproduce the epidemic outbreak, and evaluate management interventions in a virtual university. The reconstructed computational environment includes 4 fundamental components: the synthetic population, behavior algorithms, multiple social networks, and geographic campus environment. In the virtual university, influenza H1N1 transmission experiments are conducted, and gradually enhanced interventions are evaluated and compared quantitatively. The experiment results indicate that the reconstructed virtual environment provides a solution to reproduce complex emergencies and evaluate policies to be executed in the real world.

  9. Making Real-World Issues Our Business: Critical Literacy in a Third-Grade Classroom.

    ERIC Educational Resources Information Center

    Heffernan, Lee; Lewison, Mitzi

    2000-01-01

    Reflects on the events that occurred during a six-month period in a suburban classroom. Documents the transformation that took place in learning and teaching as students took part in a critical literacy curriculum. Examines the significant curricular changes that occur when the "real world" is allowed to enter classroom discussions and…

  10. Sentence understanding depends on contextual use of semantic and real world knowledge.

    PubMed

    Tune, Sarah; Schlesewsky, Matthias; Nagels, Arne; Small, Steven L; Bornkessel-Schlesewsky, Ina

    2016-08-01

    Human language allows us to express our thoughts and ideas by combining entities, concepts and actions into multi-event episodes. Yet, the functional neuroanatomy engaged in interpretation of such high-level linguistic input remains poorly understood. Here, we used easy to detect and more subtle "borderline" anomalies to investigate the brain regions and mechanistic principles involved in the use of real-world event knowledge in language comprehension. Overall, the results showed that the processing of sentences in context engages a complex set of bilateral brain regions in the frontal, temporal and inferior parietal lobes. Easy anomalies preferentially engaged lower-order cortical areas adjacent to the primary auditory cortex. In addition, the left supramarginal gyrus and anterior temporal sulcus as well as the right posterior middle temporal gyrus contributed to the processing of easy and borderline anomalies. The observed pattern of results is explained in terms of (i) hierarchical processing along a dorsal-ventral axis and (ii) the assumption of high-order association areas serving as cortical hubs in the convergence of information in a distributed network. Finally, the observed modulation of BOLD signal in prefrontal areas provides support for their role in the implementation of executive control processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Introductory Earth science education by near real time animated visualization of seismic wave propagation across Transportable Array of USArray

    NASA Astrophysics Data System (ADS)

    Attanayake, J.; Ghosh, A.; Amosu, A.

    2010-12-01

    Students of this generation are markedly different from their predecessors because they grow up and learn in a world of visual technology populated by touch screens and smart boards. Recent studies have found that the attention span of university students whose medium of instruction is traditional teaching methods is roughly fifteen minutes and that there is a significant drop in the number of students paying attention over time in a lecture. On the other hand, when carefully segmented and learner-paced, animated visualizations can enhance the learning experience. Therefore, the instructors are faced with the difficult task of designing more complex teaching environments to improve learner productivity. We have developed an animated visualization of earthquake wave propagation across a generic transect of the Transportable Array of the USArray from a magnitude 6.9 event that occurred in the Gulf of California on August 3rd 2009. Despite the fact that the proto-type tool is built in MATLAB - one of the most popular programming environments among the seismology community, the movies can be run as a standalone stream with any built-in media player that supports .avi file format. We infer continuous ground motion along the transect through a projection and interpolation mechanism based on data from stations within 100 km of the transect. In the movies we identify the arrival of surface waves that have high amplitudes. However, over time, although typical Rayleigh type ground motion can be observed, the motion at any given point becomes complex owing to interference of different wave types and different seismic properties of the subsurface. This clearly is different from simple representations of seismic wave propagation in most introductory textbooks. Further, we find a noisy station that shows unusually high amplitude. We refrain from deleting this station in order to demonstrate that in a real world experiment, generally, there will be complexities arising from unexpected behavior of instruments and/or the system under investigation. Explaining such behavior and exploring ways to minimize biases arising from it is an important lesson to learn in introductory science classes. This program can generate visualizations of ground motion from events in the Gulf of California in near real time and with little further development, from events elsewhere.

  12. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics.

    PubMed

    Freedman, Kevin J; Bastian, Arangassery R; Chaiken, Irwin; Kim, Min Jun

    2013-03-11

    Protein conjugation provides a unique look into many biological phenomena and has been used for decades for molecular recognition purposes. In this study, the use of solid-state nanopores for the detection of gp120-associated complexes are investigated. They exhibit monovalent and multivalent binding to anti-gp120 antibody monomer and dimers. In order to investigate the feasibility of many practical applications related to nanopores, detection of specific protein complexes is attempted within a heterogeneous protein sample, and the role of voltage on complexed proteins is researched. It is found that the electric field within the pore can result in unbinding of a freely translocating protein complex within the transient event durations measured experimentally. The strong dependence of the unbinding time with voltage can be used to improve the detection capability of the nanopore system by adding an additional level of specificity that can be probed. These data provide a strong framework for future protein-specific detection schemes, which are shown to be feasible in the realm of a 'real-world' sample and an automated multidimensional method of detecting events. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Individual Events as a Laboratory for Argument: Analogues for Limited Preparation Events.

    ERIC Educational Resources Information Center

    Kay, Jack

    To better serve as a laboratory for argument, individual events competition should represent analogues of "real world" argumentation/communication situations. The individual events laboratory must fulfill a pedagogical function, and should also "create" knowledge about argumentation strategies, specific fields of argument, and…

  14. Whatever Gave You that Idea? False Memories Following Equivalence Training: A Behavioral Account of the Misinformation Effect

    ERIC Educational Resources Information Center

    Challies, Danna M.; Hunt, Maree; Garry, Maryanne; Harper, David N.

    2011-01-01

    The misinformation effect is a term used in the cognitive psychological literature to describe both experimental and real-world instances in which misleading information is incorporated into an account of an historical event. In many real-world situations, it is not possible to identify a distinct source of misinformation, and it appears that the…

  15. The way to uncover community structure with core and diversity

    NASA Astrophysics Data System (ADS)

    Chang, Y. F.; Han, S. K.; Wang, X. D.

    2018-07-01

    Communities are ubiquitous in nature and society. Individuals that share common properties often self-organize to form communities. Avoiding the shortages of computation complexity, pre-given information and unstable results in different run, in this paper, we propose a simple and efficient method to deepen our understanding of the emergence and diversity of communities in complex systems. By introducing the rational random selection, our method reveals the hidden deterministic and normal diverse community states of community structure. To demonstrate this method, we test it with real-world systems. The results show that our method could not only detect community structure with high sensitivity and reliability, but also provide instructional information about the hidden deterministic community world and the real normal diverse community world by giving out the core-community, the real-community, the tide and the diversity. Thizs is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in complex systems.

  16. Children's Use of Morphological Cues in Real-Time Event Representation

    ERIC Educational Resources Information Center

    Zhou, Peng; Ma, Weiyi

    2018-01-01

    The present study investigated whether and how fast young children can use information encoded in morphological markers during real-time event representation. Using the visual world paradigm, we tested 35 adults, 34 5-year-olds and 33 3-year-olds. The results showed that the adults, the 5-year-olds and the 3-year-olds all exhibited eye gaze…

  17. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory.

    PubMed

    Brown, Thackery I; Rissman, Jesse; Chow, Tiffany E; Uncapher, Melina R; Wagner, Anthony D

    2018-04-18

    Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others' lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.

  18. All the World's a Writing Stage: Living Contexts for Literature.

    ERIC Educational Resources Information Center

    Cecala, Frank P.

    1989-01-01

    Describes a writing exercise in which the fictional world of a literary piece is transformed into a real world containing people, events, and places. Suggests that students choose their own writing topics and act out the results. Notes that sources of worlds include epic poems, Shakespeare, and Greek mythology. (RS)

  19. The Connection between the Complexity of Perception of an Event and Judging Decisions in a Complex Situation

    ERIC Educational Resources Information Center

    Rauchberger, Nirit; Kaniel, Shlomo; Gross, Zehavit

    2017-01-01

    This study examines the process of judging complex real-life events in Israel: the disengagement from Gush Katif, Rabin's assassination and the Second Lebanon War. The process of judging is based on Weiner's attribution model, (Weiner, 2000, 2006); however, due to the complexity of the events studied, variables were added to characterize the…

  20. Cost-effectiveness of dabigatran etexilate for the prevention of stroke and systemic embolism in atrial fibrillation: a Canadian payer perspective.

    PubMed

    Sorensen, S V; Kansal, A R; Connolly, S; Peng, S; Linnehan, J; Bradley-Kennedy, C; Plumb, J M

    2011-05-01

    Oral dabigatran etexilate is indicated for the prevention of stroke and systemic embolism in patients with atrial fibrillation (AF) in whom anticoagulation is appropriate. Based on the RE-LY study we investigated the cost-effectiveness of Health Canada approved dabigatran etexilate dosing (150 mg bid for patients <80 years, 110 mg bid for patients ≥80 years) versus warfarin and "real-world" prescribing (i.e. warfarin, aspirin, or no treatment in a cohort of warfarin-eligible patients) from a Canadian payer perspective. A Markov model simulated AF patients at moderate to high risk of stroke while tracking clinical events [primary and recurrent ischaemic strokes, systemic embolism, transient ischaemic attack, haemorrhage (intracranial, extracranial, and minor), acute myocardial infarction and death] and resulting functional disability. Acute event costs and resulting long-term follow-up costs incurred by disabled stroke survivors were based on a Canadian prospective study, published literature, and national statistics. Clinical events, summarized as events per 100 patient-years, quality-adjusted life years (QALYs), total costs, and incremental cost effectiveness ratios (ICER) were calculated. Over a lifetime, dabigatran etexilate treated patients experienced fewer intracranial haemorrhages (0.49 dabigatran etexilate vs. 1.13 warfarin vs. 1.05 "real-world" prescribing) and fewer ischaemic strokes (4.40 dabigatran etexilate vs. 4.66 warfarin vs. 5.16 "real-world" prescribing) per 100 patient-years. The ICER of dabigatran etexilate was $10,440/QALY versus warfarin and $3,962/QALY versus "real-world" prescribing. This study demonstrates that dabigatran etexilate is a highly cost-effective alternative to current care for the prevention of stroke and systemic embolism among Canadian AF patients.

  1. Interreality in practice: bridging virtual and real worlds in the treatment of posttraumatic stress disorders.

    PubMed

    Riva, Giuseppe; Raspelli, Simona; Algeri, Davide; Pallavicini, Federica; Gorini, Alessandra; Wiederhold, Brenda K; Gaggioli, Andrea

    2010-02-01

    The use of new technologies, particularly virtual reality, is not new in the treatment of posttraumatic stress disorders (PTSD): VR is used to facilitate the activation of the traumatic event during exposure therapy. However, during the therapy, VR is a new and distinct realm, separate from the emotions and behaviors experienced by the patient in the real world: the behavior of the patient in VR has no direct effects on the real-life experience; the emotions and problems experienced by the patient in the real world are not directly addressed in the VR exposure. In this article, we suggest that the use of a new technological paradigm, Interreality, may improve the clinical outcome of PTSD. The main feature of Interreality is a twofold link between the virtual and real worlds: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through 3D shared virtual worlds; biosensors and activity sensors (from the real to the virtual world); and personal digital assistants and/or mobile phones (from the virtual world to the real one). We describe different technologies that are involved in the Interreality vision and its clinical rationale. To illustrate the concept of Interreality in practice, a clinical scenario is also presented and discussed: Rosa, a 55-year-old nurse, involved in a major car accident.

  2. Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Kulikov, A.; Jackson, R.

    2012-12-01

    One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.

  3. A Multitasking General Executive for Compound Continuous Tasks

    ERIC Educational Resources Information Center

    Salvucci, Dario D.

    2005-01-01

    As cognitive architectures move to account for increasingly complex real-world tasks, one of the most pressing challenges involves understanding and modeling human multitasking. Although a number of existing models now perform multitasking in real-world scenarios, these models typically employ customized executives that schedule tasks for the…

  4. Stress Training and Simulator Complexity: Why Sometimes More Is Less

    ERIC Educational Resources Information Center

    Tichon, Jennifer G.; Wallis, Guy M.

    2010-01-01

    Through repeated practice under conditions similar to those in real-world settings, simulator training prepares an individual to maintain effective performance under stressful work conditions. Interfaces offering high fidelity and immersion can more closely reproduce real-world experiences and are generally believed to result in better learning…

  5. Exploring the complexity of inquiry learning in an open-ended problem space

    NASA Astrophysics Data System (ADS)

    Clarke, Jody

    Data-gathering and problem identification are key components of scientific inquiry. However, few researchers have studied how students learn these skills because historically this required a time-consuming, complicated method of capturing the details of learners' data-gathering processes. Nor are classroom settings authentic contexts in which students could exhibit problem identification skills parallel to those involved in deconstructing complex real world situations. In this study of middle school students, because of my access to an innovative technology, I simulated a disease outbreak in a virtual community as a complicated, authentic problem. As students worked through the curriculum in the virtual world, their time-stamped actions were stored by the computer in event-logs. Using these records, I tracked in detail how the student scientists made sense of the complexity they faced and how they identified and investigated the problem using science-inquiry skills. To describe the degree to which students' data collection narrowed and focused on a specific disease over time, I developed a rubric and automated the coding of records in the event-logs. I measured the ongoing development of the students' "systematicity" in investigating the disease outbreak. I demonstrated that coding event-logs is an effective yet non-intrusive way of collecting and parsing detailed information about students' behaviors in real time in an authentic setting. My principal research question was "Do students who are more thoughtful about their inquiry prior to entry into the curriculum demonstrate increased systematicity in their inquiry behavior during the experience, by narrowing the focus of their data-gathering more rapidly than students who enter with lower levels of thoughtfulness about inquiry?" My sample consisted of 403 middle-school students from public schools in the US who volunteered to participate in the River City Project in spring 2008. Contrary to my hypothesis, I found that prior thoughtfulness of inquiry was not a predictor of the subsequent development of systematicity. However, all students did indeed become more systematic in their scientific behavior over time. On average, boys were generally more systematic than girls, but the rates at which systematicity increased with time was identical across the genders.

  6. Generalized event knowledge activation during online sentence comprehension

    PubMed Central

    Metusalem, Ross; Kutas, Marta; Urbach, Thomas P.; Hare, Mary; McRae, Ken; Elman, Jeffrey L.

    2012-01-01

    Recent research has demonstrated that knowledge of real-world eventsplays an important role inguiding online language comprehension. The present study addresses the scope of event knowledge activation during the course of comprehension, specifically investigating whether activation is limited to those knowledge elements that align with the local linguistic context.The present study addresses this issue by analyzing event-related brain potentials (ERPs) recorded as participants read brief scenariosdescribing typical real-world events. Experiment 1 demonstratesthat a contextually anomalous word elicits a reduced N400 if it is generally related to the described event, even when controlling for the degree of association of this word with individual words in the preceding context and with the expected continuation. Experiment 2 shows that this effect disappears when the discourse context is removed.These findings demonstrate that during the course of incremental comprehension, comprehenders activate general knowledge about the described event, even at points at which this knowledge would constitute an anomalous continuation of the linguistic stream. Generalized event knowledge activationcontributes to mental representations of described events, is immediately available to influence language processing, and likely drives linguistic expectancy generation. PMID:22711976

  7. Pre-trained D-CNN models for detecting complex events in unconstrained videos

    NASA Astrophysics Data System (ADS)

    Robinson, Joseph P.; Fu, Yun

    2016-05-01

    Rapid event detection faces an emergent need to process large videos collections; whether surveillance videos or unconstrained web videos, the ability to automatically recognize high-level, complex events is a challenging task. Motivated by pre-existing methods being complex, computationally demanding, and often non-replicable, we designed a simple system that is quick, effective and carries minimal overhead in terms of memory and storage. Our system is clearly described, modular in nature, replicable on any Desktop, and demonstrated with extensive experiments, backed by insightful analysis on different Convolutional Neural Networks (CNNs), as stand-alone and fused with others. With a large corpus of unconstrained, real-world video data, we examine the usefulness of different CNN models as features extractors for modeling high-level events, i.e., pre-trained CNNs that differ in architectures, training data, and number of outputs. For each CNN, we use 1-fps from all training exemplar to train one-vs-rest SVMs for each event. To represent videos, frame-level features were fused using a variety of techniques. The best being to max-pool between predetermined shot boundaries, then average-pool to form the final video-level descriptor. Through extensive analysis, several insights were found on using pre-trained CNNs as off-the-shelf feature extractors for the task of event detection. Fusing SVMs of different CNNs revealed some interesting facts, finding some combinations to be complimentary. It was concluded that no single CNN works best for all events, as some events are more object-driven while others are more scene-based. Our top performance resulted from learning event-dependent weights for different CNNs.

  8. Examining the social ecology of a bar-crawl: An exploratory pilot study.

    PubMed

    Clapp, John D; Madden, Danielle R; Mooney, Douglas D; Dahlquist, Kristin E

    2017-01-01

    Many of the problems associated with alcohol occur after a single drinking event (e.g. drink driving, assault). These acute alcohol problems have a huge global impact and account for a large percentage of unintentional and intentional injuries in the world. Nonetheless, alcohol research and preventive interventions rarely focus on drinking at the event-level since drinking events are complex, dynamic, and methodologically challenging to observe. This exploratory study provides an example of how event-level data may be collected, analyzed, and interpreted. The drinking behavior of twenty undergraduate students enrolled at a large Midwestern public university was observed during a single bar crawl event that is organized by students annually. Alcohol use was monitored with transdermal alcohol devices coupled with ecological momentary assessments and geospatial data. "Small N, Big Data" studies have the potential to advance health behavior theory and to guide real-time interventions. However, such studies generate large amounts of within subject data that can be challenging to analyze and present. This study examined how to visually display event-level data and also explored the relationship between some basic indicators and alcohol consumption.

  9. Activating Event Knowledge

    ERIC Educational Resources Information Center

    Hare, Mary; Jones, Michael; Thomson, Caroline; Kelly, Sarah; McRae, Ken

    2009-01-01

    An increasing number of results in sentence and discourse processing demonstrate that comprehension relies on rich pragmatic knowledge about real-world events, and that incoming words incrementally activate such knowledge. If so, then even outside of any larger context, nouns should activate knowledge of the generalized events that they denote or…

  10. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis.

    PubMed

    Khandelwal, Siddhartha; Wickstrom, Nicholas

    2016-12-01

    Detecting gait events is the key to many gait analysis applications that would benefit from continuous monitoring or long-term analysis. Most gait event detection algorithms using wearable sensors that offer a potential for use in daily living have been developed from data collected in controlled indoor experiments. However, for real-word applications, it is essential that the analysis is carried out in humans' natural environment; that involves different gait speeds, changing walking terrains, varying surface inclinations and regular turns among other factors. Existing domain knowledge in the form of principles or underlying fundamental gait relationships can be utilized to drive and support the data analysis in order to develop robust algorithms that can tackle real-world challenges in gait analysis. This paper presents a novel approach that exhibits how domain knowledge about human gait can be incorporated into time-frequency analysis to detect gait events from long-term accelerometer signals. The accuracy and robustness of the proposed algorithm are validated by experiments done in indoor and outdoor environments with approximately 93 600 gait events in total. The proposed algorithm exhibits consistently high performance scores across all datasets in both, indoor and outdoor environments.

  11. Activity Recognition on Streaming Sensor Data.

    PubMed

    Krishnan, Narayanan C; Cook, Diane J

    2014-02-01

    Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.

  12. The Future of Psychology: Connecting Mind to Brain

    PubMed Central

    Barrett, Lisa Feldman

    2009-01-01

    Psychological states such as thoughts and feelings are real. Brain states are real. The problem is that the two are not real in the same way, creating the mind–brain correspondence problem. In this article, I present a possible solution to this problem that involves two suggestions. First, complex psychological states such as emotion and cognition an be thought of as constructed events that can be causally reduced to a set of more basic, psychologically primitive ingredients that are more clearly respected by the brain. Second, complex psychological categories like emotion and cognition are the phenomena that require explanation in psychology, and, therefore, they cannot be abandoned by science. Describing the content and structure of these categories is a necessary and valuable scientific activity. Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world.—Einstein & Infeld (1938, p. 33) The cardinal passions of our life, anger, love, fear, hate, hope, and the most comprehensive divisions of our intellectual activity, to remember, expect, think, know, dream (and he goes on to say, feel) are the only facts of a subjective order…—James (1890, p. 195) PMID:19844601

  13. Comprehensive Essays for World History Finals.

    ERIC Educational Resources Information Center

    Feldman, Martha J.

    1997-01-01

    Describes a novel approach to comprehensive questions in world history examinations. Recommends using current events as illustrative reference points for complex subjects such as nationalism, liberalism, and international trade. Students receive information packets on the events for several weeks and must relate the subjects to these events. (MJP)

  14. The Magical Activation of Left Amygdala when Reading Harry Potter: An fMRI Study on How Descriptions of Supra-Natural Events Entertain and Enchant

    PubMed Central

    Hsu, Chun-Ting; Jacobs, Arthur M.; Altmann, Ulrike; Conrad, Markus

    2015-01-01

    Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers’ attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network. PMID:25671315

  15. The magical activation of left amygdala when reading Harry Potter: an fMRI study on how descriptions of supra-natural events entertain and enchant.

    PubMed

    Hsu, Chun-Ting; Jacobs, Arthur M; Altmann, Ulrike; Conrad, Markus

    2015-01-01

    Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers' attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network.

  16. Effects of Context on Eye Movements When Reading About Possible and Impossible Events

    PubMed Central

    Warren, Tessa; McConnell, Kerry; Rayner, Keith

    2009-01-01

    Plausibility violations resulting in impossible scenarios lead to earlier and longer lasting eye movement disruption than violations resulting in highly unlikely scenarios (K. Rayner, T. Warren, B. J. Juhasz, & S. P. Liversedge, 2004; T. Warren & K. McConnell, 2007). This could reflect either differences in the timing of availability of different kinds of information (e.g., selectional restrictions, world knowledge, and context) or differences in their relative power to guide semantic interpretation. The authors investigated eye movements to possible and impossible events in real-world and fantasy contexts to determine when contextual information influences detection of impossibility cued by a semantic mismatch between a verb and an argument. Gaze durations on a target word were longer to impossible events independent of context. However, a measure of the time elapsed from first fixating the target word to moving past it showed disruption only in the real-world context. These results suggest that contextual information did not eliminate initial disruption but moderated it quickly thereafter. PMID:18605885

  17. A design rationale for NASA TileWorld

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Swanson, Keith J.; Drummond, Mark E.; Bresina, John L.

    1991-01-01

    Automated systems that can operate in unrestricted real-world domains are still well beyond current computational capabilities. This paper argues that isolating essential problem characteristics found in real-world domains allows for a careful study of how particular control systems operate. By isolating essential problem characteristics and studying their impact on autonomous system performance, we should be able to more quickly deliver systems for practical real-world problems. For our research on planning, scheduling, and control, we have selected three particular domain attributes to study: exogenous events, uncertain action outcome, and metric time. We are not suggesting that studies of these attributes in isolation are sufficient to guarantee the obvious goals of good methodology, brilliant architectures, or first-class results; however, we are suggesting that such isolation facilitates the achievement of these goals. To study these attributes, we have developed the NASA TileWorld. We describe the NASA TileWorld simulator in general terms, present an example NASA TileWorld problem, and discuss some of our motivations and concerns for NASA TileWorld.

  18. Semantic integration of differently asynchronous audio-visual information in videos of real-world events in cognitive processing: an ERP study.

    PubMed

    Liu, Baolin; Wu, Guangning; Wang, Zhongning; Ji, Xiang

    2011-07-01

    In the real world, some of the auditory and visual information received by the human brain are temporally asynchronous. How is such information integrated in cognitive processing in the brain? In this paper, we aimed to study the semantic integration of differently asynchronous audio-visual information in cognitive processing using ERP (event-related potential) method. Subjects were presented with videos of real world events, in which the auditory and visual information are temporally asynchronous. When the critical action was prior to the sound, sounds incongruous with the preceding critical actions elicited a N400 effect when compared to congruous condition. This result demonstrates that semantic contextual integration indexed by N400 also applies to cognitive processing of multisensory information. In addition, the N400 effect is early in latency when contrasted with other visually induced N400 studies. It is shown that cross modal information is facilitated in time when contrasted with visual information in isolation. When the sound was prior to the critical action, a larger late positive wave was observed under the incongruous condition compared to congruous condition. P600 might represent a reanalysis process, in which the mismatch between the critical action and the preceding sound was evaluated. It is shown that environmental sound may affect the cognitive processing of a visual event. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Beyond Event Segmentation: Spatial- and Social-Cognitive Processes in Verb-to-Action Mapping

    ERIC Educational Resources Information Center

    Friend, Margaret; Pace, Amy

    2011-01-01

    The present article investigates spatial- and social-cognitive processes in toddlers' mapping of concepts to real-world events. In 2 studies we explore how event segmentation might lay the groundwork for extracting actions from the event stream and conceptually mapping novel verbs to these actions. In Study 1, toddlers demonstrated the ability to…

  20. Improving multiple sclerosis management and collecting safety information in the real world: the MSDS3D software approach.

    PubMed

    Haase, Rocco; Wunderlich, Maria; Dillenseger, Anja; Kern, Raimar; Akgün, Katja; Ziemssen, Tjalf

    2018-04-01

    For safety evaluation, randomized controlled trials (RCTs) are not fully able to identify rare adverse events. The richest source of safety data lies in the post-marketing phase. Real-world evidence (RWE) and observational studies are becoming increasingly popular because they reflect usefulness of drugs in real life and have the ability to discover uncommon or rare adverse drug reactions. Areas covered: Adding the documentation of psychological symptoms and other medical disciplines, the necessity for a complex documentation becomes apparent. The collection of high-quality data sets in clinical practice requires the use of special documentation software as the quality of data in RWE studies can be an issue in contrast to the data obtained from RCTs. The MSDS3D software combines documentation of patient data with patient management of patients with multiple sclerosis. Following a continuous development over several treatment-specific modules, we improved and expanded the realization of safety management in MSDS3D with regard to the characteristics of different treatments and populations. Expert opinion: eHealth-enhanced post-authorisation safety study may complete the fundamental quest of RWE for individually improved treatment decisions and balanced therapeutic risk assessment. MSDS3D is carefully designed to contribute to every single objective in this process.

  1. The Origin of Complex Quantum Amplitudes

    NASA Astrophysics Data System (ADS)

    Goyal, Philip; Knuth, Kevin H.; Skilling, John

    2009-12-01

    Physics is real. Measurement produces real numbers. Yet quantum mechanics uses complex arithmetic, in which √-1 is necessary but mysteriously relates to nothing else. By applying the same sort of symmetry arguments that Cox [1, 2] used to justify probability calculus, we are now able to explain this puzzle. The dual device/object nature of observation requires us to describe the world in terms of pairs of real numbers about which we never have full knowledge. These pairs combine according to complex arithmetic, using Feynman's rules.

  2. Real-world perceptions of emerging event data recorder (EDR) technologies

    DOT National Transportation Integrated Search

    2002-01-01

    This research focuses on what college-age motorists perceive to be the positive and negative aspects of implementing on-board Event Data Recorders (EDRs) in the highway mode of transport. The achievements and findings offer safety researchers insi...

  3. Confronting Analytical Dilemmas for Understanding Complex Human Interactions in Design-Based Research from a Cultural-Historical Activity Theory (CHAT) Framework

    ERIC Educational Resources Information Center

    Yamagata-Lynch, Lisa C.

    2007-01-01

    Understanding human activity in real-world situations often involves complicated data collection, analysis, and presentation methods. This article discusses how Cultural-Historical Activity Theory (CHAT) can inform design-based research practices that focus on understanding activity in real-world situations. I provide a sample data set with…

  4. Input Devices and Interaction Techniques for VR-Enhanced Medicine

    NASA Astrophysics Data System (ADS)

    Gallo, Luigi; Pietro, Giuseppe De

    Virtual Reality (VR) technologies make it possible to reproduce faithfully real life events in computer-generated scenarios. This approach has the potential to simplify the way people solve problems, since they can take advantage of their real life experiences while interacting in synthetic worlds.

  5. Attention in the real world: toward understanding its neural basis

    PubMed Central

    Peelen, Marius V.; Kastner, Sabine

    2016-01-01

    The efficient selection of behaviorally relevant objects from cluttered environments supports our everyday goals. Attentional selection has typically been studied in search tasks involving artificial and simplified displays. Although these studies have revealed important basic principles of attention, they do not explain how the brain efficiently selects familiar objects in complex and meaningful real-world scenes. Findings from recent neuroimaging studies indicate that real-world search is mediated by ‘what’ and ‘where’ attentional templates that are implemented in high-level visual cortex. These templates represent target-diagnostic properties and likely target locations, respectively, and are shaped by object familiarity, scene context, and memory. We propose a framework for real-world search that incorporates these recent findings and specifies directions for future study. PMID:24630872

  6. Clinical Outcomes from Unselected "Real-World" Patients with Long Coronary Lesion Receiving 40 mm Biodegradable Polymer Coated Sirolimus-Eluting Stent.

    PubMed

    Polavarapu, Anurag; Polavarapu, Raghava Sarma; Prajapati, Jayesh; Thakkar, Kamlesh; Raheem, Asif; Mayall, Tamanpreet; Thakkar, Ashok

    2015-01-01

    Background. Long lesions being implanted with drug-eluting stents (DES) are associated with relatively high restenosis rates and higher incidences of adverse events. Objectives. We aimed to examine the safety and efficacy of the long (40 mm) biodegradable polymer coated Indolimus sirolimus-eluting stent (SES) in real-world patients with long coronary lesions. Methods. This study was observational, nonrandomized, retrospective, and carried out in real-world patients. A total of 258 patients were enrolled for the treatment of long coronary lesions, with 40 mm Indolimus. The primary endpoints in the study were incidence of major adverse cardiac events (MACE), a miscellany of cardiac death, myocardial infarction (MI), target lesion revascularization (TLR) or target vessel revascularization (TVR), and stent thrombosis (ST) up to 6-month follow-up. Results. The study population included higher proportion of males (74.4%) and average age was 53.2 ± 11.0 years. A total of 278 lesions were intervened successfully with 280 stents. The observed MACE at 6-month follow-up was 2.0%, which included 0.8% cardiac death and 1.2% MI. There were no TLR or TVR and ST observed during 6-month follow-up. Conclusions. The long (40 mm) Indolimus stent demonstrated low MACE rate and was proven to be safe and effective treatment for long lesions in "real-world" patients.

  7. Real-World Evidence, Public Participation, and the FDA.

    PubMed

    Schwartz, Jason L

    2017-11-01

    For observers of pharmaceutical regulation and the Food and Drug Administration, these are uncertain times. Events in late 2016 raised concerns that the FDA's evidentiary standards were being weakened, compromising the agency's ability to adequately perform its regulatory and public health responsibilities. Two developments most directly contributed to these fears-the approval of eteplirsen, a treatment for Duchenne muscular dystrophy, against the recommendations of both FDA staff and an advisory committee and the December 2016 signing of the 21st Century Cures Act, which encouraged greater use by the FDA of "real-world" evidence not obtained through randomized controlled trials. The arrival of the Trump administration-with its deregulatory, industry-friendly approach-has only amplified concerns over the future of the FDA. It is too early to know whether the recent developments are truly harbingers of an FDA less likely to prevent unsafe or ineffective products from reaching the market. But elements in the two events-the role of patient narratives in deliberations regarding eteplirsen and the enthusiasm for real-world evidence in the 21st Century Cures Act-raise critical issues for the future of evidence in the FDA's work. The rigorous, inclusive approach under way to consider issues related to real-world evidence provides a model for a similarly needed inquiry regarding public participation in FDA decision-making. © 2017 The Hastings Center.

  8. The audiovisual structure of onomatopoeias: An intrusion of real-world physics in lexical creation.

    PubMed

    Taitz, Alan; Assaneo, M Florencia; Elisei, Natalia; Trípodi, Mónica; Cohen, Laurent; Sitt, Jacobo D; Trevisan, Marcos A

    2018-01-01

    Sound-symbolic word classes are found in different cultures and languages worldwide. These words are continuously produced to code complex information about events. Here we explore the capacity of creative language to transport complex multisensory information in a controlled experiment, where our participants improvised onomatopoeias from noisy moving objects in audio, visual and audiovisual formats. We found that consonants communicate movement types (slide, hit or ring) mainly through the manner of articulation in the vocal tract. Vowels communicate shapes in visual stimuli (spiky or rounded) and sound frequencies in auditory stimuli through the configuration of the lips and tongue. A machine learning model was trained to classify movement types and used to validate generalizations of our results across formats. We implemented the classifier with a list of cross-linguistic onomatopoeias simple actions were correctly classified, while different aspects were selected to build onomatopoeias of complex actions. These results show how the different aspects of complex sensory information are coded and how they interact in the creation of novel onomatopoeias.

  9. Sampling from complex networks using distributed learning automata

    NASA Astrophysics Data System (ADS)

    Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza

    2014-02-01

    A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.

  10. Solving Real World Problems with Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; McLeod, Julie K.

    2015-01-01

    The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…

  11. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    PubMed

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M

    2015-04-01

    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  12. Pattern Formation and Complexity Emergence

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2001-03-01

    Success of nonlinear modelling of pattern formation and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").

  13. Real-world navigation in amnestic mild cognitive impairment: The relation to visuospatial memory and volume of hippocampal subregions.

    PubMed

    Peter, Jessica; Sandkamp, Richard; Minkova, Lora; Schumacher, Lena V; Kaller, Christoph P; Abdulkadir, Ahmed; Klöppel, Stefan

    2018-01-31

    Spatial disorientation is a frequent symptom in Alzheimer's disease and in mild cognitive impairment (MCI). In the clinical routine, spatial orientation is less often tested with real-world navigation but rather with 2D visuoconstructive tasks. However, reports about the association between the two types of tasks are sparse. Additionally, spatial disorientation has been linked to volume of the right hippocampus but it remains unclear whether right hippocampal subregions have differential involvement in real-world navigation. Yet, this would help uncover different functional roles of the subregions, which would have important implications for understanding the neuronal underpinnings of navigation skills. We compared patients with amnestic MCI (aMCI; n = 25) and healthy elderly controls (HC; n = 25) in a real-world navigation task that engaged different spatial processes. The association between real-world navigation and different visuoconstructive tasks was tested (i.e., figures from the Consortium to Establish a Registry for Alzheimer's Disease; CERAD, the Rey-Osterrieth Complex Figure task; and clock drawing). Furthermore, the relation between spatial navigation and volume of right hippocampal subregions was examined. Linear regression and relative weight analysis were applied for statistical analyses. Patients with aMCI were significantly less able to correctly navigate through a route compared to HC but had comparable map drawing and landmark recognition skills. The association between visuoconstructive tasks and real-world navigation was only significant when using the visuospatial memory component of the Rey figure. In aMCI, more volume of the right hippocampal tail was significantly associated with better navigation skills, while volume of the right CA2/3 region was a significant predictor in HC. Standard visuoconstructive tasks (e.g., the CERAD figures or clock drawing) are not sufficient to detect real-world spatial disabilities in aMCI. Consequently, more complex visuoconstructive tasks (i.e., the Rey figure) should be routinely included in the assessment of cognitive functions in the context of AD. Moreover, in those elderly individuals with impaired complex visuospatial memory, route finding behaviour should be evaluated in detail. Regarding the contribution of hippocampal subregions to spatial navigation, the right hippocampal tail seems to be particularly important for patients with aMCI, while the CA2/3 region appears to be more relevant in HC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motifmore » mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.« less

  15. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Steven

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less

  16. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    PubMed Central

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  17. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  18. A Practical Measure for the Complexity of Evolving Seismicity Patterns

    NASA Astrophysics Data System (ADS)

    Goltz, C.

    2005-12-01

    Earthquakes are a "complex" phenomenon. There is, however, no clear definition of what complexity actually is. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns. Such a measurement is desirable, not only for fundamental understanding but also for monitoring and possibly for forecasting. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such a measure of complexity to temporally evolving real-world seismicity patterns. Finally, I discuss the usefulness of the approach and regard the results in view of the occurrence of large earthquakes.

  19. Working memory training may increase working memory capacity but not fluid intelligence.

    PubMed

    Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W

    2013-12-01

    Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.

  20. More stereotypes, please! The limits of 'theory of mind' and the need for further studies on the complexity of real world social interactions.

    PubMed

    Andrews, Kristin

    2017-01-01

    I suggest that the Stereotype Rationality Hypothesis (Jussim 2012) is only partially right. I agree it is rational to rely on stereotypes, but in the complexity of real world social interactions, most of our individuating information invokes additional stereotypes. Despite assumptions to the contrary, there is reason to think theory of mind is not accurate, and social psychology's denial of stereotype accuracy led us toward mindreading/theory of mind - a less accurate account of how we understand other people.

  1. Children's Representation and Imitation of Events: How Goal Organization Influences 3-Year-Old Children's Memory for Action Sequences.

    PubMed

    Loucks, Jeff; Mutschler, Christina; Meltzoff, Andrew N

    2017-09-01

    Children's imitation of adults plays a prominent role in human cognitive development. However, few studies have investigated how children represent the complex structure of observed actions which underlies their imitation. We integrate theories of action segmentation, memory, and imitation to investigate whether children's event representation is organized according to veridical serial order or a higher level goal structure. Children were randomly assigned to learn novel event sequences either through interactive hands-on experience (Study 1) or via storybook (Study 2). Results demonstrate that children's representation of observed actions is organized according to higher level goals, even at the cost of representing the veridical temporal ordering of the sequence. We argue that prioritizing goal structure enhances event memory, and that this mental organization is a key mechanism of social-cognitive development in real-world, dynamic environments. It supports cultural learning and imitation in ecologically valid settings when social agents are multitasking and not demonstrating one isolated goal at a time. Copyright © 2016 Cognitive Science Society, Inc.

  2. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The Fractal Dimensions of Complex Networks

    NASA Astrophysics Data System (ADS)

    Guo, Long; Cai, XU

    2009-08-01

    It is shown that many real complex networks share distinctive features, such as the small-world effect and the heterogeneous property of connectivity of vertices, which are different from random networks and regular lattices. Although these features capture the important characteristics of complex networks, their applicability depends on the style of networks. To unravel the universal characteristics many complex networks have in common, we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the average 'density' (ρ(r)) of complex networks follows a better power-law function as a function of distance r with the exponent df, which is defined as the fractal dimension, in some real complex networks. Furthermore, we study the relation between df and the shortcuts Nadd in small-world networks and the size N in regular lattices. Our present work provides a new perspective to understand the dependence of the fractal dimension df on the complex network structure.

  3. Leveraging Real-World Evidence in Disease-Management Decision-Making with a Total Cost of Care Estimator.

    PubMed

    Nguyen, Thanh-Nghia; Trocio, Jeffrey; Kowal, Stacey; Ferrufino, Cheryl P; Munakata, Julie; South, Dell

    2016-12-01

    Health management is becoming increasingly complex, given a range of care options and the need to balance costs and quality. The ability to measure and understand drivers of costs is critical for healthcare organizations to effectively manage their patient populations. Healthcare decision makers can leverage real-world evidence to explore the value of disease-management interventions in shifting total cost trends. To develop a real-world, evidence-based estimator that examines the impact of disease-management interventions on the total cost of care (TCoC) for a patient population with nonvalvular atrial fibrillation (NVAF). Data were collected from a patient-level real-world evidence data set that uses the IMS PharMetrics Health Plan Claims Database. Pharmacy and medical claims for patients meeting the inclusion or exclusion criteria were combined in longitudinal cohorts with a 180-day preindex and 360-day follow-up period. Descriptive statistics, such as mean and median patient costs and event rates, were derived from a real-world evidence analysis and were used to populate the base-case estimates within the TCoC estimator, an exploratory economic model that was designed to estimate the potential impact of several disease-management activities on the TCoC for a patient population with NVAF. Using Microsoft Excel, the estimator is designed to compare current direct costs of medical care to projected costs by varying assumptions on the impact of disease-management activities and applying the associated changes in cost trends to the affected populations. Disease-management levers are derived from literature-based concepts affecting costs along the NVAF disease continuum. The use of the estimator supports analyses across 4 US geographic regions, age, cost types, and care settings during 1 year. All patients included in the study were continuously enrolled in their health plan (within the IMS PharMetrics Health Plan Claims Database) between July 1, 2010, and June 30, 2012. Patients were included in the final analytic file and were indexed based on (1) the service date of the first claim within the selection window (December 28, 2010-July 11, 2011) with a diagnosis of NVAF, or (2) the service date of the second claim for an NVAF medication of interest during the same selection window. The model estimates the current trends in national benchmark data for a hypothetical health plan with 1 million covered lives. The annual total direct healthcare costs (allowable and patient out-of-pocket costs) of managing patients with NVAF in this hypothetical plan are estimated at $184,981,245 ($25,754 per patient, for 7183 patients). A potential 25% improvement from the base-case disease burden and disease management could translate into TCoC savings from reducing the excess costs related to hypertension (-5.3%) and supporting the use of an appropriate antithrombotic treatment that prevents ischemic stroke (-0.7%) and reduces bleeding events (-0.1%). The use of the TCoC estimator supports population health management by providing real-world evidence benchmark data on NVAF disease burden and by quantifying the potential value of disease-management activities in shifting cost trends.

  4. Leveraging Real-World Evidence in Disease-Management Decision-Making with a Total Cost of Care Estimator

    PubMed Central

    Nguyen, Thanh-Nghia; Trocio, Jeffrey; Kowal, Stacey; Ferrufino, Cheryl P.; Munakata, Julie; South, Dell

    2016-01-01

    Background Health management is becoming increasingly complex, given a range of care options and the need to balance costs and quality. The ability to measure and understand drivers of costs is critical for healthcare organizations to effectively manage their patient populations. Healthcare decision makers can leverage real-world evidence to explore the value of disease-management interventions in shifting total cost trends. Objective To develop a real-world, evidence-based estimator that examines the impact of disease-management interventions on the total cost of care (TCoC) for a patient population with nonvalvular atrial fibrillation (NVAF). Methods Data were collected from a patient-level real-world evidence data set that uses the IMS PharMetrics Health Plan Claims Database. Pharmacy and medical claims for patients meeting the inclusion or exclusion criteria were combined in longitudinal cohorts with a 180-day preindex and 360-day follow-up period. Descriptive statistics, such as mean and median patient costs and event rates, were derived from a real-world evidence analysis and were used to populate the base-case estimates within the TCoC estimator, an exploratory economic model that was designed to estimate the potential impact of several disease-management activities on the TCoC for a patient population with NVAF. Using Microsoft Excel, the estimator is designed to compare current direct costs of medical care to projected costs by varying assumptions on the impact of disease-management activities and applying the associated changes in cost trends to the affected populations. Disease-management levers are derived from literature-based concepts affecting costs along the NVAF disease continuum. The use of the estimator supports analyses across 4 US geographic regions, age, cost types, and care settings during 1 year. Results All patients included in the study were continuously enrolled in their health plan (within the IMS PharMetrics Health Plan Claims Database) between July 1, 2010, and June 30, 2012. Patients were included in the final analytic file and were indexed based on (1) the service date of the first claim within the selection window (December 28, 2010-July 11, 2011) with a diagnosis of NVAF, or (2) the service date of the second claim for an NVAF medication of interest during the same selection window. The model estimates the current trends in national benchmark data for a hypothetical health plan with 1 million covered lives. The annual total direct healthcare costs (allowable and patient out-of-pocket costs) of managing patients with NVAF in this hypothetical plan are estimated at $184,981,245 ($25,754 per patient, for 7183 patients). A potential 25% improvement from the base-case disease burden and disease management could translate into TCoC savings from reducing the excess costs related to hypertension (−5.3%) and supporting the use of an appropriate antithrombotic treatment that prevents ischemic stroke (−0.7%) and reduces bleeding events (−0.1%). Conclusions The use of the TCoC estimator supports population health management by providing real-world evidence benchmark data on NVAF disease burden and by quantifying the potential value of disease-management activities in shifting cost trends. PMID:28465775

  5. Daclatasvir and asunaprevir combination therapy for patients with chronic hepatitis C virus genotype 1b infection in real world.

    PubMed

    Oh, Jae Young; Kim, Byung Seok; Lee, Chang Hyeong; Song, Jeong Eun; Lee, Heon Ju; Park, Jung Gil; Hwang, Jae Seok; Chung, Woo Jin; Jang, Byoung Kuk; Kweon, Young Oh; Tak, Won Young; Park, Soo Young; Jang, Se Young; Suh, Jeong Ill; Kwak, Sang Gyu

    2018-05-25

    Previous studies have reported a high rate of sustained virologic response (SVR) and a low rate of serious adverse events with the use of daclatasvir (DCV) and asunaprevir (ASV) combination therapy. We evaluated the efficacy and safety of DCV and ASV combination therapy for patients with chronic hepatitis C virus (HCV) genotype 1b infection in real world. We enrolled 278 patients (184 treatment-naïve patients) from five hospitals in Daegu and Gyeongsangbuk-do. We evaluated the rates of rapid virologic response (RVR), end-of-treatment response (ETR), and SVR at 12 weeks after completion of treatment (SVR12). Furthermore, we investigated the rate of adverse events and predictive factors of SVR12 failure. The mean age of patients was 59.5 ± 10.6 years, and 140 patients (50.2%) were men. Seventy-seven patients had cirrhosis. Baseline information regarding nonstructural protein 5A (NS5A) sequences was available in 268 patients. Six patients presented with pretreatment NS5A resistance-associated variants. The RVR and the ETR rates were 96.6% (258/267) and 95.2% (223/232), respectively. The overall SVR12 rate was 91.6% (197/215). Adverse events occurred in 17 patients (7.9%). Six patients discontinued treatment because of liver enzyme elevation (n = 4) and severe nausea (n = 2). Among these, four achieved SVR12. Other adverse events observed were fatigue, headache, diarrhea, dizziness, loss of appetite, skin rash, and dyspnea. Univariate analysis did not show significant predictive factors of SVR12 failure. DCV and ASV combination therapy showed high rates of RVR, ETR, and SVR12 in chronic HCV genotype 1b-infected patients in real world and was well tolerated without serious adverse events.

  6. MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms.

    PubMed

    Shao, Ning; Jiang, Shi-Meng; Zhang, Miao; Wang, Jing; Guo, Shu-Juan; Li, Yang; Jiang, He-Wei; Liu, Cheng-Xi; Zhang, Da-Bing; Yang, Li-Tao; Tao, Sheng-Ce

    2014-01-21

    The monitoring of genetically modified organisms (GMOs) is a primary step of GMO regulation. However, there is presently a lack of effective and high-throughput methodologies for specifically and sensitively monitoring most of the commercialized GMOs. Herein, we developed a multiplex amplification on a chip with readout on an oligo microarray (MACRO) system specifically for convenient GMO monitoring. This system is composed of a microchip for multiplex amplification and an oligo microarray for the readout of multiple amplicons, containing a total of 91 targets (18 universal elements, 20 exogenous genes, 45 events, and 8 endogenous reference genes) that covers 97.1% of all GM events that have been commercialized up to 2012. We demonstrate that the specificity of MACRO is ~100%, with a limit of detection (LOD) that is suitable for real-world applications. Moreover, the results obtained of simulated complex samples and blind samples with MACRO were 100% consistent with expectations and the results of independently performed real-time PCRs, respectively. Thus, we believe MACRO is the first system that can be applied for effectively monitoring the majority of the commercialized GMOs in a single test.

  7. Identifying important nodes by adaptive LeaderRank

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Wang, Pei

    2017-03-01

    Spreading process is a common phenomenon in complex networks. Identifying important nodes in complex networks is of great significance in real-world applications. Based on the spreading process on networks, a lot of measures have been proposed to evaluate the importance of nodes. However, most of the existing measures are appropriate to static networks, which are fragile to topological perturbations. Many real-world complex networks are dynamic rather than static, meaning that the nodes and edges of such networks may change with time, which challenge numerous existing centrality measures. Based on a new weighted mechanism and the newly proposed H-index and LeaderRank (LR), this paper introduces a variant of the LR measure, called adaptive LeaderRank (ALR), which is a new member of the LR-family. Simulations on six real-world networks reveal that the new measure can well balance between prediction accuracy and robustness. More interestingly, the new measure can better adapt to the adjustment or local perturbations of network topologies, as compared with the existing measures. By discussing the detailed properties of the measures from the LR-family, we illustrate that the ALR has its competitive advantages over the other measures. The proposed algorithm enriches the measures to understand complex networks, and may have potential applications in social networks and biological systems.

  8. Data quality assessment for comparative effectiveness research in distributed data networks

    PubMed Central

    Brown, Jeffrey; Kahn, Michael; Toh, Sengwee

    2015-01-01

    Background Electronic health information routinely collected during healthcare delivery and reimbursement can help address the need for evidence about the real-world effectiveness, safety, and quality of medical care. Often, distributed networks that combine information from multiple sources are needed to generate this real-world evidence. Objective We provide a set of field-tested best practices and a set of recommendations for data quality checking for comparative effectiveness research (CER) in distributed data networks. Methods Explore the requirements for data quality checking and describe data quality approaches undertaken by several existing multi-site networks. Results There are no established standards regarding how to evaluate the quality of electronic health data for CER within distributed networks. Data checks of increasing complexity are often employed, ranging from consistency with syntactic rules to evaluation of semantics and consistency within and across sites. Temporal trends within and across sites are widely used, as are checks of each data refresh or update. Rates of specific events and exposures by age group, sex, and month are also common. Discussion Secondary use of electronic health data for CER holds promise but is complex, especially in distributed data networks that incorporate periodic data refreshes. The viability of a learning health system is dependent on a robust understanding of the quality, validity, and optimal secondary uses of routinely collected electronic health data within distributed health data networks. Robust data quality checking can strengthen confidence in findings based on distributed data network. PMID:23793049

  9. Brazilian exchange rate complexity: Financial crisis effects

    NASA Astrophysics Data System (ADS)

    Piqueira, José Roberto C.; Mortoza, Letícia Pelluci D.

    2012-04-01

    With the financial market globalization, foreign investments became vital for the economies, mainly in emerging countries. In the last decades, Brazilian exchange rates appeared as a good indicator to measure either investors' confidence or risk aversion. Here, some events of global or national financial crisis are analyzed, trying to understand how they influenced the "dollar-real" rate evolution. The theoretical tool to be used is the López-Mancini-Calbet (LMC) complexity measure that, applied to real exchange rate data, has shown good fitness between critical events and measured patterns.

  10. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis.

    PubMed

    Lancaster, Lisa H; de Andrade, Joao A; Zibrak, Joseph D; Padilla, Maria L; Albera, Carlo; Nathan, Steven D; Wijsenbeek, Marlies S; Stauffer, John L; Kirchgaessler, Klaus-Uwe; Costabel, Ulrich

    2017-12-31

    Pirfenidone is one of two approved therapies for the treatment of idiopathic pulmonary fibrosis (IPF). Randomised controlled clinical trials and subsequent post hoc analyses have demonstrated that pirfenidone reduces lung function decline, decreases mortality and improves progression-free survival. Long-term extension trials, registries and real-world studies have also shown similar treatment effects with pirfenidone. However, for patients with IPF to obtain the maximum benefits of pirfenidone treatment, the potential adverse events (AEs) associated with pirfenidone need to be managed. This review highlights the well-known and established safety profile of pirfenidone based on randomised controlled clinical trials and real-world data. Key strategies for preventing and managing the most common pirfenidone-related AEs are described, with the goal of maximising adherence to pirfenidone with minimal AEs. Copyright ©ERS 2017.

  11. Preliminary observations on the impact of complex stress histories on sandstone response to salt weathering: laboratory simulations of process combinations

    NASA Astrophysics Data System (ADS)

    McCabe, S.; Smith, B. J.; Warke, P. A.

    2007-03-01

    Historic sandstone structures carry an inheritance, or a ‘memory’, of past stresses that the stone has undergone since its placement in a façade. This inheritance, which conditions present day performance, may be made up of long-term exposure to a combination of low magnitude background environmental factors (for example, salt weathering, temperature and moisture cycling) and, superimposed upon these, less frequent but potentially high magnitude events or ‘exceptional’ factors (for example, lime rendering, severe frost events, fire). The impact of complex histories on the decay pathways of historic sandstone is not clearly understood, but this paper seeks to improve that understanding through the use of a laboratory ‘process combination’ study. Blocks of quartz sandstone (Peakmoor, from NW England) were divided into subsets that experienced different histories (lime rendering and removal, fire and freeze-thaw cycles in isolation and combination) that reflected the event timeline of a real medieval sandstone monument in NE Ireland, Bonamargy Friary (McCabe et al. 2006b). These subsets were then subject to salt weathering cycles using a 10% salt solution of NaCl and MgSO4 that represents the ‘every-day’ stress environment of, for example, sandstone structures in coastal, or polluted urban, location. Block response to salt weathering was monitored by collecting, drying and weighing the debris that was released as blocks were immersed in the salt solution at the beginning of each cycle. The results illustrate the complexity of the stone decay system, showing that seemingly small variations in stress history can produce divergent response to salt weathering cycles. Applied to real-world historic sandstone structures, this concept may help to explain the spatial and temporal variability of sandstone response to background environmental factors on a single façade, and encourage conservators to include the role of stress inheritance when selecting and implementing conservation strategies.

  12. Post-Marketing Safety Surveillance of the Salvia Miltiorrhiza Depside Salt for Infusion: A Real World Study.

    PubMed

    Yan, Ying-Ying; Yang, Yi-Heng; Wang, Wei-Wei; Pan, Yu-Ting; Zhan, Si-Yan; Sun, Ming-Yang; Zhang, Hong; Zhai, Suo-Di

    2017-01-01

    Salvia Miltiorrhiza Depside Salt for Infusion (SMDS) is made of a group of highly purified listed drugs. However, its safety data is still reported limitedly. Compared with the clinical trials, its safety in the real world setting is barely assessed. To investigate the safety issues, including adverse events (AEs), adverse events related to SMDS (ADEs), and adverse drug reactions (ADRs) of the SMDS in the real world clinical practice. This is a prospective, multicenter, pharmacist-led, cohort study in the real world setting. Consecutive patients prescribed with SMDS were all included in 36 sites. Pharmacists were well trained to standardized collect the patients information, including demographics, medical history, prescribing patterns of SMDS, combined medications, adverse events, laboratory investigations, outcomes of the treatment when discharge, and interventions by pharmacists. Adverse events and adverse drug reactions were collected in details. Multivariate possion regression analysis was applied to identify risk factors associated with ADEs using the significance level (α) 0.05. ClinicalTrials.gov Identifier: NCT01872520. Thirty six hospitals were participated in the study and 30180 consecutive inpatients were included. The median age was 62 (interquartile range [IQR], 50-73) years, and male was 17384 (57.60%) among the 30180 patients. The incidences of the AEs, ADEs and ADRs were 6.40%, 1.57% and 0.79%, respectively. There were 9 kinds of new ADEs which were not on the approved label found in the present study. According to the multivariate analysis, male (RR = 1.381, P = 0.009, 95%CI [1.085~1.759]), more concomitant medications (RR = 1.049, P<0.001, 95%CI [1.041~1.057]), longer duration of SMDS therapy (RR = 1.027, P<0.001, 95%CI [1.013~1.041]), higher drug concentration (RR = 1.003, P = 0.014, 95%CI [1.001~1.006]), and resolvent unapproved (RR = 1.900, P = 0.002, 95%CI [1.260~2.866]) were the independent risk factors of the ADEs. Moreover, following the approved indication (RR = 0.655, P<0.001, 95%CI [0.532~0.807]) was associated with lower incidence of ADEs. SMDS was well tolerated in the general population. The incidences of the AEs, ADEs and ADRs were 6.40%, 1.57% and 0.79%, respectively. Several risk factors of its ADEs have been identified. It is recommended to follow the instructions when prescribing and administrating SMDS in the real world clinical practice.

  13. RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem

    NASA Astrophysics Data System (ADS)

    Tadokoro, Satoshi; Kitano, Hiroaki; Takahashi, Tomoichi; Noda, Itsuki; Matsubara, Hitoshi; Shinjoh, Atsushi; Koto, Tetsuo; Takeuchi, Ikuo; Takahashi, Hironao; Matsuno, Fumitoshi; Hatayama, Mitsunori; Nobe, Jun; Shimada, Susumu

    2000-07-01

    This paper introduces the RoboCup-Rescue Simulation Project, a contribution to the disaster mitigation, search and rescue problem. A comprehensive urban disaster simulator is constructed on distributed computers. Heterogeneous intelligent agents such as fire fighters, victims and volunteers conduct search and rescue activities in this virtual disaster world. A real world interface integrates various sensor systems and controllers of infrastructures in the real cities with the real world. Real-time simulation is synchronized with actual disasters, computing complex relationship between various damage factors and agent behaviors. A mission-critical man-machine interface provides portability and robustness of disaster mitigation centers, and augmented-reality interfaces for rescue in real disasters. It also provides a virtual- reality training function for the public. This diverse spectrum of RoboCup-Rescue contributes to the creation of the safer social system.

  14. Multiple Kernel Learning for Heterogeneous Anomaly Detection: Algorithm and Aviation Safety Case Study

    NASA Technical Reports Server (NTRS)

    Das, Santanu; Srivastava, Ashok N.; Matthews, Bryan L.; Oza, Nikunj C.

    2010-01-01

    The world-wide aviation system is one of the most complex dynamical systems ever developed and is generating data at an extremely rapid rate. Most modern commercial aircraft record several hundred flight parameters including information from the guidance, navigation, and control systems, the avionics and propulsion systems, and the pilot inputs into the aircraft. These parameters may be continuous measurements or binary or categorical measurements recorded in one second intervals for the duration of the flight. Currently, most approaches to aviation safety are reactive, meaning that they are designed to react to an aviation safety incident or accident. In this paper, we discuss a novel approach based on the theory of multiple kernel learning to detect potential safety anomalies in very large data bases of discrete and continuous data from world-wide operations of commercial fleets. We pose a general anomaly detection problem which includes both discrete and continuous data streams, where we assume that the discrete streams have a causal influence on the continuous streams. We also assume that atypical sequence of events in the discrete streams can lead to off-nominal system performance. We discuss the application domain, novel algorithms, and also discuss results on real-world data sets. Our algorithm uncovers operationally significant events in high dimensional data streams in the aviation industry which are not detectable using state of the art methods

  15. Meet Mai-Anh Ha | NREL

    Science.gov Websites

    find the best versions of the materials to guide experimentalists. "The world is complex," specifics," she says, "and then you can go from modeling into real-world applications." All to then choke me in my car," she says. Instead, she envisions a world filled with fuel cell cars

  16. Warfarin for prevention of thromboembolism in atrial fibrillation: comparison of patient characteristics and outcomes of the "Real-World" Michigan Anticoagulation Quality Improvement Initiative (MAQI2) registry to the RE-LY, ROCKET-AF, and ARISTOTLE trials.

    PubMed

    Hughey, Andrew B; Gu, Xiaokui; Haymart, Brian; Kline-Rogers, Eva; Almany, Steve; Kozlowski, Jay; Besley, Dennis; Krol, Gregory D; Ahsan, Syed; Kaatz, Scott; Froehlich, James B; Barnes, Geoffrey D

    2018-06-14

    Randomized controlled trials (RCTs) examining warfarin use for stroke prevention in atrial fibrillation (AF) may not accurately reflect real-world populations. We aimed to determine the representativeness of the RCT populations to real-world patients and to describe differences in the characteristics of trial populations from trial eligible patients in a real-world setting. We hypothesized that a significant fraction of real-world patients would not qualify for the RE-LY, ROCKET-AF, and ARISTOTLE trials and that real-world patients qualifying for the studies may have more strokes and bleeding events. We compared the inclusion and exclusion criteria, patient characteristics, and clinical outcomes from RE-LY, ROCKET-AF, and ARISTOTLE against data from the Michigan Anticoagulation Quality Improvement Initiative (MAQI 2 ), a regional network of six community- and academic-based anticoagulation clinics. Of the 1446 non-valvular AF patients in the MAQI 2 registry taking warfarin, approximately 40-60% would meet the selection criteria used in RE-LY (788, 54.5%), ROCKET-AF (566, 39.1%), and ARISTOTLE (866, 59.9%). The most common reasons for exclusion from one or more trial were anemia (15.1%), other concurrent medications (11.2%), and chronic kidney disease (9.4%). Trial-eligible MAQI 2 patients were older, more frequently female, with a higher rate of paroxysmal AF, and lower rates of congestive heart failure, previous stroke, and previous myocardial infarction than the trial populations. MAQI 2 patients eligible for each trial had a lower rate of stroke and similar rate of major bleeding than was observed in the trials. A sizable proportion of real-world AF patients managed in anticoagulation clinics would not have been eligible for the RE-LY, ROCKET-AF, and ARISOTLE trials. The expected stroke risk reduction and bleeding risk among real-world AF patients on warfarin may not be congruent with published clinical trial data.

  17. Web Video Event Recognition by Semantic Analysis From Ubiquitous Documents.

    PubMed

    Yu, Litao; Yang, Yang; Huang, Zi; Wang, Peng; Song, Jingkuan; Shen, Heng Tao

    2016-12-01

    In recent years, the task of event recognition from videos has attracted increasing interest in multimedia area. While most of the existing research was mainly focused on exploring visual cues to handle relatively small-granular events, it is difficult to directly analyze video content without any prior knowledge. Therefore, synthesizing both the visual and semantic analysis is a natural way for video event understanding. In this paper, we study the problem of Web video event recognition, where Web videos often describe large-granular events and carry limited textual information. Key challenges include how to accurately represent event semantics from incomplete textual information and how to effectively explore the correlation between visual and textual cues for video event understanding. We propose a novel framework to perform complex event recognition from Web videos. In order to compensate the insufficient expressive power of visual cues, we construct an event knowledge base by deeply mining semantic information from ubiquitous Web documents. This event knowledge base is capable of describing each event with comprehensive semantics. By utilizing this base, the textual cues for a video can be significantly enriched. Furthermore, we introduce a two-view adaptive regression model, which explores the intrinsic correlation between the visual and textual cues of the videos to learn reliable classifiers. Extensive experiments on two real-world video data sets show the effectiveness of our proposed framework and prove that the event knowledge base indeed helps improve the performance of Web video event recognition.

  18. Are We Ready for Real-world Neuroscience?

    PubMed

    Matusz, Pawel J; Dikker, Suzanne; Huth, Alexander G; Perrodin, Catherine

    2018-06-19

    Real-world environments are typically dynamic, complex, and multisensory in nature and require the support of top-down attention and memory mechanisms for us to be able to drive a car, make a shopping list, or pour a cup of coffee. Fundamental principles of perception and functional brain organization have been established by research utilizing well-controlled but simplified paradigms with basic stimuli. The last 30 years ushered a revolution in computational power, brain mapping, and signal processing techniques. Drawing on those theoretical and methodological advances, over the years, research has departed more and more from traditional, rigorous, and well-understood paradigms to directly investigate cognitive functions and their underlying brain mechanisms in real-world environments. These investigations typically address the role of one or, more recently, multiple attributes of real-world environments. Fundamental assumptions about perception, attention, or brain functional organization have been challenged-by studies adapting the traditional paradigms to emulate, for example, the multisensory nature or varying relevance of stimulation or dynamically changing task demands. Here, we present the state of the field within the emerging heterogeneous domain of real-world neuroscience. To be precise, the aim of this Special Focus is to bring together a variety of the emerging "real-world neuroscientific" approaches. These approaches differ in their principal aims, assumptions, or even definitions of "real-world neuroscience" research. Here, we showcase the commonalities and distinctive features of the different "real-world neuroscience" approaches. To do so, four early-career researchers and the speakers of the Cognitive Neuroscience Society 2017 Meeting symposium under the same title answer questions pertaining to the added value of such approaches in bringing us closer to accurate models of functional brain organization and cognitive functions.

  19. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.

    PubMed

    Khandelwal, Siddhartha; Wickström, Nicholas

    2017-01-01

    Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Complexity management theory: motivation for ideological rigidity and social conflict.

    PubMed

    Peterson, Jordan B; Flanders, Joseph L

    2002-06-01

    We are doomed to formulate conceptual structures that are much simpler than the complex phenomena they are attempting to account for. These simple conceptual structures shield us, pragmatically, from real-world complexity, but also fail, frequently, as some aspect of what we did not take into consideration makes itself manifest. The failure of our concepts dysregulates our emotions and generates anxiety, necessarily, as the unconstrained world is challenging and dangerous. Such dysregulation can turn us into rigid, totalitarian dogmatists, as we strive to maintain the structure of our no longer valid beliefs. Alternatively, we can face the underlying complexity of experience, voluntarily, gather new information, and recast and reconfigure the structures that underly our habitable worlds.

  1. The Worldviews Network: Innovative Strategies for Increasing Climate and Ecological Literacy in Your Community

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Yu, K.; McConville, D.; Sickler, J.; "Irving, Lindsay", L. S.; Gardiner, N.; Hamilton, H.

    2011-12-01

    Informal science Institutions (ISI) are in the unique position to convene and support community dialogues surrounding local ecological impacts of global change. The Worldviews Network-a collaboration between museums, scientists, and community-based organizations-is developing and testing innovative approaches for promoting and encouraging ecological literacy with the American public. In this session, we will share strategies for sparking and sustaining dialogue and action in local communities through high-impact visual presentations and real-world examples of successful projects that are increasing the healthy functioning of regional and global ecosystems. Educating the public about interconnected global change issues can be a daunting task. ISIs can help communities by facilitating dialogues about realistic and regionally relevant approaches for systemically addressing global challenges. Managing the complexity of these challenges requires going far beyond the standard prescriptions for behavior change; it requires inspiring participants with positive examples of system-wide solutions as well as actively involving the audience in scientifically informed design processes. This session will demonstrate how you can implement and sustain these community dialogues, using real-world examples from our partners' national events. We present visualization story templates and a model for facilitating dialogues that can be adapted at your institution. Based on video and written assessment feedback from visitors of our first Worldviews events, we will present initial evaluation findings about the impact that these strategies are having on our audiences and ISI partners. These findings show that engaging the public and NGO partners in sustainability and design dialogues is a powerful way to maintain the relevance of ISIs within their communities.

  2. Emotional Reactivity and Regulation in Anxious and Non-anxious Youth: A Cell-Phone Ecological Momentary Assessment Study

    PubMed Central

    Tan, Patricia Z.; Forbes, Erika E.; Dahl, Ronald E.; Ryan, Neal D.; Siegle, Greg J.; Ladouceur, Cecile D.; Silk, Jennifer S.

    2011-01-01

    Background Reviews have highlighted anxious youths’ affective disturbances, specifically, elevated negative emotions and reliance on ineffective emotion regulation strategies. However, no study has examined anxious youth’s emotional reactivity and regulation in real-world contexts. Methods This study utilized an ecological momentary assessment approach to compare real-world emotional experiences of 65 youth with generalized anxiety disorder, social anxiety disorder, or social phobia (ANX) and 65 age-matched healthy controls (CON), ages 9–13 years. Results Hierarchical linear models revealed that ANX reported higher levels of average past-hour peak intensity of nervous, sad, and upset emotions than CON youth but similar levels during momentary reports of current emotion. As expected, ANX youth reported more frequent physiological reactions in response to a negative event; however there were no group differences in how frequently they used cognitive-behavioral strategies. Avoidance, distraction, and problem-solving were associated with the down-regulation of all negative emotions except nervousness for both ANX and CON youth; however, group differences emerged for acceptance, rumination, and physiological responding. Conclusions In real-world contexts, ANX youth do not report higher levels of momentary negative emotions but do report heightened negative emotions in response to challenging events. Moreover, ANX youth report no differences in how frequently they use adaptive regulatory strategies but are more likely to have physiological responses to challenging events. They are also less effective at using some strategies to down-regulate negative emotion than CON youth. PMID:22176136

  3. Multi-layered reasoning by means of conceptual fuzzy sets

    NASA Technical Reports Server (NTRS)

    Takagi, Tomohiro; Imura, Atsushi; Ushida, Hirohide; Yamaguchi, Toru

    1993-01-01

    The real world consists of a very large number of instances of events and continuous numeric values. On the other hand, people represent and process their knowledge in terms of abstracted concepts derived from generalization of these instances and numeric values. Logic based paradigms for knowledge representation use symbolic processing both for concept representation and inference. Their underlying assumption is that a concept can be defined precisely. However, as this assumption hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts. Thus symbolic processing has essential problems from a practical point of view of applications in the real world. In contrast, fuzzy set theory can be viewed as a stronger and more practical notation than formal, logic based theories because it supports both symbolic processing and numeric processing, connecting the logic based world and the real world. In this paper, we propose multi-layered reasoning by using conceptual fuzzy sets (CFS). The general characteristics of CFS are discussed along with upper layer supervision and context dependent processing.

  4. Real-World Evidence In Support Of Precision Medicine: Clinico-Genomic Cancer Data As A Case Study.

    PubMed

    Agarwala, Vineeta; Khozin, Sean; Singal, Gaurav; O'Connell, Claire; Kuk, Deborah; Li, Gerald; Gossai, Anala; Miller, Vincent; Abernethy, Amy P

    2018-05-01

    The majority of US adult cancer patients today are diagnosed and treated outside the context of any clinical trial (that is, in the real world). Although these patients are not part of a research study, their clinical data are still recorded. Indeed, data captured in electronic health records form an ever-growing, rich digital repository of longitudinal patient experiences, treatments, and outcomes. Likewise, genomic data from tumor molecular profiling are increasingly guiding oncology care. Linking real-world clinical and genomic data, as well as information from other co-occurring data sets, could create study populations that provide generalizable evidence for precision medicine interventions. However, the infrastructure required to link, ensure quality, and rapidly learn from such composite data is complex. We outline the challenges and describe a novel approach to building a real-world clinico-genomic database of patients with cancer. This work represents a case study in how data collected during routine patient care can inform precision medicine efforts for the population at large. We suggest that health policies can promote innovation by defining appropriate uses of real-world evidence, establishing data standards, and incentivizing data sharing.

  5. Caffeine enhances real-world language processing: evidence from a proofreading task.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Rapp, David N; Ditman, Tali; Taylor, Holly A

    2012-03-01

    Caffeine has become the most prevalently consumed psychostimulant in the world, but its influences on daily real-world functioning are relatively unknown. The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a commonplace language task that required readers to identify and correct 4 error types in extended discourse: simple local errors (misspelling 1- to 2-syllable words), complex local errors (misspelling 3- to 5-syllable words), simple global errors (incorrect homophones), and complex global errors (incorrect subject-verb agreement and verb tense). In 2 placebo-controlled, double-blind studies using repeated-measures designs, we found higher detection and repair rates for complex global errors, asymptoting at 200 mg in low consumers (Experiment 1) and peaking at 400 mg in high consumers (Experiment 2). In both cases, covariate analyses demonstrated that arousal state mediated the relationship between caffeine consumption and the detection and repair of complex global errors. Detection and repair rates for the other 3 error types were not affected by caffeine consumption. Taken together, we demonstrate that caffeine has differential effects on error detection and repair as a function of dose and error type, and this relationship is closely tied to caffeine's effects on subjective arousal state. These results support the notion that central nervous system stimulants may enhance global processing of language-based materials and suggest that such effects may originate in caffeine-related right hemisphere brain processes. Implications for understanding the relationships between caffeine consumption and real-world cognitive functioning are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  6. Eating behavior: lessons from the real world of humans.

    PubMed

    de Castro, J M

    2000-10-01

    Food intake by normal humans has been investigated both in the laboratory and under free-living conditions in the natural environment. For measurement of real-world intake, the diet-diary technique is imperfect and tends to underestimate actual intakes but it appears to be sensitive, can detect subtle influences on eating behavior, and produces reliable and valid measures. Research studies in the real world show the multivariate richness of the natural environment, which allows investigation of the complexities of intake regulation, and even causation can be investigated. Real-world research can overcome some of the weaknesses of laboratory studies, where constraints on eating are often removed or missing, facilitatory influences on eating are often controlled or eliminated, the importance of variables can be overestimated, and important influences can be missed because of the short durations of the studies. Real-world studies have shown a wide array of physiologic, psychological, and social variables that can have potent and immediate effects on intake. Compensatory mechanisms, including some that operate with a 2- to 3-d delay, adjust for prior excesses. Heredity affects all aspect of food-intake regulation, from the determination of body size to the subtleties of the individual preferences and social proclivities and the extent to which environmental factors affect the individual. Hence, real-world research teaches valuable lessons, and much more is needed to complement laboratory studies.

  7. Conceptual Integration of Arithmetic Operations with Real-World Knowledge: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Guthormsen, Amy M.; Fisher, Kristie J.; Bassok, Miriam; Osterhout, Lee; DeWolf, Melissa; Holyoak, Keith J.

    2016-01-01

    Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)--N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving…

  8. Problem-Based Service Learning with a Heart: Organizational and Student Expectations and Experiences in a Postgraduate Not-for-Profit Workshop Event

    ERIC Educational Resources Information Center

    McDonald, Sharyn; Ogden-Barnes, Stephen

    2013-01-01

    Service learning and problem-based learning (PBL) are distinct, yet related educational approaches. When collaborative learning events which encourage the application of the PBL principles to real world challenges faced by Not-For-Profit organizations (NFPs), these learning approaches become potentially synergistic. However, there is limited…

  9. Cost-effectiveness of dabigatran versus vitamin K antagonists for the prevention of stroke in patients with atrial fibrillation: a French payer perspective.

    PubMed

    Chevalier, Julie; Delaitre, Olivier; Hammès, Florence; de Pouvourville, Gérard

    2014-01-01

    Atrial fibrillation is the main cause of stroke, but the risk can be reduced, usually with vitamin K antagonists (VKAs) such as warfarin. The RE-LY atrial fibrillation study demonstrated that the rates of stroke and systemic embolism with dabigatran (an oral direct thrombin inhibitor) were similar to or lower than those with warfarin. To estimate the cost-effectiveness, from a French payer perspective, of dabigatran (150 or 110mg bid for patients

  10. The Role of Temporal Trends in Growing Networks

    PubMed Central

    Ruppin, Eytan; Shavitt, Yuval

    2016-01-01

    The rich get richer principle, manifested by the Preferential attachment (PA) mechanism, is widely considered one of the major factors in the growth of real-world networks. PA stipulates that popular nodes are bound to be more attractive than less popular nodes; for example, highly cited papers are more likely to garner further citations. However, it overlooks the transient nature of popularity, which is often governed by trends. Here, we show that in a wide range of real-world networks the recent popularity of a node, i.e., the extent by which it accumulated links recently, significantly influences its attractiveness and ability to accumulate further links. We proceed to model this observation with a natural extension to PA, named Trending Preferential Attachment (TPA), in which edges become less influential as they age. TPA quantitatively parametrizes a fundamental network property, namely the network’s tendency to trends. Through TPA, we find that real-world networks tend to be moderately to highly trendy. Networks are characterized by different susceptibilities to trends, which determine their structure to a large extent. Trendy networks display complex structural traits, such as modular community structure and degree-assortativity, occurring regularly in real-world networks. In summary, this work addresses an inherent trait of complex networks, which greatly affects their growth and structure, and develops a unified model to address its interaction with preferential attachment. PMID:27486847

  11. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    PubMed Central

    Moon, Hankyu; Lu, Tsai-Ching

    2015-01-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of—how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description — of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible. PMID:25822423

  12. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    NASA Astrophysics Data System (ADS)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  13. Cost-effectiveness of dabigatran etexilate for the prevention of stroke and systemic embolism in atrial fibrillation in Taiwan.

    PubMed

    Chang, Chia-Hsien; Yang, Yea-Huei Kao; Chen, Jyh-Hong; Lin, Li-Jen

    2014-05-01

    Economic evaluation of dabigatran, a new anti-antithrombotic agent, is done mostly in Western countries. It remains to be seen whether dabigatran will be cost effective in a practice environment where warfarin is significantly underused and the costs of both warfarin and international normalized ration INR monitoring are cheap. We performed a cost-effectiveness analysis with a Markov model to evaluate the value of dabigatran to prevent stroke and systemic embolism in patients with atrial fibrillation (AF) in Taiwan. Dabigatran was given through sequential dosing, where patients<80 years old received 150 mg of dabigatran twice a day and the dosage was reduced to 110 mgs for patients ≥ 80 years old. Dabigatran was compared with warfarin under two scenarios: the "real-world adjusted-dose warfarin" assuming all AF patients eligible for warfarin were given the medication and maintained at the INR observed in routine clinical practice in Taiwan, and the "real-world prescribing behaviour" similar to the treatment with antithrombotics in real-world practice in Taiwan, where eligible patients could receive warfarin, aspirin, or no treatment. The percentage of AF patients who received warfarin, aspirin or no treatment in Taiwan was 16%, 62% and 22%, respectively. The event rates of ischemic stroke per 100 patient-years were 4.5, 8.0, and 6.0 for sequential dabigatran, real-world prescribing behaviour and real-world warfarin use, respectively. The incremental cost-effectiveness ratio was $280 US per quality-adjusted-year (QALY) in the real-world prescribing scenario and $10,551 US/QALY in real-word warfarin use. Dabigatran was highly cost-effective in a clinical practice setting where warfarin has been significantly underused. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Real change in the real world: an achievable goal.

    PubMed

    Friedman, Robert M

    2010-03-01

    This commentary builds on the papers presented at the Vanderbilt Conference by emphasizing the importance of better understanding the process of change-making if real change in the real world is to be achieved. The commentary reviews several frameworks and research findings related to achieving large-scale sustainable change that benefits children and families. It calls for the application of systems thinking as a complement to the more micro-level research that was presented at the Vanderbilt conference. Such an approach would have implications for framing of the issue, for the strategies that are taken to try to achieve change, and for research/evaluation methods for studying complex, dynamic, nonlinear systems.

  15. Building an intelligent tutoring system for procedural domains

    NASA Technical Reports Server (NTRS)

    Warinner, Andrew; Barbee, Diann; Brandt, Larry; Chen, Tom; Maguire, John

    1990-01-01

    Jobs that require complex skills that are too expensive or dangerous to develop often use simulators in training. The strength of a simulator is its ability to mimic the 'real world', allowing students to explore and experiment. A good simulation helps the student develop a 'mental model' of the real world. The closer the simulation is to 'real life', the less difficulties there are transferring skills and mental models developed on the simulator to the real job. As graphics workstations increase in power and become more affordable they become attractive candidates for developing computer-based simulations for use in training. Computer based simulations can make training more interesting and accessible to the student.

  16. Vigilance in the Laboratory Predicts Avoidance in the Real World: A Dimensional Analysis of Neural, Behavioral, and Ecological Momentary Data in Anxious Youth

    PubMed Central

    Silk, Jennifer S.; Ladouceur, Cecile D.; Ryan, Neal D.; Dahl, Ronald E.; Forbes, Erika E.; Siegle, Greg J.

    2016-01-01

    Vigilance and avoidance of threat are observed in anxious adults during laboratory tasks, and are posited to have real-world clinical relevance, but data are mixed in anxious youth. We propose that vigilance-avoidance patterns will become evident in anxious youth through a focus on individual differences and real-world strategic avoidance. Decreased functional connectivity between the amygdala and prefrontal cortex (PFC) could play a mechanistic role in this link. 78 clinically anxious youth completed a dot-probe task to assess vigilance to threat while undergoing fMRI. Real-world avoidance was assessed using Ecological Momentary Assessment (EMA) of self-reported suppression and distraction during negative life events. Vigilance towards threat was positively associated with EMA distraction and suppression. Functional connectivity between a right amygdala seed region and dorsomedial and right dorsolateral PFC regions was inversely related to EMA distraction. Dorsolateral PFC-amygdalar connectivity statistically mediated the relationship between attentional vigilance and real-world distraction. Findings suggest anxious youth showing attentional vigilance toward threat are more likely to use suppression and distraction to regulate negative emotions. Reduced PFC control over limbic reactivity is a possible neural substrate of this pattern. These findings lend ecological validity to laboratory vigilance assessments and suggest PFC-amygdalar connectivity is a neural mechanism bridging laboratory and naturalistic contexts. PMID:27010577

  17. Bringing Data to Life into an Introductory Statistics Course with Gapminder

    ERIC Educational Resources Information Center

    Le, Dai-Trang

    2013-01-01

    "Gapminder" is a free and easy to use software for visualising real-world data in multiple dimensions. The simple format of the Cartesian coordinate system is used in a dynamic and interactive way to convey a great deal of information. This tool can be readily used to arouse students' natural curiosity regarding world events and to…

  18. Variations of trends of indicators describing complex systems: Change of scaling precursory to extreme events

    NASA Astrophysics Data System (ADS)

    Keilis-Borok, V. I.; Soloviev, A. A.

    2010-09-01

    Socioeconomic and natural complex systems persistently generate extreme events also known as disasters, crises, or critical transitions. Here we analyze patterns of background activity preceding extreme events in four complex systems: economic recessions, surges in homicides in a megacity, magnetic storms, and strong earthquakes. We use as a starting point the indicators describing the system's behavior and identify changes in an indicator's trend. Those changes constitute our background events (BEs). We demonstrate a premonitory pattern common to all four systems considered: relatively large magnitude BEs become more frequent before extreme event. A premonitory change of scaling has been found in various models and observations. Here we demonstrate this change in scaling of uniformly defined BEs in four real complex systems, their enormous differences notwithstanding.

  19. Effects of event knowledge in processing verbal arguments

    PubMed Central

    Bicknell, Klinton; Elman, Jeffrey L.; Hare, Mary; McRae, Ken; Kutas, Marta

    2010-01-01

    This research tests whether comprehenders use their knowledge of typical events in real time to process verbal arguments. In self-paced reading and event-related brain potential (ERP) experiments, we used materials in which the likelihood of a specific patient noun (brakes or spelling) depended on the combination of an agent and verb (mechanic checked vs. journalist checked). Reading times were shorter at the word directly following the patient for the congruent than the incongruent items. Differential N400s were found earlier, immediately at the patient. Norming studies ruled out any account of these results based on direct relations between the agent and patient. Thus, comprehenders dynamically combine information about real-world events based on intrasentential agents and verbs, and this combination then rapidly influences online sentence interpretation. PMID:21076629

  20. Walkable Worlds give a Rich Self-Similar Structure to the Real Line

    NASA Astrophysics Data System (ADS)

    Rosinger, Elemér E.

    2010-05-01

    It is a rather universal tacit and unquestioned belief—and even more so among physicists—that there is one and only one real line, namely, given by the coodinatisation of Descartes through the usual field R of real numbers. Such a dramatically limiting and thus harmful belief comes, unknown to equally many, from the similarly tacit acceptance of the ancient Archimedean Axiom in Euclid's Geometry. The consequence of that belief is a similar belief in the uniqueness of the coordinatization of the plane by the usual field C of complex numbers, and therefore, of the various spaces, manifolds, etc., be they finite or infinite dimensional, constructed upon the real or complex numbers, including the Hilbert spaces used in Quantum Mechanics. A near total lack of awareness follows therefore about the rich self-similar structure of other possible coordinatisations of the real line, possibilities given by various linearly ordered scalar fields obtained through the ultrapower construction. Such fields contain as a rather small subset the usual field R of real numbers. The concept of walkable world, which has highly intuitive and pragmatic algebraic and geometric meaning, illustrates the mentioned rich self-similar structure.

  1. Knowledge Representation and Ontologies

    NASA Astrophysics Data System (ADS)

    Grimm, Stephan

    Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

  2. Multilevel analysis of sports video sequences

    NASA Astrophysics Data System (ADS)

    Han, Jungong; Farin, Dirk; de With, Peter H. N.

    2006-01-01

    We propose a fully automatic and flexible framework for analysis and summarization of tennis broadcast video sequences, using visual features and specific game-context knowledge. Our framework can analyze a tennis video sequence at three levels, which provides a broad range of different analysis results. The proposed framework includes novel pixel-level and object-level tennis video processing algorithms, such as a moving-player detection taking both the color and the court (playing-field) information into account, and a player-position tracking algorithm based on a 3-D camera model. Additionally, we employ scene-level models for detecting events, like service, base-line rally and net-approach, based on a number real-world visual features. The system can summarize three forms of information: (1) all court-view playing frames in a game, (2) the moving trajectory and real-speed of each player, as well as relative position between the player and the court, (3) the semantic event segments in a game. The proposed framework is flexible in choosing the level of analysis that is desired. It is effective because the framework makes use of several visual cues obtained from the real-world domain to model important events like service, thereby increasing the accuracy of the scene-level analysis. The paper presents attractive experimental results highlighting the system efficiency and analysis capabilities.

  3. Right-side-stretched multifractal spectra indicate small-worldness in networks

    NASA Astrophysics Data System (ADS)

    Oświȩcimka, Paweł; Livi, Lorenzo; Drożdż, Stanisław

    2018-04-01

    Complex network formalism allows to explain the behavior of systems composed by interacting units. Several prototypical network models have been proposed thus far. The small-world model has been introduced to mimic two important features observed in real-world systems: i) local clustering and ii) the possibility to move across a network by means of long-range links that significantly reduce the characteristic path length. A natural question would be whether there exist several ;types; of small-world architectures, giving rise to a continuum of models with properties (partially) shared with other models belonging to different network families. Here, we take advantage of the interplay between network theory and time series analysis and propose to investigate small-world signatures in complex networks by analyzing multifractal characteristics of time series generated from such networks. In particular, we suggest that the degree of right-sided asymmetry of multifractal spectra is linked with the degree of small-worldness present in networks. This claim is supported by numerical simulations performed on several parametric models, including prototypical small-world networks, scale-free, fractal and also real-world networks describing protein molecules. Our results also indicate that right-sided asymmetry emerges with the presence of the following topological properties: low edge density, low average shortest path, and high clustering coefficient.

  4. CytoViz: an artistic mapping of network measurements as living organisms in a VR application

    NASA Astrophysics Data System (ADS)

    López Silva, Brenda A.; Renambot, Luc

    2007-02-01

    CytoViz is an artistic, real-time information visualization driven by statistical information gathered during gigabit network transfers to the Scalable Adaptive Graphical Environment (SAGE) at various events. Data streams are mapped to cellular organisms defining their structure and behavior as autonomous agents. Network bandwidth drives the growth of each entity and the latency defines its physics-based independent movements. The collection of entity is bound within the 3D representation of the local venue. This visual and animated metaphor allows the public to experience the complexity of high-speed network streams that are used in the scientific community. Moreover, CytoViz displays the presence of discoverable Bluetooth devices carried by nearby persons. The concept is to generate an event-specific, real-time visualization that creates informational 3D patterns based on actual local presence. The observed Bluetooth traffic is put in opposition of the wide-area networking traffic by overlaying 2D animations on top of the 3D world. Each device is mapped to an animation fading over time while displaying the name of the detected device and its unique physical address. CytoViz was publicly presented at two major international conferences in 2005 (iGrid2005 in San Diego, CA and SC05 in Seattle, WA).

  5. Component Neural Systems for the Creation of Emotional Memories during Free Viewing of a Complex, Real-World Event

    PubMed Central

    Botzung, Anne; LaBar, Kevin S.; Kragel, Philip; Miles, Amanda; Rubin, David C.

    2010-01-01

    To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old–new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences. PMID:20508750

  6. Real-world use, safety, and survival of ipilimumab in metastatic cutaneous melanoma in The Netherlands.

    PubMed

    Jochems, Anouk; Leeneman, Brenda; Franken, Margreet G; Schouwenburg, Maartje G; Aarts, Maureen J B; van Akkooi, Alexander C J; van den Berkmortel, Franchette W P J; van den Eertwegh, Alfonsus J M; Groenewegen, Gerard; de Groot, Jan Willem B; Haanen, John B A G; Hospers, Geke A P; Kapiteijn, Ellen; Koornstra, Rutger H; Kruit, Wim H J; Louwman, Marieke W J; Piersma, Djura; van Rijn, Rozemarijn S; Ten Tije, Albert J; Vreugdenhil, Gerard; Wouters, Michel W J M; Uyl-de Groot, Carin A; van der Hoeven, Koos J M

    2018-07-01

    Phase III trials with ipilimumab showed an improved survival in patients with metastatic melanoma. We evaluated the use and safety of ipilimumab, and the survival of all patients with metastatic cutaneous melanoma (N=807) receiving ipilimumab in real-world clinical practice in The Netherlands using data from the Dutch Melanoma Treatment Registry. Patients who were registered between July 2012 and July 2015 were included and analyzed according to their treatment status: treatment-naive (N=344) versus previously-treated (N=463). Overall, 70% of treatment-naive patients and 62% of previously-treated patients received all four planned doses of ipilimumab. Grade 3 and 4 immune-related adverse events occurred in 29% of treatment-naive patients and 21% of previously-treated patients. No treatment-related deaths occurred. Median time to first event was 5.4 months [95% confidence interval (CI): 4.7-6.5 months] in treatment-naive patients and 4.4 months (95% CI: 4.0-4.7 months) in previously-treated patients. Median overall survival was 14.3 months (95% CI: 11.6-16.7 months) in treatment-naive patients and 8.7 months (95% CI: 7.6-9.6 months) in previously-treated patients. In both patient groups, an elevated lactate dehydrogenase level (hazard ratio: 2.25 and 1.70 in treatment-naive and previously-treated patients, respectively) and American Joint Committee on Cancer M1c-stage disease (hazard ratio: 1.81 and 1.83, respectively) were negatively associated with overall survival. These real-world outcomes of ipilimumab slightly differed from outcomes in phase III trials. Although phase III trials are crucial for establishing efficacy, real-world data are of great added value enhancing the generalizability of outcomes of ipilimumab in clinical practice.

  7. The Real-world Efficacy and Safety of Ombitasvir/Paritaprevir/Ritonavir for Hepatitis C genotype 1.

    PubMed

    Miyasaka, Akio; Yoshida, Yuich; Yoshida, Toshimi; Murakami, Akihiko; Abe, Koichi; Ohuchi, Ken; Kawakami, Tadashi; Watanebe, Daisuke; Hoshino, Takao; Sawara, Kei; Takikawa, Yasuhiro

    2018-05-18

    Objective There are few reports on the outcomes of 12-week paritaprevir, ombitasvir, and ritonavir (PTV/OBV/r) treatment in real-world clinical settings. We aimed to evaluate the efficacy and safety of 12-week treatment with ritonavir-boosted paritaprevir and ombitasvir in patients with hepatitis C virus (HCV) genotype 1 infection in a real-world setting. Methods Fifty-eight patients with chronic hepatitis or compensated hepatic cirrhosis and genotype-1 HCV infection were treated with PTV/OBV/r and followed for 24 weeks after the completion of treatment in 10 centers in northern Tohoku. The efficacy and safety of this 12-week treatment regimen was analyzed. Results Among the 58 treated patients, 18 (31%) had compensated liver cirrhosis, while 11 (19%) patients had experienced treatment failure with another treatment regimen. NS5A resistance-associated variants (RAVs) were detected at baseline in 3 patients (5.2%), including Y93H in two patients and L31M in two patients. One patient had NS5A RAVs at both positions 93 and 31. The overall sustained virological response (SVR) 24 rate was 96.6%. Three patients with NS5A RAVs also achieved an SVR24. The SVR24 rate was not significantly affected by age, sex, prior treatment, prior history of HCC, or liver stiffness. The mean alanine aminotransferase (ALT) levels decreased significantly during this treatment. Adverse events occurred in 15 patients (26%), 26% of which were grade 1 or 2. No severe adverse events occurred. Conclusions In this real-world study, 12-week PTV/OBV/r treatment was effective and safe for treating patients with HCV-1 infection who had chronic hepatitis or compensated hepatic cirrhosis.

  8. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires)more » to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.« less

  9. Evaluation of the nephrotoxicity of complex mixtures containing organics and metals: advantages and disadvantages of the use of real-world complex mixtures.

    PubMed

    Simmons, J E; Yang, R S; Berman, E

    1995-02-01

    As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.

  10. Perceived synchrony for realistic and dynamic audiovisual events.

    PubMed

    Eg, Ragnhild; Behne, Dawn M

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli.

  11. Perceived synchrony for realistic and dynamic audiovisual events

    PubMed Central

    Eg, Ragnhild; Behne, Dawn M.

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli. PMID:26082738

  12. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  13. Rivaroxaban real-world evidence: Validating safety and effectiveness in clinical practice.

    PubMed

    Beyer-Westendorf, Jan; Camm, A John; Coleman, Craig I; Tamayo, Sally

    2016-09-28

    Randomised controlled trials (RCTs) are considered the gold standard of clinical research as they use rigorous methodologies, detailed protocols, pre-specified statistical analyses and well-defined patient cohorts. However, RCTs do not take into account the complexity of real-world clinical decision-making. To tackle this, real-world data are being increasingly used to evaluate the long-term safety and effectiveness of a given therapy in routine clinical practice and in patients who may not be represented in RCTs, addressing key clinical questions that may remain. Real-world evidence plays a substantial role in supporting the use of non-vitamin K antagonist (VKA) oral anticoagulants (NOACs) in clinical practice. By providing data on patient profiles and the use of anticoagulation therapies in routine clinical practice, real-world evidence expands the current awareness of NOACs, helping to ensure that clinicians are well-informed on their use to implement patient-tailored clinical decisions. There are various issues with current anticoagulation strategies, including under- or overtreatment and frequent monitoring with VKAs. Real-world studies have demonstrated that NOAC use is increasing (Dresden NOAC registry and Global Anticoagulant Registry in the FIELD-AF [GARFIELD-AF]), as well as reaffirming the safety and effectiveness of rivaroxaban previously observed in RCTs (XArelto on preveNtion of sTroke and non-central nervoUS system systemic embolism in patients with non-valvular atrial fibrillation [XANTUS] and IMS Disease Analyzer). This article will describe the latest updates in real-world evidence across a variety of methodologies, such as non-interventional studies (NIS), registries and database analyses studies. It is anticipated that these studies will provide valuable clinical insights into the management of thromboembolism, and enhance the current knowledge on anticoagulant use and outcomes for patients.

  14. Out-of-body–induced hippocampal amnesia

    PubMed Central

    Bergouignan, Loretxu; Nyberg, Lars; Ehrsson, H. Henrik

    2014-01-01

    Theoretical models have suggested an association between the ongoing experience of the world from the perspective of one’s own body and hippocampus-based episodic memory. This link has been supported by clinical reports of long-term episodic memory impairments in psychiatric conditions with dissociative symptoms, in which individuals feel detached from themselves as if having an out-of-body experience. Here, we introduce an experimental approach to examine the necessary role of perceiving the world from the perspective of one’s own body for the successful episodic encoding of real-life events. While participants were involved in a social interaction, an out-of-body illusion was elicited, in which the sense of bodily self was displaced from the real body to the other end of the testing room. This condition was compared with a well-matched in-body illusion condition, in which the sense of bodily self was colocalized with the real body. In separate recall sessions, performed ∼1 wk later, we assessed the participants’ episodic memory of these events. The results revealed an episodic recollection deficit for events encoded out-of-body compared with in-body. Functional magnetic resonance imaging indicated that this impairment was specifically associated with activity changes in the posterior hippocampus. Collectively, these findings show that efficient hippocampus-based episodic-memory encoding requires a first-person perspective of the natural spatial relationship between the body and the world. Our observations have important implications for theoretical models of episodic memory, neurocognitive models of self, embodied cognition, and clinical research into memory deficits in psychiatric disorders. PMID:24616529

  15. Out-of-body-induced hippocampal amnesia.

    PubMed

    Bergouignan, Loretxu; Nyberg, Lars; Ehrsson, H Henrik

    2014-03-25

    Theoretical models have suggested an association between the ongoing experience of the world from the perspective of one's own body and hippocampus-based episodic memory. This link has been supported by clinical reports of long-term episodic memory impairments in psychiatric conditions with dissociative symptoms, in which individuals feel detached from themselves as if having an out-of-body experience. Here, we introduce an experimental approach to examine the necessary role of perceiving the world from the perspective of one's own body for the successful episodic encoding of real-life events. While participants were involved in a social interaction, an out-of-body illusion was elicited, in which the sense of bodily self was displaced from the real body to the other end of the testing room. This condition was compared with a well-matched in-body illusion condition, in which the sense of bodily self was colocalized with the real body. In separate recall sessions, performed ∼1 wk later, we assessed the participants' episodic memory of these events. The results revealed an episodic recollection deficit for events encoded out-of-body compared with in-body. Functional magnetic resonance imaging indicated that this impairment was specifically associated with activity changes in the posterior hippocampus. Collectively, these findings show that efficient hippocampus-based episodic-memory encoding requires a first-person perspective of the natural spatial relationship between the body and the world. Our observations have important implications for theoretical models of episodic memory, neurocognitive models of self, embodied cognition, and clinical research into memory deficits in psychiatric disorders.

  16. Generating realistic environments for cyber operations development, testing, and training

    NASA Astrophysics Data System (ADS)

    Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.

    2012-06-01

    Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.

  17. Sowing the Seeds of Creativity

    ERIC Educational Resources Information Center

    Briten, Elizabeth

    2006-01-01

    The exciting world of plants may be something of a mystery to many children, and the often-dry content of a curriculum taught indoors inhibits real understanding of many complex biological processes. Moving outdoors opens up an unexplored world and presents rich opportunities for imaginative learning. The "Life processes and living…

  18. Field Learning: Experiential Learning through Participant Observation and Self-Reflection of Consumer Behavior at Sporting Events

    ERIC Educational Resources Information Center

    Schaller, Tracey King

    2018-01-01

    As marketing educators, we can enhance student learning by providing experiences that go beyond the classroom and into the real world. In this way, we encourage students to become lifelong learners where they observe the world around them through the lens of what they have learned. This article describes a project used in an undergraduate-level…

  19. A safety evaluation of pirfenidone for the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Anderson, Adam; Shifren, Adrian; Nathan, Steven D

    2016-07-01

    Pirfenidone is a novel oral anti-fibrotic agent approved for the treatment of idiopathic pulmonary fibrosis (IPF). Since IPF is a chronic and progressive disease most commonly encountered in an older population, therapeutic options should be not only effective, but also free from drug interactions and as safe and tolerable as possible. Comprehensive data from randomized controlled trials, meta-analyses, safety studies, and post-marketing data are available to assess the efficacy and safety of pirfenidone in the treatment of IPF. Information on efficacy, adverse events, drug tolerability and discontinuation rates both in clinical trials and real-world clinical experiences are reported. Pirfenidone has an abundance of data supporting its use in mild-to-moderate IPF. Observational evidence suggests a similar efficacy in severe IPF. In clinical trials, observational studies and real-world use, adverse events are frequent, though generally mild and well tolerated, especially with adequate patient education. Preventative strategies, along with timely and appropriate management of adverse events are critical in improving patient compliance, thereby ensuring the benefits of long-term treatment with pirfenidone.

  20. Systemic Risk Analysis on Reconstructed Economic and Financial Networks

    PubMed Central

    Cimini, Giulio; Squartini, Tiziano; Garlaschelli, Diego; Gabrielli, Andrea

    2015-01-01

    We address a fundamental problem that is systematically encountered when modeling real-world complex systems of societal relevance: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system—so that the real network properties can be estimated as their average values within the ensemble. We test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems. PMID:26507849

  1. Systemic Risk Analysis on Reconstructed Economic and Financial Networks

    NASA Astrophysics Data System (ADS)

    Cimini, Giulio; Squartini, Tiziano; Garlaschelli, Diego; Gabrielli, Andrea

    2015-10-01

    We address a fundamental problem that is systematically encountered when modeling real-world complex systems of societal relevance: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system—so that the real network properties can be estimated as their average values within the ensemble. We test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems.

  2. Modeling Epidemics with Dynamic Small-World Networks

    NASA Astrophysics Data System (ADS)

    Kaski, Kimmo; Saramäki, Jari

    2005-06-01

    In this presentation a minimal model for describing the spreading of an infectious disease, such as influenza, is discussed. Here it is assumed that spreading takes place on a dynamic small-world network comprising short- and long-range infection events. Approximate equations for the epidemic threshold as well as the spreading dynamics are derived and they agree well with numerical discrete time-step simulations. Also the dependence of the epidemic saturation time on the initial conditions is analysed and a comparison with real-world data is made.

  3. Boosting medical diagnostics by pooling independent judgments

    PubMed Central

    Kurvers, Ralf H. J. M.; Herzog, Stefan M.; Hertwig, Ralph; Krause, Jens; Carney, Patricia A.; Bogart, Andy; Argenziano, Giuseppe; Zalaudek, Iris; Wolf, Max

    2016-01-01

    Collective intelligence refers to the ability of groups to outperform individual decision makers when solving complex cognitive problems. Despite its potential to revolutionize decision making in a wide range of domains, including medical, economic, and political decision making, at present, little is known about the conditions underlying collective intelligence in real-world contexts. We here focus on two key areas of medical diagnostics, breast and skin cancer detection. Using a simulation study that draws on large real-world datasets, involving more than 140 doctors making more than 20,000 diagnoses, we investigate when combining the independent judgments of multiple doctors outperforms the best doctor in a group. We find that similarity in diagnostic accuracy is a key condition for collective intelligence: Aggregating the independent judgments of doctors outperforms the best doctor in a group whenever the diagnostic accuracy of doctors is relatively similar, but not when doctors’ diagnostic accuracy differs too much. This intriguingly simple result is highly robust and holds across different group sizes, performance levels of the best doctor, and collective intelligence rules. The enabling role of similarity, in turn, is explained by its systematic effects on the number of correct and incorrect decisions of the best doctor that are overruled by the collective. By identifying a key factor underlying collective intelligence in two important real-world contexts, our findings pave the way for innovative and more effective approaches to complex real-world decision making, and to the scientific analyses of those approaches. PMID:27432950

  4. Use of Social Media in the Assessment of Relative Effectiveness: Explorative Review With Examples From Oncology.

    PubMed

    Kalf, Rachel Rj; Makady, Amr; Ten Ham, Renske Mt; Meijboom, Kim; Goettsch, Wim G

    2018-06-08

    An element of health technology assessment constitutes assessing the clinical effectiveness of drugs, generally called relative effectiveness assessment. Little real-world evidence is available directly after market access, therefore randomized controlled trials are used to obtain information for relative effectiveness assessment. However, there is growing interest in using real-world data for relative effectiveness assessment. Social media may provide a source of real-world data. We assessed the extent to which social media-generated health data has provided insights for relative effectiveness assessment. An explorative literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify examples in oncology where health data were collected using social media. Scientific and grey literature published between January 2010 and June 2016 was identified by four reviewers, who independently screened studies for eligibility and extracted data. A descriptive qualitative analysis was performed. Of 1032 articles identified, eight were included: four articles identified adverse events in response to cancer treatment, three articles disseminated quality of life surveys, and one study assessed the occurrence of disease-specific symptoms. Several strengths of social media-generated health data were highlighted in the articles, such as efficient collection of patient experiences and recruiting patients with rare diseases. Conversely, limitations included validation of authenticity and presence of information and selection bias. Social media may provide a potential source of real-world data for relative effectiveness assessment, particularly on aspects such as adverse events, symptom occurrence, quality of life, and adherence behavior. This potential has not yet been fully realized and the degree of usefulness for relative effectiveness assessment should be further explored. ©Rachel R.J. Kalf, Amr Makady, Renske M.T. ten Ham, Kim Meijboom, Wim G. Goettsch, On Behalf Of IMI-GetReal Workpackage 1. Originally published in JMIR Cancer (http://cancer.jmir.org), 08.06.2018.

  5. Reducing postponements of elective pediatric cardiac procedures: analysis and implementation of a discrete event simulation model.

    PubMed

    Day, Theodore Eugene; Sarawgi, Sandeep; Perri, Alexis; Nicolson, Susan C

    2015-04-01

    This study describes the use of discrete event simulation (DES) to model and analyze a large academic pediatric and test cardiac center. The objective was to identify a strategy, and to predict and test the effectiveness of that strategy, to minimize the number of elective cardiac procedures that are postponed because of a lack of available cardiac intensive care unit (CICU) capacity. A DES of the cardiac center at The Children's Hospital of Philadelphia was developed and was validated by use of 1 year of deidentified administrative patient data. The model was then used to analyze strategies for reducing postponements of cases requiring CICU care through improved scheduling of multipurpose space. Each of five alternative scenarios was simulated for ten independent 1-year runs. Reductions in simulated elective procedure postponements were found when a multipurpose procedure room (the hybrid room) was used for operations on Wednesday and Thursday, compared with Friday (as was the real-world use). The reduction Wednesday was statistically significant, with postponements dropping from 27.8 to 23.3 annually (95% confidence interval 18.8-27.8). Thus, we anticipate a relative reduction in postponements of 16.2%. Since the implementation, there have been two postponements from July 1 to November 21, 2014, compared with ten for the same time period in 2013. Simulation allows us to test planned changes in complex environments, including pediatric cardiac care. Reduction in postponements of cardiac procedures requiring CICU care is predicted through reshuffling schedules of existing multipurpose capacity, and these reductions appear to be achievable in the real world after implementation. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. A simple model clarifies the complicated relationships of complex networks

    PubMed Central

    Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi

    2014-01-01

    Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506

  7. Vigilance in the laboratory predicts avoidance in the real world: A dimensional analysis of neural, behavioral, and ecological momentary data in anxious youth.

    PubMed

    Price, Rebecca B; Allen, Kristy Benoit; Silk, Jennifer S; Ladouceur, Cecile D; Ryan, Neal D; Dahl, Ronald E; Forbes, Erika E; Siegle, Greg J

    2016-06-01

    Vigilance and avoidance of threat are observed in anxious adults during laboratory tasks, and are posited to have real-world clinical relevance, but data are mixed in anxious youth. We propose that vigilance-avoidance patterns will become evident in anxious youth through a focus on individual differences and real-world strategic avoidance. Decreased functional connectivity between the amygdala and prefrontal cortex (PFC) could play a mechanistic role in this link. 78 clinically anxious youth completed a dot-probe task to assess vigilance to threat while undergoing fMRI. Real-world avoidance was assessed using Ecological Momentary Assessment (EMA) of self-reported suppression and distraction during negative life events. Vigilance toward threat was positively associated with EMA distraction and suppression. Functional connectivity between a right amygdala seed region and dorsomedial and right dorsolateral PFC regions was inversely related to EMA distraction. Dorsolateral PFC-amygdalar connectivity statistically mediated the relationship between attentional vigilance and real-world distraction. Findings suggest anxious youth showing attentional vigilance toward threat are more likely to use suppression and distraction to regulate negative emotions. Reduced PFC control over limbic reactivity is a possible neural substrate of this pattern. These findings lend ecological validity to laboratory vigilance assessments and suggest PFC-amygdalar connectivity is a neural mechanism bridging laboratory and naturalistic contexts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Cognitive and neural plasticity in older adults’ prospective memory following training with the Virtual Week computer game

    PubMed Central

    Rose, Nathan S.; Rendell, Peter G.; Hering, Alexandra; Kliegel, Matthias; Bidelman, Gavin M.; Craik, Fergus I. M.

    2015-01-01

    Prospective memory (PM) – the ability to remember and successfully execute our intentions and planned activities – is critical for functional independence and declines with age, yet few studies have attempted to train PM in older adults. We developed a PM training program using the Virtual Week computer game. Trained participants played the game in 12, 1-h sessions over 1 month. Measures of neuropsychological functions, lab-based PM, event-related potentials (ERPs) during performance on a lab-based PM task, instrumental activities of daily living, and real-world PM were assessed before and after training. Performance was compared to both no-contact and active (music training) control groups. PM on the Virtual Week game dramatically improved following training relative to controls, suggesting PM plasticity is preserved in older adults. Relative to control participants, training did not produce reliable transfer to laboratory-based tasks, but was associated with a reduction of an ERP component (sustained negativity over occipito-parietal cortex) associated with processing PM cues, indicative of more automatic PM retrieval. Most importantly, training produced far transfer to real-world outcomes including improvements in performance on real-world PM and activities of daily living. Real-world gains were not observed in either control group. Our findings demonstrate that short-term training with the Virtual Week game produces cognitive and neural plasticity that may result in real-world benefits to supporting functional independence in older adulthood. PMID:26578936

  9. 75 FR 4305 - Regulatory Guidance Concerning the Applicability of the Federal Motor Carrier Safety Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... of drivers conducting real-world revenue operations. \\1\\ This report is available at FMCSA's Research... odds ratio of 23.2. This means that the odds of being involved in a safety-critical event is 23.2 times... preceding a safety-critical event. At 55 mph (or 80.7 feet per second), this equates to a driver traveling...

  10. Temporal trade-offs in psychophysics.

    PubMed

    Barack, David L; Gold, Joshua I

    2016-04-01

    Psychophysical techniques typically assume straightforward relationships between manipulations of real-world events, their effects on the brain, and behavioral reports of those effects. However, these relationships can be influenced by many complex, strategic factors that contribute to task performance. Here we discuss several of these factors that share two key features. First, they involve subjects making flexible use of time to process information. Second, this flexibility can reflect the rational regulation of information-processing trade-offs that can play prominent roles in particular temporal epochs: sensitivity to stability versus change for past information, speed versus accuracy for current information, and exploitation versus exploration for future goals. Understanding how subjects manage these trade-offs can be used to help design and interpret psychophysical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Causal relations among events and states in dynamic geographical phenomena

    NASA Astrophysics Data System (ADS)

    Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan

    2007-06-01

    There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst events and states. The qualitative spatiotemporal change is an important issue in the dynamic geographic-scale phenomena. In real estate transition, the events and states are needed to be represented explicitly. In our modeling the evolution of a dynamic system, it can not avoid fetching in the view of causality. The object's transition is represented by the state of object. Event causes the state of objects changing and causes other events happen. Events connect with objects closely. The basic causal relations are the state-event and event-state relationships. Lastly, the paper concludes with the overview about the causal relations amongst events and states. And this future work is pointed.

  12. Deterministic ripple-spreading model for complex networks.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  13. Enabling complex genetic circuits to respond to extrinsic environmental signals.

    PubMed

    Hoynes-O'Connor, Allison; Shopera, Tatenda; Hinman, Kristina; Creamer, John Philip; Moon, Tae Seok

    2017-07-01

    Genetic circuits have the potential to improve a broad range of metabolic engineering processes and address a variety of medical and environmental challenges. However, in order to engineer genetic circuits that can meet the needs of these real-world applications, genetic sensors that respond to relevant extrinsic and intrinsic signals must be implemented in complex genetic circuits. In this work, we construct the first AND and NAND gates that respond to temperature and pH, two signals that have relevance in a variety of real-world applications. A previously identified pH-responsive promoter and a temperature-responsive promoter were extracted from the E. coli genome, characterized, and modified to suit the needs of the genetic circuits. These promoters were combined with components of the type III secretion system in Salmonella typhimurium and used to construct a set of AND gates with up to 23-fold change. Next, an antisense RNA was integrated into the circuit architecture to invert the logic of the AND gate and generate a set of NAND gates with up to 1168-fold change. These circuits provide the first demonstration of complex pH- and temperature-responsive genetic circuits, and lay the groundwork for the use of similar circuits in real-world applications. Biotechnol. Bioeng. 2017;114: 1626-1631. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Automated flood extent identification using WorldView imagery for the insurance industry

    NASA Astrophysics Data System (ADS)

    Geller, Christina

    2017-10-01

    Flooding is the most common and costly natural disaster around the world, causing the loss of human life and billions in economic and insured losses each year. In 2016, pluvial and fluvial floods caused an estimated 5.69 billion USD in losses worldwide with the most severe events occurring in Germany, France, China, and the United States. While catastrophe modeling has begun to help bridge the knowledge gap about the risk of fluvial flooding, understanding the extent of a flood - pluvial and fluvial - in near real-time allows insurance companies around the world to quantify the loss of property that their clients face during a flooding event and proactively respond. To develop this real-time, global analysis of flooded areas and the associated losses, a new methodology utilizing optical multi-spectral imagery from DigitalGlobe (DGI) WorldView satellite suite is proposed for the extraction of pluvial and fluvial flood extents. This methodology involves identifying flooded areas visible to the sensor, filling in the gaps left by the built environment (i.e. buildings, trees) with a nearest neighbor calculation, and comparing the footprint against an Industry Exposure Database (IE) to calculate a loss estimate. Full-automation of the methodology allows production of flood extents and associated losses anywhere around the world as required. The methodology has been tested and proven effective for the 2016 flood in Louisiana, USA.

  15. The influence of professional expertise and task complexity upon the potency of the contextual interference effect.

    PubMed

    Ollis, Stewart; Button, Chris; Fairweather, Malcolm

    2005-03-01

    The contextual interference (CI) effect has been investigated through practice schedule manipulations within both basic and applied studies. Despite extensive research activity there is little conclusive evidence regarding the optimal practice structure of real world manipulative tasks in professional training settings. The present study therefore assessed the efficacy of practising simple and complex knot-tying skills in professional fire-fighters training. Forty-eight participants were quasi-randomly assigned to various practice schedules along the CI continuum. Twenty-four participants were students selected for their novice knot-tying capabilities and 24 were experienced fire-fighters who were more 'experienced knot-tiers'. They were assessed for skill acquisition, retention and transfer effects having practiced tying knots classified as simple or complex. Surprisingly, high levels of CI scheduling enhance learning for novices even when practising a complex task. The findings also revealed that CI benefits are most apparent as learners engage in tasks high in transfer distality. In conclusion, complexity and experience are mediating factors influencing the potency of the CI training effect in real-world settings.

  16. Assessing Students' Proficiency in Math and Science

    ERIC Educational Resources Information Center

    Judd, Thomas P.; Keith, Bruce

    2007-01-01

    The U.S. Military Academy (USMA) at West Point is responsible for developing in its graduates literacy in the sciences that renders them capable of solving complex real-world problems. Throughout their careers as officers in the military, graduates will be called upon to view the physical world in a disciplined and objective manner, with an…

  17. Small-world bias of correlation networks: From brain to climate

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  18. Small-world bias of correlation networks: From brain to climate.

    PubMed

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  19. Modes of Interaction between Individuals Dominate the Topologies of Real World Networks

    PubMed Central

    Lee, Insuk; Kim, Eiru; Marcotte, Edward M.

    2015-01-01

    We find that the topologies of real world networks, such as those formed within human societies, by the Internet, or among cellular proteins, are dominated by the mode of the interactions considered among the individuals. Specifically, a major dichotomy in previously studied networks arises from modeling networks in terms of pairwise versus group tasks. The former often intrinsically give rise to scale-free, disassortative, hierarchical networks, whereas the latter often give rise to single- or broad-scale, assortative, nonhierarchical networks. These dependencies explain contrasting observations among previous topological analyses of real world complex systems. We also observe this trend in systems with natural hierarchies, in which alternate representations of the same networks, but which capture different levels of the hierarchy, manifest these signature topological differences. For example, in both the Internet and cellular proteomes, networks of lower-level system components (routers within domains or proteins within biological processes) are assortative and nonhierarchical, whereas networks of upper-level system components (internet domains or biological processes) are disassortative and hierarchical. Our results demonstrate that network topologies of complex systems must be interpreted in light of their hierarchical natures and interaction types. PMID:25793969

  20. Local spatial frequency analysis for computer vision

    NASA Technical Reports Server (NTRS)

    Krumm, John; Shafer, Steven A.

    1990-01-01

    A sense of vision is a prerequisite for a robot to function in an unstructured environment. However, real-world scenes contain many interacting phenomena that lead to complex images which are difficult to interpret automatically. Typical computer vision research proceeds by analyzing various effects in isolation (e.g., shading, texture, stereo, defocus), usually on images devoid of realistic complicating factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is due to the dichotomy of useful representations for these phenomena. Some effects are best described in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this dichotomy, we present the combined space/frequency representation which, for each point in an image, shows the spatial frequencies at that point. Within this common representation, we develop a set of simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We show these theories lead to algorithms for shape from texture and for dealiasing image data. The space/frequency representation should be a key aid in untangling the complex interaction of phenomena in images, allowing automatic understanding of real-world scenes.

  1. Efficient weighting strategy for enhancing synchronizability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan

    2018-04-01

    Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.

  2. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-02

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.

  3. Reading Stories Activates Neural Representations of Visual and Motor Experiences

    PubMed Central

    Speer, Nicole K.; Reynolds, Jeremy R.; Swallow, Khena M.; Zacks, Jeffrey M.

    2010-01-01

    To understand and remember stories, readers integrate their knowledge of the world with information in the text. Here we present functional neuroimaging evidence that neural systems track changes in the situation described by a story. Different brain regions track different aspects of a story, such as a character’s physical location or current goals. Some of these regions mirror those involved when people perform, imagine, or observe similar real-world activities. These results support the view that readers understand a story by simulating the events in the story world and updating their simulation when features of that world change. PMID:19572969

  4. Empirical confirmation of creative destruction from world trade data.

    PubMed

    Klimek, Peter; Hausmann, Ricardo; Thurner, Stefan

    2012-01-01

    We show that world trade network datasets contain empirical evidence that the dynamics of innovation in the world economy indeed follows the concept of creative destruction, as proposed by J.A. Schumpeter more than half a century ago. National economies can be viewed as complex, evolving systems, driven by a stream of appearance and disappearance of goods and services. Products appear in bursts of creative cascades. We find that products systematically tend to co-appear, and that product appearances lead to massive disappearance events of existing products in the following years. The opposite-disappearances followed by periods of appearances-is not observed. This is an empirical validation of the dominance of cascading competitive replacement events on the scale of national economies, i.e., creative destruction. We find a tendency that more complex products drive out less complex ones, i.e., progress has a direction. Finally we show that the growth trajectory of a country's product output diversity can be understood by a recently proposed evolutionary model of Schumpeterian economic dynamics.

  5. Empirical Confirmation of Creative Destruction from World Trade Data

    PubMed Central

    Klimek, Peter; Hausmann, Ricardo; Thurner, Stefan

    2012-01-01

    We show that world trade network datasets contain empirical evidence that the dynamics of innovation in the world economy indeed follows the concept of creative destruction, as proposed by J.A. Schumpeter more than half a century ago. National economies can be viewed as complex, evolving systems, driven by a stream of appearance and disappearance of goods and services. Products appear in bursts of creative cascades. We find that products systematically tend to co-appear, and that product appearances lead to massive disappearance events of existing products in the following years. The opposite–disappearances followed by periods of appearances–is not observed. This is an empirical validation of the dominance of cascading competitive replacement events on the scale of national economies, i.e., creative destruction. We find a tendency that more complex products drive out less complex ones, i.e., progress has a direction. Finally we show that the growth trajectory of a country’s product output diversity can be understood by a recently proposed evolutionary model of Schumpeterian economic dynamics. PMID:22719989

  6. Prospective study evaluating the use of nasal glucagon for the treatment of moderate to severe hypoglycaemia in adults with type 1 diabetes in a real-world setting.

    PubMed

    Seaquist, Elizabeth R; Dulude, Hélène; Zhang, Xiaotian M; Rabasa-Lhoret, Remi; Tsoukas, George M; Conway, James R; Weisnagel, Stanley J; Gerety, Gregg; Woo, Vincent C; Zhang, Shuyu; Carballo, Dolorès; Pradhan, Sheetal; Piché, Claude A; Guzman, Cristina B

    2018-05-01

    In the present multicentre, open-label, prospective, phase III study, we evaluated the real-world effectiveness and ease of use of nasal glucagon (NG) in the treatment of moderate/severe hypoglycaemic events (HEs) in adults with type 1 diabetes (T1D). Patients and caregivers were taught how to use NG (3 mg) to treat moderate/severe HEs, record the time taken to awaken or return to normal status, and measure blood glucose (BG) levels over time. Questionnaires were used to collect information about adverse events and ease of use of NG. In the efficacy analysis population, 69 patients experienced 157 HEs. In 95.7% patients, HEs resolved within 30 minutes of NG administration. In all the 12 severe HEs, patients awakened or returned to normal status within 15 minutes of NG administration without additional external medical help. Most caregivers reported that NG was easy to use. Most adverse events were local and of low to moderate severity. In this study, a single, 3-mg dose of NG demonstrated real-life effectiveness in treating moderate and severe HEs in adults with T1D. NG was well tolerated and easy to use. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  7. Can Undergraduates Be Transdisciplinary? Promoting Transdisciplinary Engagement through Global Health Problem-Based Learning

    ERIC Educational Resources Information Center

    Hay, M. Cameron

    2017-01-01

    Undergraduate student learning focuses on the development of disciplinary strength in majors and minors so that students gain depth in particular fields, foster individual expertise, and learn problem solving from disciplinary perspectives. However, the complexities of real-world problems do not respect disciplinary boundaries. Complex problems…

  8. Notes about COOL: Analysis and Highlights of Complex View in Education

    ERIC Educational Resources Information Center

    de Oliveira, C. A.

    2012-01-01

    Purpose: The purpose of this paper is to present principles from the complex approach in education and describe some practical pedagogic experiences enhancing how "real world" perspectives have influenced and contributed to curriculum development. Design/methodology/approach: Necessity of integration in terms of knowledge modeling is an…

  9. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    NASA Astrophysics Data System (ADS)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  10. Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.

  11. Using timed event sequential data in nursing research.

    PubMed

    Pecanac, Kristen E; Doherty-King, Barbara; Yoon, Ju Young; Brown, Roger; Schiefelbein, Tony

    2015-01-01

    Measuring behavior is important in nursing research, and innovative technologies are needed to capture the "real-life" complexity of behaviors and events. The purpose of this article is to describe the use of timed event sequential data in nursing research and to demonstrate the use of this data in a research study. Timed event sequencing allows the researcher to capture the frequency, duration, and sequence of behaviors as they occur in an observation period and to link the behaviors to contextual details. Timed event sequential data can easily be collected with handheld computers, loaded with a software program designed for capturing observations in real time. Timed event sequential data add considerable strength to analysis of any nursing behavior of interest, which can enhance understanding and lead to improvement in nursing practice.

  12. Comparative analysis of two discretizations of Ricci curvature for complex networks.

    PubMed

    Samal, Areejit; Sreejith, R P; Gu, Jiao; Liu, Shiping; Saucan, Emil; Jost, Jürgen

    2018-06-05

    We have performed an empirical comparison of two distinct notions of discrete Ricci curvature for graphs or networks, namely, the Forman-Ricci curvature and Ollivier-Ricci curvature. Importantly, these two discretizations of the Ricci curvature were developed based on different properties of the classical smooth notion, and thus, the two notions shed light on different aspects of network structure and behavior. Nevertheless, our extensive computational analysis in a wide range of both model and real-world networks shows that the two discretizations of Ricci curvature are highly correlated in many networks. Moreover, we show that if one considers the augmented Forman-Ricci curvature which also accounts for the two-dimensional simplicial complexes arising in graphs, the observed correlation between the two discretizations is even higher, especially, in real networks. Besides the potential theoretical implications of these observations, the close relationship between the two discretizations has practical implications whereby Forman-Ricci curvature can be employed in place of Ollivier-Ricci curvature for faster computation in larger real-world networks whenever coarse analysis suffices.

  13. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a blind clinical study that screened real patient urine samples (n=70) for opiates in collaboration with Strong Memorial Hospital Clinical Toxicology Laboratory. PSI sensor results showed improved clinical specificity over current commercial opiate immunoassay techniques and therefore, identified potential for a reduction in false-negative and false-positive screening results. Here, we demonstrate for the first time, successful clinical capability of a PSi sensor to detect opiates as a model target in real-world patient samples. The final part of this thesis explores novel sensor designs to leverage the tunable optical properties of PSi photonic devices and facilitate colorimetric readout of molecular recognition events by the unaided eye. Such a design is ideal for uncomplicated diagnostic screening at point-of-care as no instrumentation is needed for result readout. The photonic PSi transducers were integrated with target analyte-responsive hydrogels (TRAP-gels) that upon exposure to a target solution would swell and dissolute, inducing material property changes that were optically detected by the incorporated PSi transducer. This strategy extends target detection throughout the 3-ll internal volume of the PSi, improving upon current techniques that limit detection to the surface area (2-ll) of PSi. Work to acheive this approach involved design of TRAP-gel networks, polymer synthesis and characterization techniques, and optical characterization of the hybrid hydrogel-PSi material sensor. Successful implementation of a hybrid sensor design was exhibited for a. model chemical target (reducing agent), in which visual colorimetric change from red to green was observed for above-threshold exposure to the chemical target. In addition, initial proof-of-concept of an opiate responsive TRAP-gel is also demonstrated where cross-links are formed between antibody-antigen interactions and exposure to opiates induces bulk gel dissolution.

  14. Comparison of the effects of two low-density lipoprotein cholesterol goals for secondary prevention after acute myocardial infarction in real-world practice: ≥ 50% reduction from baseline versus <70 mg/dL.

    PubMed

    Cho, Kyung Hoon; Jeong, Myung Ho; Park, Kyung Woo; Kim, Hyo-Soo; Lee, Sang Rok; Chae, Jei Keon; Hong, Young Joon; Kim, Ju Han; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun

    2015-01-01

    The present study compared the effects of two low-density lipoprotein cholesterol (LDL-C) goals for secondary prevention after acute myocardial infarction (AMI) in real-world practice. Of 3091 consecutive patients with AMI who had baseline LDL-C levels ≥ 70 mg/dL and underwent successful percutaneous coronary intervention, 1305 eligible patients who received discharge statin prescriptions were analyzed. Patients were categorized into 2 groups according to the values of LDL-C at 1 year in two different manners using percent reduction from baseline (≥ 50% reduction, n=428 versus <50% reduction, n=877) and fixed levels (< 70 mg/dL, n=625 versus ≥ 70 mg/dL, n=680). The primary outcome was defined by the composite of 2-year major cardiac events including cardiac death, non-fatal myocardial infarction, percutaneous coronary intervention, and coronary artery bypass grafting after hospital discharge. At 2 years, major cardiac events occurred in 139 patients (10.7%). Compared with <50% LDL-C reduction from baseline, patients with ≥ 50% LDL-C reduction had a 47% risk reduction in major cardiac events (adjusted hazard ratio, 0.53; 95% confidence interval, 0.36 to 0.79; P=0.002). But, compared with LDL-C levels ≥ 70 mg/dL at 1 year, patients with LDL-C levels < 70 mg/dL at 1 year had a similar risk of major cardiac events (adjusted hazard ratio, 0.96; 95% confidence interval, 0.68 to 1.34; P=0.793). Obtaining a ≥ 50% reduction in LDL-C was associated with better clinical outcomes after AMI in real-world practice, whereas achieving a < 70 mg/dL was not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Dual Antithrombotic Therapy with Clopidogrel and Novel Oral Anticoagulants in Patients with Atrial Fibrillation Undergoing Percutaneous Coronary Intervention: A Real-world Study.

    PubMed

    Kebernik, Julia; Borlich, Martin; Tölg, Ralph; El-Mawardy, Mohamed; Abdel-Wahab, Mohamed; Richardt, Gert

    2018-06-01

    For patients with atrial fibrillation (AF) undergoing percutaneous coronary intervention (PCI), proper antithrombotic therapy is equivocal. Current guidelines recommend triple therapy, which carries a high risk of bleeding. Recent large trials suggest that dual therapy (DT) with novel oral anticoagulant (NOAC) plus P2Y 12 inhibitor can be an appropriate alternative, but real-world data for this alternative are scarce and the optimal duration of DT has not yet been established. This analysis was performed in a single-center prospective cohort. We investigated 216 PCI patients with indication for anticoagulation due to AF. After PCI patients received DT with reduced doses NOAC plus P2Y 12 inhibitor for 6 months, which was followed by standard dose NOAC monotherapy. Efficacy endpoints were defined as cardiac death, myocardial infarction (MI), stent thrombosis (ST), and stroke. Safety endpoints were bleeding events as defined by Bleeding Academic Consortium (BARC). Baseline characteristics of our study population were described by a CHA 2 DS 2 -VASc score of greater than 4 and a HAS-BLED score of greater than 3. After a mean follow-up of 18.7 months, efficacy events occurred in 12 patients (5.6%). We observed three (1.4%) cardiac deaths, two (0.9%) MIs, six (2.8%) strokes, and one (0.5%) definite ST. After switching from DT to NOAC monotherapy after 6.3 ± 1.7 months, there was no rebound of ischemic events. Bleeding events occurred in 34 patients (15.7%) mainly under DT, while bleeding was less during NOAC monotherapy. In this long-term study of high-risk and real-world AF-patients with PCI, DT with NOAC and P2Y 12 inhibitor (6 months) followed by NOAC monotherapy was safe and effective.

  16. Human Fear Conditioning Conducted in Full Immersion 3-Dimensional Virtual Reality

    PubMed Central

    Huff, Nicole C.; Zielinski, David J.; Fecteau, Matthew E.; Brady, Rachael; LaBar, Kevin S.

    2010-01-01

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment1. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear conditioning and extinction parameters to yield empirical data that can suggest better treatment options and/or analyze mechanistic hypotheses. In order to test the hypothesis that fear conditioning may be richly encoded and context specific when conducted in a fully immersive environment, we developed distinct virtual reality 3-D contexts in which participants experienced fear conditioning to virtual snakes or spiders. Auditory cues co-occurred with the CS in order to further evoke orienting responses and a feeling of "presence" in subjects 2 . Skin conductance response served as the dependent measure of fear acquisition, memory retention and extinction. PMID:20736913

  17. Estimated burden of cardiovascular disease and value-based price range for evolocumab in a high-risk, secondary-prevention population in the US payer context.

    PubMed

    Toth, Peter P; Danese, Mark; Villa, Guillermo; Qian, Yi; Beaubrun, Anne; Lira, Armando; Jansen, Jeroen P

    2017-06-01

    To estimate real-world cardiovascular disease (CVD) burden and value-based price range of evolocumab for a US-context, high-risk, secondary-prevention population. Burden of CVD was assessed using the UK-based Clinical Practice Research Datalink (CPRD) in order to capture complete CV burden including CV mortality. Patients on standard of care (SOC; high-intensity statins) in CPRD were selected based on eligibility criteria of FOURIER, a phase 3 CV outcomes trial of evolocumab, and categorized into four cohorts: high-risk prevalent atherosclerotic CVD (ASCVD) cohort (n = 1448), acute coronary syndrome (ACS) (n = 602), ischemic stroke (IS) (n = 151), and heart failure (HF) (n = 291) incident cohorts. The value-based price range for evolocumab was assessed using a previously published economic model. The model incorporated CPRD CV event rates and considered CV event reduction rate ratios per 1 mmol/L reduction in low-density lipoprotein-cholesterol (LDL-C) from a meta-analysis of statin trials by the Cholesterol Treatment Trialists Collaboration (CTTC), i.e. CTTC relationship. Multiple-event rates of composite CV events (ACS, IS, or coronary revascularization) per 100 patient-years were 12.3 for the high-risk prevalent ASCVD cohort, and 25.7, 13.3, and 23.3, respectively, for incident ACS, IS, and HF cohorts. Approximately one-half (42%) of the high-risk ASCVD patients with a new CV event during follow-up had a subsequent CV event. Combining these real-world event rates and the CTTC relationship in the economic model, the value-based price range (credible interval) under a willingness-to-pay threshold of $150,000/quality-adjusted life-year gained for evolocumab was $11,990 ($9,341-$14,833) to $16,856 ($12,903-$20,678) in ASCVD patients with baseline LDL-C levels ≥70 mg/dL and ≥100 mg/dL, respectively. Real-world CVD burden is substantial. Using the observed CVD burden in CPRD and the CTTC relationship, the cost-effectiveness analysis showed that, accounting for uncertainties, the expected value-based price for evolocumab is higher than its current annual cost, as long as the payer discount off list price is greater than 20%.

  18. Validation in the Absence of Observed Events.

    PubMed

    Lathrop, John; Ezell, Barry

    2016-04-01

    This article addresses the problem of validating models in the absence of observed events, in the area of weapons of mass destruction terrorism risk assessment. We address that problem with a broadened definition of "validation," based on stepping "up" a level to considering the reason why decisionmakers seek validation, and from that basis redefine validation as testing how well the model can advise decisionmakers in terrorism risk management decisions. We develop that into two conditions: validation must be based on cues available in the observable world; and it must focus on what can be done to affect that observable world, i.e., risk management. That leads to two foci: (1) the real-world risk generating process, and (2) best use of available data. Based on our experience with nine WMD terrorism risk assessment models, we then describe three best use of available data pitfalls: SME confidence bias, lack of SME cross-referencing, and problematic initiation rates. Those two foci and three pitfalls provide a basis from which we define validation in this context in terms of four tests--Does the model: … capture initiation? … capture the sequence of events by which attack scenarios unfold? … consider unanticipated scenarios? … consider alternative causal chains? Finally, we corroborate our approach against three validation tests from the DOD literature: Is the model a correct representation of the process to be simulated? To what degree are the model results comparable to the real world? Over what range of inputs are the model results useful? © 2015 Society for Risk Analysis.

  19. Interrelationship of Nondestructive Evaluation Methodologies Applied to Testing of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Leifeste, Mark R.

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are commonly used in spacecraft for containment of pressurized gases and fluids, incorporating strength and weight savings. The energy stored is capable of extensive spacecraft damage and personal injury in the event of sudden failure. These apparently simple structures, composed of a metallic media impermeable liner and fiber/resin composite overwrap are really complex structures with numerous material and structural phenomena interacting during pressurized use which requires multiple, interrelated monitoring methodologies to monitor and understand subtle changes critical to safe use. Testing of COPVs at NASA Johnson Space Center White Sands T est Facility (WSTF) has employed multiple in-situ, real-time nondestructive evaluation (NDE) methodologies as well as pre- and post-test comparative techniques to monitor changes in material and structural parameters during advanced pressurized testing. The use of NDE methodologies and their relationship to monitoring changes is discussed based on testing of real-world spacecraft COPVs. Lessons learned are used to present recommendations for use in testing, as well as a discussion of potential applications to vessel health monitoring in future applications.

  20. The legal and ethical concerns that arise from using complex predictive analytics in health care.

    PubMed

    Cohen, I Glenn; Amarasingham, Ruben; Shah, Anand; Xie, Bin; Lo, Bernard

    2014-07-01

    Predictive analytics, or the use of electronic algorithms to forecast future events in real time, makes it possible to harness the power of big data to improve the health of patients and lower the cost of health care. However, this opportunity raises policy, ethical, and legal challenges. In this article we analyze the major challenges to implementing predictive analytics in health care settings and make broad recommendations for overcoming challenges raised in the four phases of the life cycle of a predictive analytics model: acquiring data to build the model, building and validating it, testing it in real-world settings, and disseminating and using it more broadly. For instance, we recommend that model developers implement governance structures that include patients and other stakeholders starting in the earliest phases of development. In addition, developers should be allowed to use already collected patient data without explicit consent, provided that they comply with federal regulations regarding research on human subjects and the privacy of health information. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Ubiquitousness of link-density and link-pattern communities in real-world networks

    NASA Astrophysics Data System (ADS)

    Šubelj, L.; Bajec, M.

    2012-01-01

    Community structure appears to be an intrinsic property of many complex real-world networks. However, recent work shows that real-world networks reveal even more sophisticated modules than classical cohesive (link-density) communities. In particular, networks can also be naturally partitioned according to similar patterns of connectedness among the nodes, revealing link-pattern communities. We here propose a propagation based algorithm that can extract both link-density and link-pattern communities, without any prior knowledge of the true structure. The algorithm was first validated on different classes of synthetic benchmark networks with community structure, and also on random networks. We have further applied the algorithm to different social, information, technological and biological networks, where it indeed reveals meaningful (composites of) link-density and link-pattern communities. The results thus seem to imply that, similarly as link-density counterparts, link-pattern communities appear ubiquitous in nature and design.

  2. Permeable Pavement Demonstration at the Edison Environmental Center (Hartford)

    EPA Science Inventory

    In general, there is a lack of full-scale, outdoor, real-world porous pavement studies with system replicates. More studies of porous pavement operating in its intended use (parking lot, roadway, etc.) with climatic events, regular use, and maintenance effects, are necessary. The...

  3. Managing pedestrians during evacuations of metropolitan areas.

    DOT National Transportation Integrated Search

    2007-03-01

    The September 11(or 9/11), 2001, attacks on the high-profile workplaces of the World Trade Center (WTC) in New York City and the Pentagon in : the Washington, D.C. area, made real the impact of an unexpected, or no-notice, event in a metropolit...

  4. Updated review of potential test procedures for FMVSS no.208

    DOT National Transportation Integrated Search

    1999-10-01

    The objective of a crash test for Federal Motor Vehicle Safety Standard (FMVSS) No. 208 is to measure how well a passenger vehicle would protect its occupants in the event of a serious real world frontal crash. The ideal frontal crash procedure will ...

  5. Permeable pavement demonstration at the Edison Environmental Center (Hartford, CT)

    EPA Science Inventory

    In general, there is a lack of full-scale, outdoor, real-world porous pavement studies with system replicates. More studies of porous pavement operating in its intended use (parking lot, roadway, etc.) with climatic events, regular use, and maintenance effects, are necessary. The...

  6. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  7. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  8. Adverse events associated with apremilast use and withdrawal for psoriasis in a real-world setting.

    PubMed

    Lee, Erica B; Amin, Mina; Egeberg, Alexander; Wu, Jashin J

    2018-05-06

    Apremilast, a phosphodiesterase-4 inhibitor, is an oral therapy for treatment of psoriasis. Its safety profile is favorable, with side effects including diarrhea, nausea, vomiting, depression, and weight decrease, primarily based on clinical trial data. However, limited research exists on the side effect frequency and subsequent adverse events (AEs) in real-world practice. This retrospective chart review included patients who presented to the dermatology clinic at Kaiser Permanente Los Angeles Medical Center and were treated with apremilast at any time between January 1, 2015 and January 11, 2018. Patients were not included if they did not have at least one follow-up by clinic visit, telephone, or email correspondence after being prescribed apremilast. A total of 77 patients were included. AEs and withdrawal due to AEs were assessed throughout the treatment period from each patient's respective medical record. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. The Social Process of Analyzing Real Water Resource Systems Plans and Management Policies

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel

    2016-04-01

    Developing and applying systems analysis methods for improving the development and management of real world water resource systems, I have learned, is primarily a social process. This talk is a call for more recognition of this reality in the modeling approaches we propose in the papers and books we publish. The mathematical models designed to inform planners and managers of water systems that we see in many of our journals often seem more complex than they need be. They also often seem not as connected to reality as they could be. While it may be easier to publish descriptions of complex models than simpler ones, and while adding complexity to models might make them better able to mimic or resemble the actual complexity of the real physical and/or social systems or processes being analyzed, the usefulness of such models often can be an illusion. Sometimes the important features of reality that are of concern or interest to those who make decisions can be adequately captured using relatively simple models. Finding the right balance for the particular issues being addressed or the particular decisions that need to be made is an art. When applied to real world problems or issues in specific basins or regions, systems modeling projects often involve more attention to the social aspects than the mathematical ones. Mathematical models addressing connected interacting interdependent components of complex water systems are in fact some of the most useful methods we have to study and better understand the systems we manage around us. They can help us identify and evaluate possible alternative solutions to problems facing humanity today. The study of real world systems of interacting components using mathematical models is commonly called applied systems analyses. Performing such analyses with decision makers rather than of decision makers is critical if the needed trust between project personnel and their clients is to be developed. Using examples from recent and ongoing modeling projects in different parts of the world, this talk will attempt to show the dependency on the degree of project success with the degree of attention given to the communication between project personnel, the stakeholders and decision making institutions. It will also highlight how initial project terms-of-reference and expected outcomes can change, sometimes in surprising ways, during the course of such projects. Changing project objectives often result from changing stakeholder values, emphasizing the need for analyses that can adapt to this uncertainty.

  10. Seamless Connection between Learning and Assessment--Applying Progressive Learning Tasks in Mobile Ecology Inquiry

    ERIC Educational Resources Information Center

    Hung, Pi-Hsia; Hwang, Gwo-Jen; Lin, Yu-Fen; Wu, Tsung-Hsun; Su, I-Hsiang

    2013-01-01

    Mobile learning has been recommended for motivating students on field trips; nevertheless, owing to the complexity and the richness of the learning resources from both the real-world and the digital-world environments, information overload remains one of the major concerns. Most mobile learning designs provide feedback only for multiple choice…

  11. SMOS+RAINFALL: Evaluating the ability of different methodologies to improve rainfall estimations using soil moisture data from SMOS

    NASA Astrophysics Data System (ADS)

    Pellarin, Thierry; Brocca, Luca; Crow, Wade; Kerr, Yann; Massari, Christian; Román-Cascón, Carlos; Fernández, Diego

    2017-04-01

    Recent studies have demonstrated the usefulness of soil moisture retrieved from satellite for improving rainfall estimations of satellite based precipitation products (SBPP). The real-time version of these products are known to be biased from the real precipitation observed at the ground. Therefore, the information contained in soil moisture can be used to correct the inaccuracy and uncertainty of these products, since the value and behavior of this soil variable preserve the information of a rain event even for several days. In this work, we take advantage of the soil moisture data from the Soil Moisture and Ocean Salinity (SMOS) satellite, which provides information with a quite appropriate temporal and spatial resolution for correcting rainfall events. Specifically, we test and compare the ability of three different methodologies for this aim: 1) SM2RAIN, which directly relate changes in soil moisture to rainfall quantities; 2) The LMAA methodology, which is based on the assimilation of soil moisture in two models of different complexity (see EGU2017-5324 in this same session); 3) The SMART method, based on the assimilation of soil moisture in a simple hydrological model with a different assimilation/modelling technique. The results are tested for 6 years over 10 sites around the world with different features (land surface, rainfall climatology, orography complexity, etc.). These preliminary and promising results are shown here for the first time to the scientific community, as also the observed limitations of the different methodologies. Specific remarks on the technical configurations, filtering/smoothing of SMOS soil moisture or re-scaling techniques are also provided from the results of different sensitivity experiments.

  12. Multitasking capacities in persons diagnosed with schizophrenia: a preliminary examination of their neurocognitive underpinnings and ability to predict real world functioning.

    PubMed

    Laloyaux, Julien; Van der Linden, Martial; Levaux, Marie-Noëlle; Mourad, Haitham; Pirri, Anthony; Bertrand, Hervé; Domken, Marc-André; Adam, Stéphane; Larøi, Frank

    2014-07-30

    Difficulties in everyday life activities are core features of persons diagnosed with schizophrenia and in particular during multitasking activities. However, at present, patients׳ multitasking capacities have not been adequately examined in the literature due to the absence of suitable assessment strategies. We thus recently developed a computerized real-life activity task designed to take into account the complex and multitasking nature of certain everyday life activities where participants are required to prepare a room for a meeting. Twenty-one individuals diagnosed with schizophrenia and 20 matched healthy controls completed the computerized task. Patients were also evaluated with a cognitive battery, measures of symptomatology and real world functioning. To examine the ecological validity, 14 other patients were recruited and were given the computerized version and a real version of the meeting preparation task. Results showed that performance on the computerized task was significantly correlated with executive functioning, pointing to the major implication of these cognitive processes in multitasking situations. Performance on the computerized task also significantly predicted up to 50% of real world functioning. Moreover, the computerized task demonstrated good ecological validity. These findings suggest the importance of evaluating multitasking capacities in patients diagnosed with schizophrenia in order to predict real world functioning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Reasoning and planning in dynamic domains: An experiment with a mobile robot

    NASA Technical Reports Server (NTRS)

    Georgeff, M. P.; Lansky, A. L.; Schoppers, M. J.

    1987-01-01

    Progress made toward having an autonomous mobile robot reason and plan complex tasks in real-world environments is described. To cope with the dynamic and uncertain nature of the world, researchers use a highly reactive system to which is attributed attitudes of belief, desire, and intention. Because these attitudes are explicitly represented, they can be manipulated and reasoned about, resulting in complex goal-directed and reflective behaviors. Unlike most planning systems, the plans or intentions formed by the system need only be partly elaborated before it decides to act. This allows the system to avoid overly strong expectations about the environment, overly constrained plans of action, and other forms of over-commitment common to previous planners. In addition, the system is continuously reactive and has the ability to change its goals and intentions as situations warrant. Thus, while the system architecture allows for reasoning about means and ends in much the same way as traditional planners, it also posseses the reactivity required for survival in complex real-world domains. The system was tested using SRI's autonomous robot (Flakey) in a scenario involving navigation and the performance of an emergency task in a space station scenario.

  14. A goal bias in action: The boundaries adults perceive in events align with sites of actor intent.

    PubMed

    Levine, Dani; Hirsh-Pasek, Kathy; Pace, Amy; Michnick Golinkoff, Roberta

    2017-06-01

    We live in a dynamic world comprised of continuous events. Remembering our past and predicting future events, however, requires that we segment these ongoing streams of information in a consistent manner. How is this segmentation achieved? This research examines whether the boundaries adults perceive in events, such as the Olympic figure skating routine used in these studies, align with the beginnings (sources) and endings (goals) of human goal-directed actions. Study 1 showed that a group of experts, given an explicit task with unlimited time to rewatch the event, identified the same subevents as one another, but with greater agreement as to the timing of goals than sources. In Study 2, experts, novices familiarized with the figure skating sequence, and unfamiliarized novices performed an online event segmentation task, marking boundaries as the video progressed in real time. The online boundaries of all groups corresponded with the sources and goals offered by Study 1's experts, with greater alignment of goals than sources. Additionally, expertise, but not mere perceptual familiarity, boosted the alignment of sources and goals. Finally, Study 3, which presented novices with the video played in reverse, indicated, unexpectedly, that even when spatiotemporal cues were disrupted, viewers' perceived event boundaries still aligned with their perception of the actors' intended sources and goals. This research extends the goal bias to event segmentation, and suggests that our spontaneous sensitivity toward goals may allow us to transform even relatively complex and unfamiliar event streams into structured and meaningful representations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Debating complexity in modeling

    USGS Publications Warehouse

    Hunt, Randall J.; Zheng, Chunmiao

    1999-01-01

    As scientists trying to understand the natural world, how should our effort be apportioned? We know that the natural world is characterized by complex and interrelated processes. Yet do we need to explicitly incorporate these intricacies to perform the tasks we are charged with? In this era of expanding computer power and development of sophisticated preprocessors and postprocessors, are bigger machines making better models? Put another way, do we understand the natural world better now with all these advancements in our simulation ability? Today the public's patience for long-term projects producing indeterminate results is wearing thin. This increases pressure on the investigator to use the appropriate technology efficiently. On the other hand, bringing scientific results into the legal arena opens up a new dimension to the issue: to the layperson, a tool that includes more of the complexity known to exist in the real world is expected to provide the more scientifically valid answer.

  16. Assessment of Undergraduates' Real-World Outcomes of Critical Thinking in Everyday Situations.

    PubMed

    Franco, Amanda R; Costa, Patrício S; Butler, Heather A; Almeida, Leandro S

    2017-01-01

    Critical thinking is a kind of "good" thinking that integrates a set of cognitive skills and dispositions to use those skills with knowledge to increase the chances of success in academic settings, job market, and daily life. The impact of critical thinking on life events, in face of everyday decisions and challenges, is still unclear, and further research is needed. In this exploratory study, a sample of 230 first-year students of a Bachelor's Degree or a Master's Degree in Portugal completed an experimental Portuguese version of the Real-World Outcomes, a self-report inventory measuring everyday negative life events that are mediated by a lack of critical thinking. Based on exploratory factor analysis results and theoretical premises, changes were made to the Portuguese version of the inventory that was administered, and items were aggregated into six dimensions, creating a new version that is more familiar to Portuguese young adults in college. This original proposal of the inventory presents six types of negative life events resulting from a lack of critical thinking: health neglect, mismanagement, slackness, poor impulse control, academic negligence, and rashness. Both limitations and future potentialities of this version are presented.

  17. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach.

    PubMed

    Bourke, Alan K; Klenk, Jochen; Schwickert, Lars; Aminian, Kamiar; Ihlen, Espen A F; Mellone, Sabato; Helbostad, Jorunn L; Chiari, Lorenzo; Becker, Clemens

    2016-08-01

    Automatic fall detection will promote independent living and reduce the consequences of falls in the elderly by ensuring people can confidently live safely at home for linger. In laboratory studies inertial sensor technology has been shown capable of distinguishing falls from normal activities. However less than 7% of fall-detection algorithm studies have used fall data recorded from elderly people in real life. The FARSEEING project has compiled a database of real life falls from elderly people, to gain new knowledge about fall events and to develop fall detection algorithms to combat the problems associated with falls. We have extracted 12 different kinematic, temporal and kinetic related features from a data-set of 89 real-world falls and 368 activities of daily living. Using the extracted features we applied machine learning techniques and produced a selection of algorithms based on different feature combinations. The best algorithm employs 10 different features and produced a sensitivity of 0.88 and a specificity of 0.87 in classifying falls correctly. This algorithm can be used distinguish real-world falls from normal activities of daily living in a sensor consisting of a tri-axial accelerometer and tri-axial gyroscope located at L5.

  18. Imagining Counterfactual Worlds in Autism Spectrum Disorder.

    PubMed

    Black, Jo; Williams, David; Ferguson, Heather J

    2018-02-01

    Two experiments are presented that explore online counterfactual processing in autism spectrum disorder (ASD) using eye-tracking. Participants' eye movements were tracked while they read factual and counterfactual sentences in an anomaly detection task. In Experiment 1, the sentences depicted everyday counterfactual situations (e.g., If Joanne had remembered her umbrella, her hair would have been dry/wet when she arrived home). Sentences in Experiment 2 depicted counterfactual versions of real world events (e.g., If the Titanic had not hit an iceberg, it would have survived/sunk along with all the passengers). Results from both experiments suggest that counterfactual understanding is undiminished in adults with ASD. In fact, participants with ASD were faster than Typically Developing (TD) participants to detect anomalies within realistic, discourse-based counterfactuals (Experiment 1). Detection was comparable for TD and ASD groups when understanding could be grounded in knowledge about reality (Experiment 2), though the 2 groups used subtly different strategies for responding to and recovering from counterfactual inconsistent words. These data argue against general difficulties in global coherence and complex integration in ASD. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Community detection in complex networks by using membrane algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren

    Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.

  20. Development of a self-made framework for the acquisition and communication of real-time precipitation data

    NASA Astrophysics Data System (ADS)

    Pedrozo-Acuña, A.; Magos-Hernández, J. A.; Sánchez-Peralta, J. A.; Blanco-Figueroa, J.; Breña-Naranjo, J. A.

    2017-12-01

    This contribution presents a real-time system for issuing warnings of intense precipitation events during major storms, developed for Mexico City, Mexico. The system is based on high-temporal resolution (Dt=1min) measurements of precipitation in 10 different points within the city, which report variables such as intensity, number of raindrops, raindrop size, kinetic energy, fall velocity, etc. Each one of these stations, is comprised of an optical disdrometer to measure size and fall velocity of hydrometeors, a solar panel to guarantee an uninterrupted power supply, a wireless broadband access to internet, and a resource constrained device known as Raspberry Pi3 for the processing, storage and sharing of the sensor data over the world wide web. The self-made developed platform follows a component-based system paradigm allowing users to implement custom algorithms and models depending on application requirements. The system is in place since July 2016, and continuous measurements of rainfall in real-time are published over the internet through the webpage www.oh-iiunam.mx. Additionally, the developed platform for the data collection and management interacts with the social network known as Twitter to enable real-time warnings of precipitation events. Key contribution of this development is the design and implementation of a scalable, easy to use, interoperable platform that facilitates the development of real-time precipitation sensor networks and warnings. The system is easy to implement and could be used as a prototype for systems in other regions of the world.

  1. Spatio-temporal networks: reachability, centrality and robustness.

    PubMed

    Williams, Matthew J; Musolesi, Mirco

    2016-06-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks.

  2. Neural activity during natural viewing of Sesame Street statistically predicts test scores in early childhood.

    PubMed

    Cantlon, Jessica F; Li, Rosa

    2013-01-01

    It is not currently possible to measure the real-world thought process that a child has while observing an actual school lesson. However, if it could be done, children's neural processes would presumably be predictive of what they know. Such neural measures would shed new light on children's real-world thought. Toward that goal, this study examines neural processes that are evoked naturalistically, during educational television viewing. Children and adults all watched the same Sesame Street video during functional magnetic resonance imaging (fMRI). Whole-brain intersubject correlations between the neural timeseries from each child and a group of adults were used to derive maps of "neural maturity" for children. Neural maturity in the intraparietal sulcus (IPS), a region with a known role in basic numerical cognition, predicted children's formal mathematics abilities. In contrast, neural maturity in Broca's area correlated with children's verbal abilities, consistent with prior language research. Our data show that children's neural responses while watching complex real-world stimuli predict their cognitive abilities in a content-specific manner. This more ecologically natural paradigm, combined with the novel measure of "neural maturity," provides a new method for studying real-world mathematics development in the brain.

  3. Teaching the Dynamics of Framing Competitions

    ERIC Educational Resources Information Center

    Rinke, Eike Mark

    2012-01-01

    Framing theory is one of the most thriving and complex fields of communication theory, and as such it has grown to be an integral part of many political communication, public opinion, and communication theory courses. Part of the complexity stems from scholars' efforts to develop accounts of framing processes that are closer to the "real world" of…

  4. Exploring Creativity by Linking Complexity Learning to Futures-Based Research Proposals

    ERIC Educational Resources Information Center

    Bolton, Michael J.

    2009-01-01

    Traditional teaching models based on linear approaches to instruction arguably are of limited value in preparing students to handle complex, dynamic real-world problems. As such, they are undergoing increased scrutiny by scholars in various disciplines. The author argues that nonlinear approaches to higher education such as those founded on…

  5. Somatics in Action: How "I Feel Three-Dimensional and Real" Improves Dance Education and Training

    ERIC Educational Resources Information Center

    Kearns, Lauren W.

    2010-01-01

    The contemporary dance world, both in academic and professional settings, asks dancers to consistently engage with increasingly complex conceptual and physical dance work. Dancers in both settings must assimilate complex movement patterns, combine the technical nuances of multiple genres, reflect upon and critically assess their dancing, and…

  6. Topics in Complexity: From Physical to Life Science Systems

    NASA Astrophysics Data System (ADS)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  7. Open multi-agent control architecture to support virtual-reality-based man-machine interfaces

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel

    2001-10-01

    Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.

  8. The complexity of the HANG SENG Index and its constituencies during the 2007-2008 Great Recession

    NASA Astrophysics Data System (ADS)

    Argyroudis, G.; Siokis, F.

    2018-04-01

    We apply the multifractal detrended moving average (MF-DMA) procedure to the daily data from HANG SENG Index (HSI) and two sub-indices, the Properties Index which consists of 10 Real Estate Companies and the Finance Index with 12 companies respectively. Two major events are considered: the 2007 and the 1997 crises. Based on scaling exponents and the singularity spectrum analysis, we show that both events reveal multiscaling and the results are robust across different indices. Furthermore, by dividing the data into two equal sub-samples for prior and after the crisis periods, we reveal that for the 2007-2008 crisis, the complexity of the HSI and Properties index remain the same between periods, while for the Finance Index, the after crisis period exhibits richer multifractality and higher complexity. Especially for the Properties Index, the results indicate that the Real Estate sector was not affected as much, by the transitory shocks of the Great Recession. As for the 1997 event, the HS Index is impacted greatly in the after period crisis exhibiting higher degree of multifractality and heterogeneity.

  9. Investigating the application of AOP methodology in development of Financial Accounting Software using Eclipse-AJDT Environment

    NASA Astrophysics Data System (ADS)

    Sharma, Amita; Sarangdevot, S. S.

    2010-11-01

    Aspect-Oriented Programming (AOP) methodology has been investigated in development of real world business application software—Financial Accounting Software. Eclipse-AJDT environment has been used as open source enhanced IDE support for programming in AOP language—Aspect J. Crosscutting concerns have been identified and modularized as aspects. This reduces the complexity of the design considerably due to elimination of code scattering and tangling. Improvement in modularity, quality and performance is achieved. The study concludes that AOP methodology in Eclipse-AJDT environment offers powerful support for modular design and implementation of real world quality business software.

  10. Expanding the Reach of Physics-Engaging Students in Interdisciplinary Research Involving complex, real-world situation

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon

    2014-03-01

    Physics plays a very important role in most interdisciplinary efforts and can provide a solid foundation for students. Retention of students in STEM areas can be facilitated by enhanced interdisciplinary education and research since students are strongly attracted to research with societal relevance and show increasing enthusiasm about problems that have practical consequences. One such area of research is a collaborative Earth System Science. The Earth System is dynamic and complex. It is comprised of diverse components that interact. By providing students the opportunities to work in interdisciplinary groups on a problem that reflects a complex, real-world situation they can see the linkages between components of the Earth system that encompass climate and all its components (weather precipitation, temperature, etc.) and technology development and deployment of sensors and sensor networks and social impacts. By involving students in the creation of their own personalized professional development plan, students are more focused and engaged and are more likely to remain in the program.

  11. Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions

    PubMed Central

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2017-01-01

    An important characteristic of human language is compositionality. We can efficiently express a wide variety of real-world situations, events, and behaviors by compositionally constructing the meaning of a complex expression from a finite number of elements. Previous studies have analyzed how machine-learning models, particularly neural networks, can learn from experience to represent compositional relationships between language and robot actions with the aim of understanding the symbol grounding structure and achieving intelligent communicative agents. Such studies have mainly dealt with the words (nouns, adjectives, and verbs) that directly refer to real-world matters. In addition to these words, the current study deals with logic words, such as “not,” “and,” and “or” simultaneously. These words are not directly referring to the real world, but are logical operators that contribute to the construction of meaning in sentences. In human–robot communication, these words may be used often. The current study builds a recurrent neural network model with long short-term memory units and trains it to learn to translate sentences including logic words into robot actions. We investigate what kind of compositional representations, which mediate sentences and robot actions, emerge as the network's internal states via the learning process. Analysis after learning shows that referential words are merged with visual information and the robot's own current state, and the logical words are represented by the model in accordance with their functions as logical operators. Words such as “true,” “false,” and “not” work as non-linear transformations to encode orthogonal phrases into the same area in a memory cell state space. The word “and,” which required a robot to lift up both its hands, worked as if it was a universal quantifier. The word “or,” which required action generation that looked apparently random, was represented as an unstable space of the network's dynamical system. PMID:29311891

  12. Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions.

    PubMed

    Yamada, Tatsuro; Murata, Shingo; Arie, Hiroaki; Ogata, Tetsuya

    2017-01-01

    An important characteristic of human language is compositionality. We can efficiently express a wide variety of real-world situations, events, and behaviors by compositionally constructing the meaning of a complex expression from a finite number of elements. Previous studies have analyzed how machine-learning models, particularly neural networks, can learn from experience to represent compositional relationships between language and robot actions with the aim of understanding the symbol grounding structure and achieving intelligent communicative agents. Such studies have mainly dealt with the words (nouns, adjectives, and verbs) that directly refer to real-world matters. In addition to these words, the current study deals with logic words, such as "not," "and," and "or" simultaneously. These words are not directly referring to the real world, but are logical operators that contribute to the construction of meaning in sentences. In human-robot communication, these words may be used often. The current study builds a recurrent neural network model with long short-term memory units and trains it to learn to translate sentences including logic words into robot actions. We investigate what kind of compositional representations, which mediate sentences and robot actions, emerge as the network's internal states via the learning process. Analysis after learning shows that referential words are merged with visual information and the robot's own current state, and the logical words are represented by the model in accordance with their functions as logical operators. Words such as "true," "false," and "not" work as non-linear transformations to encode orthogonal phrases into the same area in a memory cell state space. The word "and," which required a robot to lift up both its hands, worked as if it was a universal quantifier. The word "or," which required action generation that looked apparently random, was represented as an unstable space of the network's dynamical system.

  13. Real-world health outcomes in adults with moderate-to-severe psoriasis in the United States: a population study using electronic health records to examine patient-perceived treatment effectiveness, medication use, and healthcare resource utilization.

    PubMed

    Armstrong, April W; Foster, Shonda A; Comer, Brian S; Lin, Chen-Yen; Malatestinic, William; Burge, Russel; Goldblum, Orin

    2018-06-28

    Little is known regarding real-world health outcomes data among US psoriasis patients, but electronic health records (EHR) that collect structured data at point-of-care may provide opportunities to investigate real-world health outcomes among psoriasis patients. Our objective was to investigate patient-perceived treatment effectiveness, patterns of medication use (duration, switching, and/or discontinuation), healthcare resource utilization, and medication costs using real-world data from psoriasis patients. Data for adults (≥18-years) with a dermatology provider-given diagnosis of psoriasis from 9/2014-9/2015 were obtained from dermatology practices using a widely used US dermatology-specific EHR containing over 500,000 psoriasis patients. Disease severity was captured by static physician's global assessment and body surface area. Patient-perceived treatment effectiveness was assessed by a pre-defined question. Treatment switching and duration were documented. Reasons for discontinuations were assessed using pre-defined selections. Healthcare resource utilization was defined by visit frequency and complexity. From 82,621 patients with psoriasis during the study period, patient-perceived treatment effectiveness was investigated in 2200 patients. The proportion of patients reporting "strongly agree" when asked if their treatment was effective was highest for biologics (73%) and those reporting treatment adherence (55%). In 16,000 patients who received oral systemics and 21,087 patients who received biologics, median treatment duration was longer for those who received biologics (160 vs. 113 days, respectively). Treatment switching was less frequent among patients on systemic monotherapies compared to those on combination therapies. The most common reason for discontinuing biologics was loss of efficacy; the most common reason for discontinuing orals was side effects. In 28,754 patients, higher disease severity was associated with increased healthcare resource utilization (increased visit frequency and complexity). When compared between treatment groups (n = 10,454), healthcare resource utilization was highest for phototherapy. Annual medication costs were higher for biologics ($21,977) than oral systemics ($3413). Real-world research using a widely implemented dermatology EHR provided valuable insights on patient perceived treatment effectiveness, patterns of medication usage, healthcare resource utilization, and medication costs for psoriasis patients in the US. This study and others utilizing EHRs for real-world research may assist clinical and payer decisions regarding the management of psoriasis.

  14. The Real World of Industrial Chemistry: The Use of Oxygen in the Treatment of Sewage.

    ERIC Educational Resources Information Center

    Cook, Gerhard A.; And Others

    1980-01-01

    Reviews the events leading up to the establishment of oxygen (rather than air) as an important component in the second stage treatment of municipal wastewater in sewage-disposal plants. Advantages, problems, and costs of using oxygen are discussed. (CS)

  15. Characterizing Surface Transport Barriers in the South China Sea

    DTIC Science & Technology

    2015-09-30

    to a coral reef system flow, rigorously identifying hyperbolic and elliptic flow structures. 2 RESULTS The FTLE approach was found to be...included in real world applications (Allshouse et al. 2015). Figure 3: The impact of windage on a hypothetical tracer release event of Ningaloo Reef

  16. Overall safety profile and effectiveness of tramadol hydrochloride/acetaminophen in patients with chronic noncancer pain in Japanese real-world practice.

    PubMed

    Yoshizawa, K; Kawai, K; Fujie, M; Suzuki, J; Ogawa, Y; Yajima, T; Yokomori, J

    2015-11-01

    To evaluate the overall safety profile and clinical effectiveness of tramadol hydrochloride/acetaminophen (TA) combination tablets in Japanese patients with chronic noncancer pain unrelieved by non-opioid drugs for up to 12 weeks in real-world practice. This survey was a multicenter, prospective, longitudinal registry on the use of TA as a newly initiated pain treatment for chronic noncancer pain incurable by non-opioid analgesics that was conducted under the Good Post Marketing Study Practice regulation controlled by the Japan Ministry of Health, Labor and Welfare. Collected data included socio-demographics, treatment information, incidence of adverse drug reactions (ADRs), numerical rating scale for intensity of pain, EuroQol-5D (EQ-5D) scale, and physician's global impression (PGI) during the 12 week observation period. A total of 1316 patients were registered. ADRs were reported in 259 patients (20.5%); most events were nonserious (99.4%), including nausea (n = 87 [6.9%]), constipation (n = 63 [5.0%]), dizziness and somnolence (n = 29 [2.3%] each), and vomiting (n = 21 [1.7%]). No event related to drug dependence or respiratory depression was reported. In addition, 82.8% of patients showed acceptable effectiveness based on PGI at Week 4. Numerical rating scale for intensity of pain and EQ-5D utility scores were improved by -2.7 (SD 2.3) and 0.16 (SD 0.20) at Week 4, respectively, and the improvement was maintained until Week 12. This is a first report to evaluate the risk-benefit profile of TA in Japanese real-world practice using large size registry data. It is suggested that the favorable risk-benefit balance of TA was confirmed for patients with chronic noncancer pain unrelieved by non-opioid drugs in real-world practice. Limitations of this study were those inherent to open-label and non-interventional study designs. This registry survey is registered at umin.ac.jp (identifier: UMIN000015901).

  17. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    NASA Astrophysics Data System (ADS)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  18. An Insurer's Care Transition Program Emphasizes Medication Reconciliation, Reduces Readmissions And Costs.

    PubMed

    Polinski, Jennifer M; Moore, Janice M; Kyrychenko, Pavlo; Gagnon, Michael; Matlin, Olga S; Fredell, Joshua W; Brennan, Troyen A; Shrank, William H

    2016-07-01

    Adverse drug events and the challenges of clarifying and adhering to complex medication regimens are central drivers of hospital readmissions. Medication reconciliation programs can reduce the incidence of adverse drug events after discharge, but evidence regarding the impact of medication reconciliation on readmission rates and health care costs is less clear. We studied an insurer-initiated care transition program based on medication reconciliation delivered by pharmacists via home visits and telephone and explored its effects on high-risk patients. We examined whether voluntary program participation was associated with improved medication use, reduced readmissions, and savings net of program costs. Program participants had a 50 percent reduced relative risk of readmission within thirty days of discharge and an absolute risk reduction of 11.1 percent. The program saved $2 for every $1 spent. These results represent real-world evidence that insurer-initiated, pharmacist-led care transition programs, focused on but not limited to medication reconciliation, have the potential to both improve clinical outcomes and reduce total costs of care. Project HOPE—The People-to-People Health Foundation, Inc.

  19. Safety and Effectiveness of Fingolimod in Real-World Multiple Sclerosis Portuguese Patients.

    PubMed

    Ribeiro de Barros, Ariana Helena; Fiadeiro Sequeira, João Paulo; Lopes de Sousa, Ary Severino; Cheganças Capela, Carlos Miguel; Gomes Pedrosa, Rui Manuel; Dos Santos Manita, Manuel Alexandre

    2018-06-20

    The aim of this study was to evaluate postmarketing fingolimod safety and effectiveness in a real-world clinical population. This was a retrospective, single-center study with active multiple sclerosis patients treated with fingolimod with at least 12 months of follow-up. Demographic and clinical and imaging characteristics, including annualized relapse rate (ARR), Expanded Disability Status Score, previous treatment, adverse events, treatment duration, and reason for discontinuation, were analyzed. Sixty-three patients were included; 61.9% were females. Mean age and mean disease duration were 30.9 ± 9.3 years and 11.4 ± 6.9 years, respectively. Fifty-one patients received prior first-line disease-modifying therapies, 11 patients were previously treated with natalizumab, and 1 was treatment naive. The ARR decreased by 75.3% for the total population at the end of the first year of treatment (P < 0.0001). The proportion of relapse-free patients improved significantly. All patients previously treated with natalizumab switched because of safety concerns, although the ARR kept low after treatment initiation. Only 3 patients (4.8%) discontinued treatment because of adverse drug reactions, and 2 (3.2%) because of lack of effectiveness. In this real-world audit, fingolimod appeared to be effective after first-line treatment failure in reducing disease activity and progression of disability throughout the observational period and may be an effective option after natalizumab. Fingolimod was well tolerated with low rates of discontinuation and adverse events.

  20. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    NASA Astrophysics Data System (ADS)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  1. A Web service-based architecture for real-time hydrologic sensor networks

    NASA Astrophysics Data System (ADS)

    Wong, B. P.; Zhao, Y.; Kerkez, B.

    2014-12-01

    Recent advances in web services and cloud computing provide new means by which to process and respond to real-time data. This is particularly true of platforms built for the Internet of Things (IoT). These enterprise-scale platforms have been designed to exploit the IP-connectivity of sensors and actuators, providing a robust means by which to route real-time data feeds and respond to events of interest. While powerful and scalable, these platforms have yet to be adopted by the hydrologic community, where the value of real-time data impacts both scientists and decision makers. We discuss the use of one such IoT platform for the purpose of large-scale hydrologic measurements, showing how rapid deployment and ease-of-use allows scientists to focus on their experiment rather than software development. The platform is hardware agnostic, requiring only IP-connectivity of field devices to capture, store, process, and visualize data in real-time. We demonstrate the benefits of real-time data through a real-world use case by showing how our architecture enables the remote control of sensor nodes, thereby permitting the nodes to adaptively change sampling strategies to capture major hydrologic events of interest.

  2. Cognitive complexity of the medical record is a risk factor for major adverse events.

    PubMed

    Roberson, David; Connell, Michael; Dillis, Shay; Gauvreau, Kimberlee; Gore, Rebecca; Heagerty, Elaina; Jenkins, Kathy; Ma, Lin; Maurer, Amy; Stephenson, Jessica; Schwartz, Margot

    2014-01-01

    Patients in tertiary care hospitals are more complex than in the past, but the implications of this are poorly understood as "patient complexity" has been difficult to quantify. We developed a tool, the Complexity Ruler, to quantify the amount of data (as bits) in the patient’s medical record. We designated the amount of data in the medical record as the cognitive complexity of the medical record (CCMR). We hypothesized that CCMR is a useful surrogate for true patient complexity and that higher CCMR correlates with risk of major adverse events. The Complexity Ruler was validated by comparing the measured CCMR with physician rankings of patient complexity on specific inpatient services. It was tested in a case-control model of all patients with major adverse events at a tertiary care pediatric hospital from 2005 to 2006. The main outcome measure was an externally reported major adverse event. We measured CCMR for 24 hours before the event, and we estimated lifetime CCMR. Above empirically derived cutoffs, 24-hour and lifetime CCMR were risk factors for major adverse events (odds ratios, 5.3 and 6.5, respectively). In a multivariate analysis, CCMR alone was essentially as predictive of risk as a model that started with 30-plus clinical factors. CCMR correlates with physician assessment of complexity and risk of adverse events. We hypothesize that increased CCMR increases the risk of physician cognitive overload. An automated version of the Complexity Ruler could allow identification of at-risk patients in real time.

  3. Evaluation of a Cyber Security System for Hospital Network.

    PubMed

    Faysel, Mohammad A

    2015-01-01

    Most of the cyber security systems use simulated data in evaluating their detection capabilities. The proposed cyber security system utilizes real hospital network connections. It uses a probabilistic data mining algorithm to detect anomalous events and takes appropriate response in real-time. On an evaluation using real-world hospital network data consisting of incoming network connections collected for a 24-hour period, the proposed system detected 15 unusual connections which were undetected by a commercial intrusion prevention system for the same network connections. Evaluation of the proposed system shows a potential to secure protected patient health information on a hospital network.

  4. Plan competitions reveal entrepreneurial talent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.

    2011-05-15

    Monthly economic diversity column for Tri-City Herald business section. Excerpt below: There’s something to be said for gaining valuable real-world experience in a structured, nurturing environment. Take for instance learning to scuba dive in the comfort of my resort pool rather than immediately hanging out with sharks while I figure out little things like oxygen tanks and avoiding underwater panic attacks. Likewise, graduate students are getting some excellent, supportive real-world training through university business plan competitions. These competitions are places where smart minds, new technologies, months of preparation and coaching, and some healthy pre-presentation jitters collide to reveal not onlymore » solid new business ideas, but also some promising entrepreneurial talent. In fact, professionals from around our region descend upon college campuses every spring to judge these events, which help to bridge the gap between academics and the real technology and business-driven economy.« less

  5. Applying Economics Using Interactive Learning Modules

    ERIC Educational Resources Information Center

    Goma, Ophelia D.

    2010-01-01

    This article describes the use of web-based, interactive learning modules in the principles of economics course. The learning modules introduce students to important, historical economic events while providing real-world application of the economic theory presented in class. Each module is designed to supplement and complement the economic theory…

  6. The Development of Young Children's Understanding of the Process of Evaporation.

    ERIC Educational Resources Information Center

    Beveridge, Michael

    1985-01-01

    This investigation of the development of young children's concept of evaporation examines their intuitive explanations of real world events involving evaporation. A study of the effects of providing evidence contradicting their explanations and of directing their attention to relevant situational features provides insight into the development of…

  7. Recent Research on Children's Testimony about Experienced and Witnessed Events

    ERIC Educational Resources Information Center

    Pipe, M.E.; Lamb, M.E.; Orbach, Y.; Esplin, P.W.

    2004-01-01

    Research on memory development has increasingly moved out of the laboratory and into the real world. Whereas early researchers asked whether confusion and susceptibility to suggestion made children unreliable witnesses, furthermore, contemporary researchers are addressing a much broader range of questions about children's memory, focusing not only…

  8. My Two Boots ... A Walk through the Wetlands. An Annual Outing for 700 Middle School Students

    ERIC Educational Resources Information Center

    Cwikla, Julie; Lasalle, Mark; Wilner, Sybil

    2009-01-01

    Project WetKids (www.projectwetkids.net) provides wetland, environmental, estuary, and watershed experiences with local scientists, engineers, and naturalists to Pascagoula, Mississippi students and their families. Extensive activities provide participants: (1) real world, locally relevant science-based events; (2) meaningful scientific…

  9. Applications of Generative Learning for the Survey of International Economics Course

    ERIC Educational Resources Information Center

    Sharp, David C.; Knowlton, Dave S.; Weiss, Renee E.

    2005-01-01

    Generative learning provides students with opportunities to organize course content, integrate new content with students' current knowledge, and elaborate on course content by making connections to real-world events. These opportunities promote less reliance on professors' lectures and simultaneously create more self-reliance among students. The…

  10. "Just the Answers, Please": Choosing a Web Search Service.

    ERIC Educational Resources Information Center

    Feldman, Susan

    1997-01-01

    Presents guidelines for selecting World Wide Web search engines. Real-life questions were used to test six search engines. Queries sought company information, product reviews, medical information, foreign information, technical reports, and current events. Compares performance and features of AltaVista, Excite, HotBot, Infoseek, Lycos, and Open…

  11. Viewing Volcanoes

    ERIC Educational Resources Information Center

    Wighting, Mervyn J.

    2005-01-01

    When Mount St. Helens threatened to erupt again in 2004, it grabbed headlines and captured the imagination of the country. Science classrooms nationwide used the event as an opportunity to make real-world connections to Earth science concepts introduced in the classroom. Thanks to modern technology, teachers no longer have to wait for the next…

  12. A framework for intelligent data acquisition and real-time database searching for shotgun proteomics.

    PubMed

    Graumann, Johannes; Scheltema, Richard A; Zhang, Yong; Cox, Jürgen; Mann, Matthias

    2012-03-01

    In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides "on-the-fly" within 30 ms, well within the time constraints of a shotgun fragmentation "topN" method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available.

  13. A Framework for Intelligent Data Acquisition and Real-Time Database Searching for Shotgun Proteomics*

    PubMed Central

    Graumann, Johannes; Scheltema, Richard A.; Zhang, Yong; Cox, Jürgen; Mann, Matthias

    2012-01-01

    In the analysis of complex peptide mixtures by MS-based proteomics, many more peptides elute at any given time than can be identified and quantified by the mass spectrometer. This makes it desirable to optimally allocate peptide sequencing and narrow mass range quantification events. In computer science, intelligent agents are frequently used to make autonomous decisions in complex environments. Here we develop and describe a framework for intelligent data acquisition and real-time database searching and showcase selected examples. The intelligent agent is implemented in the MaxQuant computational proteomics environment, termed MaxQuant Real-Time. It analyzes data as it is acquired on the mass spectrometer, constructs isotope patterns and SILAC pair information as well as controls MS and tandem MS events based on real-time and prior MS data or external knowledge. Re-implementing a top10 method in the intelligent agent yields similar performance to the data dependent methods running on the mass spectrometer itself. We demonstrate the capabilities of MaxQuant Real-Time by creating a real-time search engine capable of identifying peptides “on-the-fly” within 30 ms, well within the time constraints of a shotgun fragmentation “topN” method. The agent can focus sequencing events onto peptides of specific interest, such as those originating from a specific gene ontology (GO) term, or peptides that are likely modified versions of already identified peptides. Finally, we demonstrate enhanced quantification of SILAC pairs whose ratios were poorly defined in survey spectra. MaxQuant Real-Time is flexible and can be applied to a large number of scenarios that would benefit from intelligent, directed data acquisition. Our framework should be especially useful for new instrument types, such as the quadrupole-Orbitrap, that are currently becoming available. PMID:22171319

  14. Constructing and Modifying Sequence Statistics for relevent Using informR in 𝖱

    PubMed Central

    Marcum, Christopher Steven; Butts, Carter T.

    2015-01-01

    The informR package greatly simplifies the analysis of complex event histories in 𝖱 by providing user friendly tools to build sufficient statistics for the relevent package. Historically, building sufficient statistics to model event sequences (of the form a→b) using the egocentric generalization of Butts’ (2008) relational event framework for modeling social action has been cumbersome. The informR package simplifies the construction of the complex list of arrays needed by the rem() model fitting for a variety of cases involving egocentric event data, multiple event types, and/or support constraints. This paper introduces these tools using examples from real data extracted from the American Time Use Survey. PMID:26185488

  15. Classification of complex networks based on similarity of topological network features

    NASA Astrophysics Data System (ADS)

    Attar, Niousha; Aliakbary, Sadegh

    2017-09-01

    Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.

  16. Data-driven analysis of the effectiveness of evaporative emissions control systems of passenger cars in real world use condition: Time and spatial mapping

    NASA Astrophysics Data System (ADS)

    De Gennaro, Michele; Paffumi, Elena; Martini, Giorgio

    2016-03-01

    This paper assesses the effectiveness of the evaporative emissions control systems of European passenger cars on the basis of real-world activity data. The study relies on two large datasets of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems, consisting of 4.5 million trips and parking events recorded by monitoring 28,000 vehicles over one month. Real world evaporative emissions are estimated using a model that associates a carbon canister desorption event to each trip and a fuel vapour generation event to each parking. The mass of volatile organic compounds released into the air is calculated taking into account the hot-soak, permeation and breathing emission mechanisms. The analysis is based on 36 scenarios, defined by varying the climate conditions, the fuel vapour pressure, the tank material, the tank headspace volume, the purging volume flow rate and the mass of the activated carbon contained in the canister. The results show that in May 4 out of the 18 scenarios considered for Modena and 6 out of the 18 scenarios considered for Firenze lead to evaporative emissions values above the current type approval limit (i.e. 2 [g/day] per vehicle). In July, these numbers increase to 10 out of the 18 scenarios for Modena and to 12 out of the 18 scenarios for Firenze. Looking at the fleet distribution a share of approximately 20% of the fleet is characterised by evaporative emissions higher than the limit in May, increasing to 48% in July, with a peak value of 98%. The emission peak value is estimated to be approximately 4 [g/day] in May and 8 [g/day] in July, while the time-dependent results show emission rates up to nearly 15 [g/s] in Modena and 30 [g/s] in Firenze, with a respective cumulative value in July up to 0.4 and 0.8 tons of VOCs per day. The space-dependent results show a value of the emissions in July of approximately 4-to-8 [kg/km2/day] in the city areas. These results confirm previous findings from the authors, highlighting how the evaporative emissions control system currently used in passenger cars might not be effective under real-world use condition, calling for a revision of the type-approval test procedure.

  17. Systematic review with meta-analysis: real-world effectiveness and safety of vedolizumab in patients with inflammatory bowel disease.

    PubMed

    Schreiber, Stefan; Dignass, Axel; Peyrin-Biroulet, Laurent; Hather, Greg; Demuth, Dirk; Mosli, Mahmoud; Curtis, Rebecca; Khalid, Javaria Mona; Loftus, Edward Vincent

    2018-06-04

    Selective patient recruitment can produce discrepancies between clinical trial results and real-world effectiveness. A systematic literature review and meta-analysis were conducted to assess vedolizumab real-world effectiveness and safety in patients with ulcerative colitis (UC) or Crohn's disease (CD). MEDLINE, MEDLINE In-Process, EMBASE, and Cochrane databases were searched for real-world studies of vedolizumab in adult patients with UC/CD reporting clinical response, remission, corticosteroid-free remission, UC/CD-related surgery or hospitalization, mucosal healing, or safety published from May 1, 2014-June 22, 2017. Response and remission rates were combined in random-effects meta-analyses. At treatment week 14, 32% of UC patients [95% confidence interval (CI) 27-39%] and 30% of CD patients (95% CI 25-34%) were in remission; and at month 12, 46% for UC (95% CI 37-56%) and 30% for CD (95% CI 20-42%). For UC, the rates of corticosteroid-free remission were 26% at week 14 (95% CI 20-34%) and 42% at month 12 (95% CI 31-53%); for CD they were 25% at week 14 (95%, CI 20-31%) and 31% at month 12 (95%, CI 20-45%). At month 12, 33-77% of UC and 6-63% of CD patients had mucosal healing. Nine percent of patients reported serious adverse events. Vedolizumab demonstrated real-world effectiveness in patients with moderate-to-severely active UC or CD, with approximately one-half and one-third of patients, respectively, in remission at treatment month 12. These findings are consistent with clinical trial data and support the long-term benefit-risk profile of vedolizumab.

  18. Thromboembolic and Major Bleeding Events With Rivaroxaban Versus Warfarin Use in a Real-World Setting.

    PubMed

    Russo-Alvarez, Giavanna; Martinez, Kathryn A; Valente, Megan; Bena, James; Hu, Bo; Luxenburg, Jennifer; Chaitoff, Alexander; Ituarte, Catherine; Brateanu, Andrei; Rothberg, Michael B

    2018-01-01

    Although randomized trials demonstrate the noninferiority of rivaroxaban compared with warfarin in the context of nonvalvular atrial fibrillation (AF), little is known about how these drugs compare in practice. To assess the relative effectiveness and safety of rivaroxaban versus warfarin in a large health system and to evaluate this association by time in therapeutic range (TTR). We conducted a retrospective cohort study with propensity matching in the Cleveland Clinic Health System. The study included patients initiated on warfarin or rivaroxaban for thromboembolic prevention in nonvalvular AF between January 2012 and July 2016. The main outcomes were thromboembolic events and major bleeds. Analyses were stratified by warfarin patients' TTR. The cohort consisted of 472 propensity-matched pairs. The mean age was 73.6 years (SD = 11.7), and the mean CHADS 2 score was 1.8. The median TTR for warfarin patients was 64%. In the propensity-matched analysis, there was no significant difference in thromboembolic or major bleeding events between groups. Among warfarin patients with a TTR <64% and their matched rivaroxaban pairs, there was also no significant difference in thromboembolic or major bleeding events. Under real-world conditions, warfarin and rivaroxaban were associated with similar safety and effectiveness, even among those with suboptimal therapeutic control. Individualized decision making, taking into account the nontherapeutic tradeoffs associated with these medications (eg, monitoring, half-life, cost) is warranted.

  19. Teaching and Learning about Complex Systems in K-12 Science Education: A Review of Empirical Studies 1995-2015

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Goh, Sao-Ee; Park, Miyoung

    2018-01-01

    The study of complex systems has been highlighted in recent science education policy in the United States and has been the subject of important real-world scientific investigation. Because of this, research on complex systems in K-12 science education has shown a marked increase over the past two decades. In this systematic review, we analyzed 75…

  20. Monitoring and Identifying in Real time Critical Patients Events.

    PubMed

    Chavez Mora, Emma

    2014-01-01

    Nowadays pervasive health care monitoring environments, as well as business activity monitoring environments, gather information from a variety of data sources. However it includes new challenges because of the use of body and wireless sensors, nontraditional operational and transactional sources. This makes the health data more difficult to monitor. Decision making in this environment is typically complex and unstructured as clinical work is essentially interpretative, multitasking, collaborative, distributed and reactive. Thus, the health care arena requires real time data management in areas such as patient monitoring, detection of adverse events and adaptive responses to operational failures. This research presents a new architecture that enables real time patient data management through the use of intelligent data sources.

  1. Tracking dynamic team activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesismore » underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.« less

  2. Many-Worlds Interpretation of Quantum Theory and Mesoscopic Anthropic Principle

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2008-10-01

    We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.

  3. Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events

    NASA Astrophysics Data System (ADS)

    Guan, Wanqiu; Gao, Haoyu; Yang, Mingmin; Li, Yuan; Ma, Haixin; Qian, Weining; Cao, Zhigang; Yang, Xiaoguang

    2014-02-01

    The spread and resonance of users’ opinions on Sina Weibo, the most popular micro-blogging website in China, are tremendously influential, having significantly affected the processes of many real-world hot social events. We select 21 hot events that were widely discussed on Sina Weibo in 2011, and do some statistical analyses. Our main findings are that (i) male users are more likely to be involved, (ii) messages that contain pictures and those posted by verified users are more likely to be reposted, while those with URLs are less likely, (iii) the gender factor, for most events, presents no significant difference in reposting likelihood.

  4. From IHE Audit Trails to XES Event Logs Facilitating Process Mining.

    PubMed

    Paster, Ferdinand; Helm, Emmanuel

    2015-01-01

    Recently Business Intelligence approaches like process mining are applied to the healthcare domain. The goal of process mining is to gain process knowledge, compliance and room for improvement by investigating recorded event data. Previous approaches focused on process discovery by event data from various specific systems. IHE, as a globally recognized basis for healthcare information systems, defines in its ATNA profile how real-world events must be recorded in centralized event logs. The following approach presents how audit trails collected by the means of ATNA can be transformed to enable process mining. Using the standardized audit trails provides the ability to apply these methods to all IHE based information systems.

  5. Complexity Theory 101 for Educators: A Fictional Account of a Graduate Seminar

    ERIC Educational Resources Information Center

    McMurtry, Angus

    2008-01-01

    The following fictional account of a seminar on complexity science and its relevance for education makes use of several real events. The first is an actual seminar that took place during the spring of 2005, in the Department of Secondary Education at the University of Alberta. The second is the collective creation of the Complexity and Education…

  6. Differences in Assessing Chemical vs. Nonchemical Stressors

    EPA Science Inventory

    Cumulative risk assessment (CRA) addresses the impacts of multiple chemical and nonchemical stressors on real world individuals and communities, resulting in complex exposures for individuals and populations with a variety of vulnerabilities, in applications that range from envir...

  7. Task complexity modulates pilot electroencephalographic activity during real flights.

    PubMed

    Di Stasi, Leandro L; Diaz-Piedra, Carolina; Suárez, Juan; McCamy, Michael B; Martinez-Conde, Susana; Roca-Dorda, Joaquín; Catena, Andrés

    2015-07-01

    Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing) were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG recordings may help to evaluate an operator's cognitive performance in challenging real-life scenarios, and thus could aid in the prevention of catastrophic events. © 2015 Society for Psychophysiological Research.

  8. The Effects of Similarity on High-Level Visual Working Memory Processing.

    PubMed

    Yang, Li; Mo, Lei

    2017-01-01

    Similarity has been observed to have opposite effects on visual working memory (VWM) for complex images. How can these discrepant results be reconciled? To answer this question, we used a change-detection paradigm to test visual working memory performance for multiple real-world objects. We found that working memory for moderate similarity items was worse than that for either high or low similarity items. This pattern was unaffected by manipulations of stimulus type (faces vs. scenes), encoding duration (limited vs. self-paced), and presentation format (simultaneous vs. sequential). We also found that the similarity effects differed in strength in different categories (scenes vs. faces). These results suggest that complex real-world objects are represented using a centre-surround inhibition organization . These results support the category-specific cortical resource theory and further suggest that centre-surround inhibition organization may differ by category.

  9. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  10. [Effectivity and security of vildagliptin as additional treatment for Type 2 diabetes mellitus in real-life conditions in Mexico. EDGE Study subanalysis].

    PubMed

    Márquez-Rodríguez, Eduardo; Brea-Andrea, Eduardo; Rajmet-Hace, Victoria Alejandro; Salinas-Salinas, Javier; Mariño-Rojas, Fabiola

    2016-01-01

    The multinational EDGE (Effectiveness of Diabetes control with vildaGliptin and vildagliptin/mEtformin) study assessed the effectiveness and tolerability of vildagliptin versus other oral antihyperglycemic drugs (OAD) when added to monotherapy in patients in the real-world setting. Prospective, real-world observational study. The primary endpoint (PEP) was the proportion of patients achieving a reduction in HbA1c > 0.3% without peripheral edema, hypoglycemia, discontinuation, dueto gastrointestinal event, or weight gain > 5%. The secondary endpoint (SEP) was the proportion of patient achieving HbA1c < 7% (at month 12), without proven hypoglycemia or weight gain (≥ 3%). Of the 3,523 patients enrolled in Mexico, 2,847 were in the vildagliptin and 676 in the comparator cohort. The PEP was reached in 61.8 and 53.2% in the vildagliptin and comparator cohorts, respectively. The unadjusted odds ratio was 1.42 (95% CI: 1.19-1.68) in favor of vildagliptin. A similar advantage for vildagliptin-based therapies was seen for the SEP. The percentage was lower in the vildagliptin (n = 145; 5.0%) than in the comparator group (n = 95; 14.0%). Vildagliptin, added to a first-line OAD monotherapy, allows patients to reach target HbA1c without experiencing significant adverse events.

  11. Real-world experience with 0.2 μg/day fluocinolone acetonide intravitreal implant (ILUVIEN) in the United Kingdom

    PubMed Central

    Bailey, C; Chakravarthy, U; Lotery, A; Menon, G; Talks, J; Bailey, Clare; Kamal, Aintree; Ghanchi, Faruque; Khan, Calderdale; Johnston, Robert; McKibbin, Martin; Varma, Atul; Mustaq, Bushra; Brand, Christopher; Talks, James; Glover,, Nick

    2017-01-01

    Aims To compare safety outcomes and visual function data acquired in the real-world setting with FAME study results in eyes treated with 0.2 μg/day fluocinolone acetonide (FAc). Methods Fourteen UK clinical sites contributed to pseudoanonymised data collected using the same electronic medical record system. Data pertaining to eyes treated with FAc implant for diabetic macular oedema (DMO) was extracted. Intraocular pressure (IOP)-related adverse events were defined as use of IOP-lowering medication, any rise in IOP>30 mm Hg, or glaucoma surgery. Other measured outcomes included visual acuity, central subfield thickness (CSFT) changes and use of concomitant medications. Results In total, 345 eyes had a mean follow-up of 428 days. Overall, 13.9% of patients required IOP-lowering drops (included initiation, addition and switching of current drops), 7.2% had IOP elevation >30 mm Hg and 0.3% required glaucoma surgery. In patients with prior steroid exposure and no prior IOP-related event, there were no new IOP-related events. In patients without prior steroid use and without prior IOP-related events, 10.3% of eyes required IOP-lowering medication and 4.3% exhibited IOP >30 mm Hg at some point during follow-up. At 24 months, mean best-recorded visual acuity increased from 51.9 to 57.2 letters and 20.8% achieved ≥15-letter improvement. Mean CSFT reduced from 451.2 to 355.5 μm. Conclusions While overall IOP-related emergent events were observed in similar frequency to FAME, no adverse events were seen in the subgroup with prior steroid exposure and no prior IOP events. Efficacy findings confirm that the FAc implant is a useful treatment option for chronic DMO. PMID:28737758

  12. The Mathematics of High School Physics

    NASA Astrophysics Data System (ADS)

    Kanderakis, Nikos

    2016-10-01

    In the seventeenth and eighteenth centuries, mathematicians and physical philosophers managed to study, via mathematics, various physical systems of the sublunar world through idealized and simplified models of these systems, constructed with the help of geometry. By analyzing these models, they were able to formulate new concepts, laws and theories of physics and then through models again, to apply these concepts and theories to new physical phenomena and check the results by means of experiment. Students' difficulties with the mathematics of high school physics are well known. Science education research attributes them to inadequately deep understanding of mathematics and mainly to inadequate understanding of the meaning of symbolic mathematical expressions. There seem to be, however, more causes of these difficulties. One of them, not independent from the previous ones, is the complex meaning of the algebraic concepts used in school physics (e.g. variables, parameters, functions), as well as the complexities added by physics itself (e.g. that equations' symbols represent magnitudes with empirical meaning and units instead of pure numbers). Another source of difficulties is that the theories and laws of physics are often applied, via mathematics, to simplified, and idealized physical models of the world and not to the world itself. This concerns not only the applications of basic theories but also all authentic end-of-the-chapter problems. Hence, students have to understand and participate in a complex interplay between physics concepts and theories, physical and mathematical models, and the real world, often without being aware that they are working with models and not directly with the real world.

  13. A Knowledge Acquisition Approach to Developing Mindtools for Organizing and Sharing Differentiating Knowledge in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Chu, Hui-Chun; Lin, Yu-Shih; Tsai, Chin-Chung

    2011-01-01

    Previous studies have reported the importance and benefits of situating students in a real-world learning environment with access to digital-world resources. At the same time, researchers have indicated the need to develop learning guidance mechanisms or tools for assisting students to learn in such a complex learning scenario. In this study, a…

  14. Evaluating resilience of DNP3-controlled SCADA systems against event buffer flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Guanhua; Nicol, David M; Jin, Dong

    2010-12-16

    The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator device receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communication between control center and data aggregator is asynchronous with the DNP3 communication between data aggregator and relays; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a relaymore » is compromised or spoofed and sends overly many (false) events to the data aggregator. This paper investigates how a real-world SCADA device responds to event buffer flooding. A Discrete-Time Markov Chain (DTMC) model is developed for understanding this. The DTMC model is validated by a Moebius simulation model and data collected on real SCADA testbed.« less

  15. How far we are from the complete knowledge: Complexity of knowledge acquisition in Dempster-Shafer approach

    NASA Technical Reports Server (NTRS)

    Chokr, Bassam A.; Kreinovich, Vladik YA.

    1991-01-01

    When a knowledge base represents the experts' uncertainty, then it is reasonable to ask how far we are from the complete knowledge, that is, how many more questions do we have to ask (to these experts, to nature by means of experimenting, etc) in order to attain the complete knowledge. Of course, since we do not know what the real world is, we cannot get the precise number of questions from the very beginning: it is quite possible, for example, that we ask the right question first and thus guess the real state of the world after the first question. So we have to estimate this number and use this estimate as a natural measure of completeness for a given knowledge base. We give such estimates for Dempster-Shafer formalism. Namely, we show that this average number of questions can be obtained by solving a simple mathematical optimization problem. In principle this characteristic is not always sufficient to express the fact that sometimes we have more knowledge. For example, it has the same value if we have an event with two possible outcomes and nothing else is known, and if there is an additional knowledge that the probability of every outcome is 0.5. We'll show that from the practical viewpoint this is not a problem, because the difference between the necessary number of questions in both cases is practically negligible.

  16. Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation.

    PubMed

    Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo

    2016-09-01

    Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Some of the thousand words a picture is worth.

    PubMed

    Mandler, J M; Johnson, N S

    1976-09-01

    The effects of real-world schemata on recognition of complex pictures were studied. Two kinds of pictures were used: pictures of objects forming real-world scenes and unorganized collections of the same objects. The recognition test employed distractors that varied four types of information: inventory, spatial location, descriptive and spatial composition. Results emphasized the selective nature of schemata since superior recognition of one kind of information was offset by loss of another. Spatial location information was better recognized in real-world scenes and spatial composition information was better recognized in unorganized scenes. Organized and unorganized pictures did not differ with respect of inventory and descriptive information. The longer the pictures were studied, the longer subjects took to recognize them. Reaction time for hits, misses, and false alarms increased dramatically as presentation time increased from 5 to 60 sec. It was suggested that detection of a difference in a distractor terminated search, but that when no difference was detected, an exhaustive search of the available information took place.

  18. Informatics in radiology: an information model of the DICOM standard.

    PubMed

    Kahn, Charles E; Langlotz, Curtis P; Channin, David S; Rubin, Daniel L

    2011-01-01

    The Digital Imaging and Communications in Medicine (DICOM) Standard is a key foundational technology for radiology. However, its complexity creates challenges for information system developers because the current DICOM specification requires human interpretation and is subject to nonstandard implementation. To address this problem, a formally sound and computationally accessible information model of the DICOM Standard was created. The DICOM Standard was modeled as an ontology, a machine-accessible and human-interpretable representation that may be viewed and manipulated by information-modeling tools. The DICOM Ontology includes a real-world model and a DICOM entity model. The real-world model describes patients, studies, images, and other features of medical imaging. The DICOM entity model describes connections between real-world entities and the classes that model the corresponding DICOM information entities. The DICOM Ontology was created to support the Cancer Biomedical Informatics Grid (caBIG) initiative, and it may be extended to encompass the entire DICOM Standard and serve as a foundation of medical imaging systems for research and patient care. RSNA, 2010

  19. Framsticks

    NASA Astrophysics Data System (ADS)

    Komosinski, Maciej; Ulatowski, Szymon

    Life is one of the most complex phenomena known in our world. Researchers construct various models of life that serve diverse purposes and are applied in a wide range of areas — from medicine to entertainment. A part of artificial life research focuses on designing three-dimensional (3D) models of life-forms, which are obviously appealing to observers because the world we live in is three dimensional. Thus, we can easily understand behaviors demonstrated by virtual individuals, study behavioral changes during simulated evolution, analyze dependencies between groups of creatures, and so forth. However, 3D models of life-forms are not only attractive because of their resemblance to the real-world organisms. Simulating 3D agents has practical implications: If the simulation is accurate enough, then real robots can be built based on the simulation, as in [22]. Agents can be designed, tested, and optimized in a virtual environment, and the best ones can be constructed as real robots with embedded control systems. This way artificial intelligence algorithms can be “embodied” in the 3D mechanical constructs.

  20. Self-generated strategic behavior in an ecological shopping task.

    PubMed

    Bottari, Carolina; Wai Shun, Priscilla Lam; Dorze, Guylaine Le; Gosselin, Nadia; Dawson, Deirdre

    2014-01-01

    OBJECTIVES. The use of cognitive strategies optimizes performance in complex everyday tasks such as shopping. This exploratory study examined the cognitive strategies people with traumatic brain injury (TBI) effectively use in an unstructured, real-world situation. METHOD. A behavioral analysis of the self-generated strategic behaviors of 5 people with severe TBI using videotaped sessions of an ecological shopping task (Instrumental Activities of Daily Living Profile) was performed. RESULTS. All participants used some form of cognitive strategy in an unstructured real-world shopping task, although the number, type, and degree of effectiveness of the strategies in leading to goal attainment varied. The most independent person used the largest number and a broader repertoire of self-generated strategies. CONCLUSION. These results provide initial evidence that occupational therapists should examine the use of self-generated cognitive strategies in real-world contexts as a potential means of guiding therapy aimed at improving independence in everyday activities for people with TBI. Copyright © 2014 by the American Occupational Therapy Association, Inc.

  1. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    NASA Technical Reports Server (NTRS)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  2. Confrontation of the cybernetic definition of a living individual with the real world.

    PubMed

    Korzeniewski, Bernard

    2005-01-01

    The cybernetic definition of a living individual proposed previously (Korzeniewski, 2001) is very abstract and therefore describes the essence of life in a very formal and general way. In the present article this definition is reformulated in order to determine clearly the relation between life in general and a living individual in particular, and it is further explained and defended. Next, the cybernetic definition of a living individual is confronted with the real world. It is demonstrated that numerous restrictions imposed on the cybernetic definition of life by physical reality imply a number of particular properties of life that characterize present life on Earth, namely: (1) a living individual must be a dissipative structure (and therefore a low-entropy thermodynamic system out of the state of equilibrium); (2) spontaneously-originated life must be based on organic compounds; (3) evolutionarily stable self-dependent, free-living individuals must have some minimal level of complexity of structure and function; (4) a living individual must have a record of identity separated from an executive machinery; (5) the identity of living individuals must mutate and may evolve; (6) living individuals may collect and accumulate information in subsequent generations over very long periods of time; (7) the degree of complexity of a living individual reflects the degree of complexity of its environment (ecological niche) and (8) living individuals are capable of supple adaptation to varying environmental conditions. Thus, the cybernetic definition of a living individual, when confronted with the real physical world, generates most of the general properties of the present life on Earth.

  3. Evidence for complex contagion models of social contagion from observational data

    PubMed Central

    Sprague, Daniel A.

    2017-01-01

    Social influence can lead to behavioural ‘fads’ that are briefly popular and quickly die out. Various models have been proposed for these phenomena, but empirical evidence of their accuracy as real-world predictive tools has so far been absent. Here we find that a ‘complex contagion’ model accurately describes the spread of behaviours driven by online sharing. We found that standard, ‘simple’, contagion often fails to capture both the rapid spread and the long tails of popularity seen in real fads, where our complex contagion model succeeds. Complex contagion also has predictive power: it successfully predicted the peak time and duration of the ALS Icebucket Challenge. The fast spread and longer duration of fads driven by complex contagion has important implications for activities such as publicity campaigns and charity drives. PMID:28686719

  4. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    PubMed

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts.

  5. Assessment of pilot workload - Converging measures from performance based, subjective and psychophysiological techniques

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1986-01-01

    This study explores the relationship between the P300 component of the event-related brain potential (ERP) and the processing demands of a complex real-world task. Seven male volunteers enrolled in an Instrument Flight Rule (IFR) aviation course flew a series of missions in a single engine fixed-based simulator. In dual task conditions subjects were also required to discriminate between two tones differing in frequency. ERPs time-locked to the tones, subjective effort ratings and overt performance measures were collected during two 45 min flights differing in difficulty (manipulated by varying both atmospheric conditions and instrument reliability). The more difficult flight was associated with poorer performance, increased subjective effort ratings, and smaller secondary task P300s. Within each flight, P300 amplitude was negatively correlated with deviations from command headings indicating that P300 amplitude was a sensitive workload metric both between and within the flight missions.

  6. Viable investigations and real-time recitation of enhanced ECG-based cardiac telemonitoring system for homecare applications: a systematic evaluation.

    PubMed

    Rajan, S Palanivel; Rajamony, Sukanesh

    2013-04-01

    A light and portable wireless biosignal retrieving system has always been a medical dream. This proposed wireless-type biosignal alerting system aims at designing and developing a module that detects the abnormal interpretations in the PQRST complex (electrocardiography) and heart rate of a patient in advance, gives a self-warning ring to the patient, and also sends a short message service warning to the doctor's mobile phone through the Global System for Mobile Communication. This system is a solution to supplement the limitations in conventional clinic examination such as the difficulty in capturing rare events, out-of-hospital monitoring of patients' heart status, and the immediate dissemination of the physician's instruction to the patient. These study results have immense consequence in researching, finding, and preventing epidemics in the cardiovascular system for the entire world.

  7. A Mathematical Model of the Great Solar Eclipse of 1991.

    ERIC Educational Resources Information Center

    Lamb, John Jr.

    1991-01-01

    An activity that shows how mathematics can be used to model events in the real world is described. A way to calculate the area of the sun covered by the moon during a partial eclipse is presented. A computer program that will determine the coverage percentage is also included. (KR)

  8. Science on the Doorstep

    ERIC Educational Resources Information Center

    Little, Annette; Christie, Andrew

    2017-01-01

    As teachers the authors aim to inspire and instill curiosity while teaching science and this can be enriched by tapping into pupils' interest in what is happening in the outside world. At Whitehill Junior School, they endeavor to make the most of real-life events and seek to foster meaningful links with scientists and engineers to help bring STEM…

  9. Analyzing the Impact of the 2012 Ford Focus Target Hunt: Can Student Managed Projects Accomplish Both Academic and Corporate Objectives?

    ERIC Educational Resources Information Center

    Aurand, Timothy W.; St. Clair, Jordan; Sullivan, Ursula

    2012-01-01

    Student-managed business projects offer students the opportunity to garner valuable real world experience while businesses can fulfill corporate responsibilities utilizing relatively inexpensive manpower. This paper describes an event marketing/social media marketing project completed in conjunction with Jackson-Dawson Communications, representing…

  10. Teachers as Researchers

    ERIC Educational Resources Information Center

    Klippel, Friederike

    2017-01-01

    A dedicated teacher, keen to try out new methods of teaching English and French and different ways of getting learners to talk. The teacher knows it is important to motivate the learners by bringing the real world and the target culture into the classroom and uses authentic newspaper articles on current events and takes the class out of the…

  11. Bioterrorism and Real-World Science

    ERIC Educational Resources Information Center

    Johnson, Carla

    2003-01-01

    Recent events, such as the anthrax scares and the SARS outbreak, have forced teachers to focus on issues such as disease control and bioterrorism in their own backyards. Students are aware of the current biological issues in the news and are curious about infectious diseases and the issues relating to biological warfare. In order to address the…

  12. Creating an Effective Newsletter

    ERIC Educational Resources Information Center

    Shackelford, Ray; Griffis, Kurt

    2006-01-01

    Newsletters are an important resource or form of media. They offer a cost-effective way to keep people informed, as well as to promote events and programs. Production of a newsletter makes an excellent project, relevant to real-world communication, for technology students. This article presents an activity on how to create a short newsletter. The…

  13. The Structural Sources of Verb Meaning.

    ERIC Educational Resources Information Center

    Gleitman, Lila R.

    A discussion of English native-language vocabulary acquisition in children takes a closer look at the assumption that vocabulary is learned by common association of word with event, focusing on the acquisition of verb meanings. The intuitive power of the view that words are learned by noticing real-world contingencies for their use is…

  14. Exploring Quarks, Gluons and the Higgs Boson

    ERIC Educational Resources Information Center

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  15. Characterizing Risks of Exposures to Combined Stressors: An Overview

    EPA Science Inventory

    Cumulative risk assessment (CRA) addresses the impacts of multiple chemical and nonchemical stressors on communities, resulting from complex exposures for populations with a variety of vulnerabilities. These efforts focus on real world exposure scenarios and applications that ra...

  16. Long-term safety of icatibant treatment of patients with angioedema in real-world clinical practice.

    PubMed

    Zanichelli, A; Maurer, M; Aberer, W; Caballero, T; Longhurst, H J; Bouillet, L; Fabien, V; Andresen, I

    2017-06-01

    The Icatibant Outcome Survey (IOS) is an observational study monitoring safety and effectiveness of icatibant in the real-world setting. We analyzed safety data from 3025 icatibant-treated attacks in 557 patients (enrolled between July 2009 and February 2015). Icatibant was generally well tolerated. Excluding off-label use and pregnancy, 438 patients (78.6%) did not report adverse events (AEs). The remaining 119 (21.4%) patients reported 341 AEs, primarily gastrointestinal disorders (19.6%). Of these, 43 AEs in 17 patients (3.1%) were related to icatibant. Serious AEs (SAEs) occurred infrequently. A total of 143 SAEs occurred in 59 (10.6%) patients; only three events (drug inefficacy, gastritis, and reflux esophagitis) in two patients were considered related to icatibant. Notably, no SAEs related to icatibant occurred in patients with cardiovascular disease, nor in those using icatibant at a frequency above label guidelines. Additionally, no major differences were noted in AEs occurring in on-label vs off-label icatibant users. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  17. Event-related brain potentials as indices of mental workload and attentional allocation

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Donchin, Emanuel; Wickens, Christopher D.

    1988-01-01

    Over the past decade considerable strides were made in explicating the antecedant conditions necessary for the elicitation, and the modulation of the amplitude and latency, of a number of components of the event-related brain potential (ERP). The focus of this report is on P300. The degree to which the psychophysiological measures contribute to issues in two real-world domains (communication devices for the motor impaired and the assessment of mental workload of aircraft pilots) are examined.

  18. Ontology-aided feature correlation for multi-modal urban sensing

    NASA Astrophysics Data System (ADS)

    Misra, Archan; Lantra, Zaman; Jayarajah, Kasthuri

    2016-05-01

    The paper explores the use of correlation across features extracted from different sensing channels to help in urban situational understanding. We use real-world datasets to show how such correlation can improve the accuracy of detection of city-wide events by combining metadata analysis with image analysis of Instagram content. We demonstrate this through a case study on the Singapore Haze. We show that simple ontological relationships and reasoning can significantly help in automating such correlation-based understanding of transient urban events.

  19. Hybrid Architectural Framework for C4ISR and Discrete-Event Simulation (DES) to Support Sensor-Driven Model Synthesis in Real-World Scenarios

    DTIC Science & Technology

    2013-09-01

    which utilizes FTA and then loads it into a DES engine to generate simulation results. .......44 Figure 21. This simulation architecture is...While Discrete Event Simulation ( DES ) can provide accurate time estimation and fast simulation speed, models utilizing it often suffer...C4ISR progress in MDW is developed in this research to demonstrate the feasibility of AEMF- DES and explore its potential. The simulation (MDSIM

  20. The Berlin-Baghdad Railway as a cause of World War I.

    DTIC Science & Technology

    1984-01-01

    complex succession of events which culminated in a world war, and for this Serbian nationalism was ultimately responsible." - 12 - The essence of...and began to cut loose from Turkey (Brandenburg, [ 12 ]). The French and English began working together against Germany in the Public Debt Administration...Rivalry 12 . Brandenburg, Erich. From Bismarck to the World War: A History of German Foreign Policy, 1870-1914. London, 1927. (Brandenburg briefly

  1. When Simple Harmonic Motion Is Not that Simple: Managing Epistemological Complexity by Using Computer-Based Representations

    ERIC Educational Resources Information Center

    Parnafes, Orit

    2010-01-01

    Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get…

  2. Emergent Complexity in Conway's Game of Life

    NASA Astrophysics Data System (ADS)

    Gotts, Nick

    It is shown that both small, finite patterns and random infinite very low density ("sparse") arrays of the Game of Life can produce emergent structures and processes of great complexity, through ramifying feedback networks and cross-scale interactions. The implications are discussed: it is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  3. The effects of musical and linguistic components in recognition of real-world musical excerpts by cochlear implant recipients and normal-hearing adults.

    PubMed

    Gfeller, Kate; Jiang, Dingfeng; Oleson, Jacob J; Driscoll, Virginia; Olszewski, Carol; Knutson, John F; Turner, Christopher; Gantz, Bruce

    2012-01-01

    Cochlear implants (CI) are effective in transmitting salient features of speech, especially in quiet, but current CI technology is not well suited in transmission of key musical structures (e.g., melody, timbre). It is possible, however, that sung lyrics, which are commonly heard in real-world music may provide acoustical cues that support better music perception. The purpose of this study was to examine how accurately adults who use CIs (n = 87) and those with normal hearing (NH) (n = 17) are able to recognize real-world music excerpts based upon musical and linguistic (lyrics) cues. CI recipients were significantly less accurate than NH listeners on recognition of real-world music with or, in particular, without lyrics; however, CI recipients whose devices transmitted acoustic plus electric stimulation were more accurate than CI recipients reliant upon electric stimulation alone (particularly items without linguistic cues). Recognition by CI recipients improved as a function of linguistic cues. Participants were tested on melody recognition of complex melodies (pop, country, & classical styles). Results were analyzed as a function of: hearing status and history, device type (electric only or acoustic plus electric stimulation), musical style, linguistic and musical cues, speech perception scores, cognitive processing, music background, age, and in relation to self-report on listening acuity and enjoyment. Age at time of testing was negatively correlated with recognition performance. These results have practical implications regarding successful participation of CI users in music-based activities that include recognition and accurate perception of real-world songs (e.g., reminiscence, lyric analysis, & listening for enjoyment).

  4. Hypothetical Case and Scenario Description for International Transportation of Spent Nuclear Fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Adam David; Osborn, Douglas; Jones, Katherine A.

    To support more rigorous analysis on global security issues at Sandia National Laboratories (SNL), there is a need to develop realistic data sets without using "real" data or identifying "real" vulnerabilities, hazards or geopolitically embarrassing shortcomings. In response, an interdisciplinary team led by subject matter experts in SNL's Center for Global Security and Cooperation (CGSC) developed a hypothetical case description. This hypothetical case description assigns various attributes related to international SNF transportation that are representative, illustrative and indicative of "real" characteristics of "real" countries. There is no intent to identify any particular country and any similarity with specific real-world eventsmore » is purely coincidental. To support the goal of this report to provide a case description (and set of scenarios of concern) for international SNF transportation inclusive of as much "real-world" complexity as possible -- without crossing over into politically sensitive or classified information -- this SAND report provides a subject matter expert-validated (and detailed) description of both technical and political influences on the international transportation of spent nuclear fuel. [PAGE INTENTIONALLY LEFT BLANK]« less

  5. The James Webb Space Telescope RealWorld-InWorld Design Challenge: Involving Professionals in a Virtual Classroom

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret; Bowers, S.

    2011-01-01

    Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.

  6. Real-world effectiveness and safety of ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin in hepatitis C: AMBER study.

    PubMed

    Flisiak, R; Janczewska, E; Wawrzynowicz-Syczewska, M; Jaroszewicz, J; Zarębska-Michaluk, D; Nazzal, K; Bolewska, B; Bialkowska, J; Berak, H; Fleischer-Stępniewska, K; Tomasiewicz, K; Karwowska, K; Rostkowska, K; Piekarska, A; Tronina, O; Madej, G; Garlicki, A; Lucejko, M; Pisula, A; Karpińska, E; Kryczka, W; Wiercińska-Drapało, A; Mozer-Lisewska, I; Jabłkowski, M; Horban, A; Knysz, B; Tudrujek, M; Halota, W; Simon, K

    2016-11-01

    Virologic and safety outcomes of ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin (OBV/PTV/r ± DSV ± RBV) therapy have shown high sustained virologic response (SVR) rates and good tolerability in most patient populations in pre-registration studies. To confirm these clinical trial findings in the treatment of genotype 1 and 4 hepatitis C under real-world conditions. Patients enrolled for treatment with OBV/PTV/r ± DSV ± RBV based on therapeutic guidelines were included, and the regimen was administered according to product characteristics. Clinical and laboratory data, including virologic response, were collected at baseline, end of treatment (EOT) and 12 weeks after EOT. A total of 209 patients with chronic hepatitis C were enrolled, most were genotype 1b-infected (84.2%) and 119 (56.9%) had liver cirrhosis. Among these, 150 (71.7%) had failed previous anti-viral therapies and 84 (40.2%) were null-responders. At 12 weeks after EOT, SVR was achieved by 207 (99.0%) patients, ranging from 96.4% to 100.0% across subgroups. All Child-Pugh B and post-orthotopic liver transplantation patients achieved SVR. Adverse events occurred in 151 (72.2%) patients and were mostly mild and associated with the use of RBV. Serious adverse events, including hepatic decompensation, renal insufficiency, anaemia, hepatotoxicity and diarrhoea, were reported in eight (3.8%) patients. In five (2.4%) patients, adverse events led to treatment discontinuation. On-treatment decompensation was experienced by seven (3.3%) patients. The results of our study confirm previous findings. They demonstrate excellent effectiveness and a good safety profile of OBV/PTV/r± DSV±RBV in HCV genotype 1-infected patients treated in the real-world setting. © 2016 John Wiley & Sons Ltd.

  7. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  8. Cognitive Complexity of the Medical Record Is a Risk Factor for Major Adverse Events

    PubMed Central

    Roberson, David; Connell, Michael; Dillis, Shay; Gauvreau, Kimberlee; Gore, Rebecca; Heagerty, Elaina; Jenkins, Kathy; Ma, Lin; Maurer, Amy; Stephenson, Jessica; Schwartz, Margot

    2014-01-01

    Context: Patients in tertiary care hospitals are more complex than in the past, but the implications of this are poorly understood because “patient complexity” has been difficult to quantify. Objective: We developed a tool, the Complexity Ruler, to quantify the amount of data (as bits) in the patient’s medical record. We designated the amount of data in the medical record as the cognitive complexity of the medical record (CCMR). We hypothesized that CCMR is a useful surrogate for true patient complexity and that higher CCMR correlates with risk of major adverse events. Design: The Complexity Ruler was validated by comparing the measured CCMR with physician rankings of patient complexity on specific inpatient services. It was tested in a case-control model of all patients with major adverse events at a tertiary care pediatric hospital from 2005 to 2006. Main Outcome Measures: The main outcome measure was an externally reported major adverse event. We measured CCMR for 24 hours before the event, and we estimated lifetime CCMR. Results: Above empirically derived cutoffs, 24-hour and lifetime CCMR were risk factors for major adverse events (odds ratios, 5.3 and 6.5, respectively). In a multivariate analysis, CCMR alone was essentially as predictive of risk as a model that started with 30-plus clinical factors. Conclusions: CCMR correlates with physician assessment of complexity and risk of adverse events. We hypothesize that increased CCMR increases the risk of physician cognitive overload. An automated version of the Complexity Ruler could allow identification of at-risk patients in real time. PMID:24626065

  9. European type-approval test procedure for evaporative emissions from passenger cars against real-world mobility data from two Italian provinces.

    PubMed

    Martini, Giorgio; Paffumi, Elena; De Gennaro, Michele; Mellios, Giorgos

    2014-07-15

    This paper presents an evaluation of the European type-approval test procedure for evaporative emissions from passenger cars based on real-world mobility data. The study relies on two large databases of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems in the Italian provinces of Modena and Firenze. Approximately 28,000 vehicles were monitored, corresponding to approximately 36 million kilometres over a period of one month. The driving pattern of each vehicle was processed to derive the relation between trip length and parking duration, and the rate of occurrence of parking events against multiple evaporative cycles, defined on the basis of the type-approval test procedure as 12-hour diurnal time windows. These results are used as input for an emission simulation model, which calculates the total evaporative emissions given the characteristics of the evaporative emission control system of the vehicle and the ambient temperature conditions. The results suggest that the evaporative emission control system, fitted to the vehicles from Euro 3 step and optimised for the current type-approval test procedure, could not efficiently work under real-world conditions, resulting in evaporative emissions well above the type-approval limit, especially for small size vehicles and warm climate conditions. This calls for a revision of the type-approval test procedure in order to address real-world evaporative emissions. Copyright © 2014. Published by Elsevier B.V.

  10. Ecological advice for the global fisher crisis.

    PubMed

    Roberts, C M

    1997-01-01

    Fisheries science was the precursor of population ecology and continues to contribute important theoretical advances. Despite this, fishery scientists have a poor record for applying their insights to real-world fisheries management. Is there a gulf between theory and application or does the high variability inherent in fish populations and complexity of multispecies fisheries demand a different approach to management? Perhaps the solution to the world fisheries crisis is obvious after all?

  11. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    NASA Astrophysics Data System (ADS)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  12. Measuring complexity in Brazilian economic crises.

    PubMed

    Mortoza, Letícia P D; Piqueira, José R C

    2017-01-01

    Capital flows are responsible for a strong influence on the foreign exchange rates and stock prices macroeconomic parameters. In volatile economies, capital flows can change due to several types of social, political and economic events, provoking oscillations on these parameters, which are recognized as economic crises. This work aims to investigate how these two macroeconomic variables are related with crisis events by using the traditional complex measures due to Lopez-Mancini-Calbet (LMC) and to Shiner-Davison-Landsberg (SDL), that can be applied to any temporal series. Here, Ibovespa (Bovespa Stock Exchange main Index) and the "dollar-real" parity are the background for calculating the LMC and SDL complexity measures. By analyzing the temporal evolution of these measures, it is shown that they might be related to important events that occurred in the Brazilian economy.

  13. Seat belt pre-pretensioner effect on child-sized dummies during run-off-road events.

    PubMed

    Stockman, Isabelle; Bohman, Katarina; Jakobsson, Lotta

    2017-05-29

    Run-off-road events occur frequently and can result in severe consequences. Several potential injury-causing mechanisms can be observed in the diverse types of run-off-road events. Real-world data show that different types of environments, such as rough terrain, ditch types, and whether multiple events occur, may be important contributing factors to occupant injury. Though countermeasures addressing front seat occupants have been presented, studies on rear seat occupant retention in situations such as run-off-road events are lacking. The aim of this study was to investigate the seat belt pre-pretensioner effect on rear-seated child-sized anthropomorphic test devices (ATDs) during 2 different types of run-off-road events. The study was carried out using 2 test setups: a rig test with a vehicle rear seat mounted on a multi-axial robot simulating a road departure event into a side ditch and an in-vehicle test setup with a Volvo XC60 entering a side ditch with a grass slope, driving inside the ditch, and returning back to the road from the ditch. Potential subsequent rollovers or impacts were not included in the test setups. Three different ATDs were used. The Q6 and Q10 were seated on an integrated booster cushion and the Hybrid III (HIII) 5th percentile female was positioned directly on the seat. The seat belt retractor was equipped with a pre-pretensioner (electrical reversible retractor) with 3 force level settings. In addition, reference tests with the pre-pretensioner inactivated were run. Kinematics and the shoulder belt position were analyzed. In rig tests, the left-seated ATD was exposed to rapid inboard lateral loads relative to the vehicle. The displacement for each ATD was reduced when the pre-pretensioner was activated compared to tests when it was inactivated. Maximum inboard displacement occurred earlier in the event for all ATDs when the pre-pretensioner was activated. Shoulder belt slip-off occurred for the Q6 and Q10 in tests where the pre-pretensioner was inactivated. During in-vehicle tests, the left-seated ATD was exposed to an inboard movement when entering the road again after driving in the ditch. The maximum inboard head displacement was reduced in tests where the pre-pretensioner was activated compared to tests in which it was inactivated. During both test setups, the activation of the pre-pretensioner resulted in reduced lateral excursion of the Q6, Q10, and HIII 5th percentile female due to the shoulder belt remaining on the shoulder and supporting the side of the lower torso. The results provide new insights into the potential benefits of using a pre-pretensioner to reduce kinematic responses during complex run-off-road events through supporting the seat belt to remain on the shoulder. This study addresses potential countermeasures to improve real-world protection of rear-seated children, and it provides a broader perspective including the influence of precrash kinematics.

  14. Bleeding complications after myocardial infarction in a real world population - An observational retrospective study with a sex perspective.

    PubMed

    Holm, Anna; Lawesson, Sofia Sederholm; Zolfagharian, Shima; Swahn, Eva; Ekstedt, Mattias; Alfredsson, Joakim

    2018-05-18

    The aim of the current study was to assess bleeding events, including severity, localisation and prognostic impact, in a real world population of men and women with myocardial infarction (MI). In total 850 consecutive patients were included during 2010 and followed for one year. Bleeding complications were identified by searching of each patients' medical records and characterised according to the TIMI criteria. For this analysis, only the first event was calculated. The total incidence of bleeding events was 24.4% (81 women and 126 men, p = ns). The incidence of all in-hospital bleeding events was 13.2%, with no sex difference. Women had significantly more minor non-surgery related bleeding events than men (5% vs 2.2%, p = 0.02). During follow-up, 13.5% had a bleeding, with more non-surgery related bleeding events among women, 14.7% vs 9.7% (p = 0.03). The most common bleeding localisation was the gastrointestinal tract, more in women than men (12.1% vs 7.6%, p = 0.03). Women had also more access site bleeding complications (4% vs 1.7%, p = 0.04), while men had more surgery related bleeding complications (6.4% vs 0.9%, p ≤0.001). Increased mortality was found only in men with non-surgery related bleeding events (p = 0.008). Almost one in four patients experienced a bleeding complication through 12 months follow-up after a myocardial infarction. Women experienced more non-surgery related minor/minimal bleeding complications than men, predominantly GI bleeding events and access site bleeding events, with no apparent impact on outcome. In contrast men with non-surgery related bleeding complications had higher mortality. Improved bleeding prevention strategies are warranted for both men and women. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of a significant New Madrid Seismic Zone event on oil and natural gas pipelines and their cascading effects to critical infrastructures

    NASA Astrophysics Data System (ADS)

    Fields, Damon E.

    Critical Infrastructure Protection (CIP) is a construct that relates preparedness and responsiveness to natural or man-made disasters that involve vulnerable assets deemed essential for the functioning of our economy and society. Infrastructure systems (power grids, bridges, airports, etc.) are vulnerable to disastrous types of events--natural or man-made. Failures of these systems can have devastating effects on communities and entire regions. CIP relates our willingness, ability, and capability to defend, mitigate, and re-constitute those assets that succumb to disasters affecting one or more infrastructure sectors. This qualitative research utilized ethnography and employed interviews with subject matter experts (SMEs) from various fields of study regarding CIP with respect to oil and natural gas pipelines in the New Madrid Seismic Zone. The study focused on the research question: What can be done to mitigate vulnerabilities in the oil and natural gas infrastructures, along with the potential cascading effects to interdependent systems, associated with a New Madrid fault event? The researcher also analyzed National Level Exercises (NLE) and real world events, and associated After Action Reports (AAR) and Lessons Learned (LL) in order to place a holistic lens across all infrastructures and their dependencies and interdependencies. Three main themes related to the research question emerged: (a) preparedness, (b) mitigation, and (c) impacts. These themes comprised several dimensions: (a) redundancy, (b) node hardening, (c) education, (d) infrastructure damage, (e) cascading effects, (f) interdependencies, (g) exercises, and (h) earthquake readiness. As themes and dimensions are analyzed, they are considered against findings in AARs and LL from previous real world events and large scale exercise events for validation or rejection.

  16. Observing the Earth from Afar with NASA's Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Boller, Ryan; Baynes, Kathleen; King, Benjamin; Rice, Zachary

    2017-01-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land, Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  17. Observing the Earth from afar with NASA's Worldview

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Boller, R. A.; King, B. A.; Baynes, K.; Rice, Z.

    2017-12-01

    NASA's Worldview interactive web map application delivers global, near real-time imagery from NASA's fleet of Earth Observing System (EOS) satellites. Within hours of satellite overpass, discover where the latest wildfires, severe storms, volcanic eruptions, dust and haze, ice shelves calving as well as many other events are occurring around the world. Near real-time imagery is made available in Worldview through the Land Atmosphere Near real-time Capability for EOS (LANCE) via the Global Imagery Browse Services (GIBS). This poster will explore new near real-time imagery available in Worldview, the current ways in which the imagery is used in research, the news and social media and future improvements to Worldview that will enhance the availability and viewing of NASA EOS imagery.

  18. A fractal growth model: Exploring the connection pattern of hubs in complex networks

    NASA Astrophysics Data System (ADS)

    Li, Dongyan; Wang, Xingyuan; Huang, Penghe

    2017-04-01

    Fractal is ubiquitous in many real-world networks. Previous researches showed that the strong disassortativity between the hub-nodes on all length scales was the key principle that gave rise to the fractal architecture of networks. Although fractal property emerged in some models, there were few researches about the fractal growth model and quantitative analyses about the strength of the disassortativity for fractal model. In this paper, we proposed a novel inverse renormalization method, named Box-based Preferential Attachment (BPA), to build the fractal growth models in which the Preferential Attachment was performed at box level. The proposed models provided a new framework that demonstrated small-world-fractal transition. Also, we firstly demonstrated the statistical characteristic of connection patterns of the hubs in fractal networks. The experimental results showed that, given proper growing scale and added edges, the proposed models could clearly show pure small-world or pure fractal or both of them. It also showed that the hub connection ratio showed normal distribution in many real-world networks. At last, the comparisons of connection pattern between the proposed models and the biological and technical networks were performed. The results gave useful reference for exploring the growth principle and for modeling the connection patterns for real-world networks.

  19. Using Knowledge Base for Event-Driven Scheduling of Web Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yang Sok; Kang, Sung Won; Kang, Byeong Ho; Compton, Paul

    Web monitoring systems report any changes to their target web pages by revisiting them frequently. As they operate under significant resource constraints, it is essential to minimize revisits while ensuring minimal delay and maximum coverage. Various statistical scheduling methods have been proposed to resolve this problem; however, they are static and cannot easily cope with events in the real world. This paper proposes a new scheduling method that manages unpredictable events. An MCRDR (Multiple Classification Ripple-Down Rules) document classification knowledge base was reused to detect events and to initiate a prompt web monitoring process independent of a static monitoring schedule. Our experiment demonstrates that the approach improves monitoring efficiency significantly.

  20. Metallurgical Plant Optimization Through the use of Flowsheet Simulation Modelling

    NASA Astrophysics Data System (ADS)

    Kennedy, Mark William

    Modern metallurgical plants typically have complex flowsheets and operate on a continuous basis. Real time interactions within such processes can be complex and the impacts of streams such as recycles on process efficiency and stability can be highly unexpected prior to actual operation. Current desktop computing power, combined with state-of-the-art flowsheet simulation software like Metsim, allow for thorough analysis of designs to explore the interaction between operating rate, heat and mass balances and in particular the potential negative impact of recycles. Using plant information systems, it is possible to combine real plant data with simple steady state models, using dynamic data exchange links to allow for near real time de-bottlenecking of operations. Accurate analytical results can also be combined with detailed unit operations models to allow for feed-forward model-based-control. This paper will explore some examples of the application of Metsim to real world engineering and plant operational issues.

  1. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    NASA Astrophysics Data System (ADS)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  2. Identification of hybrid node and link communities in complex networks

    PubMed Central

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-01-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010

  3. Identification of hybrid node and link communities in complex networks.

    PubMed

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  4. Identification of hybrid node and link communities in complex networks

    NASA Astrophysics Data System (ADS)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  5. Real-world effectiveness of brentuximab vedotin versus physicians' choice chemotherapy in patients with relapsed/refractory Hodgkin lymphoma following autologous stem cell transplantation in the United Kingdom and Germany.

    PubMed

    Zagadailov, Erin A; Corman, Shelby; Chirikov, Viktor; Johnson, Courtney; Macahilig, Cynthia; Seal, Brian; Dalal, Mehul R; Bröckelmann, Paul J; Illidge, Tim

    2018-06-01

    This retrospective study compared effectiveness of (brentuximab vedotin) BV to other chemotherapies in patients with rrHL following an autologous stem cell transplant (ASCT). Data originated from a medical chart review of patients treated in real-world clinical settings at 50 sites in the United Kingdom and Germany. Inverse probability of treatment weights based on propensity scores were used to adjust for differences in baseline characteristics between treatment groups. Among 312 rrHL patients included, 196 received BV and 116 received physicians' choice chemotherapy. Median PFS was significantly longer (27.0 months vs. 13.4 months; p = .0144) and 12-month OS survival greater (78.1% vs. 65.9%; p = .0129) with BV compared to chemotherapy. Documented adverse events included leukopenia (12.8%) and peripheral neuropathy (8.7%) for BV and leukopenia (12.1%), anemia (5.2%) and diarrhea (5.2%) for chemotherapy. In this real-world study, rrHL patients treated for relapse after ASCT with BV had longer median PFS and 12-month OS than patients receiving chemotherapy.

  6. BI-sparsity pursuit for robust subspace recovery

    DOE PAGES

    Bian, Xiao; Krim, Hamid

    2015-09-01

    Here, the success of sparse models in computer vision and machine learning in many real-world applications, may be attributed in large part, to the fact that many high dimensional data are distributed in a union of low dimensional subspaces. The underlying structure may, however, be adversely affected by sparse errors, thus inducing additional complexity in recovering it. In this paper, we propose a bi-sparse model as a framework to investigate and analyze this problem, and provide as a result , a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We additionally demonstrate the effectiveness ofmore » our method by experiments on real-world vision data.« less

  7. APPA Participates in Innovative Effort to Enhance Campus Safety and Security

    ERIC Educational Resources Information Center

    Thaler-Carter, Ruth E.

    2009-01-01

    College and university campuses may be safer environments than the "real world" around them, but recent years have made it clear that they are not immune to frightening and dangerous events, either natural or manmade. Today's campuses and their facilities professionals have to be prepared to respond to crises caused by both nature (think of…

  8. Working Together: An Empirical Analysis of a Multiclass Legislative-Executive Branch Simulation

    ERIC Educational Resources Information Center

    Kalaf-Hughes, Nicole; Mills, Russell W.

    2016-01-01

    Much of the research on the use of simulations in the political science classroom focuses on how simulations model different events in the real world, including political campaigns, international diplomacy, and legislative bargaining. In the case of American Politics, many simulations focus on the behavior of Congress and the legislative process,…

  9. Seeing Things Unseen: Fantasy Beliefs and False Reports

    ERIC Educational Resources Information Center

    Principe, Gabrielle F.; Smith, Eric

    2008-01-01

    Whereas past research has demonstrated that children's beliefs about the real world can influence their memory for events, the role of fantasy beliefs in children's recall remains largely unexplored. We examine this topic in 5- and 6-year-olds by focusing on how belief in a familiar fantasy figure, namely the Tooth Fairy, is related to children's…

  10. Active Learning in the Atmospheric Science Classroom and beyond through High-Altitude Ballooning

    ERIC Educational Resources Information Center

    Coleman, Jill S. M.; Mitchell, Melissa

    2014-01-01

    This article describes the implementation of high-altitude balloon (HAB) research into a variety of undergraduate atmospheric science classes as a means of increasing active student engagement in real-world, problem-solving events. Because high-altitude balloons are capable of reaching heights of 80,000-100,000 ft (24-30 km), they provide a…

  11. From Hitler to Hurricanes, Vietnam to Virginia Tech: Using Historical Nonfiction to Teach Rhetorical Context

    ERIC Educational Resources Information Center

    Beckelhimer, Lisa

    2010-01-01

    Historical nonfiction is effective in teaching rhetoric for two main reasons. First, historical texts communicate through a real-world lens that students can understand and find familiar. Students study history and are exposed to current events through the news, school, and each other. Second, since history affects people's lives so broadly, its…

  12. To Kill a Messenger; Television News and the Real World.

    ERIC Educational Resources Information Center

    Small, William

    From his vantage point as News Director of CBS News in Washington, the author examines the role of television news in our society and gives an insider's view of the day-to-day process of selecting and presenting news. Highlighting the book are in-depth discussions of past and recent news events. The Nixon "Checkers" speech, John…

  13. Text Talk, Body Talk, Table Talk: A Design of Ratio and Proportion as Classroom Parallel Events

    ERIC Educational Resources Information Center

    Abrahamson, Dor

    2003-01-01

    The paper describes the rationale and 10-day implementation in a 5th-grade classroom (n=19) of an experimental ratio-and-proportion instructional design. In this constructivist-phenomenological design, coming from our theoretical perspective, design research, and domain analysis, students: (1) link "real-world" and "mathematical" objects…

  14. HYPATIA--An Online Tool for ATLAS Event Visualization

    ERIC Educational Resources Information Center

    Kourkoumelis, C.; Vourakis, S.

    2014-01-01

    This paper describes an interactive tool for analysis of data from the ATLAS experiment taking place at the world's highest energy particle collider at CERN. The tool, called HYPATIA/applet, enables students of various levels to become acquainted with particle physics and look for discoveries in a similar way to that of real research.

  15. An information dimension of weighted complex networks

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Jiang, Wen

    2018-07-01

    The fractal and self-similarity are important properties in complex networks. Information dimension is a useful dimension for complex networks to reveal these properties. In this paper, an information dimension is proposed for weighted complex networks. Based on the box-covering algorithm for weighted complex networks (BCANw), the proposed method can deal with the weighted complex networks which appear frequently in the real-world, and it can get the influence of the number of nodes in each box on the information dimension. To show the wide scope of information dimension, some applications are illustrated, indicating that the proposed method is effective and feasible.

  16. A Model of Rapid Radicalization Behavior Using Agent-Based Modeling and Quorum Sensing

    NASA Technical Reports Server (NTRS)

    Schwartz, Noah; Drucker, Nick; Campbell, Kenyth

    2012-01-01

    Understanding the dynamics of radicalization, especially rapid radicalization, has become increasingly important to US policy in the past several years. Traditionally, radicalization is considered a slow process, but recent social and political events demonstrate that the process can occur quickly. Examining this rapid process, in real time, is impossible. However, recreating an event using modeling and simulation (M&S) allows researchers to study some of the complex dynamics associated with rapid radicalization. We propose to adapt the biological mechanism of quorum sensing as a tool to explore, or possibly explain, rapid radicalization. Due to the complex nature of quorum sensing, M&S allows us to examine events that we could not otherwise examine in real time. For this study, we employ Agent Based Modeling (ABM), an M&S paradigm suited to modeling group behavior. The result of this study was the successful creation of rapid radicalization using quorum sensing. The Battle of Mogadishu was the inspiration for this model and provided the testing conditions used to explore quorum sensing and the ideas behind rapid radicalization. The final product has wider applicability however, using quorum sensing as a possible tool for examining other catalytic rapid radicalization events.

  17. Toward the Rational Use of Exposure Information in Mixtures Toxicology

    EPA Science Inventory

    Of all the disciplines of toxicology, perhaps none is as dependent on exposure information as Mixtures Toxicology. Identifying real world mixtures and replicating them in the laboratory (or in silico) is critical to understanding their risks. Complex mixtures such as cigarett...

  18. The Community Collaboration Stakeholder Project

    ERIC Educational Resources Information Center

    Heath, Renee Guarriello

    2010-01-01

    Today's increasingly complex and diverse world demands 21st century communication skills to solve community and social justice problems. Interorganizational collaboration is at the heart of much community activism, such as that focused on solving environmental disputes, eradicating racially discriminating real estate practices, and bringing early…

  19. Engineering Problem-Solving Knowledge: The Impact of Context

    ERIC Educational Resources Information Center

    Wolff, Karin

    2017-01-01

    Employer complaints of engineering graduate inability to "apply knowledge" suggests a need to interrogate the complex theory-practice relationship in twenty-first century real world contexts. Focussing specifically on the application of mathematics, physics and logic-based disciplinary knowledge, the research examines engineering…

  20. Everyday and prospective memory deficits in ecstasy/polydrug users.

    PubMed

    Hadjiefthyvoulou, Florentia; Fisk, John E; Montgomery, Catharine; Bridges, Nikola

    2011-04-01

    The impact of ecstasy/polydrug use on real-world memory (i.e. everyday memory, cognitive failures and prospective memory [PM]) was investigated in a sample of 42 ecstasy/polydrug users and 31 non-ecstasy users. Laboratory-based PM tasks were administered along with self-reported measures of PM to test whether any ecstasy/polydrug-related impairment on the different aspects of PM was present. Self-reported measures of everyday memory and cognitive failures were also administered. Ecstasy/polydrug associated deficits were observed on both laboratory and self-reported measures of PM and everyday memory. The present study extends previous research by demonstrating that deficits in PM are real and cannot be simply attributed to self-misperceptions. The deficits observed reflect some general capacity underpinning both time- and event-based PM contexts and are not task specific. Among this group of ecstasy/polydrug users recreational use of cocaine was also prominently associated with PM deficits. Further research might explore the differential effects of individual illicit drugs on real-world memory.

  1. The Emotional Impact of Traditional and New Media in Social Events

    ERIC Educational Resources Information Center

    Salcudean, Minodora; Muresan, Raluca

    2017-01-01

    In past times, media were the sole vector to reflect in their entire complexity the events surrounding major world tragedies. Nowadays, social media are an essential component of the media process and classical press channels are connected to the social networking flow, where they can find information and, at the same time, tap into the emotional…

  2. Design and rationale of the Paliperidone Palmitate Research in Demonstrating Effectiveness (PRIDE) study: a novel comparative trial of once-monthly paliperidone palmitate versus daily oral antipsychotic treatment for delaying time to treatment failure in persons with schizophrenia.

    PubMed

    Alphs, Larry; Mao, Lian; Rodriguez, Stephen C; Hulihan, Joe; Starr, H Lynn

    2014-12-01

    Public health considerations require that clinical trials address the complex "real-world" needs of patients with chronic illnesses. This is particularly true for persons with schizophrenia, whose management is frequently complicated by factors such as comorbid substance abuse, homelessness, and contact with the criminal justice system. In addition, barriers to obtaining health care in the United States often prevent successful community reentry and optimal patient management. Further, nonadherence to treatment is common, and this reinforces cycles of relapse and recidivism. Long-acting injectable antipsychotic therapy may facilitate continuity of treatment and support better outcomes, particularly in patients who face these challenges. Clinical trials with classical explanatory designs may not be the best approaches for evaluating these considerations. We describe the design and rationale of a novel trial that combines both explanatory and pragmatic design features and studies persons with schizophrenia who face these challenges. The Paliperidone Palmitate Research in Demonstrating Effectiveness (PRIDE) study is a prospective, open-label, randomized, 15-month study conducted between May 5, 2010, and December 9, 2013, comparing long-acting injectable paliperidone palmitate and oral antipsychotic medications in subjects with schizophrenia (according to DSM-IV criteria). Investigators and subjects had broad flexibility for treatment decision-making, thus making it a model that better reflects real-world practice. The primary end point was time to treatment failure, defined as arrest/incarceration psychiatric hospitalization; suicide; treatment discontinuation or supplementation due to inadequate efficacy, safety, or tolerability; or increased psychiatric services to prevent hospitalization. This end point was adjudicated by a blinded event monitoring board. Patients were followed to the 15-month end point, regardless of whether they were maintained on their initial randomized treatment. This article provides some of the reasoning behind the authors' choices when combining features from both explanatory and pragmatic approaches to this trial's design. The PRIDE study incorporates real-world design features in a novel, prospective, comparative study of long-acting injectable and oral antipsychotics in persons with schizophrenia who have had recent contact with the criminal justice system. Insights provided should help the reader to better understand the need for more real-world approaches for clinical studies and how a broader approach can better aid clinical treatment and public health decision-making. ClinicalTrials.gov identifier: NCT01157351. © Copyright 2014 Physicians Postgraduate Press, Inc.

  3. A Sidewalk Astronomy Experience in Second Life (R) for IYA2009

    NASA Astrophysics Data System (ADS)

    Gauthier, Adrienne J.; Huber, D.; I. New Media Task Group

    2009-01-01

    The NMTG has created an IYA 2009 presence in the 3-dimensional multi-user virtual world called Second Life (R), where residents (or avatars) interact with content built by others in dynamic, innovative, and social ways. The IYA2009 virtual real estate (called an island) will open in early January 2009 with an initial set of exhibits and interactives. Through 2009, additional exhibits, live talks, and webstreamed content will be added.Our Sidewalk Astronomy experience will be premiered for the island opening. We have designed the interactive to replicate a real-life small telescope experience. Visitors to our Second Life telescopes will first see an image of the object "as the eye sees" and will hear/read a narrative about the object, as one would experience in real life. The narratives have been carefully crafted to take the observer on a journey and not just hear straight facts about the object. Diving further into astronomical imagery, avatars will explore visible, infrared, X-ray, and radio views of the object (if available), all wrapped in contextual information that ties the multiwavelength views together. The content of the telescopes will update every month to be equivalent to mid-latitude 9pm sky views for the Northern Hemisphere, Southern Hemisphere pending. Supplemental materials will include World Wide Telescope tours and Google Sky layers. We are hoping to add live star party events throughout the year, using real life video feeds from amateur telescopes. Additionally, we will have links to the Sidewalk Astronomy IYA webpage so virtual residents can find real life star parties to attend. The Sidewalk Astronomy Second Life experience will also have a traveling version that can be placed in multiple locations (stores, events, parks) in order to bring astronomy to the virtual masses in a true Sidewalk Astronomy way.

  4. Meeting George Bush versus meeting Cinderella: the neural response when telling apart what is real from what is fictional in the context of our reality.

    PubMed

    Abraham, Anna; von Cramon, D Yves; Schubotz, Ricarda I

    2008-06-01

    A considerable part of our lives is spent engaging in the entertaining worlds of fiction that are accessible through media such as books and television. Little is known, however, about how we are able to readily understand that fictional events are distinct from those occurring within our real world. The present functional imaging study explored the brain correlates underlying such abilities by having participants make judgments about the possibility of different scenarios involving either real or fictional characters being true, given the reality of our world. The processing of real and fictional scenarios activated a common set of regions including medial-temporal lobe structures. When the scenarios involved real people, brain regions associated with episodic memory retrieval and self-referential thinking, the anterior prefrontal cortex and the precuneus/posterior cingulate, were more active. In contrast, areas along the left lateral inferior frontal gyrus, associated with semantic memory retrieval, were implicated for scenarios with fictional characters. This implies that there is a fine distinction in the manner in which conceptual information concerning real persons in contrast to fictional characters is represented. In general terms, the findings suggest that fiction relative to reality tends to be represented in more factual terms, whereas our representations of reality relative to fiction are colored by personal subjectivity. What modulates our understanding of the relative difference between reality and fiction seems to be whether such character-type information is coded in self-relevant terms or not.

  5. Monitoring a Complex Physical System using a Hybrid Dynamic Bayes Net

    NASA Technical Reports Server (NTRS)

    Lerner, Uri; Moses, Brooks; Scott, Maricia; McIlraith, Sheila; Keller, Daphne

    2005-01-01

    The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without human supervision, thus requiring a reliable automated system for monitoring and control. The RWGS presents many challenges typical of real-world systems, including: noisy and biased sensors, nonlinear behavior, effects that are manifested over different time granularities, and unobservability of many important quantities. In this paper we model the RWGS using a hybrid (discrete/continuous) Dynamic Bayesian Network (DBN), where the state at each time slice contains 33 discrete and 184 continuous variables. We show how the system state can be tracked using probabilistic inference over the model. We discuss how to deal with the various challenges presented by the RWGS, providing a suite of techniques that are likely to be useful in a wide range of applications. In particular, we describe a general framework for dealing with nonlinear behavior using numerical integration techniques, extending the successful Unscented Filter. We also show how to use a fixed-point computation to deal with effects that develop at different time scales, specifically rapid changes occuring during slowly changing processes. We test our model using real data collected from the RWGS, demonstrating the feasibility of hybrid DBNs for monitoring complex real-world physical systems.

  6. Intelligent Software Agents: Sensor Integration and Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesz, James J; Lee, Ronald W

    2013-01-01

    Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at themore » sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.« less

  7. Vision-based Detection of Acoustic Timed Events: a Case Study on Clarinet Note Onsets

    NASA Astrophysics Data System (ADS)

    Bazzica, A.; van Gemert, J. C.; Liem, C. C. S.; Hanjalic, A.

    2017-05-01

    Acoustic events often have a visual counterpart. Knowledge of visual information can aid the understanding of complex auditory scenes, even when only a stereo mixdown is available in the audio domain, \\eg identifying which musicians are playing in large musical ensembles. In this paper, we consider a vision-based approach to note onset detection. As a case study we focus on challenging, real-world clarinetist videos and carry out preliminary experiments on a 3D convolutional neural network based on multiple streams and purposely avoiding temporal pooling. We release an audiovisual dataset with 4.5 hours of clarinetist videos together with cleaned annotations which include about 36,000 onsets and the coordinates for a number of salient points and regions of interest. By performing several training trials on our dataset, we learned that the problem is challenging. We found that the CNN model is highly sensitive to the optimization algorithm and hyper-parameters, and that treating the problem as binary classification may prevent the joint optimization of precision and recall. To encourage further research, we publicly share our dataset, annotations and all models and detail which issues we came across during our preliminary experiments.

  8. Effectiveness, safety and clinical outcomes of direct-acting antiviral therapy in HCV genotype 1 infection: Results from a Spanish real-world cohort.

    PubMed

    Calleja, Jose Luis; Crespo, Javier; Rincón, Diego; Ruiz-Antorán, Belén; Fernandez, Inmaculada; Perelló, Christie; Gea, Francisco; Lens, Sabela; García-Samaniego, Javier; Sacristán, Begoña; García-Eliz, María; Llerena, Susana; Pascasio, Juan Manuel; Turnes, Juan; Torras, Xavier; Morillas, Rosa Maria; Llaneras, Jordi; Serra, Miguel A; Diago, Moises; Rodriguez, Conrado Fernández; Ampuero, Javier; Jorquera, Francisco; Simon, Miguel A; Arenas, Juan; Navascues, Carmen Alvarez; Bañares, Rafael; Muñoz, Raquel; Albillos, Agustin; Mariño, Zoe

    2017-06-01

    Clinical trials evaluating second-generation direct-acting antiviral agents (DAAs) have shown excellent rates of sustained virologic response (SVR) and good safety profiles in patients with chronic hepatitis C virus (HCV) genotype 1 infection. We aimed to investigate the effectiveness and safety of two oral DAA combination regimens, ombitasvir/paritaprevir/ritonavir plus dasabuvir (OMV/PTV/r+DSV) and ledipasvir/sofosbuvir (LDV/SOF), in a real-world clinical practice. Data from HCV genotype 1 patients treated with either OMV/PTV/r+DSV±ribavirin (RBV) (n=1567) or LDV/SOF±RBV (n=1758) in 35 centers across Spain between April 1, 2015 and February 28, 2016 were recorded in a large national database. Demographic, clinical and virological data were analyzed. Details of serious adverse events (SAEs) were recorded. The two cohorts were not matched with respect to baseline characteristics and could not be compared directly. The SVR12 rate was 96.8% with OMV/PTVr/DSV±RBV and 95.8% with LDV/SOF±RBV. No significant differences were observed in SVR according to HCV subgenotype (p=0.321 [OMV/PTV/r+DSV±RBV] and p=0.174 [LDV/SOF]) or degree of fibrosis (c0.548 [OMV/PTV/r/DSV±RBV] and p=0.085 [LDV/SOF]). Only baseline albumin level was significantly associated with failure to achieve SVR (p<0.05) on multivariate analysis. Rates of SAEs and SAE-associated treatment discontinuation were 5.4% and 1.7%, in the OMV/PTV/r+DSV subcohort and 5.5% and 1.5% in the LDV/SOF subcohort, respectively. Hepatocellular carcinoma (HCC) recurred in 30% of patients with a complete response to therapy for previous HCC. Incident HCC was reported in 0.93%. In this large cohort of patients managed in the real-world setting in Spain, OMV/PTV/r+DSV and LDV/SOF achieved high rates of SVR12, comparable to those observed in randomized controlled trials, with similarly good safety profiles. In clinical trials, second-generation direct-acting antiviral agents (DAAs) have been shown to cure over 90% of patients chronically infected with the genotype 1 hepatitis C virus and have been better tolerated than previous treatment regimens. However, patients enrolled in clinical trials do not reflect the real patient population encountered in routine practice. The current study, which includes almost 4,000 patients, demonstrates comparable rates of cure with two increasingly used DAA combinations as those observed in the clinical trial environment, confirming that clinical trial findings with DAAs translate into the real-world setting, where patient populations are more diverse and complex. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. EDITORIAL: Sixth World Congress on Industrial Process Tomography (WCIPT6) Sixth World Congress on Industrial Process Tomography (WCIPT6)

    NASA Astrophysics Data System (ADS)

    Takei, Masahiro; Xu, Lijun

    2011-10-01

    We are pleased to publish this special feature on the Sixth World Congress on Industrial Process Tomography (WCIPT6) in Measurement Science and Technology. The international congress was successfully held in the campus of Beihang University, Beijing, China, from 6-9 September 2010. It was jointly organized by International Society for Industrial Process Tomography (ISIPT), North China Electric Power University (NCEPU) and Beihang University (BUAA). Process tomography is a tangible tool to visualize and determine the material distribution inside a process non-intrusively in real time. The internal features that can be monitored by process tomography are frequently encountered and required in the design of processes and industrial plants in the fields of chemical, oil, power and metallurgical engineering as well as many other activities such as food, material handling and combustion systems. One of the key characteristics of process tomography is to provide a direct impression and instant and clear understanding of a complex phenomenon. From the viewpoint of practical applications, industries all over the world are currently facing a number of daunting challenges including many wide-range and complex technical problems. The innovative technology of process tomography consistently contributes to providing better and better solutions to the problems as 'seeing is believing'. As a regular event, WCIPT is playing a more and more important role in addressing the challenges to overcome these problems. We are glad to see that this special feature provides a great opportunity for world-wide top-level researchers to discuss and make further developments in process tomography and its applications. The 20 articles included in this issue cover a wide range of relevant topics including sensors and sensing mechanisms, data acquisition systems and instrumentation, electrical, optical, acoustic and hybrid systems, image reconstruction and system evaluation, data and sensor fusion, data processing, other emerging technologies, and their industrial applications such as in multi-phase systems, combustion and chemical reaction, etc. The Seventh World Congress on Industrial Process Tomography (WCIPT7) will take place in Krakow, Poland, from 2-5 September 2013. We look forward to meeting you in Poland!

  10. Fast Distributed Dynamics of Semantic Networks via Social Media.

    PubMed

    Carrillo, Facundo; Cecchi, Guillermo A; Sigman, Mariano; Slezak, Diego Fernández

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.

  11. Fast Distributed Dynamics of Semantic Networks via Social Media

    PubMed Central

    Carrillo, Facundo; Cecchi, Guillermo A.; Sigman, Mariano; Fernández Slezak, Diego

    2015-01-01

    We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network. PMID:26074953

  12. Characteristics of real futures trading networks

    NASA Astrophysics Data System (ADS)

    Wang, Junjie; Zhou, Shuigeng; Guan, Jihong

    2011-01-01

    Futures trading is the core of futures business, and it is considered as one of the typical complex systems. To investigate the complexity of futures trading, we employ the analytical method of complex networks. First, we use real trading records from the Shanghai Futures Exchange to construct futures trading networks, in which nodes are trading participants, and two nodes have a common edge if the two corresponding investors appear simultaneously in at least one trading record as a purchaser and a seller, respectively. Then, we conduct a comprehensive statistical analysis on the constructed futures trading networks. Empirical results show that the futures trading networks exhibit features such as scale-free behavior with interesting odd-even-degree divergence in low-degree regions, small-world effect, hierarchical organization, power-law betweenness distribution, disassortative mixing, and shrinkage of both the average path length and the diameter as network size increases. To the best of our knowledge, this is the first work that uses real data to study futures trading networks, and we argue that the research results can shed light on the nature of real futures business.

  13. The Effects of Musical and Linguistic Components in Recognition of Real-World Musical Excerpts by Cochlear Implant Recipients and Normal-Hearing Adults

    PubMed Central

    Gfeller, Kate; Jiang, Dingfeng; Oleson, Jacob; Driscoll, Virginia; Olszewski, Carol; Knutson, John F.; Turner, Christopher; Gantz, Bruce

    2011-01-01

    Background Cochlear implants (CI) are effective in transmitting salient features of speech, especially in quiet, but current CI technology is not well suited in transmission of key musical structures (e.g., melody, timbre). It is possible, however, that sung lyrics, which are commonly heard in real-world music may provide acoustical cues that support better music perception. Objective The purpose of this study was to examine how accurately adults who use CIs (n=87) and those with normal hearing (NH) (n=17) are able to recognize real-world music excerpts based upon musical and linguistic (lyrics) cues. Results CI recipients were significantly less accurate than NH listeners on recognition of real-world music with or, in particular, without lyrics; however, CI recipients whose devices transmitted acoustic plus electric stimulation were more accurate than CI recipients reliant upon electric stimulation alone (particularly items without linguistic cues). Recognition by CI recipients improved as a function of linguistic cues. Methods Participants were tested on melody recognition of complex melodies (pop, country, classical styles). Results were analyzed as a function of: hearing status and history, device type (electric only or acoustic plus electric stimulation), musical style, linguistic and musical cues, speech perception scores, cognitive processing, music background, age, and in relation to self-report on listening acuity and enjoyment. Age at time of testing was negatively correlated with recognition performance. Conclusions These results have practical implications regarding successful participation of CI users in music-based activities that include recognition and accurate perception of real-world songs (e.g., reminiscence, lyric analysis, listening for enjoyment). PMID:22803258

  14. Some practical approaches to a course on paraconsistent logic for engineers

    NASA Astrophysics Data System (ADS)

    Lambert-Torres, Germano; de Moraes, Carlos Henrique Valerio; Coutinho, Maurilio Pereira; Martins, Helga Gonzaga; Borges da Silva, Luiz Eduardo

    2017-11-01

    This paper describes a non-classical logic course primarily indicated for graduate students in electrical engineering and energy engineering. The content of this course is based on the vision that it is not enough for a student to indefinitely accumulate knowledge; it is necessary to explore all the occasions to update, deepen, and enrich that knowledge, adapting it to a complex world. Therefore, this course is not tied to theoretical formalities and tries at each moment to provide a practical view of the non-classical logic. In the real world, the inconsistencies are important and cannot be ignored because contradictory information brings relevant facts, sometimes modifying the entire result of the analysis. As consequence, the non-classical logics, such as annotated paraconsistent logic - APL, are efficiently framed in the approach of complex situations of the real world. In APL, the concepts of unknown, partial, ambiguous, and inconsistent knowledge are referred not to trivialise any system in analysis. This course presents theoretical and applicable aspects of APL, which are successfully used in decision-making structures. The course is divided into modules: Basic, 2vAPL, 3vAPL, 4vAPL, and Final Project.

  15. What do athletes drink during competitive sporting activities?

    PubMed

    Garth, Alison K; Burke, Louise M

    2013-07-01

    Although expert groups have developed guidelines for fluid intake during sports, there is debate about their real-world application. We reviewed the literature on self-selected hydration strategies during sporting competitions to determine what is apparently practical and valued by athletes. We found few studies of drinking practices involving elite or highly competitive athletes, even in popular sports. The available literature revealed wide variability in fluid intake and sweat losses across and within different events with varied strategies to allow fluid intake. Typical drinking practices appear to limit body mass (BM) losses to ~2 % in non-elite competitors. There are events, however, in which mean losses are greater, particularly among elite competitors and in hot weather, and evidence that individual participants fail to meet current guidelines by gaining BM or losing >2 % BM over the competition activity. Substantial (>5 %) BM loss is noted in the few studies of elite competitors in endurance and ultra-endurance events; while this may be consistent with winning outcomes, such observations cannot judge whether performance was optimal for that individual. A complex array of factors influence opportunities to drink during continuous competitive activities, many of which are outside the athlete's control: these include event rules and tactics, regulated availability of fluid, need to maintain optimal technique or speed, and gastrointestinal comfort. Therefore, it is questionable, particularly for top competitors, whether drinking can be truly ad libitum (defined as "whenever and in whatever volumes chosen by the athlete"). While there are variable relationships between fluid intake, fluid balance across races, and finishing times, in many situations it appears that top athletes take calculated risks in emphasizing the costs of drinking against the benefits. However, some non-elite competitors may need to be mindful of the disadvantages of drinking beyond requirements during long events. Across the sparse literature on competition hydration practices in other sports, there are examples of planned and/or ad hoc opportunities to consume fluid, where enhanced access to drinks may allow situations at least close to ad libitum drinking. However, this situation is not universal and, again, the complex array of factors that influence the opportunity to drink during an event is also often beyond the athletes' control. Additionally, some competition formats result in athletes commencing the event with a body fluid deficit because of their failure to rehydrate from a previous bout of training/competition or weight-making strategies. Finally, since fluids consumed during exercise may also be a source of other ingredients (e.g., carbohydrate, electrolytes, or caffeine) or characteristics (e.g., temperature) that can increase palatability or performance, there may be both desirable volumes and patterns of intake that are independent of hydration concerns or thirst, as well as benefits from undertaking a "paced" fluid plan. Further studies of real-life hydration practices in sports including information on motives for drinking or not, along with intervention studies that simulate the actual nature of real-life sport, are needed before conclusions can be made about ideal drinking strategies for sports. Different interpretations may be needed for elite competitors and recreational participants.

  16. Robustness and structure of complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.

  17. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases.

    PubMed

    Heymann, D L; Rodier, G R

    2001-12-01

    The resurgence of the microbial threat, rooted in several recent trends, has increased the vulnerability of all nations to the risk of infectious diseases, whether newly emerging, well-established, or deliberately caused. Infectious disease intelligence, gleaned through sensitive surveillance, is the best defence. The epidemiological and laboratory techniques needed to detect, investigate, and contain a deliberate outbreak are the same as those used for natural outbreaks. In April 2000, WHO formalised an infrastructure (the Global Outbreak Alert and Response Network) for responding to the heightened need for early awareness of outbreaks and preparedness to respond. The Network, which unites 110 existing networks, is supported by several new mechanisms and a computer-driven tool for real time gathering of disease intelligence. The procedure for outbreak alert and response has four phases: systematic detection, outbreak verification, real time alerts, and rapid response. For response, the framework uses different strategies for combating known risks and unexpected events, and for improving both global and national preparedness. New forces at work in an electronically interconnected world are beginning to break down the traditional reluctance of countries to report outbreaks due to fear of the negative impact on trade and tourism. About 65% of the world's first news about infectious disease events now comes from informal sources, including press reports and the internet.

  18. Physics of Financial Markets: Can we Understand the Unpredictable Phenomenon of Flash Crashes

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene

    2015-03-01

    Dangerous vulnerability is hiding in complex systems. Indeed, disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify this fact. While we can understand the cause of most events in complex systems, sudden unexpected ``black swans'' whether in economics or in the ``physicists world'' cry out for insight. To design more resilient systems we will describe recent results seeking understanding of these black swans. In many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic ``phase-flipping'' phenomena. The fraction of active nodes switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behavior analogous to phase transitions near a critical point [A. Majdandzic, B. Podobnik, S. V. Buldyrev, D. Y. Kenett, S. Havlin, and H. E. Stanley, ``Spontaneous Recovery in Dynamic Networks,'' Nature Physics 10, 34 (2014)]. This work was carried out in collaboration with a number of colleagues, chief among whom are A. Majdanzic, B. Podobnik, S. V. Buldyrev, D. Y. Kenett, and S. Havlin.

  19. Oscillations in interconnected complex networks under intentional attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ping; Xia, Yongxiang; Tan, Fei

    2016-01-01

    Many real-world networks are interconnected with each other. In this paper, we study the traffic dynamics in interconnected complex networks under an intentional attack. We find that with the shortest time delay routing strategy, the traffic dynamics can show the stable state, periodic, quasi-periodic and chaotic oscillations, when the capacity redundancy parameter changes. Moreover, compared with isolated complex networks, oscillations always take place in interconnected networks more easily. Thirdly, in interconnected networks, oscillations are affected strongly by the coupling probability and coupling preference.

  20. Robot Training Through Incremental Learning

    DTIC Science & Technology

    2011-04-18

    Turing Associates, Ann Arbor, MI 48103 ABSTRACT The real world is too complex and variable to directly program an autonomous ground robot’s...11 th Conf. Uncertainty in Artificial Intelligence, 338-45 (1995). [6] J. Cleary and L. Trigg, “K*: An Instance-based learner using an entropic

  1. Thinking about Educational Technology and Creativity

    ERIC Educational Resources Information Center

    Spector, J. Michael

    2016-01-01

    The 2016 National Educational Technology Plan mentions fostering creativity, collaboration, leadership, and critical thinking while engaging learners in complex, real-world challenges through a project-based learning approach (see http://tech.ed.gov/netp/learn ing/). The Partnership for 21st Century Learning (P21; see…

  2. The Model Optimization, Uncertainty, and SEnsitivity analysis (MOUSE) toolbox: overview and application

    USDA-ARS?s Scientific Manuscript database

    For several decades, optimization and sensitivity/uncertainty analysis of environmental models has been the subject of extensive research. Although much progress has been made and sophisticated methods developed, the growing complexity of environmental models to represent real-world systems makes it...

  3. Cluster formation by allelomimesis in real-world complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Juanico, Dranreb Earl; Monterola, Christopher; Saloma, Caesar

    2005-04-01

    Animal and human clusters are complex adaptive systems and many organize in cluster sizes s that obey the frequency distribution D(s)∝s-τ . The exponent τ describes the relative abundance of the cluster sizes in a given system. Data analyses reveal that real-world clusters exhibit a broad spectrum of τ values, 0.7 (tuna fish schools) ⩽τ⩽4.61 (T4 bacteriophage gene family sizes). Allelomimesis is proposed as an underlying mechanism for adaptation that explains the observed broad τ spectrum. Allelomimesis is the tendency of an individual to imitate the actions of others and two cluster systems have different τ values when their component agents display unequal degrees of allelomimetic tendencies. Cluster formation by allelomimesis is shown to be of three general types: namely, blind copying, information-use copying, and noncopying. Allelomimetic adaptation also reveals that the most stable cluster size is formed by three strongly allelomimetic individuals. Our finding is consistent with available field data taken from killer whales and marmots.

  4. Advanced consequence management program: challenges and recent real-world implementations

    NASA Astrophysics Data System (ADS)

    Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.

    2002-08-01

    The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.

  5. Web-Based Interface for Command and Control of Network Sensors

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.

    2010-01-01

    This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events

  6. GetReal in mathematical modelling: a review of studies predicting drug effectiveness in the real world.

    PubMed

    Panayidou, Klea; Gsteiger, Sandro; Egger, Matthias; Kilcher, Gablu; Carreras, Máximo; Efthimiou, Orestis; Debray, Thomas P A; Trelle, Sven; Hummel, Noemi

    2016-09-01

    The performance of a drug in a clinical trial setting often does not reflect its effect in daily clinical practice. In this third of three reviews, we examine the applications that have been used in the literature to predict real-world effectiveness from randomized controlled trial efficacy data. We searched MEDLINE, EMBASE from inception to March 2014, the Cochrane Methodology Register, and websites of key journals and organisations and reference lists. We extracted data on the type of model and predictions, data sources, validation and sensitivity analyses, disease area and software. We identified 12 articles in which four approaches were used: multi-state models, discrete event simulation models, physiology-based models and survival and generalized linear models. Studies predicted outcomes over longer time periods in different patient populations, including patients with lower levels of adherence or persistence to treatment or examined doses not tested in trials. Eight studies included individual patient data. Seven examined cardiovascular and metabolic diseases and three neurological conditions. Most studies included sensitivity analyses, but external validation was performed in only three studies. We conclude that mathematical modelling to predict real-world effectiveness of drug interventions is not widely used at present and not well validated. © 2016 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd. © 2016 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.

  7. Real-World Clinical Efficacy and Tolerability of Direct-Acting Antivirals in Hepatitis C Monoinfection Compared to Hepatitis C/HIV Coinfection in a Community Care Setting.

    PubMed

    Vijay, Gayam; Rajib, Hossain Muhammad; Mazin, Khalid; Sandipan, Chakaraborty; Osama, Mukhtar; Sumit, Dahal; Amrendra Kumar, Mandal; Arshpal, Gill; Pavani, Garlapati; Ramakrishnaiah, Sreedevi; Khalid, Mowyad; Jagannath, Sherigar; Mohammed, Mansour; Smruti, Mohanty

    2018-06-22

    Limited data exist comparing the safety and efficacy of direct-acting antivirals (DAAs) in hepatitis C virus (HCV) monoinfected and HCV/human immunodeficiency virus (HIV) coinfected patients in the real-world clinic practice setting. All HCV monoinfected and HCV/HIV coinfected patients treated with DAAs between January 2014 and October 2017 in community clinic settings were retrospectively analyzed. Pretreatment baseline patient characteristics, treatment efficacy, factors affecting sustained virologic response at 12 weeks (SVR 12) after treatment, and adverse reactions were compared between the groups. A total of 327 patients were included in the study, of which 253 were HCV monoinfected, and 74 were HCV/HIV coinfected. There was a statistically significant difference observed in SVR 12 when comparing HCV monoinfection and HCV/HIV coinfection (94% and 84%, respectively, p=0.005). However, there were no significant factors identified as a predictor of a reduced response. The most common adverse effect was fatigue (27%). No significant drug interaction was observed between DAA and antiretroviral therapy. None of the patients discontinued the treatment due to adverse events. In a real-world setting, DAA regimens have lower SVR 12 in HCV/HIV coinfection than in HCV monoinfection. Further studies involving a higher number of HCV/HIV coinfected patients are needed to identify real predictors of a reduced response.

  8. The efficacy and safety of pomalidomide in relapsed/refractory multiple myeloma in a "real-world" study: Polish Myeloma Group experience.

    PubMed

    Charlinski, Grzegorz; Grzasko, Norbert; Jurczyszyn, Artur; Janczarski, Mariusz; Szeremet, Agnieszka; Waszczuk-Gajda, Anna; Bernatowicz, Paweł; Swiderska, Alina; Guzicka-Kazimierczak, Renata; Lech-Maranda, Ewa; Szczepaniak, Andrzej; Wichary, Ryszard; Dmoszynska, Anna

    2018-06-08

    Patients with relapsed/refractory multiple myeloma (RRMM) have poor prognosis. Pomalidomide is an immunomodulatory compound that has demonstrated activity in MM patients with disease refractory to lanlidomide and bortezomib. Participants of clinical trials are highly selected populations; therefore, the aim of this study was to present observations from real practice that might provide important information for practitioners. We analyzed retrospectively 50 patients treated with pomalidomide in 12 Polish sites between 2014 and 2017. Median age was 63 years, median time since diagnosis 4.5 years and median number of prior regimens 4. The overall response rate was 39.1%. Median progression-free survival (PFS) and overall survival (OS) were 10.0 and 14.0 months, respectively. Previous treatment with immunomodulatory drugs, bortezomib or stem cell transplant had no impact on PFS and OS. Most frequent grade 3/4 treatment-emergent adverse events were hematologic (neutropenia 24.0%, thrombocytopenia 10.0%, anemia 8.0%). Most common grade 3/4 non-hematologic toxicities were respiratory tract infection (14.0%) and neuropathy (4.0%). This real-world data have confirmed that pomalidomide is an active drug in RRMM and support results of published clinical trials and other real-world studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. An integrative solution for managing, tracing and citing sensor-related information

    NASA Astrophysics Data System (ADS)

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Schewe, Ingo; Rehmcke, Steven; Düde, Tobias

    2017-04-01

    In a data-driven scientific world, the need to capture information on sensors used in the data acquisition process has become increasingly important. Following the recommendations of the Open Geospatial Consortium (OGC), we started by adopting the SensorML standard for describing platforms, devices and sensors. However, it soon became obvious to us that understanding, implementing and filling such standards costs significant effort and cannot be expected from every scientist individually. So we developed a web-based sensor management solution (https://sensor.awi.de) for describing platforms, devices and sensors as hierarchy of systems which supports tracing changes to a system whereas hiding complexity. Each platform contains devices where each device can have sensors associated with specific identifiers, contacts, events, related online resources (e.g. manufacturer factsheets, calibration documentation, data processing documentation), sensor output parameters and geo-location. In order to better understand and address real world requirements, we have closely interacted with field-going scientists in the context of the key national infrastructure project "FRontiers in Arctic marine Monitoring ocean observatory" (FRAM) during the software development. We learned that not only the lineage of observations is crucial for scientists but also alert services using value ranges, flexible output formats and information on data providers (e.g. FTP sources) for example. Mostly important, persistent and citable versions of sensor descriptions are required for traceability and reproducibility allowing seamless integration with existing information systems, e.g. PANGAEA. Within the context of the EU-funded Ocean Data Interoperability Platform project (ODIP II) and in cooperation with 52north we are proving near real-time data via Sensor Observation Services (SOS) along with sensor descriptions based on our sensor management solution. ODIP II also aims to develop a harmonized SensorML profile for the marine community which we will be adopting in our solution as soon as available. In this presentation we will show our sensor management solution which is embedded in our data flow framework to offer out-of-the-box interoperability with existing information systems and standards. In addition, we will present real world examples and challenges related to the description and traceability of sensor metadata.

  10. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    PubMed

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  11. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    PubMed Central

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-01-01

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  12. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  13. Real-Time Payload Control and Monitoring on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1998-01-01

    World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP) and the Java object-oriented programming environment offer a powerful, yet relatively inexpensive, framework for distributed application software development. This paper describes the design of a real-time payload control and monitoring system that was developed with W3 technologies at NASA Ames Research Center. Based on Java Development Toolkit (JDK) 1.1, the system uses an event-driven "publish and subscribe" approach to inter-process communication and graphical user-interface construction. A C Language Integrated Production System (CLIPS) compatible inference engine provides the back-end intelligent data processing capability, while Oracle Relational Database Management System (RDBMS) provides the data management function. Preliminary evaluation shows acceptable performance for some classes of payloads, with Java's portability and multimedia support identified as the most significant benefit.

  14. Under "real world" conditions, desflurane increases drug cost without speeding discharge after short ambulatory anesthesia compared to isoflurane.

    PubMed

    Schwarz, Stephan K W; Butterfield, Noam N; Macleod, Bernard A; Kim, Edward Y; Franciosi, Luigi G; Ries, Craig R

    2004-11-01

    To compare the measured "real world" perioperative drug cost and recovery associated with desflurane- and isoflurane-based anesthesia in short (less than one hour) ambulatory surgery. We conducted a prospective, randomized, blinded trial with patients undergoing arthroscopic meniscectomy under general anesthesia. Following iv induction, patients received either isoflurane (group I; n = 25) or desflurane (group D; n = 20) for maintenance. The primary outcome variable was total perioperative drug cost per patient in Canadian dollars. Secondary outcome variables included volatile agent consumption and cost, adjuvant anesthetic and postanesthesia care unit (PACU) drug cost, readiness for PACU discharge, and incidence of adverse events. Total perioperative drug cost per patient was 14.58 +/- 6.83 Canadian dollars (mean +/- standard deviation) for group I, and 21.47 +/- 5.18 Canadian dollars for group D (P < 0.001). Isoflurane consumption per patient was 6.0 +/- 3.0 mL compared to 18.6 +/- 7.7 mL for desflurane (P < 0.0001); corresponding costs were 0.83 +/- 0.42 Canadian dollars vs 7.61 +/- 3.15 Canadian dollars (P < 0.0001). There were no differences in adjuvant anesthetic or PACU drug cost. All but one patient from each group were deemed ready for PACU discharge at 15 min postoperatively (Aldrete score >or= 9). One patient in group D experienced postoperative nausea. No other adverse events were noted. Measured total perioperative drug cost for a short ambulatory procedure (less than one hour) under general anesthesia was higher when desflurane rather than isoflurane was used for maintenance, essentially due to volatile agent cost. Desflurane use did not translate into faster PACU discharge under "real world" conditions.

  15. The impact of real-world cardiovascular-related pharmacogenetic testing in an insured population.

    PubMed

    Billings, Jennifer; Racsa, Patrick N; Bordenave, Kristine; Long, Charron L; Ellis, Jeffrey J

    2018-06-01

    Pharmacogenomics is intended to help clinicians provide the right drug to the right patient at an appropriate dose. However, limited evidence of clinical utility has slowed uptake of pharmacogenomic testing (PGT). To evaluate the impact of real-world cardiovascular (CV)-related PGT on clinical outcomes, healthcare resource utilisation (HCRU) and cost in a large, heterogeneous population. Individuals with Medicare Advantage Prescription Drug, Medicaid, or commercial coverage between 1/1/2011 and 9/30/2015 and ≥1 atherosclerotic CV-related diagnosis were identified. Those with ≥1 claim for CV-related PGT were included in the test group (index date = 1st PGT claim) and matched 1:2 to controls without PGT. Individuals aged <22 or ≥90 years old on the index date, with <12 months continuous enrollment before and after the index date, or without an ASCVD-related diagnosis in the 12-month pre-index period were excluded. The primary outcome was occurrence of a major CV event during the 12-month post-index period. After adjustment, the PGT group was significantly more likely to experience ischaemic stroke, pulmonary embolism, deep vein thrombosis or a composite event compared with controls. Adjusting for baseline characteristics, HCRU was significantly higher for the test group across all measured outcomes except all-cause and ASCVD-related inpatient admissions. Median all-cause and ASCVD-related healthcare costs were significantly higher for the test group. Real world PGT in a large population did not improve outcomes. Tailoring medication therapy to each patient holds great promise for providing quality care but a deeper understanding of how widespread utilisation of PGT might impact objective health outcomes is needed. © 2018 John Wiley & Sons Ltd.

  16. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  17. System Identification for the Clipper Liberty C96 Wind Turbine

    NASA Astrophysics Data System (ADS)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  18. Positive deviance: an elegant solution to a complex problem.

    PubMed

    Lindberg, Curt; Clancy, Thomas R

    2010-04-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 13th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. This article provides one example of how concepts taken from complex systems theory can be applied to real-world problems facing nurses today.

  19. Evolution of weighted complex bus transit networks with flow

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei

    2016-02-01

    Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.

  20. Analyses of the response of a complex weighted network to nodes removal strategies considering links weight: The case of the Beijing urban road system

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Lu, Zhe-Ming; Cassi, Davide; Scotognella, Francesco

    2018-02-01

    Complex network response to node loss is a central question in different fields of science ranging from physics, sociology, biology to ecology. Previous studies considered binary networks where the weight of the links is not accounted for. However, in real-world networks the weights of connections can be widely different. Here, we analyzed the response of real-world road traffic complex network of Beijing, the most prosperous city in China. We produced nodes removal attack simulations using classic binary node features and we introduced weighted ranks for node importance. We measured the network functioning during nodes removal with three different parameters: the size of the largest connected cluster (LCC), the binary network efficiency (Bin EFF) and the weighted network efficiency (Weg EFF). We find that removing nodes according to weighted rank, i.e. considering the weight of the links as a number of taxi flows along the roads, produced in general the highest damage in the system. Our results show that: (i) in order to model Beijing road complex networks response to nodes (intersections) failure, it is necessary to consider the weight of the links; (ii) to discover the best attack strategy, it is important to use nodes rank accounting links weight.

  1. The perception of spatial layout in real and virtual worlds.

    PubMed

    Arthur, E J; Hancock, P A; Chrysler, S T

    1997-01-01

    As human-machine interfaces grow more immersive and graphically-oriented, virtual environment systems become more prominent as the medium for human-machine communication. Often, virtual environments (VE) are built to provide exact metrical representations of existing or proposed physical spaces. However, it is not known how individuals develop representational models of these spaces in which they are immersed and how those models may be distorted with respect to both the virtual and real-world equivalents. To evaluate the process of model development, the present experiment examined participant's ability to reproduce a complex spatial layout of objects having experienced them previously under different viewing conditions. The layout consisted of nine common objects arranged on a flat plane. These objects could be viewed in a free binocular virtual condition, a free binocular real-world condition, and in a static monocular view of the real world. The first two allowed active exploration of the environment while the latter condition allowed the participant only a passive opportunity to observe from a single viewpoint. Viewing conditions were a between-subject variable with 10 participants randomly assigned to each condition. Performance was assessed using mapping accuracy and triadic comparisons of relative inter-object distances. Mapping results showed a significant effect of viewing condition where, interestingly, the static monocular condition was superior to both the active virtual and real binocular conditions. Results for the triadic comparisons showed a significant interaction for gender by viewing condition in which males were more accurate than females. These results suggest that the situation model resulting from interaction with a virtual environment was indistinguishable from interaction with real objects at least within the constraints of the present procedure.

  2. End-User Applications of Real-Time Earthquake Information in Europe

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Gasparini, P.; Giardini, D.; Zschau, J.; Filangieri, A. R.; Reakt Wp7 Team

    2011-12-01

    The primary objective of European FP7 project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction) is to improve the efficiency of real-time earthquake risk mitigation methods and their capability of protecting structures, infrastructures, and populations. REAKT aims to address the issues of real-time earthquake hazard and response from end-to-end, with efforts directed along the full spectrum of methodology development in earthquake forecasting, earthquake early warning, and real-time vulnerability systems, through optimal decision-making, and engagement and cooperation of scientists and end users for the establishment of best practices for use of real-time information. Twelve strategic test cases/end users throughout Europe have been selected. This diverse group of applications/end users includes civil protection authorities, railway systems, hospitals, schools, industrial complexes, nuclear plants, lifeline systems, national seismic networks, and critical structures. The scale of target applications covers a wide range, from two school complexes in Naples, to individual critical structures, such as the Rion Antirion bridge in Patras, and the Fatih Sultan Mehmet bridge in Istanbul, to large complexes, such as the SINES industrial complex in Portugal and the Thessaloniki port area, to distributed lifeline and transportation networks and nuclear plants. Some end-users are interested in in-depth feasibility studies for use of real-time information and development of rapid response plans, while others intend to install real-time instrumentation and develop customized automated control systems. From the onset, REAKT scientists and end-users will work together on concept development and initial implementation efforts using the data products and decision-making methodologies developed with the goal of improving end-user risk mitigation. The aim of this scientific/end-user partnership is to ensure that scientific efforts are applicable to operational, real-world problems.

  3. The Oedipal Complex and Child Sexual Abuse Research: A Re-examination of Freud's Hypothesis.

    ERIC Educational Resources Information Center

    Kendall-Tackett, Kathleen A.

    In 1896, Sigmund Freud stated that early childhood seduction caused hysteria in his female patients. He later recanted his original finding and claimed that the reports of abuse he heard from his patients were not descriptions of real events, but his patients' expressions of unconscious childhood wishes. The theory of the Oedipal complex gave…

  4. I want what you've got: Cross platform portabiity and human-robot interaction assessment.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie L. Marble, Ph.D.*.; Douglas A. Few; David J. Bruemmer

    2005-08-01

    Human-robot interaction is a subtle, yet critical aspect of design that must be assessed during the development of both the human-robot interface and robot behaviors if the human-robot team is to effectively meet the complexities of the task environment. Testing not only ensures that the system can successfully achieve the tasks for which it was designed, but more importantly, usability testing allows the designers to understand how humans and robots can, will, and should work together to optimize workload distribution. A lack of human-centered robot interface design, the rigidity of sensor configuration, and the platform-specific nature of research robot developmentmore » environments are a few factors preventing robotic solutions from reaching functional utility in real word environments. Often the difficult engineering challenge of implementing adroit reactive behavior, reliable communication, trustworthy autonomy that combines with system transparency and usable interfaces is overlooked in favor of other research aims. The result is that many robotic systems never reach a level of functional utility necessary even to evaluate the efficacy of the basic system, much less result in a system that can be used in a critical, real-world environment. Further, because control architectures and interfaces are often platform specific, it is difficult or even impossible to make usability comparisons between them. This paper discusses the challenges inherent to the conduct of human factors testing of variable autonomy control architectures and across platforms within a complex, real-world environment. It discusses the need to compare behaviors, architectures, and interfaces within a structured environment that contains challenging real-world tasks, and the implications for system acceptance and trust of autonomous robotic systems for how humans and robots interact in true interactive teams.« less

  5. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  6. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  7. The Virtual World Presence of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Gauthier, Adrienne J.; Huber, D.; Gay, P. L.; New Media Task Group IYA2009

    2010-01-01

    From January 2009 to January 2010, the virtual celebration of the International Year of Astronomy 2009 has come full circle side-by-side with the real world celebrations. Throughout the year, the 'Astronomy 2009' island promoted the IYA2009 within the virtual world of Second Life(R) with the goal to engage and inspire the general public in astronomy. This island is situated in the group area called SciLands, a science and technology focused mini-continent of over 60 islands. We are host to immersive exhibits for the real life projects: From Earth to the Universe, The World at Night, Dark Skies Awareness, Let There Be Night, IAAA The Artists' Universe, 365 Days of Astronomy podcast, Spitzer's MIPSGAL/GLIMPSE walkable image, and Adler Planetarium's Far Out Fridays lecture series. Spitzer Space Telescope, Chandra X-ray Observatory, and the Hubble Heritage project provided over 300 free textures in a gift pack to visitors. Other exhibits include a replica of the Lord Rosse Leviathan telescope, an astrophotography grotto featuring Adam Block, David Malin, and John Gleason's work, a functional planetarium donated by Rob Knop, and live star party events from Chico Observatory. We'll review the exhibits and live events presented throughout the past year and speak towards the plans for the future. Formative evaluation strategies and first impressions of the summative evaluation of the first year of the project will be presented. Special thanks to our sponsors: Interstellar Studios/400 Years of the Telescope, Department of Astronomy University of Arizona, Spitzer Space Telescope, Chandra X-Ray Observatory, and Helio Huet.

  8. Trying Physics: Analyzing the Motion of the Quickest Score in International Rugby

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Lipscombe, Trevor Davis

    2015-02-01

    The hearts of sports fans were stirred recently by the fastest-ever try scored in international rugby. Welsh winger Dafydd Howells crossed the Fijian try line to score a mere six seconds after Angus O'Brien had started the game with a kickoff, in one of the fixtures in rugby's Junior World Cup played on June 2, 2014, in New Zealand. This startlingly quick score, though, is of interest to physics players as well as rugby players. Howells' try serves as an intriguing way to involve students in one of the "core competencies" of physicists—to model events in the real world. And with the Rugby World Cup taking place in 2015 in England, and rugby sevens making its debut in the 2016 Summer Olympics in Brazil (U.S. teams have qualified for both events), rugby is increasing in popularity in America and is even gaining some coverage on television. Thanks to You-Tube, Howells' try is readily available to serve as a laboratory experiment for students to analyze.

  9. Hypercube technology

    NASA Technical Reports Server (NTRS)

    Parker, Jay W.; Cwik, Tom; Ferraro, Robert D.; Liewer, Paulett C.; Patterson, Jean E.

    1991-01-01

    The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently.

  10. Speed, Space, Kids and the Television Cyclops: Viewers' Perceptions of Velocity and Distance in Televised Events.

    ERIC Educational Resources Information Center

    Acker, Stephen R.

    Television wide-angle lenses expand distances and increase apparent velocity, while long lenses compress space and reduce apparent velocity. Based on these assumptions, a study was conducted (1) to examine the ability of viewers of different ages to recognize how lenses change the "real world" they project and (2) to extend Jean Piaget's…

  11. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users

    PubMed Central

    Saeedi, Sareh; Schneider, Christoph; Millán, José del R.

    2018-01-01

    This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain–computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI–user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface—application, BCI output, and electroencephalography (EEG) neuroimaging—with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions. PMID:29746465

  12. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

    PubMed

    Perdikis, Serafeim; Tonin, Luca; Saeedi, Sareh; Schneider, Christoph; Millán, José Del R

    2018-05-01

    This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

  13. Towards Operational Meteotsunami Early Warning System: the Adriatic Project MESSI

    NASA Astrophysics Data System (ADS)

    Vilibic, I.; Sepic, J.; Denamiel, C. L.; Mihanovic, H.; Muslim, S.; Tudor, M.; Ivankovic, D.; Jelavic, D.; Kovacevic, V.; Masce, T.; Dadic, V.; Gacic, M.; Horvath, K.; Monserrat, S.; Rabinovich, A.; Telisman-Prtenjak, M.

    2017-12-01

    A number of destructive meteotsunamis - atmospherically-driven long ocean waves in a tsunami frequency band - occurred during the last decade through the world oceans. Owing to significant damage caused by these meteotsunamis, several scientific groups (occasionally in collaboration with public offices) have started developing meteotsunami warning systems. Creation of one such system has been initialized in the late 2015 within the MESSI (Meteotsunamis, destructive long ocean waves in the tsunami frequency band: from observations and simulations towards a warning system) project. Main goal of this project is to build a prototype of a meteotsunami warning system for the eastern Adriatic coast. The system will be based on real-time measurements, operational atmosphere and ocean modeling and real time decision-making process. Envisioned MESSI meteotsunami warning system consists of three modules: (1) synoptic warning module, which will use established correlation between forecasted synoptic fields and high-frequency sea level oscillations to provide qualitative meteotsunami forecasts for up to a week in advance, (2) probabilistic premodeling prediction module, which will use operational WRF-ROMS-ADCIRC modeling system and compare the forecast with an atlas of presimulations to get the probabilistic meteotsunami forecast for up to three days in advance, and (3) real-time module, which is based on real time tracking of properties of air pressure disturbance (amplitude, speed, direction, period, ...) and their real-time comparison with the atlas of meteotsunami simulations. System will be tested on recent meteotsunami events which were recorded in the MESSI area shortly after the operational meteotsunami network installation. Albeit complex, such a multilevel warning system has a potential to be adapted to most meteotsunami hot spots, simply by tuning the system parameters to the available atmospheric and ocean data.

  14. Listening to the solar eclipse with an educational tool for the blind and visually impaired

    NASA Astrophysics Data System (ADS)

    Bieryla, Allyson; Diaz-Merced, Wanda; Davis, Daniel; Hart, Robert

    2018-01-01

    The Great American Solar Eclipse took place on August 21, 2017 and swept through 14 of the United States. This was a highly publicized event and much of the world took notice. We live in a time where everything is accessible via the internet as it is happening. Many people, even those outside of the eclipse path, wanted to experience the event in real-time. We built a device, using an Arduino compatible microcontroller, that converts sunlight to sound so that the blind and visually impaired community could experience the eclipse live with the rest of the world. The device has a high dynamic range light sensor and an audio output that connects to a webcam and a computer. The event was successfully streamed to YouTube from Jackson Hole, Wyoming and people from all around the world connected to listen as the sun was temporarily dimmed by the eclipse of the moon. This device is inexpensive to reproduce (< $40 per device) and can be used as a teaching tool in a lab or classroom setting. Students can learn to build and write code for these devices as well. This is a tool with great potential for human development.

  15. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    NASA Astrophysics Data System (ADS)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content of such reservoirs; both in onshore regions as well as in offshore regions. Drilling a well is always guided by technical, economic and security constraints to prevent crew, equipment and environment from injury, damage and pollution. Although risk assessment and local practice provides a high degree of security, uncertainty is given by the behaviour of the formation which may cause crucial situations at the rig. To overcome such uncertainties real-time sensor measurements form a base to predict and thus prevent such crises, the proposed method supports the identification of the data necessary for that.

  16. Collaborative Service Learning: A Winning Proposition for Industry and Education

    ERIC Educational Resources Information Center

    Crutsinger, Christy A.; Pookulangara, Sanjukta; Tran, Gina; Duncan, Kim

    2004-01-01

    Collaboration between industry and academia creates a win-win situation for individuals and communities. Through innovative partnering, students apply knowledge to real-world situations, institutions increase program visibility, and businesses receive innovative solutions to complex problems. This article provides a roadmap for implementing a…

  17. Leveraging Collaborative, Thematic Problem-Based Learning to Integrate Curricula

    ERIC Educational Resources Information Center

    Sroufe, Robert; Ramos, Diane P.

    2015-01-01

    This study chronicles learning from faculty who designed and delivered collaborative, problem-based learning courses that anchor a one-year MBA emphasizing sustainability. While cultivating the application of learning across the curriculum, the authors engaged MBA students in solving complex, real-world sustainability challenges using a…

  18. Overview and application of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) toolbox

    USDA-ARS?s Scientific Manuscript database

    For several decades, optimization and sensitivity/uncertainty analysis of environmental models has been the subject of extensive research. Although much progress has been made and sophisticated methods developed, the growing complexity of environmental models to represent real-world systems makes it...

  19. Building a Greener Future

    ERIC Educational Resources Information Center

    Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries

    2016-01-01

    Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…

  20. [Injury mechanisms in extreme violence settings].

    PubMed

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes. Copyright © 2016. Published by Masson Doyma México S.A.

  1. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  2. Calcium Channel Blockers in Secondary Cardiovascular Prevention and Risk of Acute Events: Real-World Evidence from Nested Case-Control Studies on Italian Hypertensive Elderly.

    PubMed

    Bettiol, Alessandra; Lucenteforte, Ersilia; Vannacci, Alfredo; Lombardi, Niccolò; Onder, Graziano; Agabiti, Nera; Vitale, Cristiana; Trifirò, Gianluca; Corrao, Giovanni; Roberto, Giuseppe; Mugelli, Alessandro; Chinellato, Alessandro

    2017-12-01

    Antihypertensive treatment with calcium channel blockers (CCBs) is consolidated in clinical practice; however, different studies observed increased risks of acute events for short-acting CCBs. This study aimed to provide real-world evidence on risks of acute cardiovascular (CV) events, hospitalizations and mortality among users of different CCB classes in secondary CV prevention. Three case-control studies were nested in a cohort of Italian elderly hypertensive CV-compromised CCBs users. Cases were subjects with CV events (n = 25,204), all-cause hospitalizations (n = 19,237), or all-cause mortality (n = 17,996) during the follow-up. Up to four controls were matched for each case. Current or past exposition to CCBs at index date was defined based on molecule, formulation and daily doses of the last CCB delivery. The odds ratio (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression models. Compared to past users, current CCB users had significant reductions in risks of CV events [OR 0.88 (95% CI: 0.84-0.91)], hospitalization [0.90 (0.88-0.93)] and mortality [0.48 (0.47-0.49)]. Current users of long-acting dihydropyridines (DHPs) had the lowest risk [OR 0.87 (0.84-0.90), 0.86 (0.83-0.90), 0.55 (0.54-0.56) for acute CV events, hospitalizations and mortality], whereas current users of short-acting CCBs had an increased risk of acute CV events [OR 1.77 (1.13-2.78) for short-acting DHPs; 1.19 (1.07-1.31) for short-acting non-DHPs] and hospitalizations [OR 1.84 (0.96-3.51) and 1.23 (1.08-1.42)]. The already-existing warning on short-acting CCBs should be potentiated, addressing clinicians towards the choice of long-acting formulations.

  3. The new challenges of multiplex networks: Measures and models

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2017-02-01

    What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.

  4. Assessment of Flood Disaster Impacts in Cambodia: Implications for Rapid Disaster Response

    NASA Astrophysics Data System (ADS)

    Ahamed, Aakash; Bolten, John; Doyle, Colin

    2016-04-01

    Disaster monitoring systems can provide near real time estimates of population and infrastructure affected by sudden onset natural hazards. This information is useful to decision makers allocating lifesaving resources following disaster events. Floods are the world's most common and devastating disasters (UN, 2004; Doocy et al., 2013), and are particularly frequent and severe in the developing countries of Southeast Asia (Long and Trong, 2001; Jonkman, 2005; Kahn, 2005; Stromberg, 2007; Kirsch et al., 2012). Climate change, a strong regional monsoon, and widespread hydropower construction contribute to a complex and unpredictable regional hydrodynamic regime. As such, there is a critical need for novel techniques to assess flood impacts to population and infrastructure with haste during and following flood events in order to enable governments and agencies to optimize response efforts following disasters. Here, we build on methods to determine regional flood extent in near real time and develop systems that automatically quantify the socioeconomic impacts of flooding in Cambodia. Software developed on cloud based, distributed processing Geographic Information Systems (GIS) is used to demonstrate spatial and numerical estimates of population, households, roadways, schools, hospitals, airports, agriculture and fish catch affected by severe monsoon flooding occurring in the Cambodian portion of Lower Mekong River Basin in 2011. Results show modest agreement with government and agency estimates. Maps and statistics generated from the system are intended to complement on the ground efforts and bridge information gaps to decision makers. The system is open source, flexible, and can be applied to other disasters (e.g. earthquakes, droughts, landslides) in various geographic regions.

  5. Question Authority: Kids Need to Be Skeptical of the Curriculum. It's the Only Way to Develop a Balanced View of the World

    ERIC Educational Resources Information Center

    DeVoogd, Glenn

    2006-01-01

    Librarians can help kids expand their view of the world by introducing them to critical literacy. Critical literacy encourages readers to question an author's intentions and to examine issues from multiple perspectives to avoid simplistic statements. It supports a more complex and nuanced understanding of events, recognizing social and political…

  6. "Reality" of near-death-experience memories: evidence from a psychodynamic and electrophysiological integrated study.

    PubMed

    Palmieri, Arianna; Calvo, Vincenzo; Kleinbub, Johann R; Meconi, Federica; Marangoni, Matteo; Barilaro, Paolo; Broggio, Alice; Sambin, Marco; Sessa, Paola

    2014-01-01

    The nature of near-death-experiences (NDEs) is largely unknown but recent evidence suggests the intriguing possibility that NDEs may refer to actually "perceived," and stored, experiences (although not necessarily in relation to the external physical world). We adopted an integrated approach involving a hypnosis-based clinical protocol to improve recall and decrease memory inaccuracy together with electroencephalography (EEG) recording in order to investigate the characteristics of NDE memories and their neural markers compared to memories of both real and imagined events. We included 10 participants with NDEs, defined by the Greyson NDE scale, and 10 control subjects without NDE. Memories were assessed using the Memory Characteristics Questionnaire. Our hypnosis-based protocol increased the amount of details in the recall of all kind of memories considered (NDE, real, and imagined events). Findings showed that NDE memories were similar to real memories in terms of detail richness, self-referential, and emotional information. Moreover, NDE memories were significantly different from memories of imagined events. The pattern of EEG results indicated that real memory recall was positively associated with two memory-related frequency bands, i.e., high alpha and gamma. NDE memories were linked with theta band, a well-known marker of episodic memory. The recall of NDE memories was also related to delta band, which indexes processes such as the recollection of the past, as well as trance states, hallucinations, and other related portals to transpersonal experience. It is notable that the EEG pattern of correlations for NDE memory recall differed from the pattern for memories of imagined events. In conclusion, our findings suggest that, at a phenomenological level, NDE memories cannot be considered equivalent to imagined memories, and at a neural level, NDE memories are stored as episodic memories of events experienced in a peculiar state of consciousness.

  7. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  8. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment

    PubMed Central

    Ellamil, Melissa; Berson, Joshua; Wong, Jen; Buckley, Louis; Margulies, Daniel S.

    2016-01-01

    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100–150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life. PMID:27764167

  9. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment.

    PubMed

    Ellamil, Melissa; Berson, Joshua; Wong, Jen; Buckley, Louis; Margulies, Daniel S

    2016-01-01

    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100-150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life.

  10. Treatment Dosing Patterns and Clinical Outcomes for Patients with Type 2 Diabetes Starting or Switching to Treatment with Insulin Glargine (300 Units per Milliliter) in a Real-World Setting: A Retrospective Observational Study.

    PubMed

    Gupta, Shaloo; Wang, Hongwei; Skolnik, Neil; Tong, Liyue; Liebert, Ryan M; Lee, Lulu K; Stella, Peter; Cali, Anna; Preblick, Ronald

    2018-01-01

    Usage patterns and effectiveness of a longer-acting formulation of insulin glargine at a strength of 300 units per milliliter (Gla-300) have not been studied in real-world clinical practice. This study evaluated differences in dosing and clinical outcomes before and after Gla-300 treatment initiation in patients with type 2 diabetes starting or switching to treatment with Gla-300 to assess whether the benefits observed in clinical trials translate into real-world settings. This was a retrospective observational study using medical record data obtained by physician survey for patients starting treatment with insulin glargine at a strength of 100 units per milliliter (Gla-100) or Gla-300, or switching to treatment with Gla-300 from treatment with another basal insulin (BI). Differences in dosing and clinical outcomes before versus after treatment initiation or switching were examined by generalized linear mixed-effects models. Among insulin-naive patients starting BI treatment, no difference in the final titrated dose was observed in patients starting Gla-300 treatment versus those starting Gla-100 treatment [least-squares (LS) mean 0.43 units per kilogram vs 0.44 units per kilogram; P = 0.77]. Both groups had significant hemoglobin A 1c level reductions (LS mean 1.21 percentage points for Gla-300 and 1.12 percentage points for Gla-100 ; both P < 0.001). The relative risk of hypoglycemic events after Gla-300 treatment initiation was lower than that after Gla-100 treatment initiation [0.31, 95% confidence interval (CI) 0.12-0.81; P = 0.018] at similar daily doses. The daily dose of BI was significantly lower after switching to treatment with Gla-300 from treatment with another BI (0.73 units per kilogram before switch vs 0.58 units per kilogram after switch; P = 0.02). The mean hemoglobin A 1c level was significantly lower after switching than before switching (adjusted difference - 0.95 percentage points, 95% CI - 1.13 to - 0.78 percentage points ; P < 0.0001). Hypoglycemic events per patient-year were significantly lower (relative risk 0.17, 95% CI 0.11-0.26; P < 0.0001). Insulin-naive patients starting Gla-300 treatment had fewer hypoglycemic events, a similar hemoglobin A 1c level reduction, and no difference in insulin dose versus patients starting Gla-100 treatment. Patients switching to Gla-300 treatment from treatment with other BIs had significantly lower daily doses of BI, with fewer hypoglycemic events, without compromise of hemoglobin A 1c level reduction. These findings suggest Gla-300 in a real-world setting provides benefits in terms of dosing, with improved hemoglobin A 1c level and hypoglycemia rates. Sanofi US Inc. (Bridgewater, NJ, USA).

  11. Real-time Fatigue and Free-Living Physical Activity in Hematopoietic Stem Cell Transplantation Cancer Survivors and Healthy Controls: A Preliminary Examination of the Temporal, Dynamic Relationship.

    PubMed

    Hacker, Eileen Danaher; Kim, Inah; Park, Chang; Peters, Tara

    Fatigue and physical inactivity, critical problems facing cancer survivors, impact overall health and functioning. Our group designed a novel methodology to evaluate the temporal, dynamic patterns in real-world settings. Using real-time technology, the temporal, dynamic relationship between real-time fatigue and free-living is described and compared in cancer survivors who were treated with hematopoietic stem cell transplantation (n = 25) and age- and gender-matched healthy controls (n = 25). Subjects wore wrist actigraphs on their nondominant hand to assess free-living physical activity, measured in 1-minute epochs, over 7 days. Subjects entered real-time fatigue assessments directly into the subjective event marker of the actigraph 5 times per day. Running averages of mean 1-minute activity counts 30, 60, and 120 minutes before and after each real-time fatigue score were correlated with real-time fatigue using generalized estimating equations, RESULTS:: A strong inverse relationship exists between real-time fatigue and subsequent free-living physical activity. This inverse relationship suggests that increasing real-time fatigue limits subsequent physical activity (B range= -0.002 to -0.004; P < .001). No significant differences in the dynamic patterns of real-time fatigue and free-living physical activity were found between groups. To our knowledge, this is the first study to document the temporal and potentially causal relationship between real-time fatigue and free-living physical activity in real-world setting. These findings suggest that fatigue drives the subsequent physical activity and the relationship may not be bidirectional. Understanding the temporal, dynamic relationship may have important health implications for developing interventions to address fatigue in cancer survivors.

  12. Next Steps for Research on SACD Programs: Embracing Complexity

    ERIC Educational Resources Information Center

    Atkins, Marc S.; Shernoff, Elisa S.; Marinez-Lora, Ane

    2009-01-01

    This commentary focuses on the promises and challenges facing the Social and Character Development (SACD) consortium in evaluating the effectiveness of seven universal SACD programs designed to enhance student behavior and school climate under conditions of real world practice. In this commentary, we highlight that the opportunity costs associated…

  13. Mentoring Undergraduate Scholars: A Pathway to Interdisciplinary Research?

    ERIC Educational Resources Information Center

    Davis, Shannon N.; Mahatmya, Duhita; Garner, Pamela W.; Jones, Rebecca M.

    2015-01-01

    Interdisciplinary research is a valuable approach to addressing complex real-world problems. However, undergraduate research mentoring is discussed as an activity that happens in disciplinary silos where the mentor and student scholar share a disciplinary background. By transcending traditional academic divisions, we argue that mentors can train a…

  14. Workplace Learning to Create Social Quality

    ERIC Educational Resources Information Center

    Thijssen, Thomas

    2014-01-01

    Purpose: The present study aims to focus on workplace learning and understanding learning as creation (Kessels, 1995, 1996, 2001; Verdonschot, 2009; Billett and Choy, 2013) to bridge the gap between education and practice addressing the complex real world issue of poverty and social exclusion in The Netherlands. When researchers and practitioners…

  15. Preparing Psychiatric Residents for the "Real World": A Practice Management Curriculum

    ERIC Educational Resources Information Center

    Wichman, Christina L.; Netzel, Pamela J.; Menaker, Ronald

    2009-01-01

    Objective: The authors describe a course designed for residents to develop the knowledge and skills necessary to collaborate and successfully compete in today's complex health care environment and to achieve competency in systems-based practice. Methods: Postgraduation surveys demonstrated a need for improvement in preparing residents for practice…

  16. Intention-to-Treat Analysis in Partially Nested Randomized Controlled Trials with Real-World Complexity

    ERIC Educational Resources Information Center

    Schweig, Jonathan David; Pane, John F.

    2016-01-01

    Demands for scientific knowledge of what works in educational policy and practice has driven interest in quantitative investigations of educational outcomes, and randomized controlled trials (RCTs) have proliferated under these conditions. In educational settings, even when individuals are randomized, both experimental and control students are…

  17. Getting It Together: Gerontological Research and the Real World.

    ERIC Educational Resources Information Center

    Bikson, Tora Kay

    This paper presents a critical review of recent empirical and theoretical literature on information dissemination and utilization, incorporating key concepts from that body of literature into a model of effective knowledge transfer in gerontology. It assumes that the urgency and complexity of rapidly growing age-linked problems demand informed…

  18. Understanding the Sales Process by Selling

    ERIC Educational Resources Information Center

    Bussière, Dave

    2017-01-01

    Experiential projects bring students closer to real-world situations. This is valuable in sales education because the complexities of the sales process are difficult to learn from a textbook. A student project was developed that involved the selling of advertising space in a one-time newspaper insert. The project included a substantial minimum…

  19. Simplifying Central Place Theory Using GIS and GPS

    ERIC Educational Resources Information Center

    Theo, Lisa

    2011-01-01

    A constant struggle for teachers at all levels is finding ways to successfully teach students complex theories and concepts. Student comprehension is often enhanced by applying these theories and concepts to real world situations. This project demonstrates central place theory by examining highway billboard signs along major Wisconsin highways. In…

  20. Cleaning Data Helps Clean the Air

    ERIC Educational Resources Information Center

    Donalds, Kelley; Liu, Xiangrong

    2014-01-01

    In this project, students use a real-world, complex database and experience firsthand the consequences of inadequate data modeling. The U.S. Environmental Protection Agency created the database as part of a multimillion dollar data collection effort undertaken in order to set limits on air pollutants from electric power plants. First, students…

  1. Air Force Laboratory’s 2005 Technology Milestones

    DTIC Science & Technology

    2006-01-01

    Computational materials science methods can benefit the design and property prediction of complex real-world materials. With these models , scientists and...Warfighter Page Air High - Frequency Acoustic System...800) 203-6451 High - Frequency Acoustic System Payoff Scientists created the High - Frequency Acoustic Suppression Technology (HiFAST) airflow control

  2. The Effect of Reading on Second-Language Learners' Production in Tasks

    ERIC Educational Resources Information Center

    Collentine, Karina

    2016-01-01

    Tasks provide engaging ways to involve learners in meaningful, real-world activities with the foreign language (FL). Yet selecting classroom tasks suitable to learners' linguistic readiness is challenging, and task-based research is exploring the relationship between learners' overall abilities (e.g., reading, grammatical) and the complexity and…

  3. "Lost in Space": The Role of Social Networking in University-Based Entrepreneurial Learning

    ERIC Educational Resources Information Center

    Lockett, Nigel; Quesada-Pallarès, Carla; Williams-Middleton, Karen; Padilla-Meléndez, Antonio; Jack, Sarah

    2017-01-01

    While entrepreneurship education increasingly uses various means to connect students to the "real world", the impact of social networking on learning remains underexplored. This qualitative study of student entrepreneurs in the United Kingdom and Sweden shows that their entrepreneurial journey becomes increasingly complex, requiring…

  4. Games Learners Will Play

    ERIC Educational Resources Information Center

    Boyce, Byrl N.; And Others

    1971-01-01

    Clark Abt's book Serious Games" describes how games can enable children (and adults) to learn the abstract concepts that are required to deal with a world that is becoming increasingly complex. His book is here reviewed by three members of the University of Connecticut's Center for Real Estate and Urban Economics Studies. (Author)

  5. Integrative Learning: Making Liberal Education Purposeful, Personal, and Practical

    ERIC Educational Resources Information Center

    Ferren, Ann S.; Anderson, Chad B.

    2016-01-01

    This chapter explores three key features of integrative learning practice that play a vital role in fostering student success: guidance and support through critical transitions; entire development of the student; and engagement in project-based learning that connects learning to complex, real-world problems, and opportunities that can have…

  6. Development of an Environmental Virtual Field Laboratory

    ERIC Educational Resources Information Center

    Ramasundaram, V.; Grunwald, S.; Mangeot, A.; Comerford, N. B.; Bliss, C. M.

    2005-01-01

    Laboratory exercises, field observations and field trips are a fundamental part of many earth science and environmental science courses. Field observations and field trips can be constrained because of distance, time, expense, scale, safety, or complexity of real-world environments. Our objectives were to develop an environmental virtual field…

  7. Computation of Capacitors in Complex Arrangements

    ERIC Educational Resources Information Center

    Rizhov, Alexander

    2011-01-01

    There is a remarkable difference between formal knowledge and true understanding of the subject. While the former helps students earn top grades, the latter is crucial to the solution of real-world problems. An excellent example is the computation of capacitance, with which some students have difficulty. Also, most textbooks limit problem analysis…

  8. Factors Associated with Attrition in Weight Loss Programs

    ERIC Educational Resources Information Center

    Grave, Riccardo Dalle; Suppini, Alessandro; Calugi, Simona; Marchesini, Giulio

    2006-01-01

    Attrition in weight loss programs is a complex process, influenced by patients' pretreatment characteristics and treatment variables, but available data are contradictory. Only a few variables have been confirmed by more than one study as relevant risk factors, but recently new data of clinical utility emerged from "real world" large observational…

  9. 78 FR 23744 - Proposed Establishment of a Federally Funded Research and Development Center-First Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... technologies in the government and private sectors. The activity includes staff support for information... cybersecurity technologies in the government and private sectors. [cir] Generate technical expertise to create a... cybersecurity approaches that address the real world needs of complex Information Technology (IT) systems. By...

  10. A multilayer network dataset of interaction and influence spreading in a virtual world

    NASA Astrophysics Data System (ADS)

    Jankowski, Jarosław; Michalski, Radosław; Bródka, Piotr

    2017-10-01

    Presented data contains the record of five spreading campaigns that occurred in a virtual world platform. Users distributed avatars between each other during the campaigns. The processes varied in time and range and were either incentivized or not incentivized. Campaign data is accompanied by events. The data can be used to build a multilayer network to place the campaigns in a wider context. To the best of the authors' knowledge, the study is the first publicly available dataset containing a complete real multilayer social network together, along with five complete spreading processes in it.

  11. Whatever Gave You That Idea? False Memories Following Equivalence Training: A Behavioral Account of the Misinformation Effect

    PubMed Central

    Challies, Danna M; Hunt, Maree; Garry, Maryanne; Harper, David N

    2011-01-01

    The misinformation effect is a term used in the cognitive psychological literature to describe both experimental and real-world instances in which misleading information is incorporated into an account of an historical event. In many real-world situations, it is not possible to identify a distinct source of misinformation, and it appears that the witness may have inferred a false memory by integrating information from a variety of sources. In a stimulus equivalence task, a small number of trained relations between some members of a class of arbitrary stimuli result in a large number of untrained, or emergent relations, between all members of the class. Misleading information was introduced into a simple memory task between a learning phase and a recognition test by means of a match-to-sample stimulus equivalence task that included both stimuli from the original learning task and novel stimuli. At the recognition test, participants given equivalence training were more likely to misidentify patterns than those who were not given such training. The misinformation effect was distinct from the effects of prior stimulus exposure, or partial stimulus control. In summary, stimulus equivalence processes may underlie some real-world manifestations of the misinformation effect. PMID:22084495

  12. Superluminal transformations in complex Minkowski spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramon, C.; Rauscher, E.A.

    1980-08-01

    We calculate the mixing of real and imaginary components of space and time under the influence of superluminal boots in the x direction. A unique mixing is determined for this superluminal Lorentz transformation when we consider the symmetry properties afforded by the inclusion of three temporal directions. Superluminal transformations in complex six-dimensional space exhibit unique tachyonic connections which have both remote and local space--time event connections.

  13. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  14. Complexity and robustness

    PubMed Central

    Carlson, J. M.; Doyle, John

    2002-01-01

    Highly optimized tolerance (HOT) was recently introduced as a conceptual framework to study fundamental aspects of complexity. HOT is motivated primarily by systems from biology and engineering and emphasizes, (i) highly structured, nongeneric, self-dissimilar internal configurations, and (ii) robust yet fragile external behavior. HOT claims these are the most important features of complexity and not accidents of evolution or artifices of engineering design but are inevitably intertwined and mutually reinforcing. In the spirit of this collection, our paper contrasts HOT with alternative perspectives on complexity, drawing on real-world examples and also model systems, particularly those from self-organized criticality. PMID:11875207

  15. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  16. Connecting the virtual world of computers to the real world of medicinal chemistry.

    PubMed

    Glen, Robert C

    2011-03-01

    Drug discovery involves the simultaneous optimization of chemical and biological properties, usually in a single small molecule, which modulates one of nature's most complex systems: the balance between human health and disease. The increased use of computer-aided methods is having a significant impact on all aspects of the drug-discovery and development process and with improved methods and ever faster computers, computer-aided molecular design will be ever more central to the discovery process.

  17. Virtual reality, disability and rehabilitation.

    PubMed

    Wilson, P N; Foreman, N; Stanton, D

    1997-06-01

    Virtual reality, or virtual environment computer technology, generates simulated objects and events with which people can interact. Existing and potential applications for this technology in the field of disability and rehabilitation are discussed. The main benefits identified for disabled people are that they can engage in a range of activities in a simulator relatively free from the limitations imposed by their disability, and they can do so in safety. Evidence that the knowledge and skills acquired by disabled individuals in simulated environments can transfer to the real world is presented. In particular, spatial information and life skills learned in a virtual environment have been shown to transfer to the real world. Applications for visually impaired people are discussed, and the potential for medical interventions and the assessment and treatment of neurological damage are considered. Finally some current limitations of the technology, and ethical concerns in relation to disability, are discussed.

  18. A first near real-time seismology-based landquake monitoring system.

    PubMed

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-03-02

    Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >10 6  m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

  19. A first near real-time seismology-based landquake monitoring system

    PubMed Central

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-01-01

    Hazards from gravity-driven instabilities on hillslope (termed ‘landquake’ in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities. PMID:28252039

  20. Applying Crisis Intervention Skills in the Real World: The Experience of a Red Cross Volunteer

    ERIC Educational Resources Information Center

    Weinstein, Alex

    2010-01-01

    Imagine what is required to meet the immediate needs of people who have experienced loss from a major disaster such as a flood, hurricane, tsunami, earthquake, or wildfire. When such events occur in the United States or its territories, the American Red Cross starts a Disaster Response Operation, and mental health is always a component in the…

  1. Long-term bleeding risk prediction in 'real world' patients with atrial fibrillation: Comparison of the HAS-BLED and ABC-Bleeding risk scores. The Murcia Atrial Fibrillation Project.

    PubMed

    Esteve-Pastor, María Asunción; Rivera-Caravaca, José Miguel; Roldan, Vanessa; Vicente, Vicente; Valdés, Mariano; Marín, Francisco; Lip, Gregory Y H

    2017-10-05

    Risk scores in patients with atrial fibrillation (AF) based on clinical factors alone generally have only modest predictive value for predicting high risk patients that sustain events. Biomarkers might be an attractive prognostic tool to improve bleeding risk prediction. The new ABC-Bleeding score performed better than HAS-BLED score in a clinical trial cohort but has not been externally validated. The aim of this study was to analyze the predictive performance of the ABC-Bleeding score compared to HAS-BLED score in an independent "real-world" anticoagulated AF patients with long-term follow-up. We enrolled 1,120 patients stable on vitamin K antagonist treatment. The HAS-BLED and ABC-Bleeding scores were quantified. Predictive values were compared by c-indexes, IDI, NRI, as well as decision curve analysis (DCA). Median HAS-BLED score was 2 (IQR 2-3) and median ABC-Bleeding was 16.5 (IQR 14.3-18.6). After 6.5 years of follow-up, 207 (2.84 %/year) patients had major bleeding events, of which 65 (0.89 %/year) had intracranial haemorrhage (ICH) and 85 (1.17 %/year) had gastrointestinal bleeding events (GIB). The c-index of HAS-BLED was significantly higher than ABC-Bleeding for major bleeding (0.583 vs 0.518; p=0.025), GIB (0.596 vs 0.519; p=0.017) and for the composite of ICH-GIB (0.593 vs 0.527; p=0.030). NRI showed a significant negative reclassification for major bleeding and for the composite of ICH-GIB with the ABC-Bleeding score compared to HAS-BLED. Using DCAs, the use of HAS-BLED score gave an approximate net benefit of 4 % over the ABC-Bleeding score. In conclusion, in the first "real-world" validation of the ABC-Bleeding score, HAS-BLED performed significantly better than the ABC-Bleeding score in predicting major bleeding, GIB and the composite of GIB and ICH.

  2. Interacting complex systems: Theory and application to real-world situations

    NASA Astrophysics Data System (ADS)

    Piccinini, Nicola

    The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.

  3. Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data

    PubMed Central

    Dobra, Adrian; Williams, Nathalie E.; Eagle, Nathan

    2015-01-01

    With the aim to contribute to humanitarian response to disasters and violent events, scientists have proposed the development of analytical tools that could identify emergency events in real-time, using mobile phone data. The assumption is that dramatic and discrete changes in behavior, measured with mobile phone data, will indicate extreme events. In this study, we propose an efficient system for spatiotemporal detection of behavioral anomalies from mobile phone data and compare sites with behavioral anomalies to an extensive database of emergency and non-emergency events in Rwanda. Our methodology successfully captures anomalous behavioral patterns associated with a broad range of events, from religious and official holidays to earthquakes, floods, violence against civilians and protests. Our results suggest that human behavioral responses to extreme events are complex and multi-dimensional, including extreme increases and decreases in both calling and movement behaviors. We also find significant temporal and spatial variance in responses to extreme events. Our behavioral anomaly detection system and extensive discussion of results are a significant contribution to the long-term project of creating an effective real-time event detection system with mobile phone data and we discuss the implications of our findings for future research to this end. PMID:25806954

  4. New Communitarianism Movements and Complex Utopia

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    Simulation is a rapidly growing field in social sciences. Simulation theories in social sciences are considered to critique social dynamics and societies which are mostly simulated by media, cinema, TV, internet, etc. Recently we (Akdeniz KG, Disorder in complex human system. In: Fritzsch H, Phua KK (eds) Singapore: proceedings of the conference in Honour of Murray Gell-Mann's 80th birthday quantum mechanics, elementary particles, quantum cosmology and complexity. World Scientific Publishing, Hackensack, pp 630-637, 2009) purposed a simulation theory as a critique theory to investigate disordered human behaviors. In this theory, "Disorder-Sensitive Human Behaviors (DSHB) Simulation Theory", chaotic awareness is also considered as a reality principle in simulation world to complete Baudrillard Simulation Theory (Baudrillard J, Simulacra and simulation. University of Michigan Press, Michigan, 1995). We call the emergence of this reality as zuhur which is different than simulacra. More recently we proposed the complex utopia (Akdeniz KG, From Simulacra to Zuhur in Complex Utopia. 11th International Conference of the Utopian Studies Society, Lublin, 2010; Akdeniz KG, The new identities of the physicist: cyborg-physicist and post-physicist. In: Proceedings of the conference of world international conference of technology and education, Beirut, 2010) to critique the complex societies and communities in simulation world. The challenging agents in the complex utopia are both simulacra and zuhur. In this paper we would like to review "What is the complex utopia?" And we shall critique some global events in framework of complex utopia with particular examples in socio-economic and political contexts.

  5. Community detection in complex networks using proximate support vector clustering

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  6. [Application of metal ions and their complexes in medicine II. Application of platina complexes in the treatment of tumor].

    PubMed

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Nagy, Eniko; Sipos, Pál

    2004-01-01

    The rapid development of inorganic medical chemistry opens enormous potential for various applications of a range of inorganic substances in the medicine. Thus inorganic chemistry offers real possibilities to pharmaceutical industries, which used to be dominated by organic chemistry alone. The field has particularly been stimulated by the success-story of cisplatin, which is the World's best selling anticancer drug. Nowadays orally administered Pt(IV) complexes with reduced toxicity, and activity against resistant tumors are on various phases of clinical trial.

  7. A framework for evaluating complex networks measurements

    NASA Astrophysics Data System (ADS)

    Comin, Cesar H.; Silva, Filipi N.; Costa, Luciano da F.

    2015-06-01

    A good deal of current research in complex networks involves the characterization and/or classification of the topological properties of given structures, which has motivated several respective measurements. This letter proposes a framework for evaluating the quality of complex-network measurements in terms of their effective resolution, degree of degeneracy and discriminability. The potential of the suggested approach is illustrated with respect to comparing the characterization of several model and real-world networks by using concentric and symmetry measurements. The results indicate a markedly superior performance for the latter type of mapping.

  8. Holding-based network of nations based on listed energy companies: An empirical study on two-mode affiliation network of two sets of actors

    NASA Astrophysics Data System (ADS)

    Li, Huajiao; Fang, Wei; An, Haizhong; Gao, Xiangyun; Yan, Lili

    2016-05-01

    Economic networks in the real world are not homogeneous; therefore, it is important to study economic networks with heterogeneous nodes and edges to simulate a real network more precisely. In this paper, we present an empirical study of the one-mode derivative holding-based network constructed by the two-mode affiliation network of two sets of actors using the data of worldwide listed energy companies and their shareholders. First, we identify the primitive relationship in the two-mode affiliation network of the two sets of actors. Then, we present the method used to construct the derivative network based on the shareholding relationship between two sets of actors and the affiliation relationship between actors and events. After constructing the derivative network, we analyze different topological features on the node level, edge level and entire network level and explain the meanings of the different values of the topological features combining the empirical data. This study is helpful for expanding the usage of complex networks to heterogeneous economic networks. For empirical research on the worldwide listed energy stock market, this study is useful for discovering the inner relationships between the nations and regions from a new perspective.

  9. Hippocampal Processing of Ambiguity Enhances Fear Memory

    PubMed Central

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann

    2016-01-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526

  10. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    PubMed

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  11. Suicide after absconding from inpatient care in England: an exploration of mental health professionals' experiences.

    PubMed

    Hunt, Isabelle M; Clements, Caroline; Saini, Pooja; Rahman, Mohammad Shaiyan; Shaw, Jenny; Appleby, Louis; Kapur, Nav; Windfuhr, Kirsten

    2016-06-01

    Absconding from inpatient care is associated with suicide risk in psychiatric populations. However, little is known about the real world context of suicide after absconding from a psychiatric ward or the experiences of clinical staff caring for these patients. To identify the characteristics of inpatients who died by suicide after absconding and to explore these and further key issues related to suicide risk from the perspective of clinical staff. A mixed-methods study using quantitative data of all patient suicides in England between 1997 and 2011 and a thematic analysis of semi-structured interviews with 21 clinical staff. Four themes were identified as areas of concern for clinicians: problems with ward design, staffing problems, difficulties in assessing risk, and patient specific factors. Results suggest that inpatients who died by suicide after absconding may have more complex and severe illness along with difficult life events, such as homelessness. Closer monitoring of inpatients and access points, and improved risk assessments are important to reduce suicide in this patient group.

  12. Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems.

    PubMed

    da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre

    2012-08-13

    By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

  13. Virtual Reality As a Training Tool to Treat Physical Inactivity in Children.

    PubMed

    Kiefer, Adam W; Pincus, David; Richardson, Michael J; Myer, Gregory D

    2017-01-01

    Lack of adequate physical activity in children is an epidemic that can result in obesity and other poor health outcomes across the lifespan. Physical activity interventions focused on motor skill competence continue to be developed, but some interventions, such as neuromuscular training (NMT), may be limited in how early they can be implemented due to dependence on the child's level of cognitive and perceptual-motor development. Early implementation of motor-rich activities that support motor skill development in children is critical for the development of healthy levels of physical activity that carry through into adulthood. Virtual reality (VR) training may be beneficial in this regard. VR training, when grounded in an information-based theory of perceptual-motor behavior that modifies the visual information in the virtual world, can promote early development of motor skills in youth akin to more natural, real-world development as opposed to strictly formalized training. This approach can be tailored to the individual child and training scenarios can increase in complexity as the child develops. Ultimately, training in VR may help serve as a precursor to "real-world" NMT, and once the child reaches the appropriate training age can also augment more complex NMT regimens performed outside of the virtual environment.

  14. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    PubMed

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-12-03

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  15. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    PubMed Central

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  16. A generic multi-hazard and multi-risk framework and its application illustrated in a virtual city

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud; Euchner, Fabian; Wiemer, Stefan

    2013-04-01

    We present a generic framework to implement hazard correlations in multi-risk assessment strategies. We consider hazard interactions (process I), time-dependent vulnerability (process II) and time-dependent exposure (process III). Our approach is based on the Monte Carlo method to simulate a complex system, which is defined from assets exposed to a hazardous region. We generate 1-year time series, sampling from a stochastic set of events. Each time series corresponds to one risk scenario and the analysis of multiple time series allows for the probabilistic assessment of losses and for the recognition of more or less probable risk paths. Each sampled event is associated to a time of occurrence, a damage footprint and a loss footprint. The occurrence of an event depends on its rate, which is conditional on the occurrence of past events (process I, concept of correlation matrix). Damage depends on the hazard intensity and on the vulnerability of the asset, which is conditional on previous damage on that asset (process II). Losses are the product of damage and exposure value, this value being the original exposure minus previous losses (process III, no reconstruction considered). The Monte Carlo method allows for a straightforward implementation of uncertainties and for implementation of numerous interactions, which is otherwise challenging in an analytical multi-risk approach. We apply our framework to a synthetic data set, defined by a virtual city within a virtual region. This approach gives the opportunity to perform multi-risk analyses in a controlled environment while not requiring real data, which may be difficultly accessible or simply unavailable to the public. Based on the heuristic approach, we define a 100 by 100 km region where earthquakes, volcanic eruptions, fluvial floods, hurricanes and coastal floods can occur. All hazards are harmonized to a common format. We define a 20 by 20 km city, composed of 50,000 identical buildings with a fixed economic value. Vulnerability curves are defined in terms of mean damage ratio as a function of hazard intensity. All data are based on simple equations found in the literature and on other simplifications. We show the impact of earthquake-earthquake interaction and hurricane-storm surge coupling, as well as of time-dependent vulnerability and exposure, on aggregated loss curves. One main result is the emergence of low probability-high consequences (extreme) events when correlations are implemented. While the concept of virtual city can suggest the theoretical benefits of multi-risk assessment for decision support, identifying their real-world practicality will require the study of real test sites.

  17. Modeling and dynamical topology properties of VANET based on complex networks theory

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jie

    2015-01-01

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.

  18. Modeling and dynamical topology properties of VANET based on complex networks theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com

    2015-01-15

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less

  19. Stroke prevention in atrial fibrillation: re-defining 'real-world data' within the broader data universe.

    PubMed

    Fanaroff, Alexander C; Steffel, Jan; Alexander, John H; Lip, Gregory Y H; Califf, Robert M; Lopes, Renato D

    2018-04-23

    Real-world data (RWD) has been defined as data generated outside of traditional randomized clinical trials (RCTs). Though RWD has received increasing attention from regulatory authorities and professional societies, dividing evidence into that derived from 'real-world' vs. 'non-real-world' sources provides only one element of a much larger framework for evidence evaluation. Evidence should be evaluated on the source of the data, the method of treatment allocation (whether any intervention being evaluated was assigned or simply observed as used in practice) and the context in which the evidence was generated (overall study design). Under this framework, RWD refers only to data source, and a study incorporates RWD when it primarily uses data collected for non-research purposes, such as insurance claims data or the electronic health record, regardless of study design. Separation of study design, data source, and context enables parallel evaluation of two critical elements: (i) whether a study can support claims of causal inference, which can be assured with a high degree of confidence only in studies where patients are assigned treatments by protocol; and (ii) whether the study population and clinical context mirror clinical practice, a strength of observational studies using data from clinical practice or administrative claims. In this review, we describe the strengths and weaknesses of observational and non-observational studies, and studies involving RWD and non-RWD, through the lens of anticoagulation for atrial fibrillation (AF). Observational studies employing RWD are useful for describing how oral anticoagulants are used in clinical practice, but generally cannot be used to make claims regarding comparative treatment effects. Questions regarding treatment effect generally are best answered through an RCT, and additional pragmatic RCTs are needed to compare different antithrombotic agents for the prevention of thrombotic events in AF.

  20. Can singular examples change implicit attitudes in the real-world?

    PubMed Central

    Roos, Leslie E.; Lebrecht, Sophie; Tanaka, James W.; Tarr, Michael J.

    2013-01-01

    Implicit attitudes about social groups persist independently of explicit beliefs and can influence not only social behavior, but also medical and legal practices. Although examples presented in the laboratory can alter such implicit attitudes, it is unclear whether the same influence is exerted by real-world exemplars. Following the 2008 US election, Plant et al. reported that the Implicit Association Test or “IAT” revealed a decrease in negative implicit attitudes toward African-Americans. However, a large-scale study also employing the IAT found little evidence for a change in implicit attitudes pre- and post-election. Here we present evidence that the 2008 US election may have facilitated at least a temporary change in implicit racial attitudes in the US. Our results rely on the Affective Lexical Priming Score or “ALPS” and pre- and post-election measurements for both US and non-US participants. US students who, pre-election, exhibited negative associations with black faces, post-election showed positive associations with black faces. Canadian students pre- and post-election did not show a similar shift. To account for these findings, we posit that the socio-cognitive processes underlying ALPS are different from those underlying the IAT. Acknowledging that we cannot form a causal link between an intervening real-world event and laboratory-measured implicit attitudes, we speculate that our findings may be driven by the fact that the 2008 election campaign included extremely positive media coverage of President Obama and prominently featured his face in association with positive words—similar to the structure of ALPS. Even so, our real-world finding adds to the literature demonstrating the malleability of implicit attitudes and has implications for how we understand the socio-cognitive mechanisms underlying stereotypes. PMID:24046756

  1. Software-safety and software quality assurance in real-time applications Part 2: Real-time structures and languages

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1988-07-01

    Our society is depending more and more on the reliability of embedded (real-time) computer systems even in every-day life. Considering the complexity of the real world, this might become a severe threat. Real-time programming is a discipline important not only in process control and data acquisition systems, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt- and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other and with respect to their potential to quality and safety.

  2. The Incidence and Predictors of Early- and Mid-Term Clinically Relevant Neurological Events After Transcatheter Aortic Valve Replacement in Real-World Patients.

    PubMed

    Bosmans, Johan; Bleiziffer, Sabine; Gerckens, Ulrich; Wenaweser, Peter; Brecker, Stephen; Tamburino, Corrado; Linke, Axel

    2015-07-21

    Transcatheter aortic valve replacement (TAVR) enables treatment of high-risk patients with symptomatic aortic stenosis without open-heart surgery; however, the benefits are mitigated by the potential for neurological events. This study sought to determine the timing and causes of clinically relevant neurological events after self-expandable TAVR. We enrolled 1,015 patients, of whom 996 underwent TAVR with a self-expandable system at 44 TAVR-experienced centers in Europe, Colombia, and Israel. Neurological events were evaluated for 3 distinct time periods: periprocedural (0 to 1 days post TAVR); early (2 to 30 days); and late (31 to 730 days). In this real-world study, neurological events were first referred to the site neurologist and then reviewed by an independent neurologist. The overall stroke rate was 1.4% through the first day post-procedure, 3.0% at 30 days, and 5.6% at 2 years. There were no significant predictors of periprocedural stroke or stroke/transient ischemic attack (TIA) combined. Significant predictors of early stroke were acute kidney injury (p = 0.03), major vascular complication (p = 0.04), and female sex (p = 0.04). For stroke/TIA combined, prior atrial fibrillation (p = 0.03) and major vascular complication (p = 0.009) were predictive. Coronary artery bypass graft surgery was the only significant predictor of late stroke (p = 0.007) or late stroke/TIA (p = 0.06). Treatment of high-risk patients with aortic stenosis using a self-expandable system was associated with a low stroke rate at short- and long-term follow-up. Multivariable predictors of clinically relevant neurological events differed on the basis of the timing after TAVR. (CoreValve Advance International Post Market Study; NCT01074658). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Social sensing of floods in the UK

    PubMed Central

    Williams, Hywel T. P.

    2018-01-01

    “Social sensing” is a form of crowd-sourcing that involves systematic analysis of digital communications to detect real-world events. Here we consider the use of social sensing for observing natural hazards. In particular, we present a case study that uses data from a popular social media platform (Twitter) to detect and locate flood events in the UK. In order to improve data quality we apply a number of filters (timezone, simple text filters and a naive Bayes ‘relevance’ filter) to the data. We then use place names in the user profile and message text to infer the location of the tweets. These two steps remove most of the irrelevant tweets and yield orders of magnitude more located tweets than we have by relying on geo-tagged data. We demonstrate that high resolution social sensing of floods is feasible and we can produce high-quality historical and real-time maps of floods using Twitter. PMID:29385132

  4. Social sensing of floods in the UK.

    PubMed

    Arthur, Rudy; Boulton, Chris A; Shotton, Humphrey; Williams, Hywel T P

    2018-01-01

    "Social sensing" is a form of crowd-sourcing that involves systematic analysis of digital communications to detect real-world events. Here we consider the use of social sensing for observing natural hazards. In particular, we present a case study that uses data from a popular social media platform (Twitter) to detect and locate flood events in the UK. In order to improve data quality we apply a number of filters (timezone, simple text filters and a naive Bayes 'relevance' filter) to the data. We then use place names in the user profile and message text to infer the location of the tweets. These two steps remove most of the irrelevant tweets and yield orders of magnitude more located tweets than we have by relying on geo-tagged data. We demonstrate that high resolution social sensing of floods is feasible and we can produce high-quality historical and real-time maps of floods using Twitter.

  5. Topological Methods for Design and Control of Adaptive Stochastic Complex Systems - to Meet the Challenges of Resilient Urban Infrastructure

    DTIC Science & Technology

    2017-03-24

    for Design and Control of Adaptive Stochastic Complex Systems John Baillieul∗ Contents 1 Executive Summary 2 2 Introduction and Issues to Be Addressed...difficult of real-world Systems-of-Systems challenges is the design and operational control of medical treatment networks that support forces operating...This report describes a brief research project on foundartional aspects of systems-of-systems design and operation. The overarching goal of the

  6. Structural controllability of unidirectional bipartite networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2013-04-01

    The interactions between fundamental life molecules, people and social organisations build complex architectures that often result in undesired behaviours. Despite all of the advances made in our understanding of network structures over the past decade, similar progress has not been achieved in the controllability of real-world networks. In particular, an analytical framework to address the controllability of bipartite networks is still absent. Here, we present a dominating set (DS)-based approach to bipartite network controllability that identifies the topologies that are relatively easy to control with the minimum number of driver nodes. Our theoretical calculations, assisted by computer simulations and an evaluation of real-world networks offer a promising framework to control unidirectional bipartite networks. Our analysis should open a new approach to reverting the undesired behaviours in unidirectional bipartite networks at will.

  7. Tabu Search enhances network robustness under targeted attacks

    NASA Astrophysics Data System (ADS)

    Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi

    2016-03-01

    We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.

  8. A VIKOR Technique with Applications Based on DEMATEL and ANP

    NASA Astrophysics Data System (ADS)

    Ou Yang, Yu-Ping; Shieh, How-Ming; Tzeng, Gwo-Hshiung

    In multiple criteria decision making (MCDM) methods, the compromise ranking method (named VIKOR) was introduced as one applicable technique to implement within MCDM. It was developed for multicriteria optimization of complex systems. However, few papers discuss conflicting (competing) criteria with dependence and feedback in the compromise solution method. Therefore, this study proposes and provides applications for a novel model using the VIKOR technique based on DEMATEL and the ANP to solve the problem of conflicting criteria with dependence and feedback. In addition, this research also uses DEMATEL to normalize the unweighted supermatrix of the ANP to suit the real world. An example is also presented to illustrate the proposed method with applications thereof. The results show the proposed method is suitable and effective in real-world applications.

  9. Inferring general relations between network characteristics from specific network ensembles.

    PubMed

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  10. Concept Systems and Ontologies: Recommendations for Basic Terminology

    NASA Astrophysics Data System (ADS)

    Klein, Gunnar O.; Smith, Barry

    This essay concerns the problems surrounding the use of the term ``concept'' in current ontology and terminology research. It is based on the constructive dialogue between realist ontology on the one hand and the world of formal standardization of health informatics on the other, but its conclusions are not restricted to the domain of medicine. The term ``concept'' is one of the most misused even in literature and technical standards which attempt to bring clarity. In this paper we propose to use the term ``concept'' in the context of producing defined professional terminologies with one specific and consistent meaning which we propose for adoption as the agreed meaning of the term in future terminological research, and specifically in the development of formal terminologies to be used in computer systems. We also discuss and propose new definitions of a set of cognate terms. We describe the relations governing the realm of concepts, and compare these to the richer and more complex set of relations obtaining between entities in the real world. On this basis we also summarize an associated terminology for ontologies as representations of the real world and a partial mapping between the world of concepts and the world of reality.

  11. External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Lei; Zhang, David

    2018-06-01

    Most of existing image denoising methods learn image priors from either external data or the noisy image itself to remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real noisy images.

  12. Predicting the evolution of complex networks via similarity dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  13. Directionality of real world networks as predicted by path length in directed and undirected graphs

    NASA Astrophysics Data System (ADS)

    Rosen, Yonatan; Louzoun, Yoram

    2014-05-01

    Many real world networks either support ordered processes, or are actually representations of such processes. However, the same networks contain large strong connectivity components and long circles, which hide a possible inherent order, since each vertex can be reached from each vertex in a directed path. Thus, the presence of an inherent directionality in networks may be hidden. We here discuss a possible definition of such a directionality and propose a method to detect it. Several common algorithms, such as the betweenness centrality or the degree, measure various aspects of centrality in networks. However, they do not address directly the issue of inherent directionality. The goal of the algorithm discussed here is the detection of global directionality in directed networks. Such an algorithm is essential to detangle complex networks into ordered process. We show that indeed the vast majority of measured real world networks have a clear directionality. Moreover, this directionality can be used to classify vertices in these networks from sources to sinks. Such an algorithm can be highly useful in order to extract a meaning from large interaction networks assembled in many domains.

  14. Popularity and Novelty Dynamics in Evolving Networks.

    PubMed

    Abbas, Khushnood; Shang, Mingsheng; Abbasi, Alireza; Luo, Xin; Xu, Jian Jun; Zhang, Yu-Xia

    2018-04-20

    Network science plays a big role in the representation of real-world phenomena such as user-item bipartite networks presented in e-commerce or social media platforms. It provides researchers with tools and techniques to solve complex real-world problems. Identifying and predicting future popularity and importance of items in e-commerce or social media platform is a challenging task. Some items gain popularity repeatedly over time while some become popular and novel only once. This work aims to identify the key-factors: popularity and novelty. To do so, we consider two types of novelty predictions: items appearing in the popular ranking list for the first time; and items which were not in the popular list in the past time window, but might have been popular before the recent past time window. In order to identify the popular items, a careful consideration of macro-level analysis is needed. In this work we propose a model, which exploits item level information over a span of time to rank the importance of the item. We considered ageing or decay effect along with the recent link-gain of the items. We test our proposed model on four various real-world datasets using four information retrieval based metrics.

  15. Safety Experience During Real-World Use of Injectable Artesunate in Public Health Facilities in Ghana and Uganda: Outcomes of a Modified Cohort Event Monitoring Study (CEMISA).

    PubMed

    Ampadu, H Hilda; Dodoo, Alexander N O; Bosomprah, Samuel; Akakpo, Samantha; Hugo, Pierre; Gardarsdottir, Helga; Leufkens, H G M; Kajungu, Dan; Asante, Kwaku Poku

    2018-04-25

    Injectable artesunate (Inj AS) is the World Health Organization (WHO)-recommended product for treating severe malaria. However, despite widespread usage, there are few published safety studies involving large populations in real-world settings. In this study, we sought to assess the incidence of common adverse events (AEs) following the intake of Inj AS in real-life settings. This is a modified cohort event monitoring study involving patients who were administered with Inj AS at eight sites (four each in Ghana and Uganda) between May and December 2016. Patients were eligible for inclusion if they had severe/complicated malaria and were able and willing to participate in the study. Eligible patients were followed up by telephone or hospital or home visit on Days 7, 14, 21 and 28 after drug administration to document AEs and serious AEs (SAEs). Patients were also encouraged to report all AEs at any time during the study period. The Kaplan-Meier method was used to estimate the proportion of patients with any AEs by end of Day 28. Causality assessment was made on all AEs/SAEs using the WHO/UMC (Uppsala Monitoring Centre) causality method. A total of 1103 eligible patients were administered Inj AS, of which 360 patients were in Ghana and 743 in Uganda. The incidence of any AE by the end of follow-up among patients treated with AS was estimated to be 17.9% (197/1103) (95% confidence interval [CI] 15.8-20.3). The median time-to-onset of any AEs was 9 days (interquartile range (IQR) = 4, 14). The top five AEs recorded among patients treated with AS were pyrexia (3.5%), abdominal pain (2.5%), diarrhoea (1.7%), cough (1.5%) and asthenia (1.5%). Most of these top five AEs occurred in the first 14 days following treatment. Regarding the relatedness of these AEs to Inj AS, 78.9% of pyrexia (30/38), 63.0% of pain (17/27), 68.4% of diarrhoea (13/19), 85.5% of cough (14/16) and 75.0% of asthenia (12/16) were assessed as 'possibly' related. There were 17 SAEs including 13 deaths. Two of the deaths are 'possibly' related to Inj AS, as were three non-fatal SAEs: severe abdominal pain, failure of therapy and severe anaemia. The incidence of common AEs among patients treated with Inj AS in real-world settings was found to be relatively low. Future studies should consider larger cohorts to document rare AEs as well. CLINICALTRIALS. NCT02817919.

  16. Soviet Policy in Cuba and Chile.

    DTIC Science & Technology

    1980-05-06

    also be able to appeal to Marxism -Leninism to explain, prescribe, and predict the course of world events. The defense of the Soviet Union, therefore...burden of interpretation of the complex and unpredictable events of international politics in terms that relate it to Marxism -Leninism. The task has... Marxism -Leninism. Soviet ideology has responded by attempting to situate itself in a central or orthodox position and describing the other positions as

  17. Perceiving and Acting on Complex Affordances: How Children and Adults Bicycle across Two Lanes of Opposing Traffic

    ERIC Educational Resources Information Center

    Grechkin, Timofey Y.; Chihak, Benjamin J.; Cremer, James F.; Kearney, Joseph K.; Plumert, Jodie M.

    2013-01-01

    This investigation examined how children and adults negotiate a challenging perceptual-motor problem with significant real-world implications--bicycling across two lanes of opposing traffic. Twelve- and 14-year-olds and adults rode a bicycling simulator through an immersive virtual environment. Participants crossed intersections with continuous…

  18. Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships

    ERIC Educational Resources Information Center

    Paknejad, Mohammad R.

    2016-01-01

    Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…

  19. Real Time Big Data Analytics for Predicting Terrorist Incidents

    ERIC Educational Resources Information Center

    Toure, Ibrahim

    2017-01-01

    Terrorism is a complex and evolving phenomenon. In the past few decades, we have witnessed an increase in the number of terrorist incidents in the world. The security and stability of many countries is threatened by terrorist groups. Perpetrators now use sophisticated weapons and the attacks are more and more lethal. Currently, terrorist incidents…

  20. Methodological Complications of Matching Designs under Real World Constraints: Lessons from a Study of Deeper Learning

    ERIC Educational Resources Information Center

    Zeiser, Kristina; Rickles, Jordan; Garet, Michael S.

    2014-01-01

    To help researchers understand potential issues one can encounter when conducting propensity matching studies in complex settings, this paper describes methodological complications faced when studying schools using deeper learning practices to improve college and career readiness. The study uses data from high schools located in six districts…

  1. Thermodynamics in High Rhythms and Rhymes: Creative Ways of Knowing in Engineering

    ERIC Educational Resources Information Center

    Bairaktarova, Diana; Eodice, Michele

    2017-01-01

    Thermodynamics is a foundational course in nearly every engineering program. In a traditional classroom, instructors focus on the analysis of thermodynamic energy systems and their application to real world contexts. Because these complex systems can be difficult to understand, some instructors encourage students to tap into their creative side…

  2. Dialysis, Albumin Binding, and Competitive Binding: A Laboratory Lesson Relating Three Chemical Concepts to Healthcare

    ERIC Educational Resources Information Center

    Domingo, Jennifer P.; Abualia, Mohammed; Barragan, Diana; Schroeder, Lianne; Wink, Donald J.; King, Maripat; Clark, Ginevra A.

    2017-01-01

    Introductory Chemistry laboratories must go beyond "cookbook" methods to illustrate how chemistry concepts apply to complex, real-world problems. In our case, we are preparing students to use their chemistry knowledge in the healthcare profession. The experiment described here explicitly models three important chemical concepts: dialysis…

  3. Understanding Introductory Students' Application of Integrals in Physics from Multiple Perspectives

    ERIC Educational Resources Information Center

    Hu, Dehui

    2013-01-01

    Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that…

  4. A Software Architecture for the Construction and Management of Real-Time Virtual Worlds

    DTIC Science & Technology

    1993-06-01

    University of California, Berkeley [FUNK921. The second improvement was the addition of a radiosity light model. The use of radiosity and its use of diffuse...the viewpoint is stationary, the coarse polygon model is replaced by progressively more complex radiosity lit scenes. The area of molecular modeling

  5. Riding Alone on the Elevator: A Class Experiment in Interdisciplinary Education

    ERIC Educational Resources Information Center

    Frank, Anna M.; Froese, Rebecca; Hof, Barbara C.; Scheffold, Maike I. E.; Schreyer, Felix; Zeller, Mathias; Rödder, Simone

    2017-01-01

    The ability to conduct interdisciplinary research is crucial to address complex real-world problems that require the collaboration of different scientific fields, with global warming being a case in point. To produce integrated climate-related knowledge, climate researchers should be trained early on to work across boundaries and gain an…

  6. A Classroom Demonstration for Teaching Network Effects

    ERIC Educational Resources Information Center

    Sawler, James

    2007-01-01

    The introduction of the concept of network effects is useful at the principles level to facilitate discussions of the determinants of monopoly, the need for standards in high-tech industries, and the general complexity of real-world competition. The author describes a demonstration and an extension that help students understand how consumers make…

  7. Memetic Algorithms, Domain Knowledge, and Financial Investing

    ERIC Educational Resources Information Center

    Du, Jie

    2012-01-01

    While the question of how to use human knowledge to guide evolutionary search is long-recognized, much remains to be done to answer this question adequately. This dissertation aims to further answer this question by exploring the role of domain knowledge in evolutionary computation as applied to real-world, complex problems, such as financial…

  8. Improving Science Assessments by Situating Them in a Virtual Environment

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian; Schifter, Catherine; Kim, Younsu

    2013-01-01

    Current science assessments typically present a series of isolated fact-based questions, poorly representing the complexity of how real-world science is constructed. The National Research Council asserts that this needs to change to reflect a more authentic model of science practice. We strongly concur and suggest that good science assessments…

  9. Using Robots and Contract Learning to Teach Cyber-Physical Systems to Undergraduates

    ERIC Educational Resources Information Center

    Crenshaw, T. L. A.

    2013-01-01

    Cyber-physical systems are a genre of networked real-time systems that monitor and control the physical world. Examples include unmanned aerial vehicles and industrial robotics. The experts who develop these complex systems are retiring much faster than universities are graduating engineering majors. As a result, it is important for undergraduates…

  10. Using Meta-Perspectives to Improve Equity and Inclusion

    ERIC Educational Resources Information Center

    Budd, Julia

    2016-01-01

    Equity for those experiencing disability is a complex real-world issue best studied by cross-disciplinary groups. However, these cross-disciplinary studies are often unsuccessful due to the different perspectives held by members of the cross-disciplinary group. Meta-perspectives have been found to help overcome the issues caused by these different…

  11. Training Interdisciplinary "Wicked Problem" Solvers: Applying Lessons from HERO in Community-Based Research Experiences for Undergraduates

    ERIC Educational Resources Information Center

    Cantor, Alida; DeLauer, Verna; Martin, Deborah; Rogan, John

    2015-01-01

    Management of "wicked problems", messy real-world problems that defy resolution, requires thinkers who can transcend disciplinary boundaries, work collaboratively, and handle complexity and obstacles. This paper explores how educators can train undergraduates in these skills through applied community-based research, using the example of…

  12. Further Iterations on Using the Problem-Analysis Framework

    ERIC Educational Resources Information Center

    Annan, Michael; Chua, Jocelyn; Cole, Rachel; Kennedy, Emma; James, Robert; Markusdottir, Ingibjorg; Monsen, Jeremy; Robertson, Lucy; Shah, Sonia

    2013-01-01

    A core component of applied educational and child psychology practice is the skilfulness with which practitioners are able to rigorously structure and conceptualise complex real world human problems. This is done in such a way that when they (with others) jointly work on them, there is an increased likelihood of positive outcomes being achieved…

  13. Contribution of Emotional Intelligence towards Graduate Students' Critical Thinking Disposition

    ERIC Educational Resources Information Center

    Kang, Fong-Luan

    2015-01-01

    Good critical thinkers possess a core set of cognitive thinking skills, and a disposition towards critical thinking. They are able to think critically to solve complex, real-world problems effectively. Although personal emotion is important in critical thinking, it is often a neglected issue. The emotional intelligence in this study concerns our…

  14. A Critical Analysis of Hypermedia and Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Oliver, Kevin M.

    The use of hypermedia in education is supported by cognitive flexibility theory which indicates transfer of knowledge to real-world settings is improved when that material is learned in a case-based, associative network emphasizing complexity and links to related information. Hypermedia is further assumed to benefit education, because it resembles…

  15. Experiential Learning in Rodents: Past Experience Enables Rapid Learning and Localized Encoding in Hippocampus

    ERIC Educational Resources Information Center

    Cox, Conor D.; Palmer, Linda C.; Pham, Danielle T.; Trieu, Brian H.; Gall, Christine M.; Lynch, Gary

    2017-01-01

    Humans routinely use past experience with complexity to deal with novel, challenging circumstances. This fundamental aspect of real-world behavior has received surprisingly little attention in animal studies, and the underlying brain mechanisms are unknown. The present experiments tested for transfer from past experience in rats and then used…

  16. Decision support for sustainable forestry: enhancing the basic rational model.

    Treesearch

    H.R. Ekbia; K.M. Reynolds

    2007-01-01

    Decision-support systems (DSS) have been extensively used in the management of natural resources for nearly two decades. However, practical difficulties with the application of DSS in real-world situations have become increasingly apparent. Complexities of decisionmaking, encountered in the context of ecosystem management, are equally present in sustainable forestry....

  17. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    ERIC Educational Resources Information Center

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  18. Using Emotional Intelligence in Training Crisis Managers: The Pandora Approach

    ERIC Educational Resources Information Center

    Mackinnon, Lachian; Bacon, Liz; Cortellessa, Gabriella; Cesta, Amedeo

    2013-01-01

    Multi-agency crisis management represents one of the most complex of real-world situations, requiring rapid negotiation and decision-making under extreme pressure. However, the training offered to strategic planners, called Gold Commanders, does not place them under any such pressure. It takes the form of paper-based, table-top exercises, or…

  19. Developing a real-time PCR assay for direct identification and quantification of Pratylenchus penetrans in soil

    USDA-ARS?s Scientific Manuscript database

    The root-lesion nematode Pratylenchus penetrans is a major pathogen of potato world-wide. Yield losses may be exacerbated by interaction with the fungus Verticillium dahliae in the Potato early dying disease complex. Accurate identification and quantification of P. penetrans prior to planting are es...

  20. Integrating Six Sigma Concepts in an MBA Quality Management Class

    ERIC Educational Resources Information Center

    Weinstein, Larry B.; Petrick, Joseph; Castellano, Joseph; Vokurka, Robert J.

    2008-01-01

    Instructors face enormous challenges in presenting effective instruction on concepts and tools of quality management. Most textbooks focus on presenting individual concepts or tools and fail to address complex issues confronted in real-world problem-solving situations. The supplementary use of cases does not help students to understand the dynamic…

Top