Demonstration of a Safety Analysis on a Complex System
NASA Technical Reports Server (NTRS)
Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey;
1997-01-01
For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.
Archetypes for Organisational Safety
NASA Technical Reports Server (NTRS)
Marais, Karen; Leveson, Nancy G.
2003-01-01
We propose a framework using system dynamics to model the dynamic behavior of organizations in accident analysis. Most current accident analysis techniques are event-based and do not adequately capture the dynamic complexity and non-linear interactions that characterize accidents in complex systems. In this paper we propose a set of system safety archetypes that model common safety culture flaws in organizations, i.e., the dynamic behaviour of organizations that often leads to accidents. As accident analysis and investigation tools, the archetypes can be used to develop dynamic models that describe the systemic and organizational factors contributing to the accident. The archetypes help clarify why safety-related decisions do not always result in the desired behavior, and how independent decisions in different parts of the organization can combine to impact safety.
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... qualified to perform the ground safety analysis through training, education, and experience. (c) A launch... unfenced boundary of an entire industrial complex or multi-user launch site. A launch location hazard may.... (j) A launch operator must verify all information in a ground safety analysis, including design...
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... qualified to perform the ground safety analysis through training, education, and experience. (c) A launch... unfenced boundary of an entire industrial complex or multi-user launch site. A launch location hazard may.... (j) A launch operator must verify all information in a ground safety analysis, including design...
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... qualified to perform the ground safety analysis through training, education, and experience. (c) A launch... unfenced boundary of an entire industrial complex or multi-user launch site. A launch location hazard may.... (j) A launch operator must verify all information in a ground safety analysis, including design...
Ares I Integrated Vehicle System Safety Team
NASA Technical Reports Server (NTRS)
Wetherholt, Jon; McNairy, Lisa; Shackelford, Carla
2009-01-01
Complex systems require integrated analysis teams which sometimes are divided into subsystem teams. Proper division of the analysis in to subsystem teams is important. Safety analysis is one of the most difficult aspects of integration.
A Framework for Reliability and Safety Analysis of Complex Space Missions
NASA Technical Reports Server (NTRS)
Evans, John W.; Groen, Frank; Wang, Lui; Austin, Rebekah; Witulski, Art; Mahadevan, Nagabhushan; Cornford, Steven L.; Feather, Martin S.; Lindsey, Nancy
2017-01-01
Long duration and complex mission scenarios are characteristics of NASA's human exploration of Mars, and will provide unprecedented challenges. Systems reliability and safety will become increasingly demanding and management of uncertainty will be increasingly important. NASA's current pioneering strategy recognizes and relies upon assurance of crew and asset safety. In this regard, flexibility to develop and innovate in the emergence of new design environments and methodologies, encompassing modeling of complex systems, is essential to meet the challenges.
Time Factor in the Theory of Anthropogenic Risk Prediction in Complex Dynamic Systems
NASA Astrophysics Data System (ADS)
Ostreikovsky, V. A.; Shevchenko, Ye N.; Yurkov, N. K.; Kochegarov, I. I.; Grishko, A. K.
2018-01-01
The article overviews the anthropogenic risk models that take into consideration the development of different factors in time that influence the complex system. Three classes of mathematical models have been analyzed for the use in assessing the anthropogenic risk of complex dynamic systems. These models take into consideration time factor in determining the prospect of safety change of critical systems. The originality of the study is in the analysis of five time postulates in the theory of anthropogenic risk and the safety of highly important objects. It has to be stressed that the given postulates are still rarely used in practical assessment of equipment service life of critically important systems. That is why, the results of study presented in the article can be used in safety engineering and analysis of critically important complex technical systems.
Reliability Modeling Methodology for Independent Approaches on Parallel Runways Safety Analysis
NASA Technical Reports Server (NTRS)
Babcock, P.; Schor, A.; Rosch, G.
1998-01-01
This document is an adjunct to the final report An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies. That report presents the results of our analysis of the problem of simultaneous but independent, approaches of two aircraft on parallel runways (independent approaches on parallel runways, or IAPR). This introductory chapter presents a brief overview and perspective of approaches and methodologies for performing safety analyses for complex systems. Ensuing chapter provide the technical details that underlie the approach that we have taken in performing the safety analysis for the IAPR concept.
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Safety analysis report for the Waste Storage Facility. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bengston, S.J.
1994-05-01
This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.
Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems
NASA Technical Reports Server (NTRS)
He, Yuning; Davies, Misty Dawn
2014-01-01
The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.
Reliability/safety analysis of a fly-by-wire system
NASA Technical Reports Server (NTRS)
Brock, L. D.; Goddman, H. A.
1980-01-01
An analysis technique has been developed to estimate the reliability of a very complex, safety-critical system by constructing a diagram of the reliability equations for the total system. This diagram has many of the characteristics of a fault-tree or success-path diagram, but is much easier to construct for complex redundant systems. The diagram provides insight into system failure characteristics and identifies the most likely failure modes. A computer program aids in the construction of the diagram and the computation of reliability. Analysis of the NASA F-8 Digital Fly-by-Wire Flight Control System is used to illustrate the technique.
NASA Technical Reports Server (NTRS)
Xu, Xidong; Ulrey, Mike L.; Brown, John A.; Mast, James; Lapis, Mary B.
2013-01-01
NextGen is a complex socio-technical system and, in many ways, it is expected to be more complex than the current system. It is vital to assess the safety impact of the NextGen elements (technologies, systems, and procedures) in a rigorous and systematic way and to ensure that they do not compromise safety. In this study, the NextGen elements in the form of Operational Improvements (OIs), Enablers, Research Activities, Development Activities, and Policy Issues were identified. The overall hazard situation in NextGen was outlined; a high-level hazard analysis was conducted with respect to multiple elements in a representative NextGen OI known as OI-0349 (Automation Support for Separation Management); and the hazards resulting from the highly dynamic complexity involved in an OI-0349 scenario were illustrated. A selected but representative set of the existing safety methods, tools, processes, and regulations was then reviewed and analyzed regarding whether they are sufficient to assess safety in the elements of that OI and ensure that safety will not be compromised and whether they might incur intolerably high costs.
Safety analysis in test facility design
NASA Astrophysics Data System (ADS)
Valk, A.; Jonker, R. J.
1990-09-01
The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.
2012-01-01
Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.
Analyzing system safety in lithium-ion grid energy storage
NASA Astrophysics Data System (ADS)
Rosewater, David; Williams, Adam
2015-12-01
As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.
Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.
Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David
2013-06-01
Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.
Kassam, Aliya; Sharma, Nishan; Harvie, Margot; O’Beirne, Maeve; Topps, Maureen
2016-01-01
Abstract Objective To conduct a thematic analysis of the College of Family Physicians of Canada’s (CFPC’s) Red Book accreditation standards and the Triple C Competency-based Curriculum objectives with respect to patient safety principles. Design Thematic content analysis of the CFPC’s Red Book accreditation standards and the Triple C curriculum. Setting Canada. Main outcome measures Coding frequency of the patient safety principles (ie, patient engagement; respectful, transparent relationships; complex systems; a just and trusting culture; responsibility and accountability for actions; and continuous learning and improvement) found in the analyzed CFPC documents. Results Within the analyzed CFPC documents, the most commonly found patient safety principle was patient engagement (n = 51 coding references); the least commonly found patient safety principles were a just and trusting culture (n = 5 coding references) and complex systems (n = 5 coding references). Other patient safety principles that were uncommon included responsibility and accountability for actions (n = 7 coding references) and continuous learning and improvement (n = 12 coding references). Conclusion Explicit inclusion of patient safety content such as the use of patient safety principles is needed for residency training programs across Canada to ensure the full spectrum of care is addressed, from community-based care to acute hospital-based care. This will ensure a patient safety culture can be cultivated from residency and sustained into primary care practice. PMID:27965349
Systemic Analysis Approaches for Air Transportation
NASA Technical Reports Server (NTRS)
Conway, Sheila
2005-01-01
Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.
NASA Technical Reports Server (NTRS)
Leveson, Nancy
1987-01-01
Software safety and its relationship to other qualities are discussed. It is shown that standard reliability and fault tolerance techniques will not solve the safety problem for the present. A new attitude requires: looking at what you do NOT want software to do along with what you want it to do; and assuming things will go wrong. New procedures and changes to entire software development process are necessary: special software safety analysis techniques are needed; and design techniques, especially eliminating complexity, can be very helpful.
Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Kumar, Ranjan; Ghosh, Achyuta Krishna
2017-04-01
Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.
McNab, Duncan; Bowie, Paul; Morrison, Jill; Ross, Alastair
2016-11-01
Participation in projects to improve patient safety is a key component of general practice (GP) specialty training, appraisal and revalidation. Patient safety training priorities for GPs at all career stages are described in the Royal College of General Practitioners' curriculum. Current methods that are taught and employed to improve safety often use a 'find-and-fix' approach to identify components of a system (including humans) where performance could be improved. However, the complex interactions and inter-dependence between components in healthcare systems mean that cause and effect are not always linked in a predictable manner. The Safety-II approach has been proposed as a new way to understand how safety is achieved in complex systems that may improve quality and safety initiatives and enhance GP and trainee curriculum coverage. Safety-II aims to maximise the number of events with a successful outcome by exploring everyday work. Work-as-done often differs from work-as-imagined in protocols and guidelines and various ways to achieve success, dependent on work conditions, may be possible. Traditional approaches to improve the quality and safety of care often aim to constrain variability but understanding and managing variability may be a more beneficial approach. The application of a Safety-II approach to incident investigation, quality improvement projects, prospective analysis of risk in systems and performance indicators may offer improved insight into system performance leading to more effective change. The way forward may be to combine the Safety-II approach with 'traditional' methods to enhance patient safety training, outcomes and curriculum coverage.
Certification of highly complex safety-related systems.
Reinert, D; Schaefer, M
1999-01-01
The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.
Analyzing system safety in lithium-ion grid energy storage
Rosewater, David; Williams, Adam
2015-10-08
As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less
Multimorbidity and Patient Safety Incidents in Primary Care: A Systematic Review and Meta-Analysis
Panagioti, Maria; Stokes, Jonathan; Esmail, Aneez; Coventry, Peter; Cheraghi-Sohi, Sudeh; Alam, Rahul; Bower, Peter
2015-01-01
Background Multimorbidity is increasingly prevalent and represents a major challenge in primary care. Patients with multimorbidity are potentially more likely to experience safety incidents due to the complexity of their needs and frequency of their interactions with health services. However, rigorous syntheses of the link between patient safety incidents and multimorbidity are not available. This review examined the relationship between multimorbidity and patient safety incidents in primary care. Methods We followed our published protocol (PROSPERO registration number: CRD42014007434). Medline, Embase and CINAHL were searched up to May 2015. Study design and quality were assessed. Odds ratios (OR) and 95% confidence intervals (95% CIs) were calculated for the associations between multimorbidity and two categories of patient safety outcomes: ‘active patient safety incidents’ (such as adverse drug events and medical complications) and ‘precursors of safety incidents’ (such as prescription errors, medication non-adherence, poor quality of care and diagnostic errors). Meta-analyses using random effects models were undertaken. Results Eighty six relevant comparisons from 75 studies were included in the analysis. Meta-analysis demonstrated that physical-mental multimorbidity was associated with an increased risk for ‘active patient safety incidents’ (OR = 2.39, 95% CI = 1.40 to 3.38) and ‘precursors of safety incidents’ (OR = 1.69, 95% CI = 1.36 to 2.03). Physical multimorbidity was associated with an increased risk for active safety incidents (OR = 1.63, 95% CI = 1.45 to 1.80) but was not associated with precursors of safety incidents (OR = 1.02, 95% CI = 0.90 to 1.13). Statistical heterogeneity was high and the methodological quality of the studies was generally low. Conclusions The association between multimorbidity and patient safety is complex, and varies by type of multimorbidity and type of safety incident. Our analyses suggest that multimorbidity involving mental health may be a key driver of safety incidents, which has important implication for the design and targeting of interventions to improve safety. High quality studies examining the mechanisms of patient safety incidents in patients with multimorbidity are needed, with the goal of promoting effective service delivery and ameliorating threats to safety in this group of patients. PMID:26317435
NASA Technical Reports Server (NTRS)
Uber, James G.
1988-01-01
Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.
An analysis of electronic health record-related patient safety concerns
Meeks, Derek W; Smith, Michael W; Taylor, Lesley; Sittig, Dean F; Scott, Jean M; Singh, Hardeep
2014-01-01
Objective A recent Institute of Medicine report called for attention to safety issues related to electronic health records (EHRs). We analyzed EHR-related safety concerns reported within a large, integrated healthcare system. Methods The Informatics Patient Safety Office of the Veterans Health Administration (VA) maintains a non-punitive, voluntary reporting system to collect and investigate EHR-related safety concerns (ie, adverse events, potential events, and near misses). We analyzed completed investigations using an eight-dimension sociotechnical conceptual model that accounted for both technical and non-technical dimensions of safety. Using the framework analysis approach to qualitative data, we identified emergent and recurring safety concerns common to multiple reports. Results We extracted 100 consecutive, unique, closed investigations between August 2009 and May 2013 from 344 reported incidents. Seventy-four involved unsafe technology and 25 involved unsafe use of technology. A majority (70%) involved two or more model dimensions. Most often, non-technical dimensions such as workflow, policies, and personnel interacted in a complex fashion with technical dimensions such as software/hardware, content, and user interface to produce safety concerns. Most (94%) safety concerns related to either unmet data-display needs in the EHR (ie, displayed information available to the end user failed to reduce uncertainty or led to increased potential for patient harm), software upgrades or modifications, data transmission between components of the EHR, or ‘hidden dependencies’ within the EHR. Discussion EHR-related safety concerns involving both unsafe technology and unsafe use of technology persist long after ‘go-live’ and despite the sophisticated EHR infrastructure represented in our data source. Currently, few healthcare institutions have reporting and analysis capabilities similar to the VA. Conclusions Because EHR-related safety concerns have complex sociotechnical origins, institutions with long-standing as well as recent EHR implementations should build a robust infrastructure to monitor and learn from them. PMID:24951796
Meeks, Derek W; Takian, Amirhossein; Sittig, Dean F; Singh, Hardeep; Barber, Nick
2014-01-01
Objective The intersection of electronic health records (EHR) and patient safety is complex. To examine the applicability of two previously developed conceptual models comprehensively to understand safety implications of EHR implementation in the English National Health Service (NHS). Methods We conducted a secondary analysis of interview data from a 30-month longitudinal, prospective, case study-based evaluation of EHR implementation in 12 NHS hospitals. We used a framework analysis approach to apply conceptual models developed by Sittig and Singh to understand better EHR implementation and use: an eight-dimension sociotechnical model and a three-phase patient safety model (safe technology, safe use of technology, and use of technology to improve safety). Results The intersection of patient safety and EHR implementation and use was characterized by risks involving technology (hardware and software, clinical content, and human–computer interfaces), the interaction of technology with non-technological factors, and improper or unsafe use of technology. Our data support that patient safety improvement activities as well as patient safety hazards change as an organization evolves from concerns about safe EHR functionality, ensuring safe and appropriate EHR use, to using the EHR itself to provide ongoing surveillance and monitoring of patient safety. Discussion We demonstrate the face validity of two models for understanding the sociotechnical aspects of safe EHR implementation and the complex interactions of technology within a healthcare system evolving from paper to integrated EHR. Conclusions Using sociotechnical models, including those presented in this paper, may be beneficial to help stakeholders understand, synthesize, and anticipate risks at the intersection of patient safety and health information technology. PMID:24052536
Meeks, Derek W; Takian, Amirhossein; Sittig, Dean F; Singh, Hardeep; Barber, Nick
2014-02-01
The intersection of electronic health records (EHR) and patient safety is complex. To examine the applicability of two previously developed conceptual models comprehensively to understand safety implications of EHR implementation in the English National Health Service (NHS). We conducted a secondary analysis of interview data from a 30-month longitudinal, prospective, case study-based evaluation of EHR implementation in 12 NHS hospitals. We used a framework analysis approach to apply conceptual models developed by Sittig and Singh to understand better EHR implementation and use: an eight-dimension sociotechnical model and a three-phase patient safety model (safe technology, safe use of technology, and use of technology to improve safety). The intersection of patient safety and EHR implementation and use was characterized by risks involving technology (hardware and software, clinical content, and human-computer interfaces), the interaction of technology with non-technological factors, and improper or unsafe use of technology. Our data support that patient safety improvement activities as well as patient safety hazards change as an organization evolves from concerns about safe EHR functionality, ensuring safe and appropriate EHR use, to using the EHR itself to provide ongoing surveillance and monitoring of patient safety. We demonstrate the face validity of two models for understanding the sociotechnical aspects of safe EHR implementation and the complex interactions of technology within a healthcare system evolving from paper to integrated EHR. Using sociotechnical models, including those presented in this paper, may be beneficial to help stakeholders understand, synthesize, and anticipate risks at the intersection of patient safety and health information technology.
Random safety auditing, root cause analysis, failure mode and effects analysis.
Ursprung, Robert; Gray, James
2010-03-01
Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.
Integrated Safety Analysis Tiers
NASA Technical Reports Server (NTRS)
Shackelford, Carla; McNairy, Lisa; Wetherholt, Jon
2009-01-01
Commercial partnerships and organizational constraints, combined with complex systems, may lead to division of hazard analysis across organizations. This division could cause important hazards to be overlooked, causes to be missed, controls for a hazard to be incomplete, or verifications to be inefficient. Each organization s team must understand at least one level beyond the interface sufficiently enough to comprehend integrated hazards. This paper will discuss various ways to properly divide analysis among organizations. The Ares I launch vehicle integrated safety analyses effort will be utilized to illustrate an approach that addresses the key issues and concerns arising from multiple analysis responsibilities.
Evolution of Safety Analysis to Support New Exploration Missions
NASA Technical Reports Server (NTRS)
Thrasher, Chard W.
2008-01-01
NASA is currently developing the Ares I launch vehicle as a key component of the Constellation program which will provide safe and reliable transportation to the International Space Station, back to the moon, and later to Mars. The risks and costs of the Ares I must be significantly lowered, as compared to other manned launch vehicles, to enable the continuation of space exploration. It is essential that safety be significantly improved, and cost-effectively incorporated into the design process. This paper justifies early and effective safety analysis of complex space systems. Interactions and dependences between design, logistics, modeling, reliability, and safety engineers will be discussed to illustrate methods to lower cost, reduce design cycles and lessen the likelihood of catastrophic events.
Fire hazard analysis for Plutonium Finishing Plant complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCKINNIS, D.L.
1999-02-23
A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41,more » Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.« less
Safety Guided Design Based on Stamp/STPA for Manned Vehicle in Concept Design Phase
NASA Astrophysics Data System (ADS)
Ujiie, Ryo; Katahira, Masafumi; Miyamoto, Yuko; Umeda, Hiroki; Leveson, Nancy; Hoshino, Nobuyuki
2013-09-01
In manned vehicles, such as the Soyuz and the Space Shuttle, the crew and computer system cooperate to succeed in returning to the earth. While computers increase the functionality of system, they also increase the complexity of the interaction between the controllers (human and computer) and the target dynamics. In some cases, the complexity can produce a serious accident. To prevent such losses, traditional hazard analysis such as FTA has been applied to system development, however it can be used after creating a detailed system because it focuses on detailed component failures. As a result, it's more difficult to eliminate hazard cause early in the process when it is most feasible.STAMP/STPA is a new hazard analysis that can be applied from the early development phase, with the analysis being refined as more detailed decisions are made. In essence, the analysis and design decisions are intertwined and go hand-in-hand. We have applied STAMP/STPA to a concept design of a new JAXA manned vehicle and tried safety guided design of the vehicle. As a result of this trial, it has been shown that STAMP/STPA can be accepted easily by system engineers and the design has been made more sophisticated from a safety viewpoint. The result also shows that the consequences of human errors on system safety can be analysed in the early development phase and the system designed to prevent them. Finally, the paper will discuss an effective way to harmonize this safety guided design approach with system engineering process based on the result of this experience in this project.
En route care patient safety: thoughts from the field.
McNeill, Margaret M; Pierce, Penny; Dukes, Susan; Bridges, Elizabeth J
2014-08-01
The purpose of this study was to describe the patient safety culture of en route care in the United States Air Force aeromedical evacuation system. Almost 100,000 patients have been transported since 2001. Safety concerns in this unique environment are complex because of the extraordinary demands of multitasking, time urgency, long duty hours, complex handoffs, and multiple stressors of flight. An internet-based survey explored the perceptions and experiences of safety issues among nursing personnel involved throughout the continuum of aeromedical evacuation care. A convenience sample of 236 nurses and medical technicians from settings representing the continuum was studied. Descriptive and nonparametric statistics were used to analyze the quantitative data, and thematic analysis was applied to the qualitative data. Results indicate that over 90% of respondents agree or strongly agree safety is a priority in their unit and that their unit is responsive to patient safety initiatives. Many respondents described safety incidents or near misses, and these have been categorized as personnel physical capability limitations, environmental threats, medication and equipment issues, and care process problems. Results suggest the care of patients during transport is influenced by the safety culture, human factors, training, experience, and communication. Suggestions to address safety issues emerged from the survey data. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study.
Garbolino, Emmanuel; Chery, Jean-Pierre; Guarnieri, Franck
2016-01-01
Seveso plants are complex sociotechnical systems, which makes it appropriate to support any risk assessment with a model of the system. However, more often than not, this step is only partially addressed, simplified, or avoided in safety reports. At the same time, investigations have shown that the complexity of industrial systems is frequently a factor in accidents, due to interactions between their technical, human, and organizational dimensions. In order to handle both this complexity and changes in the system over time, this article proposes an original and simplified qualitative risk evaluation method based on the system dynamics theory developed by Forrester in the early 1960s. The methodology supports the development of a dynamic risk assessment framework dedicated to industrial activities. It consists of 10 complementary steps grouped into two main activities: system dynamics modeling of the sociotechnical system and risk analysis. This system dynamics risk analysis is applied to a case study of a chemical plant and provides a way to assess the technological and organizational components of safety. © 2016 Society for Risk Analysis.
Understanding Teamwork in Trauma Resuscitation through Analysis of Team Errors
ERIC Educational Resources Information Center
Sarcevic, Aleksandra
2009-01-01
An analysis of human errors in complex work settings can lead to important insights into the workspace design. This type of analysis is particularly relevant to safety-critical, socio-technical systems that are highly dynamic, stressful and time-constrained, and where failures can result in catastrophic societal, economic or environmental…
Identifying behaviour patterns of construction safety using system archetypes.
Guo, Brian H W; Yiu, Tak Wing; González, Vicente A
2015-07-01
Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physicians' and nurses' perceptions of patient safety risks in the emergency department.
Källberg, Ann-Sofie; Ehrenberg, Anna; Florin, Jan; Östergren, Jan; Göransson, Katarina E
2017-07-01
The emergency department has been described as a high-risk area for errors. It is also known that working conditions such as a high workload and shortage off staff in the healthcare field are common factors that negatively affect patient safety. A limited amount of research has been conducted with regard to patient safety in Swedish emergency departments. Additionally, there is a lack of knowledge about clinicians' perceptions of patient safety risks. Therefore, the purpose of this study was to describe emergency department clinicians' experiences with regard to patient safety risks. Semi-structured interviews were conducted with 10 physicians and 10 registered nurses from two emergency departments. Interviews were analysed by inductive content analysis. The experiences reflect the complexities involved in the daily operation of a professional practice, and the perception of risks due to a high workload, lack of control, communication and organizational failures. The results reflect a complex system in which high workload was perceived as a risk for patient safety and that, in a combination with other risks, was thought to further jeopardize patient safety. Emergency department staff should be involved in the development of patient safety procedures in order to increase knowledge regarding risk factors as well as identify strategies which can facilitate the maintenance of patient safety during periods in which the workload is high. Copyright © 2017 Elsevier Ltd. All rights reserved.
Model Transformation for a System of Systems Dependability Safety Case
NASA Technical Reports Server (NTRS)
Murphy, Judy; Driskell, Stephen B.
2010-01-01
Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.
Cultural safety and the challenges of translating critically oriented knowledge in practice.
Browne, Annette J; Varcoe, Colleen; Smye, Victoria; Reimer-Kirkham, Sheryl; Lynam, M Judith; Wong, Sabrina
2009-07-01
Cultural safety is a relatively new concept that has emerged in the New Zealand nursing context and is being taken up in various ways in Canadian health care discourses. Our research team has been exploring the relevance of cultural safety in the Canadian context, most recently in relation to a knowledge-translation study conducted with nurses practising in a large tertiary hospital. We were drawn to using cultural safety because we conceptualized it as being compatible with critical theoretical perspectives that foster a focus on power imbalances and inequitable social relationships in health care; the interrelated problems of culturalism and racialization; and a commitment to social justice as central to the social mandate of nursing. Engaging in this knowledge-translation study has provided new perspectives on the complexities, ambiguities and tensions that need to be considered when using the concept of cultural safety to draw attention to racialization, culturalism, and health and health care inequities. The philosophic analysis discussed in this paper represents an epistemological grounding for the concept of cultural safety that links directly to particular moral ends with social justice implications. Although cultural safety is a concept that we have firmly positioned within the paradigm of critical inquiry, ambiguities associated with the notions of 'culture', 'safety', and 'cultural safety' need to be anticipated and addressed if they are to be effectively used to draw attention to critical social justice issues in practice settings. Using cultural safety in practice settings to draw attention to and prompt critical reflection on politicized knowledge, therefore, brings an added layer of complexity. To address these complexities, we propose that what may be required to effectively use cultural safety in the knowledge-translation process is a 'social justice curriculum for practice' that would foster a philosophical stance of critical inquiry at both the individual and institutional levels.
29 CFR 1910.119 - Process safety management of highly hazardous chemicals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...
29 CFR 1910.119 - Process safety management of highly hazardous chemicals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...
Nuclear Criticality Safety Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbach, D. F.
The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.
Sociotechnical attributes of safe and unsafe work systems.
Kleiner, Brian M; Hettinger, Lawrence J; DeJoy, David M; Huang, Yuang-Hsiang; Love, Peter E D
2015-01-01
Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social-organisational and technical-work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human-system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human-systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social--organisational and technology--work process factors as they impact work system analysis, design and operation.
Chow, Cheuk-Fai; Gong, Fu-Wen; Gong, Cheng-Bin
2014-09-21
Detection of neutral biogenic sulfides plays a crucial role in food safety. A new heterobimetallic Re(I)-Pt(II) donor-acceptor complex--[Re(biq)(CO)3(CN)]-[Pt(DMSO)(Cl)2] (1, biq = 2,2'-biquinoline)--was synthesized and characterized. The X-ray crystallographic and photophysical data for 1 are reported in this study. Complex 1 indicated the luminescent chemodosimetric selectivity for dimethyl sulfide, which persisted even in the presence of a variety of interfering vapors, with a detection limit as low as 0.96 ppm. The binding constant (log K) of 1 toward dimethyl sulfide was 3.63 ± 0.03. The analyte selectivity of the complexes was found to be dependent on the ligand coordinated to the Re(I) center. Real samples (beef, chicken, and pork) were monitored real-time for gaseous dimethyl sulfide. Complex 1 shows a linear spectrofluorimetric response with increasing storage time of the meats at 30 °C.
NASA Technical Reports Server (NTRS)
Zhao, Bo; Lin, Cindy X.; Srivastava, Ashok N.; Oza, Nikunj C.; Han, Jiawei
2010-01-01
As world-wide air traffic continues to grow even at a modest pace, the overall complexity of the system will increase significantly. This increased complexity can lead to a larger number of fatalities per year even if the extremely low fatality rate that we currently enjoy is maintained. One important source of information about the safety of the aviation system is in Aviation Safety Text Reports which are written by members of the flight crew, air traffic controllers, and other parties involved with the aviation system. These anonymized narrative reports contain fixed-field contextual information about the flight but also contain free-form narratives that describe, in the author s own words, the nature of the safety incident and, in many cases, the contributing factors that led to the safety incident. Several thousand such reports are filed each month, each of which is read and analyzed by highly trained experts. However, it is possible that there are emerging safety issues due to the fact that they may be reported very infrequently and in different contexts with different descriptions. The goal of this research paper is to develop correlated topic models which uncover correlations in the subspaces defined by the intersection of numerous fixed fields and discovered correlated topics. This task requires the discovery of latent topics in the text reports and the creation of a topic cube. Furthermore, because the number of potential cells in the topic cube is very large, we discuss novel methods of pruning the search space in the topic cells, thereby making the analysis feasible. We demonstrate the new algorithms on an analysis of pilot fatigue and its contributing factors, as well as the safety incidents that are correlated with this phenomenon.
Kim, Kyung Woo; Lim, Ho Chan; Park, Jae Hee; Park, Sang Gyu; Park, Ye Jin; Cho, Hm Hak
2018-06-01
Organizations are pursing complex and diverse aims to generate higher profits. Many workers experience high work intensity such as workload and work pressure in this organizational environment. Especially, psychological burden is a commonly used term in workplace of Republic of Korea. This study focused on defining the psychological burden from the perspective of occupational safety and health and tried to develop a scale for psychological burden. The 48 preliminary questionnaire items for psychological burden were prepared by a focus group interview with 16 workers through the Copenhagen Psychosocial Questionnaire II and Mindful Awareness Attention Scale. The preliminary items were surveyed with 572 workers, and exploratory factor analysis, confirmatory factor analysis, and correlation analysis were conducted for a new scale. As a result of the exploratory factor analysis, five factors were extracted: organizational activity, human error, safety and health workload, work attitude, and negative self-management. These factors had significant correlations and reliability, and the stability of the model for validity was confirmed using confirmatory factor analysis. The developed scale for psychological burden can measure workers' psychological burden in relation to safety and health. Despite some limitations, this study has applicability in the workplace, given the relatively small-sized questionnaire.
Patient Safety Culture Survey in Pediatric Complex Care Settings: A Factor Analysis.
Hessels, Amanda J; Murray, Meghan; Cohen, Bevin; Larson, Elaine L
2017-04-19
Children with complex medical needs are increasing in number and demanding the services of pediatric long-term care facilities (pLTC), which require a focus on patient safety culture (PSC). However, no tool to measure PSC has been tested in this unique hybrid acute care-residential setting. The objective of this study was to evaluate the psychometric properties of the Nursing Home Survey on Patient Safety Culture tool slightly modified for use in the pLTC setting. Factor analyses were performed on data collected from 239 staff at 3 pLTC in 2012. Items were screened by principal axis factoring, and the original structure was tested using confirmatory factor analysis. Exploratory factor analysis was conducted to identify the best model fit for the pLTC data, and factor reliability was assessed by Cronbach alpha. The extracted, rotated factor solution suggested items in 4 (staffing, nonpunitive response to mistakes, communication openness, and organizational learning) of the original 12 dimensions may not be a good fit for this population. Nevertheless, in the pLTC setting, both the original and the modified factor solutions demonstrated similar reliabilities to the published consistencies of the survey when tested in adult nursing homes and the items factored nearly identically as theorized. This study demonstrates that the Nursing Home Survey on Patient Safety Culture with minimal modification may be an appropriate instrument to measure PSC in pLTC settings. Additional psychometric testing is recommended to further validate the use of this instrument in this setting, including examining the relationship to safety outcomes. Increased use will yield data for benchmarking purposes across these specialized settings to inform frontline workers and organizational leaders of areas of strength and opportunity for improvement.
Safety cost management in construction companies: A proposal classification.
López-Alonso, M; Ibarrondo-Dávila, M P; Rubio, M C
2016-06-16
Estimating health and safety costs in the construction industry presents various difficulties, including the complexity of cost allocation, the inadequacy of data available to managers and the absence of an accounting model designed specifically for safety cost management. Very often, the costs arising from accidents in the workplace are not fully identifiable due to the hidden costs involved. This paper reviews some studies of occupational health and safety cost management and proposes a means of classifying these costs. We conducted an empirical study in which the health and safety costs of 40 construction worksites are estimated. A new classification of the health and safety cost and its categories is proposed: Safety and non-safety costs. The costs of the company's health and safety policy should be included in the information provided by the accounting system, as a starting point for analysis and control. From this perspective, a classification of health and safety costs and its categories is put forward.
Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions
NASA Technical Reports Server (NTRS)
Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.
2014-01-01
Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.
Expressions of cultural safety in public health nursing practice.
Richardson, Anna; Yarwood, Judy; Richardson, Sandra
2017-01-01
Cultural safety is an essential concept within New Zealand nursing that is formally linked to registration and competency-based practice certification. Despite its centrality to New Zealand nursing philosophies and the stated expectation of cultural safety as a practice element, there is limited evidence of its application in the literature. This research presents insight into public health nurse's (PHN) experiences, demonstrating the integration of cultural safety principles into practice. These findings emerged following secondary analysis of data from a collaborative, educative research project where PHNs explored the use of family assessment tools. In particular, the 15-minute interview tool was introduced and used by the PHNs when working with families. Critical analysis of transcribed data from PHN interviews, utilising a cultural safety lens, illuminated practical ways in which cultural safety concepts infused PHN practice with families. The themes that emerged reflected the interweaving of the principles of cultural safety with the application of the five components of the 15-minute interview. This highlights elements of PHN work with individuals and families not previously acknowledged. Examples of culturally safe nursing practice resonated throughout the PHN conversations as they grappled with the increasing complexity of working with a diverse range of families. © 2016 John Wiley & Sons Ltd.
Achieving the Proper Balance Between Crew and Public Safety
NASA Technical Reports Server (NTRS)
Gowan, John; Rosati, Paul; Silvestri, Ray; Stahl, Ben; Wilde, Paul
2011-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. Historical examples and lessons learned from both the Space Shuttle and Constellation Programs will be presented. Using these examples as context, the paper will discuss some operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the FAA and Air Force organizations that oversee public safety will also be summarized. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
NASA Astrophysics Data System (ADS)
Long, Nicholas James
This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.
Sociotechnical attributes of safe and unsafe work systems
Kleiner, Brian M.; Hettinger, Lawrence J.; DeJoy, David M.; Huang, Yuang-Hsiang; Love, Peter E.D.
2015-01-01
Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social–organisational and technical–work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human–system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human–systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. Practitioner Summary: The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social–organisational and technology–work process factors as they impact work system analysis, design and operation. PMID:25909756
Integrated Safety Analysis Teams
NASA Technical Reports Server (NTRS)
Wetherholt, Jonathan C.
2008-01-01
Today's complex systems require understanding beyond one person s capability to comprehend. Each system requires a team to divide the system into understandable subsystems which can then be analyzed with an Integrated Hazard Analysis. The team must have both specific experiences and diversity of experience. Safety experience and system understanding are not always manifested in one individual. Group dynamics make the difference between success and failure as well as the difference between a difficult task and a rewarding experience. There are examples in the news which demonstrate the need to connect the pieces of a system into a complete picture. The Columbia disaster is now a standard example of a low consequence hazard in one part of the system; the External Tank is a catastrophic hazard cause for a companion subsystem, the Space Shuttle Orbiter. The interaction between the hardware, the manufacturing process, the handling, and the operations contributed to the problem. Each of these had analysis performed, but who constituted the team which integrated this analysis together? This paper will explore some of the methods used for dividing up a complex system; and how one integration team has analyzed the parts. How this analysis has been documented in one particular launch space vehicle case will also be discussed.
Abou, Seraphin C
2012-03-01
In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Application of failure mode and effect analysis in a radiology department.
Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B
2011-01-01
With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010
[Post-marketing drug safety measures for the attainment of safer and more effective use of drug].
Kurokawa, Tatsuo
2011-01-01
In contrast with the 20th century's dramatic improvements in the direct and/or hazardous toxicity of drugs, indirect toxicity and/or long-term safety concerns such as relation of cancer risk and TNF-alpha receptor blockers have caused significant complexity in post-marketing surveillance (PMS) scenery. The post-marketing phase of drugs and their safety measures now appear to be much more complicated and heavier than decades ago. The spontaneous adverse drug reaction (ADR) reporting system which has been one of the main pillars of PMS measures for almost 50 years may have to be reviewed in terms of its effectiveness, and may need augmentation from medical data bases. Only a pharmaco-epidemiological analysis and integration of the output with a conventional spontaneous reporting approach offers a chance to satisfy the current complex safety issues. Today's tendency toward practical saturation at medical/pharmaceutical frontiers, by regulatory authorities and safety divisions of pharmaceutical companies with ever-increasing day-to-day safety information can also be pointed out. Such phenomena may actually reduce the productivity of safety measures and also jeopardize the maintenance of an acceptable risk/benefit drug ratio. To alleviate these potential negative implications, establishment of a consortium to act as a sentinel that would gather up-to-date and essential safety information, including epidemiological data, from all sources and provide it plus recommendations to all stakeholders can be suggested. Through such activities, we could expect significant improvement of drug safety measures in post-marketing phase which would effectively cover not only new drugs but also generic and bio-simulated drugs.
Current trends in sample preparation for cosmetic analysis.
Zhong, Zhixiong; Li, Gongke
2017-01-01
The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One in a Million Given the Accident: Assuring Nuclear Weapon Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jason
2015-08-25
Since the introduction of nuclear weapons, there has not been a single instance of accidental or unauthorized nuclear detonation, but there have been numerous accidents and “close calls.” As the understanding of these environments has increased, the need for a robust nuclear weapon safety philosophy has grown. This paper describes some of the methods used by the Nuclear Weapon Complex today to assure nuclear weapon safety, including testing, modeling, analysis, and design features. Lastly, it also reviews safety’s continued role in the future and examines how nuclear safety’s present maturity can play a role in strengthening security and other areasmore » and how increased coordination can improve safety and reduce long-term cost.« less
A risk analysis of winter navigation in Finnish sea areas.
Valdez Banda, Osiris A; Goerlandt, Floris; Montewka, Jakub; Kujala, Pentti
2015-06-01
Winter navigation is a complex but common operation in north-European sea areas. In Finnish waters, the smooth flow of maritime traffic and safety of vessel navigation during the winter period are managed through the Finnish-Swedish winter navigation system (FSWNS). This article focuses on accident risks in winter navigation operations, beginning with a brief outline of the FSWNS. The study analyses a hazard identification model of winter navigation and reviews accident data extracted from four winter periods. These are adopted as a basis for visualizing the risks in winter navigation operations. The results reveal that experts consider ship independent navigation in ice conditions the most complex navigational operation, which is confirmed by accident data analysis showing that the operation constitutes the type of navigation with the highest number of accidents reported. The severity of the accidents during winter navigation is mainly categorized as less serious. Collision is the most typical accident in ice navigation and general cargo the type of vessel most frequently involved in these accidents. Consolidated ice, ice ridges and ice thickness between 15 and 40cm represent the most common ice conditions in which accidents occur. Thus, the analysis presented in this article establishes the key elements for identifying the operation types which would benefit most from further safety engineering and safety or risk management development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis
NASA Technical Reports Server (NTRS)
Shortle, J. F.; Allocco, M.
2005-01-01
Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.
Reliability, Safety and Error Recovery for Advanced Control Software
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2003-01-01
For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.
Analysis on influencing factors and decision-making of pedestrian crossing at intersections
NASA Astrophysics Data System (ADS)
Liu, Likun; Wang, Ziyang
2017-10-01
The city signal intersection always has complex traffic flow and many traffic accidents. As vulnerable participants, the proportion of traffic accidents involving pedestrians remain high. And a lot of insecure crossing behavior seriously reduce the safety of the intersection. Therefore, it is necessary to carry out in-depth study on the traversing characteristics of pedestrians, reveal the inherent laws of pedestrian crossing, and then put forward targeted measures to improve pedestrian traffic environment, protect pedestrian crossing safety and improve traffic efficiency.
Software for occupational health and safety risk analysis based on a fuzzy model.
Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan
2012-01-01
Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.
An analysis of electronic health record-related patient safety incidents.
Palojoki, Sari; Mäkelä, Matti; Lehtonen, Lasse; Saranto, Kaija
2017-06-01
The aim of this study was to analyse electronic health record-related patient safety incidents in the patient safety incident reporting database in fully digital hospitals in Finland. We compare Finnish data to similar international data and discuss their content with regard to the literature. We analysed the types of electronic health record-related patient safety incidents that occurred at 23 hospitals during a 2-year period. A procedure of taxonomy mapping served to allow comparisons. This study represents a rare examination of patient safety risks in a fully digital environment. The proportion of electronic health record-related incidents was markedly higher in our study than in previous studies with similar data. Human-computer interaction problems were the most frequently reported. The results show the possibility of error arising from the complex interaction between clinicians and computers.
Kaiser, Lee D; Melemed, Allen S; Preston, Alaknanda J; Chaudri Ross, Hilary A; Niedzwiecki, Donna; Fyfe, Gwendolyn A; Gough, Jacqueline M; Bushnell, William D; Stephens, Cynthia L; Mace, M Kelsey; Abrams, Jeffrey S; Schilsky, Richard L
2010-12-01
Although much is known about the safety of an anticancer agent at the time of initial marketing approval, sponsors customarily collect comprehensive safety data for studies that support supplemental indications. This adds significant cost and complexity to the study but may not provide useful new information. The main purpose of this analysis was to assess the amount of safety and concomitant medication data collected to determine a more optimal approach in the collection of these data when used in support of supplemental applications. Following a prospectively developed statistical analysis plan, we reanalyzed safety data from eight previously completed prospective randomized trials. A total of 107,884 adverse events and 136,608 concomitant medication records were reviewed for the analysis. Of these, four grade 1 to 2 and nine grade 3 and higher events were identified as drug effects that were not included in the previously established safety profiles and could potentially have been missed using subsampling. These events were frequently detected in subsamples of 400 patients or larger. Furthermore, none of the concomitant medication records contributed to labeling changes for the supplemental indications. Our study found that applying the optimized methodologic approach, described herein, has a high probability of detecting new drug safety signals. Focusing data collection on signals that cause physicians to modify or discontinue treatment ensures that safety issues of the highest concern for patients and regulators are captured and has significant potential to relieve strain on the clinical trials system.
Martinetti, Alberto; Chatzimichailidou, Maria Mikela; Maida, Luisa; van Dongen, Leo
2018-04-24
Occupational health and safety (OHS) represents an important field of exploration for the research community: in spite of the growth of technological innovations, the increasing complexity of systems involves critical issues in terms of degradation of the safety levels. In such a situation, new safety management approaches are now mandatory in order to face the safety implications of the current technological evolutions. Along these lines, performing risk-based analysis alone seems not to be enough anymore. The evaluation of robustness, antifragility and resilience of a socio-technical system is now indispensable in order to face unforeseen events. This article will briefly introduce the topics of Safety I and Safety II, resilience engineering and antifragility engineering, explaining correlations, overlapping aspects and synergies. Secondly, the article will discuss the applications of those paradigms to a real accident, highlighting how they can challenge, stimulate and inspire research for improving OHS conditions.
NASA Astrophysics Data System (ADS)
Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.
2018-04-01
In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.
Semantic Annotation of Complex Text Structures in Problem Reports
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Throop, David R.; Fleming, Land D.
2011-01-01
Text analysis is important for effective information retrieval from databases where the critical information is embedded in text fields. Aerospace safety depends on effective retrieval of relevant and related problem reports for the purpose of trend analysis. The complex text syntax in problem descriptions has limited statistical text mining of problem reports. The presentation describes an intelligent tagging approach that applies syntactic and then semantic analysis to overcome this problem. The tags identify types of problems and equipment that are embedded in the text descriptions. The power of these tags is illustrated in a faceted searching and browsing interface for problem report trending that combines automatically generated tags with database code fields and temporal information.
The complexity of patient safety reporting systems in UK dentistry.
Renton, T; Master, S
2016-10-21
Since the 'Francis Report', UK regulation focusing on patient safety has significantly changed. Healthcare workers are increasingly involved in NHS England patient safety initiatives aimed at improving reporting and learning from patient safety incidents (PSIs). Unfortunately, dentistry remains 'isolated' from these main events and continues to have a poor record for reporting and learning from PSIs and other events, thus limiting improvement of patient safety in dentistry. The reasons for this situation are complex.This paper provides a review of the complexities of the existing systems and procedures in relation to patient safety in dentistry. It highlights the conflicting advice which is available and which further complicates an overly burdensome process. Recommendations are made to address these problems with systems and procedures supporting patient safety development in dentistry.
Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli
2016-02-01
Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
CDS (Change Detection Systems) is a mechanism for rapid visual analysis using complex image alignment algorithms. CDS is controlled with a simple interface that has been designed for use for anyone that can operate a digital camera. A challenge of complex industrial systems like nuclear power plants is to accurately identify changes in systems, structures and components that may critically impact the operation of the facility. CDS can provide a means of early intervention before the issues evolve into safety and production challenges.
Engineering risk reduction in satellite programs
NASA Technical Reports Server (NTRS)
Dean, E. S., Jr.
1979-01-01
Methods developed in planning and executing system safety engineering programs for Lockheed satellite integration contracts are presented. These procedures establish the applicable safety design criteria, document design compliance and assess the residual risks where non-compliant design is proposed, and provide for hazard analysis of system level test, handling and launch preparations. Operations hazard analysis identifies product protection and product liability hazards prior to the preparation of operational procedures and provides safety requirements for inclusion in them. The method developed for documenting all residual hazards for the attention of program management assures an acceptable minimum level of risk prior to program deployment. The results are significant for persons responsible for managing or engineering the deployment and production of complex high cost equipment under current product liability law and cost/time constraints, have a responsibility to minimize the possibility of an accident, and should have documentation to provide a defense in a product liability suit.
Safety becomes danger: dilemmas of drug-use in public space.
Dovey, K; Fitzgerald, J; Choi, Y
2001-12-01
This paper provides a socio-spatial analysis of injecting drug-use in public space. It focuses on one urban district in Melbourne, Australia, which has become strongly identified with heroin sale and use in public space. Selling activities are camouflaged within a diverse street life while injecting sites are dispersed through a broad diversity of laneways, car parks and toilets. These injecting zones occupy liminal places which slide between categories of private and public, and which mediate complex and paradoxical relations between safety and danger. Those who inject in public space are caught in a dilemma--needing both privacy and exposure in the event of an overdose, safety from police becomes danger from an overdose. This empirical work, based on interview and spatial analysis, is presented as a basis for theorizing the socio-spatial construction of heroin use and for assessing the prospects for safe injecting.
Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve
NASA Technical Reports Server (NTRS)
Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat
1993-01-01
The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... Category: For a food additive petition without complex chemistry, manufacturing, efficacy, or safety issues...) Complex Category: For a food additive petition with complex chemistry, manufacturing, efficacy, and/or... additive file without complex chemistry, manufacturing, efficacy, or safety issues, the estimated time...
Cooper, Hannah LF; Wodarski, Stephanie; Cummings, Janet; Hunter-Jones, Josalin; Karnes, Conny; Ross, Zev; Druss, Ben; Bonney, Loida E
2012-01-01
This analysis investigates changes in spatial access to safety-net primary care in a sample of US public housing residents relocating via the HOPE VI initiative from public housing complexes to voucher-subsidized rental units; substance misusers were oversampled. We used gravity-based models to measure spatial access to care, and used mixed models to assess pre-/post-relocation changes in access. Half the sample experienced declines in spatial access of ≥79.83%; declines did not vary by substance misuse status. Results suggest that future public housing relocation initiatives should partner with relocaters, particularly those in poor health, to help them find housing near safety-net clinics. PMID:23060002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaftan, V. I.; Ustinov, A. V.
The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurancemore » of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.« less
Seniors managing multiple medications: using mixed methods to view the home care safety lens.
Lang, Ariella; Macdonald, Marilyn; Marck, Patricia; Toon, Lynn; Griffin, Melissa; Easty, Tony; Fraser, Kimberly; MacKinnon, Neil; Mitchell, Jonathan; Lang, Eddy; Goodwin, Sharon
2015-12-12
Patient safety is a national and international priority with medication safety earmarked as both a prevalent and high-risk area of concern. To date, medication safety research has focused overwhelmingly on institutional based care provided by paid healthcare professionals, which often has little applicability to the home care setting. This critical gap in our current understanding of medication safety in the home care sector is particularly evident with the elderly who often manage more than one chronic illness and a complex palette of medications, along with other care needs. This study addresses the medication management issues faced by seniors with chronic illnesses, their family, caregivers, and paid providers within Canadian publicly funded home care programs in Alberta (AB), Ontario (ON), Quebec (QC) and Nova Scotia (NS). Informed by a socio-ecological perspective, this study utilized Interpretive Description (ID) methodology and participatory photographic methods to capture and analyze a range of visual and textual data. Three successive phases of data collection and analysis were conducted in a concurrent, iterative fashion in eight urban and/or rural households in each province. A total of 94 participants (i.e., seniors receiving home care services, their family/caregivers, and paid providers) were interviewed individually. In addition, 69 providers took part in focus groups. Analysis was iterative and concurrent with data collection in that each interview was compared with subsequent interviews for converging as well as diverging patterns. Six patterns were identified that provide a rich portrayal of the complexity of medication management safety in home care: vulnerabilities that impact the safe management and storage of medication, sustaining adequate supports, degrees of shared accountability for care, systems of variable effectiveness, poly-literacy required to navigate the system, and systemic challenges to maintaining medication safety in the home. There is a need for policy makers, health system leaders, care providers, researchers, and educators to work with home care clients and caregivers on three key messages for improvement: adapt care delivery models to the home care landscape; develop a palette of user-centered tools to support medication safety in the home; and strengthen health systems integration.
Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MELOY, R.T.
2002-04-01
This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.
Interpersonal relationships and safety culture in Brazilian health care organisations.
Migowski, Eliana R; Oliveira Júnior, Nery; Riegel, Fernando; Migowski, Sérgio A
2018-06-20
To examine the association between interpersonal relationships, nursing leadership and patient safety culture and the impact on the efficiency of hospitals. Hospitals are still affected by the increased complexity of the treatments offered and by the diverse knowledge of professionals involved, which has made this assistance model ineffective, expensive and unsustainable over time. A qualitative study of 32 professionals from three large hospitals in Southern Brazil was made. Semi-structured interviews, document analysis and analysis of electronic records were used. All the hospitals had infection rates and an average stay higher than their goal. Lack of interpersonal relationships and physicians failing to commit to organisational objectives were demonstrated. Nursing leadership styles are not definitive factors to improving patient safety and efficiency. The flaws in consolidating interpersonal relationships seem to be related to difficulties in consolidating patient safety culture, which prevented hospitals reaching their efficiency indicators. Professionals who work at the patients' bedside should be involved in the development of strategies, in order to commit them to the organisational objectives. The consolidation of interpersonal relationships of nursing professionals can lead to improvements with medical professionals, with positive impacts on patient safety and efficiency. © 2018 John Wiley & Sons Ltd.
CE: Nursing's Evolving Role in Patient Safety.
Kowalski, Sonya L; Anthony, Maureen
2017-02-01
: Background: In its 1999 report To Err Is Human: Building a Safer Health System, the Institute of Medicine (IOM) suggested that between 44,000 and 98,000 Americans die annually as a result of medical errors. The report urged health care institutions to break the silence surrounding such errors and to implement changes that would promote a culture of safety. Our aim in conducting this content analysis of AJN articles was to explore the nurse's historical and contemporary role in promoting patient safety. We chose to focus on AJN because, as the oldest continuously published nursing journal, it provided a unique opportunity for us to view trends in nursing practice over more than 100 years. We reviewed all AJN tables of contents from 1900 through 2015, identifying for inclusion articles with titles that suggested a focus on nursing care, patient safety, or clinical content. We then read and analyzed each of the final 1,086 articles over a period of nine months. Our content analysis indicates that the early articles (from 1900 through 1920) focused on such safety measures as asepsis and the newly understood germ theory. In the 1930s, articles proposed methods for preventing medication errors and encouraged the development of written procedures to standardize care. During World War II, nurse authors identified improved patient survival rates with the use of "shock wards" and recovery rooms. The 1950s saw the emergence of progressive patient care initiatives, through which patients were assigned to various levels of care (intensive, intermediate, self, long-term, or home care) based on patient acuity. The 1960s brought increasingly complex equipment and medication regimens, which created safety problems. Hospital-acquired infections were recognized. Unit-dose medication was instituted in the 1970s. In the next two decades, medication and nursing-procedure safety were emphasized. From 2000 to 2015, articles looked beyond human performance as causes of health care errors to systemic factors, such as poor communication, patient-nurse ratios, provider skill mix, disruptive or inappropriate provider behavior, shift work, and long working hours. Emphasis on patient safety increased as patient care became more complex. As nurses developed a professional identity, they often put a spotlight on safety concerns and solutions. The IOM report, which encouraged research focused on systemic solutions to errors, was instrumental in furthering the very culture of safety that the nursing profession had championed.
Safety management of complex research operators
NASA Technical Reports Server (NTRS)
Brown, W. J.
1981-01-01
Complex research and technology operations present varied potential hazards which are addressed in a disciplined, independent safety review and approval process. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described is believed to be a major factor in maintaining an excellent safety record.
Achieving the Proper Balance Between Crew and Public Safety
NASA Technical Reports Server (NTRS)
Gowan, John; Silvestri, Ray; Stahl, Ben; Rosati, Paul; Wilde, Paul
2011-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Manned vehicle perspectives from the Federal Aviation Administration (FAA) and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Achieving the Proper Balance between Crew & Public Safety
NASA Astrophysics Data System (ADS)
Wilde, P.; Gowan, J.; Silvestri, R.; Stahl, B.; Rosati, P.
2012-01-01
A paramount objective of all human-rated launch and reentry vehicle developers is to ensure that the risks to both the crew onboard and the public are minimized within reasonable cost, schedule, and technical constraints. Past experience has shown that proper attention to range safety requirements necessary to ensure public safety must be given early in the design phase to avoid additional operational complexities or threats to the safety of people onboard, and the design engineers must give these requirements the same consideration as crew safety requirements. For human spaceflight, the primary purpose and operational concept for any flight safety system is to protect the public while maximizing the likelihood of crew survival. This paper will outline the policy considerations, technical issues, and operational impacts regarding launch and reentry vehicle failure scenarios where crew and public safety are intertwined and thus addressed optimally in an integrated manner. An overview of existing range and crew safety policy requirements will be presented. Application of these requirements and lessons learned from both the Space Shuttle and Constellation Programs will also be discussed. Using these past programs as examples, the paper will detail operational, design, and analysis approaches to mitigate and balance the risks to people onboard and in the public. Crewed vehicle perspectives from the Federal Aviation Administration and Air Force organizations that oversee public safety will be summarized as well. Finally, the paper will emphasize the need to factor policy, operational, and analysis considerations into the early design trades of new vehicles to help ensure that both crew and public safety are maximized to the greatest extent possible.
Statistical issues in the design, conduct and analysis of two large safety studies.
Gaffney, Michael
2016-10-01
The emergence, post approval, of serious medical events, which may be associated with the use of a particular drug or class of drugs, is an important public health and regulatory issue. The best method to address this issue is through a large, rigorously designed safety study. Therefore, it is important to elucidate the statistical issues involved in these large safety studies. Two such studies are PRECISION and EAGLES. PRECISION is the primary focus of this article. PRECISION is a non-inferiority design with a clinically relevant non-inferiority margin. Statistical issues in the design, conduct and analysis of PRECISION are discussed. Quantitative and clinical aspects of the selection of the composite primary endpoint, the determination and role of the non-inferiority margin in a large safety study and the intent-to-treat and modified intent-to-treat analyses in a non-inferiority safety study are shown. Protocol changes that were necessary during the conduct of PRECISION are discussed from a statistical perspective. Issues regarding the complex analysis and interpretation of the results of PRECISION are outlined. EAGLES is presented as a large, rigorously designed safety study when a non-inferiority margin was not able to be determined by a strong clinical/scientific method. In general, when a non-inferiority margin is not able to be determined, the width of the 95% confidence interval is a way to size the study and to assess the cost-benefit of relative trial size. A non-inferiority margin, when able to be determined by a strong scientific method, should be included in a large safety study. Although these studies could not be called "pragmatic," they are examples of best real-world designs to address safety and regulatory concerns. © The Author(s) 2016.
Effken, Judith A.; Carley, Kathleen M.; Gephart, Sheila; Verran, Joyce A.; Bianchi, Denise; Reminga, Jeff; Brewer, Barbara
2011-01-01
Purpose We used Organization Risk Analyzer (ORA), a dynamic network analysis tool, to identify patient care unit communication patterns associated with patient safety and quality outcomes. Although ORA had previously had limited use in healthcare, we felt it could effectively model communication on patient care units. Methods Using a survey methodology, we collected communication network data from nursing staff on seven patient care units on two different days. Patient outcome data were collected via a separate survey. Results of the staff survey were used to represent the communication networks for each unit in ORA. We then used ORA's analysis capability to generate communication metrics for each unit. ORA's visualization capability was used to better understand the metrics. Results We identified communication patterns that correlated with two safety (falls and medication errors) and five quality (e.g., symptom management, complex self care, and patient satisfaction) outcome measures. Communication patterns differed substantially by shift. Conclusion The results demonstrate the utility of ORA for healthcare research and the relationship of nursing unit communication patterns to patient safety and quality outcomes. PMID:21536492
Nurses' perspectives on the intersection of safety and informed decision making in maternity care.
Jacobson, Carrie H; Zlatnik, Marya G; Kennedy, Holly Powell; Lyndon, Audrey
2013-01-01
To explore maternity nurses' perceptions of women's informed decision making during labor and birth to better understand how interdisciplinary communication challenges might affect patient safety. Constructivist grounded theory. Four hospitals in the western United States. Forty-six (46) nurses and physicians practicing in maternity units. Data collection strategies included individual interviews and participant observation. Data were analyzed using the constant comparative method, dimensional analysis, and situational analysis (Charmaz, 2006; Clarke, 2005; Schatzman, 1991). The nurses' central action of holding off harm encompassed three communication strategies: persuading agreement, managing information, and coaching of mothers and physicians. These strategies were executed in a complex, hierarchical context characterized by varied practice patterns and relationships. Nurses' priorities and patient safety goals were sometimes misaligned with those of physicians, resulting in potentially unsafe communication. The communication strategies nurses employed resulted in intended and unintended consequences with safety implications for mothers and providers and had the potential to trap women in the middle of interprofessional conflicts and differences of opinion. © 2013 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
System for decision analysis support on complex waste management issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shropshire, D.E.
1997-10-01
A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less
Safety management of a complex R and D ground operating system
NASA Technical Reports Server (NTRS)
Connors, J. F.; Maurer, R. A.
1975-01-01
A perspective on safety program management was developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated-area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.
Safety management of a complex R&D ground operating system
NASA Technical Reports Server (NTRS)
Connors, J. F.; Maurer, R. A.
1975-01-01
A perspective on safety program management has been developed for a complex R&D operating system, such as the NASA-Lewis Research Center. Using a systems approach, hazardous operations are subjected to third-party reviews by designated area safety committees and are maintained under safety permit controls. To insure personnel alertness, emergency containment forces and employees are trained in dry-run emergency simulation exercises. The keys to real safety effectiveness are top management support and visibility of residual risks.
Alikani, Mina; Go, Kathryn J; McCaffrey, Caroline; McCulloh, David H
2014-11-01
To consider how staffing requirements have changed with evolving and increasingly more complex assisted reproduction technology (ART) laboratory practice. Analysis by four laboratory directors from three different ART programs of the level of complexity and time requirements for contemporary ART laboratory activities to determine adequate staffing levels. University-based and private ART programs. None. None. Human resource requirements for ART procedures. Both complexity and time required for completion of a contemporary ART cycle have increased significantly compared with the same requirements for the "traditional cycle" of the past. The latter required roughly 9 personnel hours, but a contemporary cycle can require up to 20 hours for completion. Consistent with this increase, a quantitative analysis shows that the number of embryologists required for safe and efficient operation of the ART laboratory has also increased. This number depends on not only the volume but also the types of procedures performed: the higher the number of complex procedures, the more personnel required. An interactive Personnel Calculator is introduced that can help determine staffing needs. The increased complexity of the contemporary ART laboratory requires a new look at the allocation of human resources. Our work provides laboratory directors with a practical, individualized tool to determine their staffing requirements with a view to increasing the safety and efficiency of operations. The work could serve as the basis for revision of the 2008 American Society for Reproductive Medicine (ASRM) staffing guidelines. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Read, Gemma J M; Salmon, Paul M; Lenné, Michael G; Stanton, Neville A
2016-03-01
Pedestrian fatalities at rail level crossings (RLXs) are a public safety concern for governments worldwide. There is little literature examining pedestrian behaviour at RLXs and no previous studies have adopted a formative approach to understanding behaviour in this context. In this article, cognitive work analysis is applied to understand the constraints that shape pedestrian behaviour at RLXs in Melbourne, Australia. The five phases of cognitive work analysis were developed using data gathered via document analysis, behavioural observation, walk-throughs and critical decision method interviews. The analysis demonstrates the complex nature of pedestrian decision making at RLXs and the findings are synthesised to provide a model illustrating the influences on pedestrian decision making in this context (i.e. time, effort and social pressures). Further, the CWA outputs are used to inform an analysis of the risks to safety associated with pedestrian behaviour at RLXs and the identification of potential interventions to reduce risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Mock, Jason R.; Beno, Joe; Rafferty, Tom H.; Cornell, Mark E.
2010-07-01
To enable the Hobby-Eberly Telescope Wide Field Upgrade, the University of Texas Center for Electromechanics and McDonald Observatory are developing a precision tracker system - a 15,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 14 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). This level of system complexity and emphasis on fail-safe operation is typical of large modern telescopes and numerous industrial applications. Due to this complexity, demanding accuracy requirements, and stringent safety requirements, a highly versatile and easily configurable centralized control system that easily links with modeling and simulation tools during the hardware and software design process was deemed essential. The Matlab/Simulink simulation environment, coupled with dSPACE controller hardware, was selected for controls development and realization. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. Custom designed position feedback loops, supplemented by feed forward force commands for enhanced performance, and algorithms to accommodate self-locking gearboxes (for safety), reside in dSPACE. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of software and hardware, design choices and analysis, and supporting simulations (primarily Simulink).
Step voltage analysis for the catenoid lightning protection system
NASA Technical Reports Server (NTRS)
Chai, J. C.; Briet, R.; Barker, D. L.; Eley, H. E.
1991-01-01
The main objective of the proposed overhead Catenoid Lightning Protection System (CLPS) is personnel safety. To ensure working personnel's safety in lightning situations, it is necessary that the potential difference developed across a distance equal to a person's pace (step voltage) does not exceed a separately established safe voltage in order to avoid electrocution (ventricular fibrillation) of humans. Therefore, the first stage of the analytical effort is to calculate the open circuit step voltage. An impedance model is developed for this purpose. It takes into consideration the earth's complex impedance behavior and the transient nature of the lightning phenomenon. In the low frequency limit, this impedance model is shown to reduce to results similar to those predicted by the conventional resistor model in a DC analysis.
Human Systems Integration at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey
2017-01-01
The Human Systems Integration Division focuses on the design and operations of complex aerospace systems through analysis, experimentation and modeling. With over a dozen labs and over 120 people, the division conducts research to improve safety, efficiency and mission success. Areas of investigation include applied vision research which will be discussed during this seminar.
Supporting Students with Disabilities during School Crises: A Teacher's Guide
ERIC Educational Resources Information Center
Clarke, Laura S.; Embury, Dusty Columbia; Jones, Ruth E.; Yssel, Nina
2014-01-01
Most schools have crisis plans to support student safety, but few plans address the complex needs of students with disabilities. School supports should include analysis of school plans and student strengths and needs to ensure that students with disabilities have the best opportunity to be safe in school crises. Recommendations include developing…
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2014-01-01
A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.
[Process design in high-reliability organizations].
Sommer, K-J; Kranz, J; Steffens, J
2014-05-01
Modern medicine is a highly complex service industry in which individual care providers are linked in a complicated network. The complexity and interlinkedness is associated with risks concerning patient safety. Other highly complex industries like commercial aviation have succeeded in maintaining or even increasing its safety levels despite rapidly increasing passenger figures. Standard operating procedures (SOPs), crew resource management (CRM), as well as operational risk evaluation (ORE) are historically developed and trusted parts of a comprehensive and systemic safety program. If medicine wants to follow this quantum leap towards increased patient safety, it must intensively evaluate the results of other high-reliability industries and seek step-by-step implementation after a critical assessment.
Advances on the Failure Analysis of the Dam-Foundation Interface of Concrete Dams.
Altarejos-García, Luis; Escuder-Bueno, Ignacio; Morales-Torres, Adrián
2015-12-02
Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.
Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams
Altarejos-García, Luis; Escuder-Bueno, Ignacio; Morales-Torres, Adrián
2015-01-01
Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern. PMID:28793709
System analysis of vehicle active safety problem
NASA Astrophysics Data System (ADS)
Buznikov, S. E.
2018-02-01
The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.
Identification of Vehicle Health Assurance Related Trends
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Evans, Joni K.; Barr, Lawrence C.; Leone, Karen M.; Reveley, Mary S.
2014-01-01
Trend analysis in aviation as related to vehicle health management (VHM) was performed by reviewing the most current statistical and prognostics data available from the National Transportation Safety Board (NTSB) accident, the Federal Aviation Administration (FAA) incident, and the NASA Aviation Safety Reporting System (ASRS) incident datasets. In addition, future directions in aviation technology related to VHM research areas were assessed through the Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementations (SERFIs), the National Transportation Safety Board (NTSB) Most-Wanted List and recent open safety recommendations, the National Research Council (NRC) Decadal Survey of Civil Aeronautics, and the Future Aviation Safety Team (FAST) areas of change. Future research direction in the VHM research areas is evidently strong as seen from recent research solicitations from the Naval Air Systems Command (NAVAIR), and VHM-related technologies actively being developed by aviation industry leaders, including GE, Boeing, Airbus, and UTC Aerospace Systems. Given the highly complex VHM systems, modifications can be made in the future so that the Vehicle Systems Safety Technology Project (VSST) technical challenges address inadequate maintenance crew's trainings and skills, and the certification methods of such systems as recommended by the NTSB, NRC, and FAST areas of change.
Ares I-X Range Safety Flight Envelope Analysis
NASA Technical Reports Server (NTRS)
Starr, Brett R.; Olds, Aaron D.; Craig, Anthony S.
2011-01-01
Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.
On Space Exploration and Human Error: A Paper on Reliability and Safety
NASA Technical Reports Server (NTRS)
Bell, David G.; Maluf, David A.; Gawdiak, Yuri
2005-01-01
NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability
A systems-based food safety evaluation: an experimental approach.
Higgins, Charles L; Hartfield, Barry S
2004-11-01
Food establishments are complex systems with inputs, subsystems, underlying forces that affect the system, outputs, and feedback. Building on past exploration of the hazard analysis critical control point concept and Ludwig von Bertalanffy General Systems Theory, the National Park Service (NPS) is attempting to translate these ideas into a realistic field assessment of food service establishments and to use information gathered by these methods in efforts to improve food safety. Over the course of the last two years, an experimental systems-based methodology has been drafted, developed, and tested by the NPS Public Health Program. This methodology is described in this paper.
Aluminum Data Measurements and Evaluation for Criticality Safety Applications
NASA Astrophysics Data System (ADS)
Leal, L. C.; Guber, K. H.; Spencer, R. R.; Derrien, H.; Wright, R. Q.
2002-12-01
The Defense Nuclear Facility Safety Board (DNFSB) Recommendation 93-2 motivated the US Department of Energy (DOE) to develop a comprehensive criticality safety program to maintain and to predict the criticality of systems throughout the DOE complex. To implement the response to the DNFSB Recommendation 93-2, a Nuclear Criticality Safety Program (NCSP) was created including the following tasks: Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data portion of the NCSP consists of a variety of differential measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) at the Oak Ridge National Laboratory (ORNL), data analysis and evaluation using the generalized least-squares fitting code SAMMY in the resolved, unresolved, and high energy ranges, and the development and benchmark testing of complete evaluations for a nuclide for inclusion into the Evaluated Nuclear Data File (ENDF/B). This paper outlines the work performed at ORNL to measure, evaluate, and test the nuclear data for aluminum for applications in criticality safety problems.
Safety assessment for In-service Pressure Bending Pipe Containing Incomplete Penetration Defects
NASA Astrophysics Data System (ADS)
Wang, M.; Tang, P.; Xia, J. F.; Ling, Z. W.; Cai, G. Y.
2017-12-01
Incomplete penetration defect is a common defect in the welded joint of pressure pipes. While the safety classification of pressure pipe containing incomplete penetration defects, according to periodical inspection regulations in present, is more conservative. For reducing the repair of incomplete penetration defect, a scientific and applicable safety assessment method for pressure pipe is needed. In this paper, the stress analysis model of the pipe system was established for the in-service pressure bending pipe containing incomplete penetration defects. The local finite element model was set up to analyze the stress distribution of defect location and the stress linearization. And then, the applicability of two assessment methods, simplified assessment and U factor assessment method, to the assessment of incomplete penetration defects located at pressure bending pipe were analyzed. The results can provide some technical supports for the safety assessment of complex pipelines in the future.
Collins, Susan J; Newhouse, Robin; Porter, Jody; Talsma, AkkeNeel
2014-07-01
Approximately 2,700 patients are harmed by wrong-site surgery each year. The World Health Organization created the surgical safety checklist to reduce the incidence of wrong-site surgery. A project team conducted a narrative review of the literature to determine the effectiveness of the surgical safety checklist in correcting and preventing errors in the OR. Team members used Swiss cheese model of error by Reason to analyze the findings. Analysis of results indicated the effectiveness of the surgical checklist in reducing the incidence of wrong-site surgeries and other medical errors; however, checklists alone will not prevent all errors. Successful implementation requires perioperative stakeholders to understand the nature of errors, recognize the complex dynamic between systems and individuals, and create a just culture that encourages a shared vision of patient safety. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Science, safety, and trust: the case of transgenic food.
Martinelli, Lucia; Karbarz, Małgorzata; Siipi, Helena
2013-02-01
Genetically modified (GM) food is discussed as an example of the controversial relation between the intrinsic uncertainty of the scientific approach and the demand of citizen-consumers to use products of science innovation that are known to be safe. On the whole, peer-reviewed studies on GM food safety do not note significant health risks, with a few exceptions, like the most renowned "Pusztai affair" and the recent "Seralini case." These latter studies have been disregarded by the scientific community, based on incorrect experimental designs and statistic analysis. Such contradictory results show the complexity of risk evaluation, and raise concerns in the citizen-consumers against the GM food. A thoughtful consideration by scientific community and decision makers of the moral values that are present in risk evaluation and risk management should be the most trustable answer to citizen-consumers to their claim for clear and definitive answers concerning safety/un-safety of GM food.
Momose, Haruka; Mizukami, Takuo; Kuramitsu, Madoka; Takizawa, Kazuya; Masumi, Atsuko; Araki, Kumiko; Furuhata, Keiko; Yamaguchi, Kazunari; Hamaguchi, Isao
2015-01-01
We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine. PMID:25909814
Final safety analysis report for the Galileo Mission: Volume 2: Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) will be used as the prime source of electric power for the spacecraft on the Galileo mission. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel and by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The purpose of the Final Safety Analysis Report (FSAR) is to present the analyses and results of the latest evaluation of the nuclear safety potential of the GPHS-RTG as employed in the Galileo mission. Thismore » evaluation is an extension of earlier work that addressed the planned 1986 launch using the Space Shuttle Vehicle with the Centaur as the upper stage. This extended evaluation represents the launch by the Space Shuttle/IUS vehicle. The IUS stage has been selected as the vehicle to be used to boost the Galileo spacecraft into the Earth escape trajectory after the parking orbit is attained.« less
Beck-Krala, Ewa; Klimkiewicz, Katarzyna
2016-12-01
Occupational safety and health (OSH) plays a significant role in today's organizations, because it helps in attracting and retaining employees as well as molding their attitudes and behaviors at work. This is why the issue of OSH is stressed in a comprehensive approach to employee rewards: the total reward concept. This article explains how OSH may be included in a complex evaluation process of the compensation system. Although the literature on the effectiveness of employee compensation refers mainly to financial and non-financial components, there is a need for inclusion of working conditions in such analyses. An evaluation of the compensation system that incorporates OSH can drive many benefits for both the organization and employees. Obtaining such benefits, however, requires systematic evaluation of the reward system, including OSH. Incorporation of OSH issue within the comprehensive analysis of compensation systems promotes responsible behavior of all stakeholders.
Complexity of the international agro-food trade network and its impact on food safety.
Ercsey-Ravasz, Mária; Toroczkai, Zoltán; Lakner, Zoltán; Baranyi, József
2012-01-01
With the world's population now in excess of 7 billion, it is vital to ensure the chemical and microbiological safety of our food, while maintaining the sustainability of its production, distribution and trade. Using UN databases, here we show that the international agro-food trade network (IFTN), with nodes and edges representing countries and import-export fluxes, respectively, has evolved into a highly heterogeneous, complex supply-chain network. Seven countries form the core of the IFTN, with high values of betweenness centrality and each trading with over 77% of all the countries in the world. Graph theoretical analysis and a dynamic food flux model show that the IFTN provides a vehicle suitable for the fast distribution of potential contaminants but unsuitable for tracing their origin. In particular, we show that high values of node betweenness and vulnerability correlate well with recorded large food poisoning outbreaks.
Recent development of electrochemiluminescence sensors for food analysis.
Hao, Nan; Wang, Kun
2016-10-01
Food quality and safety are closely related to human health. In the face of unceasing food safety incidents, various analytical techniques, such as mass spectrometry, chromatography, spectroscopy, and electrochemistry, have been applied in food analysis. High sensitivity usually requires expensive instruments and complicated procedures. Although these modern analytical techniques are sensitive enough to ensure food safety, sometimes their applications are limited because of the cost, usability, and speed of analysis. Electrochemiluminescence (ECL) is a powerful analytical technique that is attracting more and more attention because of its outstanding performance. In this review, the mechanisms of ECL and common ECL luminophores are briefly introduced. Then an overall review of the principles and applications of ECL sensors for food analysis is provided. ECL can be flexibly combined with various separation techniques. Novel materials (e.g., various nanomaterials) and strategies (e.g., immunoassay, aptasensors, and microfluidics) have been progressively introduced into the design of ECL sensors. By illustrating some selected representative works, we summarize the state of the art in the development of ECL sensors for toxins, heavy metals, pesticides, residual drugs, illegal additives, viruses, and bacterias. Compared with other methods, ECL can provide rapid, low-cost, and sensitive detection for various food contaminants in complex matrixes. However, there are also some limitations and challenges. Improvements suited to the characteristics of food analysis are still necessary.
Efficacy and Safety of Dual Antiplatelet Therapy After Complex PCI.
Giustino, Gennaro; Chieffo, Alaide; Palmerini, Tullio; Valgimigli, Marco; Feres, Fausto; Abizaid, Alexandre; Costa, Ricardo A; Hong, Myeong-Ki; Kim, Byeong-Keuk; Jang, Yangsoo; Kim, Hyo-Soo; Park, Kyung Woo; Gilard, Martine; Morice, Marie-Claude; Sawaya, Fadi; Sardella, Gennaro; Genereux, Philippe; Redfors, Bjorn; Leon, Martin B; Bhatt, Deepak L; Stone, Gregg W; Colombo, Antonio
2016-10-25
Optimal upfront dual antiplatelet therapy (DAPT) duration after complex percutaneous coronary intervention (PCI) with drug-eluting stents (DES) remains unclear. This study investigated the efficacy and safety of long-term (≥12 months) versus short-term (3 or 6 months) DAPT with aspirin and clopidogrel according to PCI complexity. The authors pooled patient-level data from 6 randomized controlled trials investigating DAPT durations after PCI. Complex PCI was defined as having at least 1 of the following features: 3 vessels treated, ≥3 stents implanted, ≥3 lesions treated, bifurcation with 2 stents implanted, total stent length >60 mm, or chronic total occlusion. The primary efficacy endpoint was major adverse cardiac events (MACE), defined as the composite of cardiac death, myocardial infarction, or stent thrombosis. The primary safety endpoint was major bleeding. Intention-to-treat was the primary analytic approach. Of 9,577 patients included in the pooled dataset for whom procedural variables were available, 1,680 (17.5%) underwent complex PCI. Overall, 85% of patients received new-generation DES. At a median follow-up time of 392 days (interquartile range: 366 to 710 days), patients who underwent complex PCI had a higher risk of MACE (adjusted hazard ratio [HR]: 1.98; 95% confidence interval [CI]: 1.50 to 2.60; p < 0.0001). Compared with short-term DAPT, long-term DAPT yielded significant reductions in MACE in the complex PCI group (adjusted HR: 0.56; 95% CI: 0.35 to 0.89) versus the noncomplex PCI group (adjusted HR: 1.01; 95% CI: 0.75 to 1.35; p interaction = 0.01). The magnitude of the benefit with long-term DAPT was progressively greater per increase in procedural complexity. Long-term DAPT was associated with increased risk for major bleeding, which was similar between groups (p interaction = 0.96). Results were consistent by per-treatment landmark analysis. Alongside other established clinical risk factors, procedural complexity is an important parameter to take into account in tailoring upfront duration of DAPT. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Gillen, Marion; Kools, Susan; McCall, Cade; Sum, Juliann; Moulden, Kelli
2004-01-01
Despite the institution of explicit safety practices in construction, there continue to be exceedingly high rates of morbidity and mortality from work-related injury. This study's purpose was to identify, compare and contrast views of construction managers from large and small firms regarding construction safety practices. A complementary analysis was conducted with construction workers. A semi-structured interview guide was used to elicit information from construction managers (n = 22) in a series of focus groups. Questions were designed to obtain information on direct safety practices and indirect practices such as communication style, attitude, expectations, and unspoken messages. Data were analyzed using thematic content analysis. Managers identified a broad commitment to safety, worker training, a changing workplace culture, and uniform enforcement as key constructs in maintaining safe worksites. Findings indicate that successful managers need to be involved, principled, flexible, and innovative. Best practices, as well as unsuccessful injury prevention programs, were discussed in detail. Obstacles to consistent safety practice include poor training, production schedules and financial constraints. Construction managers play a pivotal role in the definition and implementation of safety practices in the workplace. In order to succeed in this role, they require a wide variety of management skills, upper management support, and tools that will help them instill and maintain a positive safety culture. Developing and expanding management skills of construction managers may assist them in dealing with the complexity of the construction work environment, as well as providing them with the tools necessary to decrease work-related injuries.
Development of guidance for states transitioning to new safety analysis tools
NASA Astrophysics Data System (ADS)
Alluri, Priyanka
With about 125 people dying on US roads each day, the US Department of Transportation heightened the awareness of critical safety issues with the passage of SAFETEA-LU (Safe Accountable Flexible Efficient Transportation Equity Act---a Legacy for Users) legislation in 2005. The legislation required each of the states to develop a Strategic Highway Safety Plan (SHSP) and incorporate data-driven approaches to prioritize and evaluate program outcomes: Failure to do so resulted in funding sanctioning. In conjunction with the legislation, research efforts have also been progressing toward the development of new safety analysis tools such as IHSDM (Interactive Highway Safety Design Model), SafetyAnalyst, and HSM (Highway Safety Manual). These software and analysis tools are comparatively more advanced in statistical theory and level of accuracy, and have a tendency to be more data intensive. A review of the 2009 five-percent reports and excerpts from the nationwide survey revealed astonishing facts about the continuing use of traditional methods including crash frequencies and rates for site selection and prioritization. The intense data requirements and statistical complexity of advanced safety tools are considered as a hindrance to their adoption. In this context, this research aims at identifying the data requirements and data availability for SafetyAnalyst and HSM by working with both the tools. This research sets the stage for working with the Empirical Bayes approach by highlighting some of the biases and issues associated with the traditional methods of selecting projects such as greater emphasis on traffic volume and regression-to-mean phenomena. Further, the not-so-obvious issue with shorter segment lengths, which effect the results independent of the methods used, is also discussed. The more reliable and statistically acceptable Empirical Bayes methodology requires safety performance functions (SPFs), regression equations predicting the relation between crashes and exposure for a subset of roadway network. These SPFs, specific to a region and the analysis period are often unavailable. Calibration of already existing default national SPFs to the state's data could be a feasible solution, but, how well the state's data is represented is a legitimate question. With this background, SPFs were generated for various classifications of segments in Georgia and compared against the national default SPFs used in SafetyAnalyst calibrated to Georgia data. Dwelling deeper into the development of SPFs, the influence of actual and estimated traffic data on the fit of the equations is also studied questioning the accuracy and reliability of traffic estimations. In addition to SafetyAnalyst, HSM aims at performing quantitative safety analysis. Applying HSM methodology to two-way two-lane rural roads, the effect of using multiple CMFs (Crash Modification Factors) is studied. Lastly, data requirements, methodology, constraints, and results are compared between SafetyAnalyst and HSM.
Huygen, Frank; Verschueren, Kristin; McCabe, Candida; Stegmann, Jens-Ulrich; Zima, Julia; Mahaux, Olivia; Van Holle, Lionel; Angelo, Maria-Genalin
2015-01-01
Complex regional pain syndrome (CRPS) is a chronic pain disorder that typically follows trauma or surgery. Suspected CRPS reported after vaccination with human papillomavirus (HPV) vaccines led to temporary suspension of proactive recommendation of HPV vaccination in Japan. We investigated the potential CRPS signal in relation to HPV-16/18-adjuvanted vaccine (Cervarix®) by database review of CRPS cases with independent expert confirmation; a disproportionality analysis and analyses of temporality; an observed versus expected analysis using published background incidence rates; systematic reviews of aggregate safety data, and a literature review. The analysis included 17 case reports of CRPS: 10 from Japan (0.14/100,000 doses distributed) and seven from the United Kingdom (0.08/100,000). Five cases were considered by independent experts to be confirmed CRPS. Quantitative analyses did not suggest an association between CRPS and HPV-16/18-adjuvanted vaccine. Observed CRPS incidence after HPV-16/18 vaccination was statistically significantly below expected rates. Systematic database reviews using search terms varying in specificity and sensitivity did not identify new cases. No CRPS was reported during clinical development and no unexpected results found in the literature. There is not sufficient evidence to suggest an increased risk of developing CRPS following vaccination with HPV-16/18-adjuvanted vaccine. Post-licensure safety surveillance confirms the acceptable benefit-risk of HPV-16/18 vaccination. PMID:26501109
The development of a 3D risk analysis method.
I, Yet-Pole; Cheng, Te-Lung
2008-05-01
Much attention has been paid to the quantitative risk analysis (QRA) research in recent years due to more and more severe disasters that have happened in the process industries. Owing to its calculation complexity, very few software, such as SAFETI, can really make the risk presentation meet the practice requirements. However, the traditional risk presentation method, like the individual risk contour in SAFETI, is mainly based on the consequence analysis results of dispersion modeling, which usually assumes that the vapor cloud disperses over a constant ground roughness on a flat terrain with no obstructions and concentration fluctuations, which is quite different from the real situations of a chemical process plant. All these models usually over-predict the hazardous regions in order to maintain their conservativeness, which also increases the uncertainty of the simulation results. On the other hand, a more rigorous model such as the computational fluid dynamics (CFD) model can resolve the previous limitations; however, it cannot resolve the complexity of risk calculations. In this research, a conceptual three-dimensional (3D) risk calculation method was proposed via the combination of results of a series of CFD simulations with some post-processing procedures to obtain the 3D individual risk iso-surfaces. It is believed that such technique will not only be limited to risk analysis at ground level, but also be extended into aerial, submarine, or space risk analyses in the near future.
Efficient runner safety assessment during early design phase and root cause analysis
NASA Astrophysics Data System (ADS)
Liang, Q. W.; Lais, S.; Gentner, C.; Braun, O.
2012-11-01
Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for other types of turbines, such as pump turbines and Pelton runners.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.
2013-11-07
A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25more » recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.« less
General aviation crash safety program at Langley Research Center
NASA Technical Reports Server (NTRS)
Thomson, R. G.
1976-01-01
The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.
Putting the ‘patient’ in patient safety: a qualitative study of consumer experiences
Rathert, Cheryl; Brandt, Julie; Williams, Eric S.
2011-01-01
Abstract Background Although patient safety has been studied extensively, little research has directly examined patient and family (consumer) perceptions. Evidence suggests that clinicians define safety differently from consumers, e.g. clinicians focus more on outcomes, whereas consumers may focus more on processes. Consumer perceptions of patient safety are important for several reasons. First, health‐care policy leaders have been encouraging patients and families to take a proactive role in ensuring patient safety; therefore, an understanding of how patients define safety is needed. Second, consumer perceptions of safety could influence outcomes such as trust and satisfaction or compliance with treatment protocols. Finally, consumer perspectives could be an additional lens for viewing complex systems and processes for quality improvement efforts. Objectives To qualitatively explore acute care consumer perceptions of patient safety. Design and methods Thirty‐nine individuals with a recent overnight hospital visit participated in one of four group interviews. Analysis followed an interpretive analytical approach. Results Three basic themes were identified: Communication, staffing issues and medication administration. Consumers associated care process problems, such as delays or lack of information, with safety rather than as service quality problems. Participants agreed that patients need family caregivers as advocates. Conclusions Consumers seem acutely aware of care processes they believe pose risks to safety. Perceptual measures of patient safety and quality may help to identify areas where there are higher risks of preventable adverse events. PMID:21624026
Socio-Technical Systems Analysis in Health Care: A Research Agenda
Bass, Ellen; Bellandi, Tommaso; Gurses, Ayse; Hallbeck, Susan; Mollo, Vanina
2012-01-01
Given the complexity of health care and the ‘people’ nature of healthcare work and delivery, STSA (Sociotechnical Systems Analysis) research is needed to address the numerous quality of care problems observed across the world. This paper describes open STSA research areas, including workload management, physical, cognitive and macroergonomic issues of medical devices and health information technologies, STSA in transitions of care, STSA of patient-centered care, risk management and patient safety management, resilience, and feedback loops between event detection, reporting and analysis and system redesign. PMID:22611480
Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
Innovations in healthcare information systems promise to revolutionize and streamline healthcare processes worldwide. However, the complexity of these systems and the need to better understand issues related to human-computer interaction have slowed progress in this area. In this chapter the authors describe their work in using methods adapted from usability engineering, video ethnography and analysis of digital log files for improving our understanding of complex real-world healthcare interactions between humans and technology. The approaches taken are cost-effective and practical and can provide detailed ethnographic data on issues health professionals and consumers encounter while using systems as well as potential safety problems. The work is important in that it can be used in techno-anthropology to characterize complex user interactions with technologies and also to provide feedback into redesign and optimization of improved healthcare information systems.
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Editor)
2004-01-01
The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.
2013-04-01
The study of toxic and carcinogenic substances in foods represents one of the most demanding areas in food safety, due to their repercussions for public health. One potentially toxic compound for humans is ethyl carbamate (EC). EC is a multi-site genotoxic carcinogen of widespread occurrence in fermented foods and alcoholic beverages. Structural and thermal stability of charge-transfer complexes formed between EC as a donor with quinol (QL), picric acid (PA), chloranilic acid (CLA), p-chloranil (p-CHL) and 1,3-dinitrobenzene (DNB) as acceptors were reported. Elemental analysis (CHN), electronic absorption spectra, photometric titration, IR, and 1H NMR spectra show that the interaction between EC and acceptors was stabilized by hydrogen bonding, via a 1:1 stoichiometry. Thermogravimetric (TG) analysis indicates that the formation of molecular CT complexes was stable, exothermic and spontaneous. Finally, the CT complexes were screened for their antibacterial and antifungal activities. The results indicated that the [(EC)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.
Simpson, J Steven A; Crawford, Susan G; Goldstein, Estelle T; Field, Catherine; Burgess, Ellen; Kaplan, Bonnie J
2011-04-18
Theoretically, consumption of complex, multinutrient formulations of vitamins and minerals should be safe, as most preparations contain primarily the nutrients that have been in the human diet for millennia, and at safe levels as defined by the Dietary Reference Intakes. However, the safety profile of commercial formulae may differ from foods because of the amounts and combinations of nutrients they contain. As these complex formulae are being studied and used clinically with increasing frequency, there is a need for direct evaluation of safety and tolerability. All known safety and tolerability data collected on one complex nutrient formula was compiled and evaluated. Data were assembled from all the known published and unpublished studies for the complex formula with the largest amount of published research in mental health. Biological safety data from 144 children and adults were available from six sources: there were no occurrences of clinically meaningful negative outcomes/effects or abnormal blood tests that could be attributed to toxicity. Adverse event (AE) information from 157 children and adults was available from six studies employing the current version of this formula, and only minor, transitory reports of headache and nausea emerged. Only one of the studies permitted a direct comparison between micronutrient treatment and medication: none of the 88 pediatric and adult participants had any clinically meaningful abnormal laboratory values, but tolerability data in the group treated with micronutrients revealed significantly fewer AEs and less weight gain. This compilation of safety and tolerability data is reassuring with respect to the broad spectrum approach that employs complex nutrient formulae as a primary treatment.
Formal Verification of Complex Systems based on SysML Functional Requirements
2014-12-23
Formal Verification of Complex Systems based on SysML Functional Requirements Hoda Mehrpouyan1, Irem Y. Tumer2, Chris Hoyle2, Dimitra Giannakopoulou3...requirements for design of complex engineered systems. The proposed ap- proach combines a SysML modeling approach to document and structure safety requirements...methods and tools to support the integration of safety into the design solution. 2.1. SysML for Complex Engineered Systems Traditional methods and tools
Gad, Shayne C; Schuh, JoAnn C L
2018-06-01
Safety ("biocompatibility") assessment of medical devices has evolved along a different path than that of drugs, being historically governed more by the considerations and needs of engineers rather than chemists and biologists. As a result, the involvement of veterinary pathologists has been much more limited-almost entirely to evaluating tissue responses in tissues in direct contact with implanted devices. As devices have become more complex in composition, structure, placement, and use, concerns as to adverse systemic responses in patients have called for more comprehensive and thoughtful evaluations of effects throughout the body. Further complexities arise from the increasing marriage of devices and drug/biologic therapeutics to achieve either better dose control and, specifically, in delivery to target organs/tissues or better tolerance of the body to medical devices (i.e., minimization of the foreign body response). The challenge to pathologists is to integrate in new technologies (such as in vivo imaging and immunology) and ways of viewing interactions with patient bodies. To fail to do so will allow the methods and standards for medical device safety evaluation to be based on chemical analysis and then the limited details inherent in literature-based risk assessments.
System theory and safety models in Swedish, UK, Dutch and Australian road safety strategies.
Hughes, B P; Anund, A; Falkmer, T
2015-01-01
Road safety strategies represent interventions on a complex social technical system level. An understanding of a theoretical basis and description is required for strategies to be structured and developed. Road safety strategies are described as systems, but have not been related to the theory, principles and basis by which systems have been developed and analysed. Recently, road safety strategies, which have been employed for many years in different countries, have moved to a 'vision zero', or 'safe system' style. The aim of this study was to analyse the successful Swedish, United Kingdom and Dutch road safety strategies against the older, and newer, Australian road safety strategies, with respect to their foundations in system theory and safety models. Analysis of the strategies against these foundations could indicate potential improvements. The content of four modern cases of road safety strategy was compared against each other, reviewed against scientific systems theory and reviewed against types of safety model. The strategies contained substantial similarities, but were different in terms of fundamental constructs and principles, with limited theoretical basis. The results indicate that the modern strategies do not include essential aspects of systems theory that describe relationships and interdependencies between key components. The description of these strategies as systems is therefore not well founded and deserves further development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Do not blame the driver: a systems analysis of the causes of road freight crashes.
Newnam, Sharon; Goode, Natassia
2015-03-01
Although many have advocated a systems approach in road transportation, this view has not meaningfully penetrated road safety research, practice or policy. In this study, a systems theory-based approach, Rasmussens's (1997) risk management framework and associated Accimap technique, is applied to the analysis of road freight transportation crashes. Twenty-seven highway crash investigation reports were downloaded from the National Transport Safety Bureau website. Thematic analysis was used to identify the complex system of contributory factors, and relationships, identified within the reports. The Accimap technique was then used to represent the linkages and dependencies within and across system levels in the road freight transportation industry and to identify common factors and interactions across multiple crashes. The results demonstrate how a systems approach can increase knowledge in this safety critical domain, while the findings can be used to guide prevention efforts and the development of system-based investigation processes for the heavy vehicle industry. A research agenda for developing an investigation technique to better support the application of the Accimap technique by practitioners in road freight transportation industry is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Economic Issues on Food Safety.
Adinolfi, Felice; Di Pasquale, Jorgelina; Capitanio, Fabian
2016-01-18
A globalised food trade, with a huge increase of the exchanged volume, extensive production and complex supply chains are contributing towards an increased number of microbiological food safety outbreaks. All of these factors are putting pressure on the stakeholders, either public or private, in terms of rule and control. In fact, this scenario could force manufacturers to be lenient towards food safety control intentionally, or unintentionally, and result in a major foodborne outbreak that causes health problems and economic loss. As a response to emerging calls for the adoption of a systemic approach to food safety, we try to identify and discuss the several related economics issue in this field. Based on an extensive analysis of academic and policy literatures on the economic effects of global environmental change at different stages of the food system, we highlight the main issues involving economists in the field of food safety. In the first part, we assessed the several approaches and problems related to the evaluation of food safety improvements, followed by an overview of drivers of food safety demand in the second part. The third section is devoted to discussing changes occurred at the institutional level in building and managing food safety policies. The last section summarises the main considerations aroused from the work.
Jiang, Lihua; Wang, Qingsong; Sun, Jinhua
2018-06-05
LiNi x Co y Mn z O 2 (NCM) cathode material with high energy density is one of the best choices for power batteries. But the safety issue also becomes more prominent with higher nickel content. The improvement of thermal stability by material modification is often complex and limited. In this study, a composite safety electrolyte additive consisting of perfluoro-2-methyl-3-pentanone, N, N-Dimethylacetamide (and fluorocarbon surfactant is proved to be effective and simple in improving the thermal stability of NCM materials. Electrochemical compatibility of composite safety electrolyte with various NCM materials is investigated. Uniform interface film, lower impedance and polarization for NCM (622) cycled in composite safety electrolyte are proved to be the main reasons to ensure good cycle performance. Homemade pouch cells (NCM (622)/C) are used to verify the effectiveness for practical application, accelerating rate calorimeter and nail penetration test shows a slower temperature rise and delay of thermal runaway. For heating experiment, no fire appears for pouch cell with composite safety electrolyte. Thus, this composite safety electrolyte is effective to improve the safety of lithium ion batteries with NCM materials.(. Copyright © 2018 Elsevier B.V. All rights reserved.
Niskanen, Toivo
2017-12-12
The aim of this study was to examine how the developed taxonomy of cognitive work analysis (CWA) can be applied in combination with statistical analysis regarding different sociotechnical categories. This study applied a combination of quantitative and qualitative methodologies. Workers (n = 120) and managers (n = 85) in the chemical industry were asked in a questionnaire how different occupational safety and health (OSH) measures were being implemented. The exploration of the qualitative CWA taxonomy consisted of an analysis of the following topics: (a) work domain; (b) control task; (c) strategies; (d) social organization and cooperation; (e) worker competencies. The following hypotheses were supported - activities of the management had positive impacts on the aggregated variables: near-accident investigation and instructions (H 1 ); OSH training (H 2 ); operations, technical processes and safe use of chemicals (H 3 ); use of personal protective equipment (H 4 ); measuring, follow-up and prevention of major accidents (H 5 ). The CWA taxonomy was applied in mixed methods when testing H 1 -H 5 . A special approach is to analyze the work demands of complex sociotechnical systems with the taxonomy of CWA. In problem-solving, the CWA taxonomy should seek to capitalize on the strengths and minimize the limitations of safety performance.
Safety assessment for the postictal confusional phase following complex partial seizure.
Tucker, C
1985-06-01
Misunderstanding of the postictal confusional state that follows the complex partial seizure has caused emotional and physical harm to patients. Concern about this phenomenon and its effects upon the patient prompted this study to explore, describe, and document one method of intervention to lessen these harmful effects. An evaluative descriptive research design was employed to assess patient safety during and after the postictal confusional phase following a complex partial seizure. A closed-structured questionnaire and participant observation were the methods used to collect data for this study. A Level of Safety Tool was specifically designed for this study.
Clemson, Lindy; Donaldson, Alex; Hill, Keith; Day, Lesley
2014-10-01
Despite evidence of the effectiveness of home safety interventions for preventing falls, there is limited uptake of such interventions within community services. Therefore, as part of a broader translational project, we explored issues underlying the implementation of an evidence-based home safety fall prevention intervention. We conducted in-depth interviews with eight occupational therapists and two programme coordinators engaged to deliver a home safety fall prevention intervention. Six community health centres within two metropolitan regions of Melbourne, Australia participated. The RE-AIM framework and Diffusion of Innovations theory underpinned the interviews which examine the enablers and barriers to implementing a home safety fall prevention intervention and integrating it into routine community preventive practice. Analysis involved thematic and content analysis. Investment in the home safety for fall prevention intervention was supported and valued by coordinators and therapists alike, and a number of themes emerged which influenced implementation of this intervention. These included issues of: compatibility with organisational processes, individual practitioner practices and skills, a prevention approach, and client expectations; relative advantage in terms of flexibility of the process, client engagement and regional capacity building; complexity of implementing the intervention; and observability related to the invisible nature of fall prevention outcomes. Implementation of this home safety fall prevention intervention was influenced by a range of interrelated organisational, practitioner and client related factors. The findings from this project provide insights into, and opportunities to increase the sustainable implementation of the home safety fall prevention intervention into practice. © 2014 Occupational Therapy Australia.
Constantly evolving safety assessment protocols for GM foods.
Sesikeran, B; Vasanthi, Siruguri
2008-01-01
he introduction of GM foods has led to the evolution of a food safety assessment paradigm that establishes safety of the GM food relative to its conventional counterpart. The GM foods currently approved and marketed in several countries have undergone extensive safety testing under a structured safety assessment framework evolved by international organizations like FAO, WHO, Codex and OECD. The major elements of safety assessment include molecular characterization of inserted genes and stability of the trait, toxicity and allergenicity potential of the expressed substances, compositional analysis, potential for gene transfer to gut microflora and unintentional effects of the genetic modification. As more number and type of food crops are being brought under the genetic modification regime, the adequacy of existing safety assessment protocols for establishing safety of these foods has been questioned. Such crops comprise GM crops with higher agronomic vigour, nutritional or health benefit/ by modification of plant metabolic pathways and those expressing bioactive substances and pharmaceuticals. The safety assessment challenges of these foods are the potential of the methods to detect unintentional effects with higher sensitivity and rigor. Development of databases on food compositions, toxicants and allergens is currently seen as an important aid to development of safety protocols. With the changing global trends in genetic modification technology future challenge would be to develop GM crops with minimum amount of inserted foreign DNA so as to reduce the burden of complex safety assessments while ensuring safety and utility of the technology.
Human factors paradigm and customer care perceptions.
Clarke, Colin; Eales-Reynolds, Lesley-Jane
2015-01-01
The purpose of this paper is to examine if customer care (CC) can be directly linked to patient safety through a human factors (HF) framework. Data from an online questionnaire, completed by a convenience healthcare worker sample (n=373), was interrogated using thematic analysis within Vincent et al.'s (1998) HF theoretical framework. This proposes seven areas affecting patient safety: institutional context, organisation and management, work environment, team factors, individual, task and patient. Analysis identified responses addressing all framework areas. Responses (597) principally focused on work environment 40.7 per cent (n=243), organisation and management 28.8 per cent (n=172). Nevertheless, reference to other framework areas were clearly visible within the data: teams 10.2 per cent (n=61), individual 6.7 per cent (n=40), patients 6.0 per cent (n=36), tasks 4.2 per cent (n=24) and institution 3.5 per cent (n=21). Findings demonstrate congruence between CC perceptions and patient safety within a HF framework. The questionnaire requested participants to identify barriers to rather than CC enablers. Although this was at a single site complex organisation, it was similar to those throughout the NHS and other international health systems. CC can be viewed as consonant with patient safety rather than the potentially dangerous consumerisation stance, which could ultimately compromise patient safety. This work provides an original perspective on the link between CC and patient safety and has the potential to re-focus healthcare perceptions.
Identifying and addressing the limitations of safety climate surveys.
O'Connor, Paul; Buttrey, Samuel E; O'Dea, Angela; Kennedy, Quinn
2011-08-01
There are a variety of qualitative and quantitative tools for measuring safety climate. However, questionnaires are by far the most commonly used methodology. This paper reports the descriptive analysis of a large sample of safety climate survey data (n=110,014) collected over 10 years from U.S. Naval aircrew using the Command Safety Assessment Survey (CSAS). The analysis demonstrated that there was substantial non-random response bias associated with the data (the reverse worded items had a unique pattern of responses, there was a increasing tendency over time to only provide a modal response, the responses to the same item towards the beginning and end of the questionnaire did not correlate as highly as might be expected, and the faster the questionnaire was completed the higher the frequency of modal responses). It is suggested that the non-random responses bias was due to the negative effect on participant motivation of a number of factors (questionnaire design, lack of a belief in the importance of the response, participant fatigue, and questionnaire administration). Researchers must consider the factors that increase the likelihood of non-random measurement error in safety climate survey data and cease to rely on data that are solely collected using a long and complex questionnaire. In the absence of valid and reliable data it will not be possible for organizations to take the measures required to improve safety climate. Copyright © 2011 Elsevier B.V. All rights reserved.
Safety management of complex research operations
NASA Technical Reports Server (NTRS)
Brown, W. J.
1981-01-01
Complex research and technology operations present many varied potential hazards which must be addressed in a disciplined independent safety review and approval process. The research and technology effort at the Lewis Research Center is divided into programmatic areas of aeronautics, space and energy. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described in this paper is believed to be a major factor in maintaining an excellent safety record at the Lewis Research Center.
Patterns of patient safety culture: a complexity and arts-informed project of knowledge translation.
Mitchell, Gail J; Tregunno, Deborah; Gray, Julia; Ginsberg, Liane
2011-01-01
The purpose of this paper is to describe patterns of patient safety culture that emerged from an innovative collaboration among health services researchers and fine arts colleagues. The group engaged in an arts-informed knowledge translation project to produce a dramatic expression of patient safety culture research for inclusion in a symposium. Scholars have called for a deeper understanding of the complex interrelationships among structure, process and outcomes relating to patient safety. Four patterns of patient safety culture--blinding familiarity, unyielding determination, illusion of control and dismissive urgency--are described with respect to how they informed creation of an arts-informed project for knowledge translation.
Complexity analysis of the Next Gen Air Traffic Management System: trajectory based operations.
Lyons, Rhonda
2012-01-01
According to Federal Aviation Administration traffic predictions currently our Air Traffic Management (ATM) system is operating at 150 percent capacity; forecasting that within the next two decades, the traffic with increase to a staggering 250 percent [17]. This will require a major redesign of our system. Today's ATM system is complex. It is designed to safely, economically, and efficiently provide air traffic services through the cost-effective provision of facilities and seamless services in collaboration with multiple agents however, contrary the vision, the system is loosely integrated and is suffering tremendously from antiquated equipment and saturated airways. The new Next Generation (Next Gen) ATM system is designed to transform the current system into an agile, robust and responsive set of operations that are designed to safely manage the growing needs of the projected increasingly complex, diverse set of air transportation system users and massive projected worldwide traffic rates. This new revolutionary technology-centric system is dynamically complex and is much more sophisticated than it's soon to be predecessor. ATM system failures could yield large scale catastrophic consequences as it is a safety critical system. This work will attempt to describe complexity and the complex nature of the NextGen ATM system and Trajectory Based Operational. Complex human factors interactions within Next Gen will be analyzed using a proposed dual experimental approach designed to identify hazards, gaps and elicit emergent hazards that would not be visible if conducted in isolation. Suggestions will be made along with a proposal for future human factors research in the TBO safety critical Next Gen environment.
Carayon, Pascale; Hancock, Peter; Leveson, Nancy; Noy, Ian; Sznelwar, Laerte; van Hootegem, Geert
2015-01-01
Traditional efforts to deal with the enormous problem of workplace safety have proved insufficient, as they have tended to neglect the broader sociotechnical environment that surrounds workers. Here, we advocate a sociotechnical systems approach that describes the complex multi-level system factors that contribute to workplace safety. From the literature on sociotechnical systems, complex systems and safety, we develop a sociotechnical model of workplace safety with concentric layers of the work system, socio-organisational context and the external environment. The future challenges that are identified through the model are highlighted. Practitioner Summary: Understanding the environmental, organisational and work system factors that contribute to workplace safety will help to develop more effective and integrated solutions to deal with persistent workplace safety problems. Solutions to improve workplace safety need to recognise the broad sociotechnical system and the respective interactions between the system elements and levels. PMID:25831959
Carayon, Pascale; Hancock, Peter; Leveson, Nancy; Noy, Ian; Sznelwar, Laerte; van Hootegem, Geert
2015-01-01
Traditional efforts to deal with the enormous problem of workplace safety have proved insufficient, as they have tended to neglect the broader sociotechnical environment that surrounds workers. Here, we advocate a sociotechnical systems approach that describes the complex multi-level system factors that contribute to workplace safety. From the literature on sociotechnical systems, complex systems and safety, we develop a sociotechnical model of workplace safety with concentric layers of the work system, socio-organisational context and the external environment. The future challenges that are identified through the model are highlighted. Understanding the environmental, organisational and work system factors that contribute to workplace safety will help to develop more effective and integrated solutions to deal with persistent workplace safety problems. Solutions to improve workplace safety need to recognise the broad sociotechnical system and the respective interactions between the system elements and levels.
System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration
NASA Technical Reports Server (NTRS)
Lawton, R. M.
1996-01-01
Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.
NASA Technical Reports Server (NTRS)
Foyle, David C.; Goodman, Allen; Hooley, Becky L.
2003-01-01
An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.
2011-01-01
Background Theoretically, consumption of complex, multinutrient formulations of vitamins and minerals should be safe, as most preparations contain primarily the nutrients that have been in the human diet for millennia, and at safe levels as defined by the Dietary Reference Intakes. However, the safety profile of commercial formulae may differ from foods because of the amounts and combinations of nutrients they contain. As these complex formulae are being studied and used clinically with increasing frequency, there is a need for direct evaluation of safety and tolerability. Methods All known safety and tolerability data collected on one complex nutrient formula was compiled and evaluated. Results Data were assembled from all the known published and unpublished studies for the complex formula with the largest amount of published research in mental health. Biological safety data from 144 children and adults were available from six sources: there were no occurrences of clinically meaningful negative outcomes/effects or abnormal blood tests that could be attributed to toxicity. Adverse event (AE) information from 157 children and adults was available from six studies employing the current version of this formula, and only minor, transitory reports of headache and nausea emerged. Only one of the studies permitted a direct comparison between micronutrient treatment and medication: none of the 88 pediatric and adult participants had any clinically meaningful abnormal laboratory values, but tolerability data in the group treated with micronutrients revealed significantly fewer AEs and less weight gain. Conclusions This compilation of safety and tolerability data is reassuring with respect to the broad spectrum approach that employs complex nutrient formulae as a primary treatment. PMID:21501484
Patient safety culture in Norwegian nursing homes.
Bondevik, Gunnar Tschudi; Hofoss, Dag; Husebø, Bettina Sandgathe; Deilkås, Ellen Catharina Tveter
2017-06-20
Patient safety culture concerns leader and staff interaction, attitudes, routines, awareness and practices that impinge on the risk of patient-adverse events. Due to their complex multiple diseases, nursing home patients are at particularly high risk of adverse events. Studies have found an association between patient safety culture and the risk of adverse events. This study aimed to investigate safety attitudes among healthcare providers in Norwegian nursing homes, using the Safety Attitudes Questionnaire - Ambulatory Version (SAQ-AV). We studied whether variations in safety attitudes were related to professional background, age, work experience and mother tongue. In February 2016, 463 healthcare providers working in five nursing homes in Tønsberg, Norway, were invited to answer the SAQ-AV, translated and adapted to the Norwegian nursing home setting. Previous validation of the Norwegian SAQ-AV for nursing homes identified five patient safety factors: teamwork climate, safety climate, job satisfaction, working conditions and stress recognition. SPSS v.22 was used for statistical analysis, which included estimations of mean values, standard deviations and multiple linear regressions. P-values <0.05 were considered to be significant. Out of the 463 employees invited, 288 (62.2%) answered the questionnaire. Response rates varied between 56.9% and 72.2% across the five nursing homes. In multiple linear regression analysis, we found that increasing age and job position among the healthcare providers were associated with significantly increased mean scores for the patient safety factors teamwork climate, safety climate, job satisfaction and working conditions. Not being a Norwegian native speaker was associated with a significantly higher mean score for job satisfaction and a significantly lower mean score for stress recognition. Neither professional background nor work experience were significantly associated with mean scores for any patient safety factor. Patient safety factor scores in nursing homes were poorer than previously found in Norwegian general practices, but similar to findings in out-of-hours primary care clinics. Patient safety culture assessment may help nursing home leaders to initiate targeted quality improvement interventions. Further research should investigate associations between patient safety culture and the occurrence of adverse events in nursing homes.
Chemiluminescence microarrays in analytical chemistry: a critical review.
Seidel, Michael; Niessner, Reinhard
2014-09-01
Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.
Sociotechnical approaches to workplace safety: Research needs and opportunities.
Robertson, Michelle M; Hettinger, Lawrence J; Waterson, Patrick E; Noy, Y Ian; Dainoff, Marvin J; Leveson, Nancy G; Carayon, Pascale; Courtney, Theodore K
2015-01-01
The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety.
Role of champions in the implementation of patient safety practice change.
Soo, Stephanie; Berta, Whitney; Baker, G Ross
2009-01-01
Practitioners of patient safety practice change agree that champions are central to the success of implementation. The clinical champion role is a concept that has been widely promoted yet empirically underdeveloped in health services literature. Questions remain as to who these champions are, what roles they play in patient safety practice change and what contexts serve to facilitate their efforts. This investigation used a multiple-case study design to critically examine the role of champions in the implementation of rapid response teams (RRTs), an innovative complex patient safety intervention, in two large urban acute care facilities. An analysis of interviews with key individuals involved in the RRT implementation process revealed a typology of the patient safety practice champion that extended beyond clinical personnel to include managerial and executive staff. Champions engaged to a varying extent in a number of core activities, including education, advocacy, relationship building and boundary spanning. Individuals became champions both through informal emergence and a combination of formal appointment and informal emergence. By identifying and elaborating upon specific features of the champion role, this study aims to expand the dialogue about champions for patient safety practice change.
Ross, Amy M; Ilic, Kelley; Kiyoshi-Teo, Hiroko; Lee, Christopher S
2017-12-26
The purpose of this study was to establish the psychometric properties of the new 16-item leadership environment scale. The leadership environment scale was based on complexity science concepts relevant to complex adaptive health care systems. A workforce survey of direct-care nurses was conducted (n = 1,443) in Oregon. Confirmatory factor analysis, exploratory factor analysis, concordant validity test and reliability tests were conducted to establish the structure and internal consistency of the leadership environment scale. Confirmatory factor analysis indices approached acceptable thresholds of fit with a single factor solution. Exploratory factor analysis showed improved fit with a two-factor model solution; the factors were labelled 'influencing relationships' and 'interdependent system supports'. Moderate to strong convergent validity was observed between the leadership environment scale/subscales and both the nursing workforce index and the safety organising scale. Reliability of the leadership environment scale and subscales was strong, with all alphas ≥.85. The leadership environment scale is structurally sound and reliable. Nursing management can employ adaptive complexity leadership attributes, measure their influence on the leadership environment, subsequently modify system supports and relationships and improve the quality of health care systems. The leadership environment scale is an innovative fit to complex adaptive systems and how nurses act as leaders within these systems. © 2017 John Wiley & Sons Ltd.
From Invention to Innovation: Risk Analysis to Integrate One Health Technology in the Dairy Farm.
Lombardo, Andrea; Boselli, Carlo; Amatiste, Simonetta; Ninci, Simone; Frazzoli, Chiara; Dragone, Roberto; De Rossi, Alberto; Grasso, Gerardo; Mantovani, Alberto; Brajon, Giovanni
2017-01-01
Current Hazard Analysis Critical Control Points (HACCP) approaches mainly fit for food industry, while their application in primary food production is still rudimentary. The European food safety framework calls for science-based support to the primary producers' mandate for legal, scientific, and ethical responsibility in food supply. The multidisciplinary and interdisciplinary project ALERT pivots on the development of the technological invention (BEST platform) and application of its measurable (bio)markers-as well as scientific advances in risk analysis-at strategic points of the milk chain for time and cost-effective early identification of unwanted and/or unexpected events of both microbiological and toxicological nature. Health-oriented innovation is complex and subject to multiple variables. Through field activities in a dairy farm in central Italy, we explored individual components of the dairy farm system to overcome concrete challenges for the application of translational science in real life and (veterinary) public health. Based on an HACCP-like approach in animal production, the farm characterization focused on points of particular attention (POPAs) and critical control points to draw a farm management decision tree under the One Health view (environment, animal health, food safety). The analysis was based on the integrated use of checklists (environment; agricultural and zootechnical practices; animal health and welfare) and laboratory analyses of well water, feed and silage, individual fecal samples, and bulk milk. The understanding of complex systems is a condition to accomplish true innovation through new technologies. BEST is a detection and monitoring system in support of production security, quality and safety: a grid of its (bio)markers can find direct application in critical points for early identification of potential hazards or anomalies. The HACCP-like self-monitoring in primary production is feasible, as well as the biomonitoring of live food producing animals as sentinel population for One Health.
Failure modes and effects analysis automation
NASA Technical Reports Server (NTRS)
Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron
1988-01-01
A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.
Singh, Ranjit; Hickner, John; Mold, Jim; Singh, Gurdev
2014-03-01
Testing plays a vital role in primary care. Failures in the process are common and can be harmful. As the great 19th century microbiologist Louis Pasteur put it "chance favors only the prepared mind." Our objective is to prepare minds in primary care practices to improve safety in the testing process. Various principles from safety science can be applied. A prospective methodology that uses an anonymous practice survey based on concepts from failure modes and effects analysis is proposed. Responses are used to rank perceived hazards in the testing process, leading to prioritization of areas for intervention. Secondary data analysis (using data from a study of medication safety) was used to explore the value of this approach in the context of assessing the testing process. At 3 primary care practice sites, a total of 61 staff members completed 4 survey items examining the testing process. Comparison across practices shows that each has a distinct profile of hazards, which would lead each on a different path toward improvement. The proposed approach treats each practice as a unique complex adaptive system aiming to help it thrive by inculcating trust, mutual respect, and collaboration. Implications for patient safety research and practice are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, James; Goins, Monty; Paul, Pran
This safety analysis report for packaging (SARP) presents the results of the safety analysis prepared in support of the Consolidated Nuclear Security, LLC (CNS) request for licensing of the Model ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B(U) Fissile Material Certificate of Compliance. This SARP, published in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guide 7.9 and using information provided in UCID-21218 and NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the established NRC regulations for packaging, preparation formore » shipment, and transportation of radioactive materials given in Title 10, Part 71, of the Code of Federal Regulations (CFR) [10 CFR 71] as well as U.S. Department of Transportation (DOT) regulations for packaging and shipment of hazardous materials given in Title 49 CFR. To protect the health and safety of the public, shipments of adioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.« less
ERIC Educational Resources Information Center
Hermann, Jaime A.; Ibarra, Guillermo V.; Hopkins, B. L.
2010-01-01
The present research examines the effects of a complex safety program that combined Behavior-Based Safety (BBS) and traditional safety methods. The study was conducted in an automobile parts plant in Mexico. Two sister plants served as comparison. Some of the components of the safety programs addressed behaviors of managers and included methods…
[Towards a safety culture in the neonatal unit: Six years experience].
Esqué Ruiz, M T; Moretones Suñol, M G; Rodríguez Miguélez, J M; Parés Tercero, S; Cortés Albuixech, R; Varón Ramírez, E M; Figueras Aloy, J
2015-10-01
A safety culture is the collective effort of an institution to direct its resources toward the goal of safety. An analysis is performed on the six years of experience of the Committee on the Safety of Neonatal Patient. A mailbox was created for the declaration of adverse events, and measures for their correction were devised, such as case studies, continuous education, prevention of nosocomial infections, as well as information on the work done and its assessment. A total of 1287 reports of adverse events were received during the six years, of which 600 (50.8%) occurred in the neonatal ICU, with 15 (1.2%) contributing to death, and 1282 (99.6%) considered preventable. Simple corrective measures (notification, security alerts, etc.) were applied in 559 (43.4%), intermediate measures (protocols, monthly newsletter, etc.) in 692 (53.8%), and more complex measures (causal analysis, scripts, continuous education seminars, prospective studies, etc.) in 66 (5.1%). As regards nosocomial infections, the prevention strategies implemented (hand washing, insertion and maintenance of catheters) directly affected their improvement. Two surveys were conducted to determine the level of satisfaction with the Committee on the Safety of Neonatal Patient. A rating 7.5/10 was obtained in the local survey, while using the Spanish version of the Hospital Survey on Patient Safety Culture the rate was 7.26/10. A path to a culture of safety has been successfully started and carried out. Reporting the adverse events is the key to obtaining information on their nature, etiology and evolution, and to undertake possible prevention strategies. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Ares I-X Range Safety Analyses Overview
NASA Technical Reports Server (NTRS)
Starr, Brett R.; Gowan, John W., Jr.; Thompson, Brian G.; Tarpley, Ashley W.
2011-01-01
Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.
Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems.
Ouedraogo, Kiswendsida Abel; Beugin, Julie; El-Koursi, El-Miloudi; Clarhaut, Joffrey; Renaux, Dominique; Lisiecki, Frederic
2018-02-02
The work in the article presents the development of an application guide based on feedback and comments stemming from various railway actors on their practices of SIL allocation to railway safety-related functions. The initial generic methodology for SIL allocation has been updated to be applied to railway rolling stock safety-related functions in order to solve the SIL concept application issues. Various actors dealing with railway SIL allocation problems are the intended target of the methodology; its principles will be summarized in this article with a focus on modifications and precisions made in order to establish a practical guide for railway safety authorities. The methodology is based on the flowchart formalism used in CSM (common safety method) European regulation. It starts with the use of quantitative safety requirements, particularly tolerable hazard rates (THR). THR apportioning rules are applied. On the one hand, the rules are related to classical logical combinations of safety-related functions preventing hazard occurrence. On the other hand, to take into account technical conditions (last safety weak link, functional dependencies, technological complexity, etc.), specific rules implicitly used in existing practices are defined for readjusting some THR values. SIL allocation process based on apportioned and validated THR values is finally illustrated through the example of "emergency brake" subsystems. Some specific SIL allocation rules are also defined and illustrated. © 2018 Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2011-01-01
Loss of control remains one of the largest contributors to fatal aircraft accidents worldwide. Aircraft loss-of-control accidents are complex, resulting from numerous causal and contributing factors acting alone or more often in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper summarizes recent analysis results in identifying worst-case combinations of loss-of-control accident precursors and their time sequences, a holistic approach to preventing loss-of-control accidents in the future, and key requirements for validating the associated technologies.
Controlling for quality in the hospital cost function.
Carey, Kathleen; Stefos, Theodore
2011-06-01
This paper explores the relationship between the cost and quality of hospital care from the perspective of applied microeconomics. It addresses both theoretical and practical complexities entailed in incorporating hospital quality into the estimation of hospital cost functions. That literature is extended with an empirical analysis that examines the use of 15 Patient Safety Indicators (PSIs) as measures of hospital quality. A total operating cost function is estimated on 2,848 observations from five states drawn from the period 2001 to 2007. In general, findings indicate that the PSIs are successful in capturing variation in hospital cost due to adverse patient safety events. Measures that rely on the aggregate number of adverse events summed over PSIs are found to be superior to risk-adjusted rates for individual PSIs. The marginal cost of an adverse event is estimated to be $22,413. The results contribute to a growing business case for inpatient safety in hospital services.
Hicks Russell, Bedelia; Geist, Melissa J; House Maffett, Jenny
2013-01-01
Nurse educators can no longer focus on imparting to students knowledge that is merely factual and content specific. Activities that provide students with opportunities to apply concepts in real-world scenarios can be powerful tools. Nurse educators should take advantage of student-patient interactions to model clinical reasoning and allow students to practice complex decision making throughout the entire curriculum. In response to this change in nursing education, faculty in a pediatric course designed a reflective clinical reasoning activity based on the SAFETY template, which is derived from the National Council of State Boards of Nursing RN practice analysis. Students were able to prioritize key components of nursing care, as well as integrate practice issues such as delegation, Health Insurance Portability and Accountability Act violations, and questioning the accuracy of orders. SAFETY is proposed as a framework for integration of content knowledge, clinical reasoning, and reflection on authentic professional nursing concerns. Copyright 2012, SLACK Incorporated.
Human Factors in Patient Safety as an Innovation
Carayon, Pascale
2010-01-01
The use of Human Factors and Ergonomics (HFE) tools, methods, concepts and theories has been advocated by many experts and organizations to improve patient safety. To facilitate and support the spread of HFE knowledge and skills in health care and patient safety, we propose to conceptualize HFE as innovations whose diffusion, dissemination, implementation and sustainability need to be understood and specified. Using Greenhalgh et al. (2004) model of innovation, we identified various factors that can either hinder or facilitate the spread of HFE innovations in healthcare organizations. Barriers include lack of systems thinking, complexity of HFE innovations and lack of understanding about the benefits of HFE innovations. Positive impact of HFE interventions on task performance and the presence of local champions can facilitate the adoption, implementation and sustainability of HFE innovations. This analysis concludes with a series of recommendations for HFE professionals, researchers and educators. PMID:20106468
Subsurface exploration using bucket auger borings and down-hole geologic inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scullin, C.M.
1994-03-01
The down-hole geologic inspection of 24 in. bucket auger borings has been a hands-on technique for collecting valuable geologic structural and lithologic detail in southern California investigations for over 35 yr. Although it has been used for all types of investigations for hillside urban development, it is of particular benefit in landslide investigations and evaluations. The benefits of down-hole geologic inspection during detailed mapping of large landslide complexes with multiple slide planes are discussed in this paper. Many of the geotechnical investigations of these massive landslide complexes have been very limited in their determinations of accurate landslide parameters and verymore » deficient in proper engineering analysis while based upon this limited data. This has resulted in many cases where the geotechnical consultant erroneously concludes that ancient landslides don't move and it is all right to build upon them, even though they have neither justified the landslide parameters, nor the slope stability or safety. Because this author and the many consultants contacted during the preparation of this paper were not aware of other publications regarding this method of collecting detailed geologic data, this author included the safety considerations, safety equipment, the cost and the Cal OSHA requirements for entering exploration shafts.« less
Kuzma, Jennifer; Najmaie, Pouya; Larson, Joel
2009-01-01
The U.S. oversight system for genetically engineered organisms (GEOs) was evaluated to develop hypotheses and derive lessons for oversight of other emerging technologies, such as nanotechnology. Evaluation was based upon quantitative expert elicitation, semi-standardized interviews, and historical literature analysis. Through an interdisciplinary policy analysis approach, blending legal, ethical, risk analysis, and policy sciences viewpoints, criteria were used to identify strengths and weaknesses of GEOs oversight and explore correlations among its attributes and outcomes. From the three sources of data, hypotheses and broader conclusions for oversight were developed. Our analysis suggests several lessons for oversight of emerging technologies: the importance of reducing complexity and uncertainty in oversight for minimizing financial burdens on small product developers; consolidating multi-agency jurisdictions to avoid gaps and redundancies in safety reviews; consumer benefits for advancing acceptance of GEO products; rigorous and independent pre- and post-market assessment for environmental safety; early public input and transparency for ensuring public confidence; and the positive role of public input in system development, informed consent, capacity, compliance, incentives, and data requirements and stringency in promoting health and environmental safety outcomes, as well as the equitable distribution of health impacts. Our integrated approach is instructive for more comprehensive analyses of oversight systems, developing hypotheses for how features of oversight systems affect outcomes, and formulating policy options for oversight of future technological products, especially nanotechnology products.
A novel safety assessment strategy applied to non-selective extracts.
Koster, Sander; Leeman, Winfried; Verheij, Elwin; Dutman, Ellen; van Stee, Leo; Nielsen, Lene Munch; Ronsmans, Stefan; Noteborn, Hub; Krul, Lisette
2015-06-01
A main challenge in food safety research is to demonstrate that processing of foodstuffs does not lead to the formation of substances for which the safety upon consumption might be questioned. This is especially so since food is a complex matrix in which the analytical detection of substances, and consequent risk assessment thereof, is difficult to determine. Here, a pragmatic novel safety assessment strategy is applied to the production of non-selective extracts (NSEs), used for different purposes in food such as for colouring purposes, which are complex food mixtures prepared from reference juices. The Complex Mixture Safety Assessment Strategy (CoMSAS) is an exposure driven approach enabling to efficiently assess the safety of the NSE by focussing on newly formed substances or substances that may increase in exposure during the processing of the NSE. CoMSAS enables to distinguish toxicologically relevant from toxicologically less relevant substances, when related to their respective levels of exposure. This will reduce the amount of work needed for identification, characterisation and safety assessment of unknown substances detected at low concentration, without the need for toxicity testing using animal studies. In this paper, the CoMSAS approach has been applied for elderberry and pumpkin NSEs used for food colouring purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
On statistical inference in time series analysis of the evolution of road safety.
Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora
2013-11-01
Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alolah, Turki; Stewart, Rodney A; Panuwatwanich, Kriengsak; Mohamed, Sherif
2014-07-01
In the public schools of many developing countries, numerous accidents and incidents occur because of poor safety regulations and management systems. To improve the educational environment in Saudi Arabia, the Ministry of Education seeks novel approaches to measure school safety performance in order to decrease incidents and accidents. The main objective of this research was to develop a systematic approach for measuring Saudi school safety performance using the balanced scorecard framework philosophy. The evolved third generation balanced scorecard framework is considered to be a suitable and robust framework that captures the system-wide leading and lagging indicators of business performance. The balanced scorecard architecture is ideal for adaptation to complex areas such as safety management where a holistic system evaluation is more effective than traditional compartmentalised approaches. In developing the safety performance balanced scorecard for Saudi schools, the conceptual framework was first developed and peer-reviewed by eighteen Saudi education experts. Next, 200 participants, including teachers, school executives, and Ministry of Education officers, were recruited to rate both the importance and the performance of 79 measurement items used in the framework. Exploratory factor analysis, followed by the confirmatory partial least squares method, was then conducted in order to operationalise the safety performance balanced scorecard, which encapsulates the following five salient perspectives: safety management and leadership; safety learning and training; safety policy, procedures and processes; workforce safety culture; and safety performance. Partial least squares based structural equation modelling was then conducted to reveal five significant relationships between perspectives, namely, safety management and leadership had a significant effect on safety learning and training and safety policy, procedures and processes, both safety learning and training and safety policy, procedures and processes had significant effects on workforce safety culture, and workforce safety culture had a significant effect on safety performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)
NASA Technical Reports Server (NTRS)
Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis;
2011-01-01
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.
Trauma-focused CBT for youth with complex trauma
Mannarino, Anthony P.; Kliethermes, Matthew; Murray, Laura A.
2013-01-01
Objectives Many youth develop complex trauma, which includes regulation problems in the domains of affect, attachment, behavior, biology, cognition, and perception. Therapists often request strategies for using evidence-based treatments (EBTs) for this population. This article describes practical strategies for applying Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) for youth with complex trauma. Methods TF-CBT treatment phases are described and modifications of timing, proportionality and application are described for youth with complex trauma. Practical applications include a) dedicating proportionally more of the model to the TF-CBT coping skills phase; b) implementing the TF-CBT Safety component early and often as needed throughout treatment; c) titrating gradual exposure more slowly as needed by individual youth; d) incorporating unifying trauma themes throughout treatment; and e) when indicated, extending the TF-CBT treatment consolidation and closure phase to include traumatic grief components and to generalize ongoing safety and trust. Results Recent data from youth with complex trauma support the use of the above TF-CBT strategies to successfully treat these youth. Conclusions The above practical strategies can be incorporated into TF-CBT to effectively treat youth with complex trauma. Practice implications Practical strategies include providing a longer coping skills phase which incorporates safety and appropriate gradual exposure; including relevant unifying themes; and allowing for an adequate treatment closure phase to enhance ongoing trust and safety. Through these strategies therapists can successfully apply TF-CBT for youth with complex trauma. PMID:22749612
NASA Astrophysics Data System (ADS)
Effati, Meysam; Thill, Jean-Claude; Shabani, Shahin
2015-04-01
The contention of this paper is that many social science research problems are too "wicked" to be suitably studied using conventional statistical and regression-based methods of data analysis. This paper argues that an integrated geospatial approach based on methods of machine learning is well suited to this purpose. Recognizing the intrinsic wickedness of traffic safety issues, such approach is used to unravel the complexity of traffic crash severity on highway corridors as an example of such problems. The support vector machine (SVM) and coactive neuro-fuzzy inference system (CANFIS) algorithms are tested as inferential engines to predict crash severity and uncover spatial and non-spatial factors that systematically relate to crash severity, while a sensitivity analysis is conducted to determine the relative influence of crash severity factors. Different specifications of the two methods are implemented, trained, and evaluated against crash events recorded over a 4-year period on a regional highway corridor in Northern Iran. Overall, the SVM model outperforms CANFIS by a notable margin. The combined use of spatial analysis and artificial intelligence is effective at identifying leading factors of crash severity, while explicitly accounting for spatial dependence and spatial heterogeneity effects. Thanks to the demonstrated effectiveness of a sensitivity analysis, this approach produces comprehensive results that are consistent with existing traffic safety theories and supports the prioritization of effective safety measures that are geographically targeted and behaviorally sound on regional highway corridors.
Prospective Safety Analysis and the Complex Aviation System
NASA Technical Reports Server (NTRS)
Smith, Brian E.
2013-01-01
Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate both the likelihood of occurrence of hazards, and the likelihood that those hazards will lead to negative safety events. Heuristics extracted from scenarios, questionnaires, and observed trends from scanning the aviation horizon may be helpful in capturing those future changes in a way conducive to safety assessment. What is also needed is a checklist of potential sources of emerging risk that arise from organizational features that are frequently overlooked. The ultimate goal is to develop a pragmatic, workable method for using descriptions of the future aviation context, to generate valid predictions of safety risks.
Sociotechnical approaches to workplace safety: Research needs and opportunities
Robertson, Michelle M.; Hettinger, Lawrence J.; Waterson, Patrick E.; Ian Noy, Y.; Dainoff, Marvin J.; Leveson, Nancy G.; Carayon, Pascale; Courtney, Theodore K.
2015-01-01
The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Practitioner Summary: Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety. PMID:25728246
Schreiber, Franziska; Heimlich, Christiane; Schweitzer, Clea; Stangier, Ulrich
2015-03-01
Several studies have shown that cognitive therapy is an effective treatment for social anxiety disorder (SAD). However, it remains unclear which of the complex interventions are associated with an anxiety reduction during the course of treatment. The aim of this study was to examine the impact of the intervention referred to as the "self-focused attention and safety behaviours experiment" on treatment outcome. This study was part of a randomized controlled trial including 16 sessions of either individual cognitive therapy (CT) or interpersonal therapy (IPT) for SAD. Of particular importance, a concomitant time-series analysis was used to investigate the impact of the self-focused attention and safety behaviours experiment on subsequent social anxiety (1, 2, 3, and 4 weeks after the intervention) in 32 patients with SAD, who are receiving cognitive treatment. The results revealed a significant reduction of social anxiety after the self-focused attention and safety behaviours experiment during the subsequent month of treatment. The findings of the current study confirm current cognitive theories of SAD and demonstrate the importance of interventions that target self-focused attention and safety behaviour in cognitive therapy for SAD.
Zoppetti, Nicola; Bogi, Andrea; Pinto, Iole; Andreuccetti, Daniele
2015-02-01
In this paper, a procedure is described for the assessment of human exposure to magnetic fields with complex waveforms generated by arc-welding equipment. The work moves from the analysis of relevant guidelines and technical standards, underlining their strengths and their limits. Then, the procedure is described with particular attention to the techniques used to treat complex waveform fields. Finally, the procedure is applied to concrete cases encountered in the workplace. The discussion of the results highlights the critical points in the procedure, as well as those related to the evolution of the technical and exposure standards. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Meeting the global demand of sports safety: the intersection of science and policy in sports safety.
Timpka, Toomas; Finch, Caroline F; Goulet, Claude; Noakes, Tim; Yammine, Kaissar
2008-01-01
Sports and physical activity are transforming, and being transformed by, the societies in which they are practised. From the perspectives of both competitive and non-competitive sports, the complexity of their integration into today's society has led to neither sports federations nor governments being able to manage the safety problem alone. In other words, these agencies, whilst promoting sport and physical activity, deliver policy and practices in an uncoordinated way that largely ignores the need for a concurrent overall policy for sports safety. This article reviews and analyses the possibility of developing an overall sports safety policy from a global viewpoint. Firstly, we describe the role of sports in today's societies and the context within which much sport is delivered. We then discuss global issues related to injury prevention and safety in sports, with practical relevance to this important sector, including an analysis of critical policy issues necessary for the future development of the area and significant safety gains for all. We argue that there is a need to establish the sports injury problem as a critical component of general global health policy agendas, and to introduce sports safety as a mandatory component of all sustainable sports organizations. We conclude that the establishment of an explicit intersection between science and policy making is necessary for the future development of sports and the necessary safety gains required for all participants around the world. The Safe Sports International safety promotion programme is outlined as an example of an international organization active within this arena.
Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.
Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T
2017-07-01
Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.
Tarling, Maggie; Jones, Anne; Murrells, Trevor; McCutcheon, Helen
2017-01-01
Objectives The main aim of the study was to explore the potential sources of variation and understand the meaning of safety climate for nursing practice in acute hospital settings in the UK. Design A sequential mixed methods design included a cross-sectional survey using the Safety Climate Questionnaire (SCQ) and thematic analysis of focus group discussions. Confirmatory factor analysis (CFA) was used to validate the factor structure of the SCQ. Factor scores were compared between nurses working in operating theatres, critical care and ward areas. Results from the survey and the thematic analysis were then compared and synthesised. Setting A London University. Participants 319 registered nurses working in acute hospital settings completed the SCQ and a further 23 nurses participated in focus groups. Results CFA indicated that there was a good model fit on some criteria (χ2=1683.699, df=824, p<0.001; χ2/df=2.04; root mean square error of approximation=0.058) but a less acceptable fit on comparative fit index which is 0.804. There was a statistically significant difference between clinical specialisms in management commitment (F (4,266)=4.66, p=0.001). Nurses working in operating theatres had lower scores compared with ward areas and they also reported negative perceptions about management in their focus group. There was significant variation in scores for communication across clinical specialism (F (4,266)=2.62, p=0.035) but none of the pairwise comparisons achieved statistical significance. Thematic analysis identified themes of human factors, clinical management and protecting patients. The system and the human side of caring was identified as a meta-theme. Conclusions The results suggest that the SCQ has some utility but requires further exploration. The findings indicate that safety in nursing practice is a complex interaction between safety systems and the social and interpersonal aspects of clinical practice. PMID:29084793
UConn Hosts IACLEA for 50th Annual Conference
ERIC Educational Resources Information Center
Hudd, Robert S.
2008-01-01
The decision that led to the 1992 opening of the University of Connecticut's new public safety complex was excellent timing. Three years after the complex opened, complete with a state-of-the-art Public Safety Answering Point (PSAP), an emergency operations/training center and an indoor firing range, the quiet, nearly 4,000-acre UConn campus…
Fragility Analysis of Concrete Gravity Dams
NASA Astrophysics Data System (ADS)
Tekie, Paulos B.; Ellingwood, Bruce R.
2002-09-01
Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.
Validating an Air Traffic Management Concept of Operation Using Statistical Modeling
NASA Technical Reports Server (NTRS)
He, Yuning; Davies, Misty Dawn
2013-01-01
Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis
Proceedings of the Sixth NASA Langley Formal Methods (LFM) Workshop
NASA Technical Reports Server (NTRS)
Rozier, Kristin Yvonne (Editor)
2008-01-01
Today's verification techniques are hard-pressed to scale with the ever-increasing complexity of safety critical systems. Within the field of aeronautics alone, we find the need for verification of algorithms for separation assurance, air traffic control, auto-pilot, Unmanned Aerial Vehicles (UAVs), adaptive avionics, automated decision authority, and much more. Recent advances in formal methods have made verifying more of these problems realistic. Thus we need to continually re-assess what we can solve now and identify the next barriers to overcome. Only through an exchange of ideas between theoreticians and practitioners from academia to industry can we extend formal methods for the verification of ever more challenging problem domains. This volume contains the extended abstracts of the talks presented at LFM 2008: The Sixth NASA Langley Formal Methods Workshop held on April 30 - May 2, 2008 in Newport News, Virginia, USA. The topics of interest that were listed in the call for abstracts were: advances in formal verification techniques; formal models of distributed computing; planning and scheduling; automated air traffic management; fault tolerance; hybrid systems/hybrid automata; embedded systems; safety critical applications; safety cases; accident/safety analysis.
Napping during breaks on night shift: critical care nurse managers' perceptions.
Edwards, Marie P; McMillan, Diana E; Fallis, Wendy M
2013-01-01
Fatigue associated with shiftwork can threaten the safety and health of nurses and the patients in their care. Napping during night shift breaks has been shown to be an effective strategy to decrease fatigue and enhance performance in a variety of work environments, but appears to have mixed support within health care. The purpose of this study was to explore critical care unit managers'perceptions of and experiences with their nursing staff's napping practices on night shift, including their perceptions of the benefits and barriers to napping/not napping in terms of patient safety and nurses'personal health and safety. A survey design was used. Forty-seven Canadian critical care unit managers who were members of the Canadian Association of Critical Care Nurses responded to the web-based survey. Data analysis involved calculation of frequencies and percentages for demographic data, use of the Friedman rank test for comparison of managers' perceptions, and content analysis for responses to open-ended questions. The findings of this study offer valuable insights into the complexities and conflicts perceived by managers with respect to napping on night shift breaks by nursing staff Staff and patient health and safety issues, work and break expectations and experiences, and strengths and deficits related to organizational napping resources and policy are considerations that will be instrumental in the development of effective napping strategies and guidelines.
29 CFR 1960.25 - Qualifications of safety and health inspectors and agency inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... environments where there are less complex hazards, such safety and health specializations as cited above may... 29 Labor 9 2012-07-01 2012-07-01 false Qualifications of safety and health inspectors and agency... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Inspection and Abatement § 1960.25 Qualifications...
29 CFR 1960.25 - Qualifications of safety and health inspectors and agency inspections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environments where there are less complex hazards, such safety and health specializations as cited above may... 29 Labor 9 2010-07-01 2010-07-01 false Qualifications of safety and health inspectors and agency... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Inspection and Abatement § 1960.25 Qualifications...
29 CFR 1960.25 - Qualifications of safety and health inspectors and agency inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... environments where there are less complex hazards, such safety and health specializations as cited above may... 29 Labor 9 2014-07-01 2014-07-01 false Qualifications of safety and health inspectors and agency... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Inspection and Abatement § 1960.25 Qualifications...
29 CFR 1960.25 - Qualifications of safety and health inspectors and agency inspections.
Code of Federal Regulations, 2011 CFR
2011-07-01
... environments where there are less complex hazards, such safety and health specializations as cited above may... 29 Labor 9 2011-07-01 2011-07-01 false Qualifications of safety and health inspectors and agency... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Inspection and Abatement § 1960.25 Qualifications...
29 CFR 1960.25 - Qualifications of safety and health inspectors and agency inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... environments where there are less complex hazards, such safety and health specializations as cited above may... 29 Labor 9 2013-07-01 2013-07-01 false Qualifications of safety and health inspectors and agency... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Inspection and Abatement § 1960.25 Qualifications...
Principles and Benefits of Explicitly Designed Medical Device Safety Architecture.
Larson, Brian R; Jones, Paul; Zhang, Yi; Hatcliff, John
The complexity of medical devices and the processes by which they are developed pose considerable challenges to producing safe designs and regulatory submissions that are amenable to effective reviews. Designing an appropriate and clearly documented architecture can be an important step in addressing this complexity. Best practices in medical device design embrace the notion of a safety architecture organized around distinct operation and safety requirements. By explicitly separating many safety-related monitoring and mitigation functions from operational functionality, the aspects of a device most critical to safety can be localized into a smaller and simpler safety subsystem, thereby enabling easier verification and more effective reviews of claims that causes of hazardous situations are detected and handled properly. This article defines medical device safety architecture, describes its purpose and philosophy, and provides an example. Although many of the presented concepts may be familiar to those with experience in realization of safety-critical systems, this article aims to distill the essence of the approach and provide practical guidance that can potentially improve the quality of device designs and regulatory submissions.
Aircraft Flight Safety: A Bibliography. (La Securite en Vol: Une Bibliographie)
1993-12-01
having been installed 93A27135 with the wrong bolts during maintenance. An DRURY , COLIN G. (New York State Univ., analysis of the complex events...accident rates. The REJMAN, MICHAEL H.; SYMONDS, COLIN J.; 0 conclusion made is that, Judgement Training has SHEPHERD, ERIC W. (City of London Polytech...from training 0 software to controlled dynamic simulations 93N19702 conducted with mockups, tooling, and subjects in SYMONDS, COLIN J.; REJMAN
Goh, Yang Miang; Askar Ali, Mohamed Jawad
2016-08-01
One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
From Invention to Innovation: Risk Analysis to Integrate One Health Technology in the Dairy Farm
Lombardo, Andrea; Boselli, Carlo; Amatiste, Simonetta; Ninci, Simone; Frazzoli, Chiara; Dragone, Roberto; De Rossi, Alberto; Grasso, Gerardo; Mantovani, Alberto; Brajon, Giovanni
2017-01-01
Current Hazard Analysis Critical Control Points (HACCP) approaches mainly fit for food industry, while their application in primary food production is still rudimentary. The European food safety framework calls for science-based support to the primary producers’ mandate for legal, scientific, and ethical responsibility in food supply. The multidisciplinary and interdisciplinary project ALERT pivots on the development of the technological invention (BEST platform) and application of its measurable (bio)markers—as well as scientific advances in risk analysis—at strategic points of the milk chain for time and cost-effective early identification of unwanted and/or unexpected events of both microbiological and toxicological nature. Health-oriented innovation is complex and subject to multiple variables. Through field activities in a dairy farm in central Italy, we explored individual components of the dairy farm system to overcome concrete challenges for the application of translational science in real life and (veterinary) public health. Based on an HACCP-like approach in animal production, the farm characterization focused on points of particular attention (POPAs) and critical control points to draw a farm management decision tree under the One Health view (environment, animal health, food safety). The analysis was based on the integrated use of checklists (environment; agricultural and zootechnical practices; animal health and welfare) and laboratory analyses of well water, feed and silage, individual fecal samples, and bulk milk. The understanding of complex systems is a condition to accomplish true innovation through new technologies. BEST is a detection and monitoring system in support of production security, quality and safety: a grid of its (bio)markers can find direct application in critical points for early identification of potential hazards or anomalies. The HACCP-like self-monitoring in primary production is feasible, as well as the biomonitoring of live food producing animals as sentinel population for One Health. PMID:29218304
Psychological safety: The key to high performance in high stress, potentially traumatic environments
James Saveland
2011-01-01
Safety is typically talked about in a context of the absence of injury. The field of resilience engineering has been advocating that we think about safety differently, by taking a systems view and begin to see how people create safety in unsafe systems by managing risk. There is growing recognition that safety is an emergent behavior of our complex system of human...
Dynamic analysis methods for detecting anomalies in asynchronously interacting systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Akshat; Solis, John Hector; Matschke, Benjamin
2014-01-01
Detecting modifications to digital system designs, whether malicious or benign, is problematic due to the complexity of the systems being analyzed. Moreover, static analysis techniques and tools can only be used during the initial design and implementation phases to verify safety and liveness properties. It is computationally intractable to guarantee that any previously verified properties still hold after a system, or even a single component, has been produced by a third-party manufacturer. In this paper we explore new approaches for creating a robust system design by investigating highly-structured computational models that simplify verification and analysis. Our approach avoids the needmore » to fully reconstruct the implemented system by incorporating a small verification component that dynamically detects for deviations from the design specification at run-time. The first approach encodes information extracted from the original system design algebraically into a verification component. During run-time this component randomly queries the implementation for trace information and verifies that no design-level properties have been violated. If any deviation is detected then a pre-specified fail-safe or notification behavior is triggered. Our second approach utilizes a partitioning methodology to view liveness and safety properties as a distributed decision task and the implementation as a proposed protocol that solves this task. Thus the problem of verifying safety and liveness properties is translated to that of verifying that the implementation solves the associated decision task. We develop upon results from distributed systems and algebraic topology to construct a learning mechanism for verifying safety and liveness properties from samples of run-time executions.« less
Tactile display landing safety and precision improvements for the Space Shuttle
NASA Astrophysics Data System (ADS)
Olson, John M.
A tactile display belt using 24 electro-mechanical tactile transducers (tactors) was used to determine if a modified tactile display system, known as the Tactile Situation Awareness System (TSAS) improved the safety and precision of a complex spacecraft (i.e. the Space Shuttle Orbiter) in guided precision approaches and landings. The goal was to determine if tactile cues enhance safety and mission performance through reduced workload, increased situational awareness (SA), and an improved operational capability by increasing secondary cognitive workload capacity and human-machine interface efficiency and effectiveness. Using both qualitative and quantitative measures such as NASA's Justiz Numerical Measure and Synwork1 scores, an Overall Workload (OW) measure, the Cooper-Harper rating scale, and the China Lake Situational Awareness scale, plus Pre- and Post-Flight Surveys, the data show that tactile displays decrease OW, improve SA, counteract fatigue, and provide superior warning and monitoring capacity for dynamic, off-nominal, high concurrent workload scenarios involving complex, cognitive, and multi-sensory critical scenarios. Use of TSAS for maintaining guided precision approaches and landings was generally intuitive, reduced training times, and improved task learning effects. Ultimately, the use of a homogeneous, experienced, and statistically robust population of test pilots demonstrated that the use of tactile displays for Space Shuttle approaches and landings with degraded vehicle systems, weather, and environmental conditions produced substantial improvements in safety, consistency, reliability, and ease of operations under demanding conditions. Recommendations for further analysis and study are provided in order to leverage the results from this research and further explore the potential to reduce the risk of spaceflight and aerospace operations in general.
Use of Failure Mode and Effects Analysis to Improve Emergency Department Handoff Processes.
Sorrentino, Patricia
2016-01-01
The purpose of this article is to describe a quality improvement process using failure mode and effects analysis (FMEA) to evaluate systems handoff communication processes, improve emergency department (ED) throughput and reduce crowding through development of a standardized handoff, and, ultimately, improve patient safety. Risk of patient harm through ineffective communication during handoff transitions is a major reason for breakdown of systems. Complexities of ED processes put patient safety at risk. An increased incidence of submitted patient safety event reports for handoff communication failures between the ED and inpatient units solidified a decision to implement the use of FMEA to identify handoff failures to mitigate patient harm through redesign. The clinical nurse specialist implemented an FMEA. Handoff failure themes were created from deidentified retrospective reviews. Weekly meetings were held over a 3-month period to identify failure modes and determine cause and effect on the process. A functional block diagram process map tool was used to illustrate handoff processes. An FMEA grid was used to list failure modes and assign a risk priority number to quantify results. Multiple areas with actionable failures were identified. A majority of causes for high-priority failure modes were specific to communications. Findings demonstrate the complexity of transition and handoff processes. The FMEA served to identify and evaluate risk of handoff failures and provide a framework for process improvement. A focus on mentoring nurses to quality handoff processes so that it becomes habitual practice is crucial to safe patient transitions. Standardizing content and hardwiring within the system are best practice. The clinical nurse specialist is prepared to provide strong leadership to drive and implement system-wide quality projects.
Jones, Sarahjane
2016-10-01
The aim of this study was to discover and describe how patients, carers and case management nurses define safety and compare it to the traditional risk reduction and harm avoidance definition of safety. Care services are increasingly being delivered in the home for patients with complex long-term conditions. However, the concept of safety remains largely unexplored. A sequential, exploratory mixed method design. A qualitative case study of the UK National Health Service case management programme in the English UK National Health Service was deployed during 2012. Thirteen interviews were conducted with patients (n = 9) and carers (n = 6) and three focus groups with nurses (n = 17) from three community care providers. The qualitative element explored the definition of safety. Data were subjected to framework analysis and themes were identified by participant group. Sequentially, a cross-sectional survey was conducted during 2013 in a fourth community care provider (patient n = 35, carer n = 19, nurse n = 26) as a form of triangulation. Patients and carers describe safety differently to case management nurses, choosing to focus on meeting needs. They use more positive language and recognize the role they have in safety in home-delivered health care. In comparison, case management nurses described safety similarly to the definitions found in the literature. However, when offered the patient and carer definition of safety, they preferentially selected this definition to their own or the literature definition. Patients and carers offer an alternative perspective on patient safety in home-delivered health care that identifies their role in ensuring safety and is more closely aligned with the empowerment philosophy of case management. © 2016 John Wiley & Sons Ltd.
The influence of ship's stability on safety of navigation
NASA Astrophysics Data System (ADS)
Hanzu-Pazara, R.; Duse; Varsami, C.; Andrei, C.; Dumitrache, R.
2016-08-01
Ship's stability is one of the most important and complex concept about safety of ship and safety of navigation and it is governed by maritime law as well as maritime codes. The paper presents the importance of ship's intact stability as part of the general concept of ship's seaworthiness. There is always a correlation between ship’ stability and safety of ship and safety of navigation. Loss of ship's stability is presented as a threat to safety of navigation. We are going to present the causes that lead to ship stability failure and their impact on safety of navigation. A study of various ship stability casualties in heavy weather conditions are going to be presented, the causes are going to be analyzed and the possible ways of stability failures are assessed. Vessel's intact stability is a fundamental component of seaworthiness so it is in the interest of all owners/operators to learn about this topic and ensure that their vessel possesses a satisfactory level of stability in order to ensure its safety as well as that of the people on board the ship. Understanding ship's stability, trim, stress, and the basics of ship's construction is a key to keeping a ship seaworthy. The findings of this study can be beneficial to the maritime safety administrations to adopt decision-making on maritime safety management, but it is also important to carry out statistics and analysis of marine casualties to help to adopt proper safety management measures. Moreover, the study can be a useful guidance for masters and officers on board vessel in order to understand the factors that contribute to ship stability failure during the voyage not only in port during loading operations and to take preventive measures to avoid to put the ship in such a dangerous situations.
Grant, Suzanne; Checkland, Katherine; Bowie, Paul; Guthrie, Bruce
2017-04-27
The handling of laboratory, imaging and other test results in UK general practice is a high-volume organisational routine that is both complex and high risk. Previous research in this area has focused on errors and harm, but a complementary approach is to better understand how safety is achieved in everyday practice. This paper ethnographically examines the role of informal dimensions of test results handling routines in the achievement of safety in UK general practice and how these findings can best be developed for wider application by policymakers and practitioners. Non-participant observation was conducted of high-volume organisational routines across eight UK general practices with diverse organisational characteristics. Sixty-two semi-structured interviews were also conducted with the key practice staff alongside the analysis of relevant documents. While formal results handling routines were described similarly across the eight study practices, the everyday structure of how the routine should be enacted in practice was informally understood. Results handling safety took a range of local forms depending on how different aspects of safety were prioritised, with practices varying in terms of how they balanced thoroughness (i.e. ensuring the high-quality management of results by the most appropriate clinician) and efficiency (i.e. timely management of results) depending on a range of factors (e.g. practice history, team composition). Each approach adopted created its own potential risks, with demands for thoroughness reducing productivity and demands for efficiency reducing handling quality. Irrespective of the practice-level approach adopted, staff also regularly varied what they did for individual patients depending on the specific context (e.g. type of result, patient circumstances). General practices variably prioritised a legitimate range of results handling safety processes and outcomes, each with differing strengths and trade-offs. Future safety improvement interventions should focus on how to maximise practice-level knowledge and understanding of the range of context-specific approaches available and the safeties and risks inherent in each within the context of wider complex system conditions and interactions. This in turn has the potential to inform new kinds of proactive, contextually appropriate approaches to intervention development and implementation focusing on the enhanced deliberation of the safety of existing high-volume routines.
Safety criteria for organic watch list tanks at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meacham, J.E., Westinghouse Hanford
1996-08-01
This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.
A new method to evaluate future impact of vehicle safety technology in Sweden.
Strandroth, Johan; Sternlund, Simon; Tingvall, Claes; Johansson, Roger; Rizzi, Matteo; Kullgren, Anders
2012-10-01
In the design of a safe road transport system there is a need to better understand the safety challenges lying ahead. One way of doing that is to evaluate safety technology with retrospective analysis of crashes. However, by using retros- pective data there is the risk of adapting safety innovations to scenarios irrelevant in the future. Also, challenges arise as safety interventions do not act alone but are rather interacting components in a complex road transport system. The objective of this study was therefore to facilitate the prioritizing of road safety measures by developing and applying a new method to consider possible impact of future vehicle safety technology. The key point was to project the chain of events leading to a crash today into the crashes for a given time in the future. Assumptions on implementation on safety technologies were made and these assump- tions were applied on the crashes of today. It was estimated which crashes would be prevented and the residual was analyzed to identify the characteristics of future crashes. The Swedish Transport Administration's in-depth studies of fatal crashes from 2010 involving car passengers (n=156) were used. This study estimated that the number of killed car occupant would be reduced with 53 percent from the year 2010 to 2020. Through this new method, valuable information regarding the characteristic of the future crashes was found. The results of this study showed that it was possible to evaluate future impact of vehicle safety technology if detailed and representative crash data is available.
Understanding procedural violations using Safety-I and Safety-II: The case of community pharmacies.
Jones, Christian E L; Phipps, Denham L; Ashcroft, Darren M
2018-06-01
Procedural violations are known to occur in a range of work settings, and are an important topic of interest with regard to safety management. A Safety-I perspective sees violations as undesirable digressions from standardised procedures, while a Safety-II perspective sees violations as adaptations to a complex work system. This study aimed to apply both perspectives to the examination of violations in community pharmacies. Twenty-four participants (13 pharmacists and 11 pharmacy support staff) were purposively sampled to participate in semi-structured interviews using the critical incident technique. Participants described violations they made during the course of their work. Interviews were digitally recorded, transcribed verbatim and analysed using template analysis. Community pharmacies located in England and Wales. 31 procedural violations were described during the interviews revealing multiple reasons for violations in this setting. Our findings suggest that from a Safety-II perspective, staff violated to adapt to situations and to manage safety. However, participants also violated procedures in order to maintain productivity which was found to increase risk in some, but not all situations. Procedural violations often relied on the context in which staff were working, resulting in the violation being deemed rational to the individual making the violation, yet the behaviour may be difficult to justify from an outside perspective. Combining Safety-I and Safety-II perspectives provided a detailed understanding of the underlying reasons for procedural violations. Our findings identify aspects of practice that could benefit from targeted interventions to help support staff in providing safe patient care.
NASA Technical Reports Server (NTRS)
Dill, Evan T.; Young, Steven D.
2015-01-01
In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB).
Structural Element Testing in Support of the Design of the NASA Composite Crew Module
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.
System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Adam David; Mohagheghi, Amir H.; Cohn, Brian
In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) andmore » system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.« less
Indonesian Sea Accident Analysis (Case Study From 2003 – 2013)
NASA Astrophysics Data System (ADS)
Arya Dewanto, Y.; Faturachman, D.
2018-03-01
There are so many accidents in sea transportation in Indonesia. Most of the accidents happen because of low concern aspects of the safety and security of the crew. In sailing, a man as transport users to interact with the ship and the surrounding environment (including other ships, cruise lines, ports, and the situation of local conditions). These interactions are sometimes very complex and related to various aspects of. Aware of the multiplicity of aspects related to the third of these factors, seeking the safety of cruise through a reduction in the number of accidents and the risk of death and serious injuries due to accidents and goods transported is certainly not enough attempted through mono-sector approach, but rather takes a multi-sector approach to the efforts. In this paper, we described the Indonesian Sea Transportation accident analysis for eleven years divided into four items: total of ship accident type, ship accident factor, total of casualties, region of ship accidents. All data founded from Marine Court (Mahkamah Pelayaran). From that 4 items we can find Indonesia Sea Accident Analysis from 2003-2013.
A Concept Analysis of Systems Thinking.
Stalter, Ann M; Phillips, Janet M; Ruggiero, Jeanne S; Scardaville, Debra L; Merriam, Deborah; Dolansky, Mary A; Goldschmidt, Karen A; Wiggs, Carol M; Winegardner, Sherri
2017-10-01
This concept analysis, written by the National Quality and Safety Education for Nurses (QSEN) RN-BSN Task Force, defines systems thinking in relation to healthcare delivery. A review of the literature was conducted using five databases with the keywords "systems thinking" as well as "nursing education," "nursing curriculum," "online," "capstone," "practicum," "RN-BSN/RN to BSN," "healthcare organizations," "hospitals," and "clinical agencies." Only articles that focused on systems thinking in health care were used. The authors identified defining attributes, antecedents, consequences, and empirical referents of systems thinking. Systems thinking was defined as a process applied to individuals, teams, and organizations to impact cause and effect where solutions to complex problems are accomplished through collaborative effort according to personal ability with respect to improving components and the greater whole. Four primary attributes characterized systems thinking: dynamic system, holistic perspective, pattern identification, and transformation. Using the platform provided in this concept analysis, interprofessional practice has the ability to embrace planned efforts to improve critically needed quality and safety initiatives across patients' lifespans and all healthcare settings. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Chen, Liangzhe; Duan, Sisi
Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here amore » novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.« less
77 FR 14007 - Sunshine Act Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...
Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity
NASA Technical Reports Server (NTRS)
Brinton, Christopher R.
1996-01-01
The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.
ERIC Educational Resources Information Center
Bonometti, Patrizia
2012-01-01
Purpose: The aim of this contribution is to describe a new complexity-science-based approach for improving safety, quality and efficiency and the way it was implemented by TenarisDalmine. Design/methodology/approach: This methodology is called "a safety-building community". It consists of a safety-behaviour social self-construction…
Prioritizing Threats to Patient Safety in Rural Primary Care
ERIC Educational Resources Information Center
Singh, Ranjit; Singh, Ashok; Servoss, Timothy J.; Singh, Gurdev
2007-01-01
Context: Rural primary care is a complex environment in which multiple patient safety challenges can arise. To make progress in improving safety with limited resources, each practice needs to identify those safety problems that pose the greatest threat to patients and focus efforts on these. Purpose: To describe and field-test a novel approach to…
Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.
High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel A. Mosher; Xia Tang; Ronald J. Brown
2007-07-27
This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less
Splenic gene delivery system using self-assembling nano-complex with phosphatidylserine analog.
Kurosaki, Tomoaki; Nakasone, Chihiro; Kodama, Yukinobu; Egashira, Kanoko; Harasawa, Hitomi; Muro, Takahiro; Nakagawa, Hiroo; Kitahara, Takashi; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi
2015-01-01
The recognition of phosphatidylserine on the erythrocyte membrane mediates erythrophagocytosis by resident spleen macrophages. The application of phosphatidylserine to a gene vector may be a novel approach for splenic drug delivery. Therefore, we chose 1,2-dioleoyl-sn-glycero-3-phospho-L-serin (DOPS) as an analogue of phosphatidylserine for splenic gene delivery of plasmid DNA (pDNA). In the present study, we successfully prepared a stable pDNA ternary complex using DOPS and polyethyleneimine (PEI) and evaluated its efficacy and safety. The pDNA/PEI complex had a positive charge and showed high transgene efficacy, although it caused cytotoxicity and agglutination. The addition of DOPS changed the ζ-potential of the pDNA/PEI complex to negative. It is known that anionic complexes are not taken up well by cells. Surprisingly, however, the pDNA/PEI/DOPS complex showed relatively high transgene efficacy in vitro. Fluorescence microscope observation revealed that the pDNA/PEI/DOPS complex internalized the cells while maintaining the complex formation. The injection of the pDNA/PEI complex killed most mice within 24 h at high doses, although all mice in the pDNA/PEI/DOPS complex group survived. The ternary complex with DOPS showed markedly better safety compared with the pDNA/PEI complex. The pDNA/PEI/DOPS complex showed high gene expression selectively in the spleen after intravenous injection into mice. Thus the ternary complex with DOPS can be used to deliver pDNA to the spleen, in which immune cells are abundant. It appears to have an excellent safety level, although further study to determine the mechanism of action is necessary.
10 CFR 830.204 - Documented safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Documented safety analysis. 830.204 Section 830.204 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.204 Documented safety analysis... approval from DOE for the methodology used to prepare the documented safety analysis for the facility...
Honkalampi-Hämäläinen, U; Bradley, E L; Castle, L; Severin, I; Dahbi, L; Dahlman, O; Lhuguenot, J-C; Andersson, M A; Hakulinen, P; Hoornstra, D; Mäki-Paakkanen, J; Salkinoja-Salonen, M; Turco, L; Stammati, A; Zucco, F; Weber, A; von Wright, A
2010-03-01
In vitro toxicological tests have been proposed as an approach to complement the chemical safety assessment of food contact materials, particularly those with a complex or unknown chemical composition such as paper and board. Among the concerns raised regarding the applicability of in vitro tests are the effects of interference of the extractables on the outcome of the cytotoxicity and genotoxicity tests applied and the role of known compounds present in chemically complex materials, such as paper and board, either as constituents or contaminants. To answer these questions, a series of experiments were performed to assess the role of natural substances (wood extracts, resin acids), some additives (diisopropylnaphthalene, phthalates, acrylamide, fluorescent whitening agents) and contaminants (2,4-diaminotoluene, benzo[a]pyrene) in the toxicological profile of paper and board. These substances were individually tested or used to spike actual paper and board extracts. The toxic concentrations of diisopropylnaphthalenes and phthalates were compared with those actually detected in paper and board extracts showing conspicuous toxicity. According to the results of the spiking experiments, the extracts did not affect the toxicity of tested chemicals nor was there any significant metabolic interference in the cases where two compounds were used in tests involving xenobiotic metabolism by the target cells. While the identified substances apparently have a role in the cytotoxicity of some of the project samples, their presence does not explain the total toxicological profile of the extracts. In conclusion, in vitro toxicological testing can have a role in the safety assessment of chemically complex materials in detecting potentially harmful activities not predictable by chemical analysis alone.
Modernization at the Y-12 National Security Complex: A Case for Additional Experimental Benchmarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornbury, M. L.; Juarez, C.; Krass, A. W.
Efforts are underway at the Y-12 National Security Complex (Y-12) to modernize the recovery, purification, and consolidation of un-irradiated, highly enriched uranium metal. Successful integration of advanced technology such as Electrorefining (ER) eliminates many of the intermediate chemistry systems and processes that are the current and historical basis of the nuclear fuel cycle at Y-12. The cost of operations, the inventory of hazardous chemicals, and the volume of waste are significantly reduced by ER. It also introduces unique material forms and compositions related to the chemistry of chloride salts for further consideration in safety analysis and engineering. The work hereinmore » briefly describes recent investigations of nuclear criticality for 235UO2Cl2 (uranyl chloride) and 6LiCl (lithium chloride) in aqueous solution. Of particular interest is the minimum critical mass of highly enriched uranium as a function of the molar ratio of 6Li to 235U. The work herein also briefly describes recent investigations of nuclear criticality for 235U metal reflected by salt mixtures of 6LiCl or 7LiCl (lithium chloride), KCl (potassium chloride), and 235UCl3 or 238UCl3 (uranium tri-chloride). Computational methods for analysis of nuclear criticality safety and published nuclear data are employed in the absence of directly relevant experimental criticality benchmarks.« less
Manufacturing of biodrugs: need for harmonization in regulatory standards.
Sahoo, Niharika; Choudhury, Koel; Manchikanti, Padmavati
2009-01-01
Biodrugs (biologics) are much more complex than chemically synthesized drugs because of their structural heterogeneity and interactions within a given biologic system. The manufacturing process in the biodrug industry varies with each type of molecule and is far more elaborate and stringent due to the use of living organisms and complex substrates. Product purity and altered structural characteristics leading to potential immunogenicity have often been of concern when establishing quality and safety in the use of biodrugs. Regulatory compliance in manufacturing and commercialization of biodrugs involves quality control, quality assurance, and batch documentation. Many factors such as host cell development, cell bank establishment, cell culture, protein production, purification, analysis, formulation, storage, and handling are critical for ensuring the purity, activity, and safety of the finished product. Good Manufacturing Practice (GMP) for biodrugs has been developed in certain regions such as the EU, US, and Japan. Due to differences in manufacturing methods and systems, product-specific GMP guidelines are evolving. In general, there are variations in GMP guidelines between countries, which lead to difficulty for the manufacturers in conforming to different standards, thus entailing delays in the commercialization of biodrugs. There is a need to develop a unified regulatory guideline for biodrug manufacturing across various countries, which would be helpful in the marketing of products and trade. This review deals with the comparative framework and analysis of GMP regulation of biodrugs.
Flynn, Michael A.; Eggerth, Donald E.; Jacobson, C. Jeffrey
2015-01-01
Background Undocumented immigration to the United States has grown dramatically over the past 25 years. This study explores undocumented status as a social determinant of occupational health by examining its perceived consequences on workplace safety of Latino immigrants. Methods Guided by the Theory of Work Adjustment, qualitative analysis was conducted on transcripts from focus groups and individual interviews conducted with a convenience sample of Latino immigrant workers. Results Participants reported that unauthorized status negatively impacted their safety at work and resulted in a degree of alienation that exceeded the specific proscriptions of the law. Participants overwhelming used a strategy of disengagement to cope with the challenges they face as undocumented immigrants. Conclusion This study describes the complex web of consequences resulting from undocumented status and its impact on occupational health. This study presents a framework connecting the daily work experiences of immigrants, the coping strategy of disengagement, and efforts to minimize the impact of structural violence. PMID:26471878
Rangel-S, Maria Ligia
2007-01-01
This paper discusses communication as a technology for risk control with health and safety protection and promotion, within the context of a "risk society". As a component of Risk Analysis, risk communication is a technology that appears in risk literature, with well defined objectives, principles and models. These aspects are described and the difficulties are stressed, taking into consideration the multiple rationales related to risks in the culture and the many different aspects of risk regulation and control in the so-called "late modernity". Consideration is also given to the complexity of the communications process, guided by theoretical and methodological discussions in the field. In order to understand the true value of the communications field for risk control with health and safety protection and promotion, this paper also offers an overview of communication theories that support discussions of this matter, proposing a critical approach to models that include the dimensions of power and culture in the context of a capitalist society.
Flynn, Michael A; Eggerth, Donald E; Jacobson, C Jeffrey
2015-11-01
Undocumented immigration to the United States has grown dramatically over the past 25 years. This study explores undocumented status as a social determinant of occupational health by examining its perceived consequences on workplace safety of Latino immigrants. Guided by the Theory of Work Adjustment, qualitative analysis was conducted on transcripts from focus groups and individual interviews conducted with a convenience sample of Latino immigrant workers. Participants reported that unauthorized status negatively impacted their safety at work and resulted in a degree of alienation that exceeded the specific proscriptions of the law. Participants overwhelming used a strategy of disengagement to cope with the challenges they face as undocumented immigrants. This study describes the complex web of consequences resulting from undocumented status and its impact on occupational health. This study presents a framework connecting the daily work experiences of immigrants, the coping strategy of disengagement, and efforts to minimize the impact of structural violence. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans
This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s majormore » emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.« less
The melamine incident: implications for international food and feed safety.
Gossner, Céline Marie-Elise; Schlundt, Jørgen; Ben Embarek, Peter; Hird, Susan; Lo-Fo-Wong, Danilo; Beltran, Jose Javier Ocampo; Teoh, Keng Ngee; Tritscher, Angelika
2009-12-01
A major food safety incident in China was made public in September 2008. Kidney and urinary tract effects, including kidney stones, affected about 300,000 Chinese infants and young children, with six reported deaths. Melamine had been deliberately added at milk-collecting stations to diluted raw milk ostensibly to boost its protein content. Subsequently, melamine has been detected in many milk and milk-containing products, as well as other food and feed products, which were also exported to many countries worldwide. The melamine event represents one of the largest deliberate food contamination incidents. We provide a description and analysis of this event to determine the global implications on food and feed safety. A series of factors, including the intentional character of the milk contamination, the young age of the population affected, the large number of potentially contaminated products, the global distribution of these products, and the delay in reporting led this event to take on unexpected proportions. This incident illustrated the complexity of international trade of food products and food ingredients that required immediate actions at international level. Managing food-safety events should be done internationally and early on as soon as multinational consequences are expected. Collaboration between food-safety authorities worldwide is needed to efficiently exchange information and to enable tracking and recalling of affected products to ensure food safety and to protect public health.
The Melamine Incident: Implications for International Food and Feed Safety
Gossner, Céline Marie-Elise; Schlundt, Jørgen; Ben Embarek, Peter; Hird, Susan; Lo-Fo-Wong, Danilo; Beltran, Jose Javier Ocampo; Teoh, Keng Ngee; Tritscher, Angelika
2009-01-01
Background A major food safety incident in China was made public in September 2008. Kidney and urinary tract effects, including kidney stones, affected about 300,000 Chinese infants and young children, with six reported deaths. Melamine had been deliberately added at milk-collecting stations to diluted raw milk ostensibly to boost its protein content. Subsequently, melamine has been detected in many milk and milk-containing products, as well as other food and feed products, which were also exported to many countries worldwide. Objectives The melamine event represents one of the largest deliberate food contamination incidents. We provide a description and analysis of this event to determine the global implications on food and feed safety. Discussions A series of factors, including the intentional character of the milk contamination, the young age of the population affected, the large number of potentially contaminated products, the global distribution of these products, and the delay in reporting led this event to take on unexpected proportions. This incident illustrated the complexity of international trade of food products and food ingredients that required immediate actions at international level. Conclusion Managing food-safety events should be done internationally and early on as soon as multinational consequences are expected. Collaboration between food-safety authorities worldwide is needed to efficiently exchange information and to enable tracking and recalling of affected products to ensure food safety and to protect public health. PMID:20049196
NASA Astrophysics Data System (ADS)
Voronin, Alexander; Vasilchenko, Ann; Khoperskov, Alexander
2018-03-01
The project of small watercourses restoration in the northern part of the Volga-Akhtuba floodplain is considered together with the aim of increasing the watering of the territory during small and medium floods. The topography irregularity, the complex structure of the floodplain valley consisting of large number of small watercourses, the presence of urbanized and agricultural areas require careful preliminary analysis of the hydrological safety and efficiency of geographically distributed project activities. Using the digital terrain and watercourses structure models of the floodplain, the hydrodynamic flood model, the analysis of the hydrological safety and efficiency of several project implementation strategies has been conducted. The objective function values have been obtained from the hydrodynamic calculations of the floodplain territory flooding for virtual digital terrain models simulating alternatives for the geographically distributed project activities. The comparative efficiency of several empirical strategies for the geographically distributed project activities, as well as a two-stage exact solution method for the optimization problem has been studied.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
The behavior of complex aerospace systems is governed by numerous parameters. For safety analysis it is important to understand how the system behaves with respect to these parameter values. In particular, understanding the boundaries between safe and unsafe regions is of major importance. In this paper, we describe a hierarchical Bayesian statistical modeling approach for the online detection and characterization of such boundaries. Our method for classification with active learning uses a particle filter-based model and a boundary-aware metric for best performance. From a library of candidate shapes incorporated with domain expert knowledge, the location and parameters of the boundaries are estimated using advanced Bayesian modeling techniques. The results of our boundary analysis are then provided in a form understandable by the domain expert. We illustrate our approach using a simulation model of a NASA neuro-adaptive flight control system, as well as a system for the detection of separation violations in the terminal airspace.
77 FR 53164 - Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway Workers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-31
...-0059, Notice No. 6] RIN 2130-AC37 Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway... complex issues raised in both the petitions for reconsideration of the final rule published November 30... issues. One of the Petitions included a request for a delay in the effective date of the final rule until...
A Framework to Guide the Assessment of Human-Machine Systems.
Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo
2017-03-01
We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.
NASA Astrophysics Data System (ADS)
Cihangir Çamur, Kübra; Roshani, Mehdi; Pirouzi, Sania
2017-10-01
In studying the urban complex issues, simulation and modelling of public space use considerably helps in determining and measuring factors such as urban safety. Depth map software for determining parameters of the spatial layout techniques; and Statistical Package for Social Sciences (SPSS) software for analysing and evaluating the views of the pedestrians on public safety were used in this study. Connectivity, integration, and depth of the area in the Tarbiat city blocks were measured using the Space Syntax Method, and these parameters are presented as graphical and mathematical data. The combination of the results obtained from the questionnaire and statistical analysis with the results of spatial arrangement technique represents the appropriate and inappropriate spaces for pedestrians. This method provides a useful and effective instrument for decision makers, planners, urban designers and programmers in order to evaluate public spaces in the city. Prior to physical modification of urban public spaces, space syntax simulates the pedestrian safety to be used as an analytical tool by the city management. Finally, regarding the modelled parameters and identification of different characteristics of the case, this study represents the strategies and policies in order to increase the safety of the pedestrians of Tarbiat in Tabriz.
Armitage, Gerry; Hodgson, Ian; Wright, John; Bailey, Kerry; Mkhwana, Estel
2011-01-01
To examine the safety and acceptability of providing antiretroviral therapy (ART) in a resource poor setting. Two-stage observational and qualitative study. Rural hospital in Southern Africa. Structured observation using failure modes and effects analysis (FMEA) of the drug supply, dispensing, prescribing and administration processes. The findings from the FMEA were explored further in qualitative interviews with eight health professionals involved in the delivery of ART. To obtain a patient perspective, a stratified sample of 14 patients receiving ART was also interviewed. Key vulnerabilities in the process of ART provision include supply problems, poor packaging and labelling, inadequate knowledge among staff and lack of staff. Key barriers to successful patient adherence include transport inconsistency in supply and personal financial difficulties. There is, however, strong evidence of patient commitment and adherence. IMPLICATIONS AND CONCLUSION: Medication safety is relatively unexplored in the developing world. This study reveals an encouraging resilience in the health system and adherence among patients in the delivery of complex ART. The vulnerabilities identified, however, undermine patient safety and effectiveness of ART. There are implications for drug manufacturers; international aid agencies funding and supplying ART; and local practitioners. FMEA can help identify potential vulnerabilities and inform safety improvement interventions.
Nahrgang, Jennifer D; Morgeson, Frederick P; Hofmann, David A
2011-01-01
In this article, we develop and meta-analytically test the relationship between job demands and resources and burnout, engagement, and safety outcomes in the workplace. In a meta-analysis of 203 independent samples (N = 186,440), we found support for a health impairment process and for a motivational process as mechanisms through which job demands and resources relate to safety outcomes. In particular, we found that job demands such as risks and hazards and complexity impair employees' health and positively relate to burnout. Likewise, we found support for job resources such as knowledge, autonomy, and a supportive environment motivating employees and positively relating to engagement. Job demands were found to hinder an employee with a negative relationship to engagement, whereas job resources were found to negatively relate to burnout. Finally, we found that burnout was negatively related to working safely but that engagement motivated employees and was positively related to working safely. Across industries, risks and hazards was the most consistent job demand and a supportive environment was the most consistent job resource in terms of explaining variance in burnout, engagement, and safety outcomes. The type of job demand that explained the most variance differed by industry, whereas a supportive environment remained consistent in explaining the most variance in all industries.
14 CFR Appendix B to Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2013 CFR
2013-01-01
....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...
14 CFR Appendix B to Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2014 CFR
2014-01-01
....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...
The application of CFD to the modelling of fires in complex geometries
NASA Astrophysics Data System (ADS)
Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.
The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.
NASA Astrophysics Data System (ADS)
Iftadi, Irwan; Astuti, Rahmaniyah Dwi; Pristiyana, Ardian Ade
2017-11-01
Occupational fatigue in healthcare nurses, which has multifaceted issues, is associated with decreased patient safety and the quality of nursing care. The aim of this study was to investigate the nurses fatigue problem in sub-unit healthcare based on their perceptual experience. Interviews were conducted and analyzed utilizing a direct qualitative content analysis approach using NVivo Software and guided by Model of System Engineering Initiative for Patient Safety (SEIPS). The findings of this research were a steering on what nurses perceive as contributing and preventing to fatigue which are likewise arranged in SEIPS model. It was shown that a macro ergonomic approach is valuable for understanding complexities of work systems, even though it is a small unit organization.
NASA Astrophysics Data System (ADS)
Mitrofanova, O.
2017-01-01
The analysis of the results of experimental researches on revealing the mechanisms of vortex formation in channels of complex geometry in the neutral and conductive media is carried out. The directions of researches related to the study of mechanisms of vortex generation and accumulation of energy by large-scale vortex structures are considered for the possibility of predictions of the man-made accidents and catastrophic natural phenomena. The main goal of ongoing investigations is the solution of the task aimed at improving the safety of nuclear power installations and, in particular, of the fast neutron reactors with liquid-metal coolants, and the prevention of emergency modes arising from acoustic, magnetic and hydrodynamic resonance effects.
Applications of Formal Methods to Specification and Safety of Avionics Software
NASA Technical Reports Server (NTRS)
Hoover, D. N.; Guaspari, David; Humenn, Polar
1996-01-01
This report treats several topics in applications of formal methods to avionics software development. Most of these topics concern decision tables, an orderly, easy-to-understand format for formally specifying complex choices among alternative courses of action. The topics relating to decision tables include: generalizations fo decision tables that are more concise and support the use of decision tables in a refinement-based formal software development process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables for users of decision tables; and test coverage criteria and decision tables. We outline features of a revised version of ORA's decision table tool, Tablewise, which will support many of the new ideas described in this report. We also survey formal safety analysis of specifications and software.
Oh, Hyunjin; Uhm, Dong-Choon; Yoon, Young Joo
2016-01-01
Negative work environments influence the ability of nurses to provide optimal patient care in a safe environment. The purpose of the study was to test a model linking workplace bullying (WPB) and lateral violence (LV) with job stress, intent to leave, and, subsequently, nurse-assessed patient adverse outcomes (safety issues). This descriptive-correlational study examined the relationships between study variables and used a structural equation model to test the validity of the proposed theoretical framework. A convenience sample of 508 clinical nurses working in eight general hospitals in Daejeon, South Korea, completed a questionnaire on measures of WPB, LV, job stress, intent to leave, and nurse-assessed patient safety. Analysis of moment structures was used to estimate a set of three models with competing measurement structures for WPB and LV and the same structural model. Akaike Information Criterion was used for model selection. Among the three proposed models, the model with complex factor loadings was selected (WPB and LV were both associated with verbal abuse and physical threat). WPB directly and indirectly influenced nurse-assessed patient safety. Job stress directly influenced intent to leave, and intent to leave directly influenced nurse-assessed patient safety. The results of the study support the proposition that WPB, job stress, and intent to leave may be associated with nurse-perceived adverse outcomes (patient safety issues) in hospitals. Nurse perceptions of WPB were associated with nurse-assessed patient safety outcomes (adverse events) directly and through mediating job stress and intent to leave. LV was not associated with the mediators or nurse-assessed adverse outcomes (safety).
Cognitive process modelling of controllers in en route air traffic control.
Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark
2012-01-01
In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.
[Efficacy and safety of heptral, vitamin B6 and folic acid during toxic hepatitis induced by CCL4].
Antelava, N A; Gogoluari, M I; Gogoluari, L I; Pirtskhalaĭshvili, N N; Okudzhava, M V
2007-09-01
The aim of this work was to evaluate of efficacy and safety of complex Heptral, Vitamin B6 and Folic Acid in experimental hepatitis therapy compared with monotherapy. Experiments were carried out on pubertal rats. Eperimental hepatitis models were induced by Tetrachlormethane. The tetrachlormethane intoxication was reproduced by subcutaneous injection of CCL(4) 1ml/kg dissolved in 1ml of olive oil. Cytochrome P450, cytochrome b5, reduced glutation,activity of glutationetranspherase and content of ATP in hepatocytes were measured by the spectrophotometric techniques,but content of homocysteine by chromophtography techniques. Under CCL(4) intoxication disturbance of liver detoxication function, energy deficit and surplus of homocysteine were observed. Treatment of the toxic hepatitis with heptral increased the level of cytochrome P450, cytochrome b5, glutation activity of glutationetranspherase glutathione and reduced content of homocysteine. Complex therapy with Heptral and B6 and folic acid reveal more expressive hepatoprotective effect and safety than monotherapy with Heptral. Complex therapy improves not only the parameters of biotransformation (metabolic and conjugation phase), but also normalizes the level of ATP and homocystein. Vitamins B6 and folic acid increases the efficacy and safety of Heptral. This complex was recomended for treatment of hepatitis.
Grant, Suzanne; Guthrie, Bruce
2018-04-01
Patient safety is an increasing concern for health systems internationally. The majority of administrative work in UK general practice takes place in the context of organisational routines such as repeat prescribing and test results handling, where high workloads and increased clinician dependency on administrative staff have been identified as an emerging safety issue. Despite this trend, most research to date has focused on the redistribution of the clinical workload between doctors, nurses and allied health professionals within individual care settings. Drawing on Strauss's negotiated order perspective, we examine ethnographically the achievement of safety across the medical-administrative boundary in key high-volume routines in UK general practice. We focus on two main issues. First, GPs engaged in strategies of demarcation by defining receptionist work as routine, unspecialised and dependent upon GP clinical knowledge and oversight as the safety net to deal with complexity and risk. Receptionists consented to this 'social closure' when describing their role, thus reinforcing the underlying inter-occupational relationship of medical domination. Second, in everyday practice, GPs and receptionists engaged in informal boundary-blurring to safely accommodate the complexity of everyday high-volume routine work. This comprised additional informal discretionary spaces for receptionist decision-making and action that went beyond the routine safety work formally assigned to them. New restratified intra-occupational hierarchies were also being created between receptionists based on the complexity of the safety work that they were authorised to do at practice level, with specialised roles constituting a new form of administrative 'professional project'. The article advances negotiated order theory by providing an in-depth examination of the ways in which medical-administrative boundary-making and boundary-blurring constitute distinct modes of safety in high-volume routines. It also provides the basis for further research and safety improvement to maximise team-level understandings of the pivotal role of medical-administrative negotiations in achieving safety and mitigating risk. Copyright © 2018 Elsevier Ltd. All rights reserved.
Haas, Emily Joy; Yorio, Patrick
2016-03-01
Complex arguments continue to be articulated regarding the theoretical foundation of health and safety management system (HSMS) performance measurement. The culmination of these efforts has begun to enhance a collective understanding. Despite this enhanced theoretical understanding, however, there are still continuing debates and little consensus. The goal of the current research effort was to empirically explore common methods to HSMS performance measurement in mining organizations. The purpose was to determine if value and insight could be added into the ongoing approaches of the best ways to engage in health and safety performance measurement. Nine site-level health and safety management professionals were provided with 133 practices corresponding to 20 HSMS elements, each fitting into the plan, do, check, act phases common to most HSMS. Participants were asked to supply detailed information as to how they (1) assess the performance of each practice in their organization, or (2) would assess each practice if it were an identified strategic imperative. Qualitative content analysis indicated that the approximately 1200 responses provided could be described and categorized into interventions , organizational performance , and worker performance . A discussion of how these categories relate to existing indicator frameworks is provided. The analysis also revealed divergence in two important measurement issues; (1) quantitative vs qualitative measurement and reporting; and (2) the primary use of objective or subjective metrics. In lieu of these findings we ultimately recommend a balanced measurement and reporting approach within the three metric categories and conclude with suggestions for future research.
Haas, Emily Joy; Yorio, Patrick
2016-01-01
Complex arguments continue to be articulated regarding the theoretical foundation of health and safety management system (HSMS) performance measurement. The culmination of these efforts has begun to enhance a collective understanding. Despite this enhanced theoretical understanding, however, there are still continuing debates and little consensus. The goal of the current research effort was to empirically explore common methods to HSMS performance measurement in mining organizations. The purpose was to determine if value and insight could be added into the ongoing approaches of the best ways to engage in health and safety performance measurement. Nine site-level health and safety management professionals were provided with 133 practices corresponding to 20 HSMS elements, each fitting into the plan, do, check, act phases common to most HSMS. Participants were asked to supply detailed information as to how they (1) assess the performance of each practice in their organization, or (2) would assess each practice if it were an identified strategic imperative. Qualitative content analysis indicated that the approximately 1200 responses provided could be described and categorized into interventions, organizational performance, and worker performance. A discussion of how these categories relate to existing indicator frameworks is provided. The analysis also revealed divergence in two important measurement issues; (1) quantitative vs qualitative measurement and reporting; and (2) the primary use of objective or subjective metrics. In lieu of these findings we ultimately recommend a balanced measurement and reporting approach within the three metric categories and conclude with suggestions for future research. PMID:26823642
Network Analytical Tool for Monitoring Global Food Safety Highlights China
Nepusz, Tamás; Petróczi, Andrea; Naughton, Declan P.
2009-01-01
Background The Beijing Declaration on food safety and security was signed by over fifty countries with the aim of developing comprehensive programs for monitoring food safety and security on behalf of their citizens. Currently, comprehensive systems for food safety and security are absent in many countries, and the systems that are in place have been developed on different principles allowing poor opportunities for integration. Methodology/Principal Findings We have developed a user-friendly analytical tool based on network approaches for instant customized analysis of food alert patterns in the European dataset from the Rapid Alert System for Food and Feed. Data taken from alert logs between January 2003 – August 2008 were processed using network analysis to i) capture complexity, ii) analyze trends, and iii) predict possible effects of interventions by identifying patterns of reporting activities between countries. The detector and transgressor relationships are readily identifiable between countries which are ranked using i) Google's PageRank algorithm and ii) the HITS algorithm of Kleinberg. The program identifies Iran, China and Turkey as the transgressors with the largest number of alerts. However, when characterized by impact, counting the transgressor index and the number of countries involved, China predominates as a transgressor country. Conclusions/Significance This study reports the first development of a network analysis approach to inform countries on their transgressor and detector profiles as a user-friendly aid for the adoption of the Beijing Declaration. The ability to instantly access the country-specific components of the several thousand annual reports will enable each country to identify the major transgressors and detectors within its trading network. Moreover, the tool can be used to monitor trading countries for improved detector/transgressor ratios. PMID:19688088
Meshkati, Najmedin; Tabibzadeh, Maryam; Farshid, Ali; Rahimi, Mansour; Alhanaee, Ghena
2016-02-01
The aim of this study is to identify the interdependencies of human and organizational subsystems of multiple complex, safety-sensitive technological systems and their interoperability in the context of sustainability and resilience of an ecosystem. Recent technological disasters with severe environmental impact are attributed to human factors and safety culture causes. One of the most populous and environmentally sensitive regions in the world, the (Persian) Gulf, is on the confluence of an exponentially growing number of two industries--nuclear power and seawater desalination plants--that is changing its land- and seascape. Building upon Rasmussen's model, a macrosystem integrative framework, based on the broader context of human factors, is developed, which can be considered in this context as a "meta-ergonomics" paradigm, for the analysis of interactions, design of interoperability, and integration of decisions of major actors whose actions can affect safety and sustainability of the focused industries during routine and nonroutine (emergency) operations. Based on the emerging realities in the Gulf region, it is concluded that without such systematic approach toward addressing the interdependencies of water and energy sources, sustainability will be only a short-lived dream and prosperity will be a disappearing mirage for millions of people in the region. This multilayered framework for the integration of people, technology, and ecosystem--which has been applied to the (Persian) Gulf--offers a viable and vital approach to the design and operation of large-scale complex systems wherever the nexus of water, energy, and food sources are concerned, such as the Black Sea. © 2016, Human Factors and Ergonomics Society.
Paquin, Allison M; Zimmerman, Kristin M; Kostas, Tia R; Pelletier, Lindsey; Hwang, Angela; Simone, Mark; Skarf, Lara M; Rudolph, James L
2013-11-01
Complex medication regimens are error prone and challenging for patients, which may impact medication adherence and safety. No universal method to assess the complexity of medication regimens (CMRx) exists. The authors aim to review literature for CMRx measurements to establish consistencies and, secondarily, describe CMRx impact on healthcare outcomes. A search of EMBASE and PubMed for studies analyzing at least two medications and complexity components, among those self-managing medications, was conducted. Out of 1204 abstracts, 38 studies were included in the final sample. The majority (74%) of studies used one of five validated CMRx scales; their components and scoring were compared. Universal CMRx assessment is needed to identify and reduce complex regimens, and, thus, improve safety. The authors highlight commonalities among five scales to help build consensus. Common components (i.e., regimen factors) included dosing frequency, units per dose, and non-oral routes. Elements (e.g., twice daily) of these components (e.g., dosing frequency) and scoring varied. Patient-specific factors (e.g., dexterity, cognition) were not addressed, which is a shortcoming of current scales and a challenge for future scales. As CMRx has important outcomes, notably adherence and healthcare utilization, a standardized tool has potential for far-reaching clinical, research, and patient-safety impact.
75 FR 17604 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... Safety Analysis & Forensic Engineering, LLC (SAFE) brought to our attention errors in the preamble that incorrectly attributed to it the comments of another organization, Safety Analysis, Inc. Both of these... Safety Analysis, Inc. SAFE noted that there is no affiliation between SAFE and Safety Analysis, Inc. and...
NASA Astrophysics Data System (ADS)
Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan
2017-08-01
Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.
Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan
2017-08-01
Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.
Active and passive surveillance of enoxaparin generics: a case study relevant to biosimilars.
Grampp, Gustavo; Bonafede, Machaon; Felix, Thomas; Li, Edward; Malecki, Michael; Sprafka, J Michael
2015-03-01
This retrospective analysis assessed the capability of active and passive safety surveillance systems to track product-specific safety events in the USA for branded and generic enoxaparin, a complex injectable subject to immune-related and other adverse events (AEs). Analysis of heparin-induced thrombocytopenia (HIT) incidence was performed on benefit claims for commercial and Medicare supplemental-insured individuals newly treated with enoxaparin under pharmacy benefit (1 January 2009 - 30 June 2012). Additionally, spontaneous reports from the FDA AE Reporting System were reviewed to identify incidence and attribution of enoxaparin-related reports to specific manufacturers. Specific, dispensed products were identifiable from National Drug Codes only in pharmacy-benefit databases, permitting sensitive comparison of HIT incidence in nearly a third of patients treated with brand or generic enoxaparin. After originator medicine's loss of exclusivity, only 5% of spontaneous reports were processed by generic manufacturers; reports attributable to specific generics were approximately ninefold lower than expected based on market share. Claims data were useful for active surveillance of enoxaparin generics dispensed under pharmacy benefits but not for products administered under medical benefits. These findings suggest that the current spontaneous reporting system will not distinguish product-specific safety signals for products distributed by multiple manufacturers, including biosimilars.
Young adult females' views regarding online privacy protection at two time points.
Moreno, Megan A; Kelleher, Erin; Ameenuddin, Nusheen; Rastogi, Sarah
2014-09-01
Risks associated with adolescent Internet use include exposure to inappropriate information and privacy violations. Privacy expectations and policies have changed over time. Recent Facebook security setting changes heighten these risks. The purpose of this study was to investigate views and experiences with Internet safety and privacy protection among older adolescent females at two time points, in 2009 and 2012. Two waves of focus groups were conducted, one in 2009 and the other in 2012. During these focus groups, female university students discussed Internet safety risks and strategies and privacy protection. All focus groups were audio recorded and manually transcribed. Qualitative analysis was conducted at the end of each wave and then reviewed and combined in a separate analysis using the constant comparative method. A total of 48 females participated across the two waves. The themes included (1) abundant urban myths, such as the ability for companies to access private information; (2) the importance of filtering one's displayed information; and (3) maintaining age limits on social media access to avoid younger teens' presence on Facebook. The findings present a complex picture of how adolescents view privacy protection and online safety. Older adolescents may be valuable partners in promoting safe and age-appropriate Internet use for younger teens in the changing landscape of privacy. Copyright © 2014. Published by Elsevier Inc.
Developing a safe on-orbit cryogenic depot
NASA Technical Reports Server (NTRS)
Bahr, Nicholas J.
1992-01-01
New U.S. space initiatives will require technology to realize planned programs such as piloted lunar and Mars missions. Key to the optimal execution of such missions are high performance orbit transfer vehicles and propellant storage facilities. Large amounts of liquid hydrogen and oxygen demand a uniquely designed on-orbit cryogenic propellant depot. Because of the inherent dangers in propellant storage and handling, a comprehensive system safety program must be established. This paper shows how the myriad and complex hazards demonstrate the need for an integrated safety effort to be applied from program conception through operational use. Even though the cryogenic depot is still in the conceptual stage, many of the hazards have been identified, including fatigue due to heavy thermal loading from environmental and operating temperature extremes, micrometeoroid and/or depot ancillary equipment impact (this is an important problem due to the large surface area needed to house the large quantities of propellant), docking and maintenance hazards, and hazards associated with extended extravehicular activity. Various safety analysis techniques were presented for each program phase. Specific system safety implementation steps were also listed. Enhanced risk assessment was demonstrated through the incorporation of these methods.
Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.
Owens, Justin M; Angell, Linda; Hankey, Jonathan M; Foley, James; Ebe, Kazutoshi
2015-09-01
Distracted driving has become a topic of critical importance to driving safety research over the past several decades. Naturalistic driving data offer a unique opportunity to study how drivers engage with secondary tasks in real-world driving; however, the complexities involved with identifying and coding relevant epochs of naturalistic data have limited its accessibility to the general research community. This project was developed to help address this problem by creating an accessible dataset of driver behavior and situational factors observed during distraction-related safety-critical events and baseline driving epochs, using the Strategic Highway Research Program 2 (SHRP2) naturalistic dataset. The new NEST (Naturalistic Engagement in Secondary Tasks) dataset was created using crashes and near-crashes from the SHRP2 dataset that were identified as including secondary task engagement as a potential contributing factor. Data coding included frame-by-frame video analysis of secondary task and hands-on-wheel activity, as well as summary event information. In addition, information about each secondary task engagement within the trip prior to the crash/near-crash was coded at a higher level. Data were also coded for four baseline epochs and trips per safety-critical event. 1,180 events and baseline epochs were coded, and a dataset was constructed. The project team is currently working to determine the most useful way to allow broad public access to the dataset. We anticipate that the NEST dataset will be extraordinarily useful in allowing qualified researchers access to timely, real-world data concerning how drivers interact with secondary tasks during safety-critical events and baseline driving. The coded dataset developed for this project will allow future researchers to have access to detailed data on driver secondary task engagement in the real world. It will be useful for standalone research, as well as for integration with additional SHRP2 data to enable the conduct of more complex research. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Seshia, Shashi S; Bryan Young, G; Makhinson, Michael; Smith, Preston A; Stobart, Kent; Croskerry, Pat
2018-02-01
Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care-related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive-affective biases plus cascade could advance the understanding of cognitive-affective processes that underlie decisions and organizational cultures across the continuum of care. Thematic analysis, qualitative information from several sources being used to support argumentation. Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive-affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive-affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive-affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error-provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error-provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive-affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. © 2017 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.
Gating the holes in the Swiss cheese (part I): Expanding professor Reason's model for patient safety
Bryan Young, G.; Makhinson, Michael; Smith, Preston A.; Stobart, Kent; Croskerry, Pat
2017-01-01
Abstract Introduction Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care–related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. Hypothesis A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive‐affective biases plus cascade could advance the understanding of cognitive‐affective processes that underlie decisions and organizational cultures across the continuum of care. Methods Thematic analysis, qualitative information from several sources being used to support argumentation. Discussion Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive‐affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive‐affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive‐affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error‐provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error‐provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive‐affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. Limitations The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. Conclusions The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. PMID:29168290
NASA Astrophysics Data System (ADS)
Li, Qiong; Geng, Fangzhi
2018-03-01
Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.
Ward, Marie; McDonald, Nick; Morrison, Rabea; Gaynor, Des; Nugent, Tony
2010-02-01
Aircraft maintenance is a highly regulated, safety critical, complex and competitive industry. There is a need to develop innovative solutions to address process efficiency without compromising safety and quality. This paper presents the case that in order to improve a highly complex system such as aircraft maintenance, it is necessary to develop a comprehensive and ecologically valid model of the operational system, which represents not just what is meant to happen, but what normally happens. This model then provides the backdrop against which to change or improve the system. A performance report, the Blocker Report, specific to aircraft maintenance and related to the model was developed gathering data on anything that 'blocks' task or check performance. A Blocker Resolution Process was designed to resolve blockers and improve the current check system. Significant results were obtained for the company in the first trial and implications for safety management systems and hazard identification are discussed. Statement of Relevance: Aircraft maintenance is a safety critical, complex, competitive industry with a need to develop innovative solutions to address process and safety efficiency. This research addresses this through the development of a comprehensive and ecologically valid model of the system linked with a performance reporting and resolution system.
14 CFR 415.115 - Flight safety.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...
14 CFR 415.115 - Flight safety.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...
14 CFR 415.115 - Flight safety.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...
14 CFR 415.115 - Flight safety.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...
14 CFR 415.115 - Flight safety.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety analysis...
Workplace injuries, safety climate and behaviors: application of an artificial neural network.
Abubakar, A Mohammed; Karadal, Himmet; Bayighomog, Steven W; Merdan, Ethem
2018-05-09
This article proposes and tests a model for the interaction effect of the organizational safety climate and behaviors on workplace injuries. Using artificial neural network and survey data from 306 metal casting industry employees in central Anatolia, we found that an organizational safety climate mitigates workplace injuries, and safety behaviors enforce the strength of the negative impact of the safety climate on workplace injuries. The results suggest a complex relationship between the organizational safety climate, safety behavior and workplace injuries. Theoretical and practical implications are discussed in light of decreasing workplace injuries in the Anatolian metal casting industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunbar, K.A.
1972-01-10
A safety survey covering the disciplines of Reactor Safety, Nuclear Criticality Safety, Health Protection and Industrial Safety and Fire Protection was conducted at the ANL-West EBR-II FEF Complex during the period January 10-18, 1972. In addition, the entire ANL-West site was surveyed for Health Protection and Industrial Safety and Fire Protection. The survey was conducted by members of the AEC Chicago Operations Office, a member of RDT-HQ and a member of the RDT-ID site office. Eighteen recommendations resulted from the survey, eleven in the area of Industrial Safety and Fire Protection, five in the area of Reactor Safety and twomore » in the area of Nuclear Criticality Safety.« less
Modern methods of surveyor observations in opencast mining under complex hydrogeological conditions.
NASA Astrophysics Data System (ADS)
Usoltseva, L. A.; Lushpei, V. P.; Mursin, VA
2017-10-01
The article considers the possibility of linking the modern methods of surveying security of open mining works to improve industrial safety in the Primorsky Territory, as well as their use in the educational process. Industrial Safety in the management of Surface Mining depends largely on the applied assessment methods and methods of stability of pit walls and slopes of dumps in the complex mining and hydro-geological conditions.
Smith, Pam; Pearson, Pauline H; Ross, Fiona
2009-03-01
This paper sets the discussion of emotions at work within the modern NHS and the current prioritisation of creating a safety culture within the service. The paper focuses on the work of students, frontline nurses and their managers drawing on recent studies of patient safety in the curriculum, and governance and incentives in the care of patients with complex long term conditions. The primary research featured in the paper combined a case study design with focus groups, interviews and observation. In the patient safety research the importance of physical and emotional safety emerged as a key finding both for users and professionals. In the governance and incentives research, risk emerged as a key concern for managers, frontline workers and users. The recognition of emotions and the importance of emotional labour at an individual and organizational level managed by emotionally intelligent leaders played an important role in promoting worker and patient safety and reducing workplace risk. Nurse managers need to be aware of the emotional complexities of their organizations in order to set up systems to support the emotional wellbeing of professionals and users which in turn ensures safety and reduces risk.
GAO’s Views on DOE’s 1991 Budget for Addressing Problems at the Nuclear Weapons Complex
1990-03-02
management, and efforts by DOE to make its contractors more accountable. Also, the Defense Nuclear Facilities Safety Board mandated by the Congress became...and safety matters. 6 Finally, the Defense Nuclear Facilities Safety Board was established. Although not a DOE action, its establishment, nevertheless
23 CFR 971.212 - Federal lands safety management system (SMS).
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for Development and Implementation.”3 3 “Safety Management Systems: Good Practices for Development and... various levels of complexity depending on the nature of the facility and/or network involved. (e) The SMS...
23 CFR 971.212 - Federal lands safety management system (SMS).
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for Development and Implementation.”3 3 “Safety Management Systems: Good Practices for Development and... various levels of complexity depending on the nature of the facility and/or network involved. (e) The SMS...
23 CFR 971.212 - Federal lands safety management system (SMS).
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for Development and Implementation.”3 3 “Safety Management Systems: Good Practices for Development and... various levels of complexity depending on the nature of the facility and/or network involved. (e) The SMS...
23 CFR 971.212 - Federal lands safety management system (SMS).
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for Development and Implementation.”3 3 “Safety Management Systems: Good Practices for Development and... various levels of complexity depending on the nature of the facility and/or network involved. (e) The SMS...
23 CFR 971.212 - Federal lands safety management system (SMS).
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (b) The SMS may be based on the guidance in “Safety Management Systems: Good Practices for Development and Implementation.”3 3 “Safety Management Systems: Good Practices for Development and... various levels of complexity depending on the nature of the facility and/or network involved. (e) The SMS...
Designing Corporate Training in Developing Economies Using Open Educational Resources
ERIC Educational Resources Information Center
Geith, Chris; Vignare, Karen; Bourquin, Leslie D.; Thiagarajan, Deepa
2010-01-01
The Food Safety Knowledge Network (FSKN) is a collaboration between Michigan State University, the Global Food Safety Initiative of the Consumer Goods Forum, and other food industry and public sector partners. FSKN's goal is to help strengthen the food industry's response to the complex food safety knowledge and training challenges that affect…
Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter
2015-01-01
Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227
Integrated therapy safety management system
Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang
2013-01-01
Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448
Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems
NASA Technical Reports Server (NTRS)
Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael
2013-01-01
The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haverkamp, B.; Krone, J.; Shybetskyi, I.
2013-07-01
The Radioactive Waste Disposal Facility (RWDF) Buryakovka was constructed in 1986 as part of the intervention measures after the accident at Chernobyl NPP (ChNPP). Today, the surface repository for solid low and intermediate level waste (LILW) is still being operated but its maximum capacity is nearly reached. Long-existing plans for increasing the capacity of the facility shall be implemented in the framework of the European Commission INSC Programme (Instrument for Nuclear Safety Co-operation). Within the first phase of this project, DBE Technology GmbH prepared a safety analysis report of the facility in its current state (SAR) and a preliminary safetymore » analysis report (PSAR) for a future extended facility based on the planned enlargement. In addition to a detailed mathematical model, also simplified models have been developed to verify results of the former one and enhance confidence in the results. Comparison of the results show that - depending on the boundary conditions - simplifications like modeling the multi trench repository as one generic trench might have very limited influence on the overall results compared to the general uncertainties associated with respective long-term calculations. In addition to their value in regard to verification of more complex models which is important to increase confidence in the overall results, such simplified models can also offer the possibility to carry out time consuming calculations like probabilistic calculations or detailed sensitivity analysis in an economic manner. (authors)« less
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...
Functional safety for the Advanced Technology Solar Telescope
NASA Astrophysics Data System (ADS)
Bulau, Scott; Williams, Timothy R.
2012-09-01
Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.
Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)
DOT National Transportation Integrated Search
2014-03-24
This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...
10 CFR 830.206 - Preliminary documented safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Preliminary documented safety analysis. 830.206 Section 830.206 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.206 Preliminary documented safety analysis. If construction begins after December 11, 2000, the contractor...
Song, Mingyue; Lopez-Pena, Cynthia Lyliam; McClements, David Julian; Decker, Eric Andrew; Xiao, Hang
2017-05-24
ε-Polylysine (ε-PL) is a potent cationic antimicrobial, but its application as a food additive is currently limited because it tends to precipitate with anionic species in food matrices. Previous research has shown that the formation of an electrostatic complex between cationic ε-PL and anionic pectin (P) improved the physical stability of ε-PL while maintaining its antimicrobial activity. However, the impact of complexation on the effects of ε-PL on health is currently unknown. A subchronic toxicity study was therefore carried out to determine the safety of ingested ε-PL-P complexes using high-fat diet-fed male and female mice. After a 13-week dietary treatment with P, ε-PL, or ε-PL-P complexes, no significant toxicological effects were observed on the survival, mean body weight, food consumption, and organ weights of the animals, suggesting that the complexes were safe for oral consumption. Interestingly, the ε-PL-P complexes were found to have several beneficial health effects: suppression of high-fat diet-induced elevation of serum aspartate aminotransferase and alanine aminotransferase activities, reduction in serum total triglyceride and cholesterol levels, and an increase in fecal excretion of triglycerides. These effects were much stronger in female mice than in male mice. Moreover, the lipid-lowering effects were observed only for the ε-PL-P complexes but not for ε-PL or P alone at the same doses. Overall, our results demonstrate the oral safety of ε-PL-P complexes and their gender-specific lipid-lowering effects in high-fat diet-fed mice, which provide an important basis for the utilization of ε-PL-P complexes in food systems as functional ingredients.
Software-Based Safety Systems in Space - Learning from other Domains
NASA Astrophysics Data System (ADS)
Klicker, M.; Putzer, H.
2012-01-01
Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.
The Development and Deployment of a Maintenance Operations Safety Survey.
Langer, Marie; Braithwaite, Graham R
2016-11-01
Based on the line operations safety audit (LOSA), two studies were conducted to develop and deploy an equivalent tool for aircraft maintenance: the maintenance operations safety survey (MOSS). Safety in aircraft maintenance is currently measured reactively, based on the number of audit findings, reportable events, incidents, or accidents. Proactive safety tools designed for monitoring routine operations, such as flight data monitoring and LOSA, have been developed predominantly for flight operations. In Study 1, development of MOSS, 12 test peer-to-peer observations were collected to investigate the practicalities of this approach. In Study 2, deployment of MOSS, seven expert observers collected 56 peer-to-peer observations of line maintenance checks at four stations. Narrative data were coded and analyzed according to the threat and error management (TEM) framework. In Study 1, a line check was identified as a suitable unit of observation. Communication and third-party data management were the key factors in gaining maintainer trust. Study 2 identified that on average, maintainers experienced 7.8 threats (operational complexities) and committed 2.5 errors per observation. The majority of threats and errors were inconsequential. Links between specific threats and errors leading to 36 undesired states were established. This research demonstrates that observations of routine maintenance operations are feasible. TEM-based results highlight successful management strategies that maintainers employ on a day-to-day basis. MOSS is a novel approach for safety data collection and analysis. It helps practitioners understand the nature of maintenance errors, promote an informed culture, and support safety management systems in the maintenance domain. © 2016, Human Factors and Ergonomics Society.
The Development and Deployment of a Maintenance Operations Safety Survey
Langer, Marie; Braithwaite, Graham R.
2016-01-01
Objective: Based on the line operations safety audit (LOSA), two studies were conducted to develop and deploy an equivalent tool for aircraft maintenance: the maintenance operations safety survey (MOSS). Background: Safety in aircraft maintenance is currently measured reactively, based on the number of audit findings, reportable events, incidents, or accidents. Proactive safety tools designed for monitoring routine operations, such as flight data monitoring and LOSA, have been developed predominantly for flight operations. Method: In Study 1, development of MOSS, 12 test peer-to-peer observations were collected to investigate the practicalities of this approach. In Study 2, deployment of MOSS, seven expert observers collected 56 peer-to-peer observations of line maintenance checks at four stations. Narrative data were coded and analyzed according to the threat and error management (TEM) framework. Results: In Study 1, a line check was identified as a suitable unit of observation. Communication and third-party data management were the key factors in gaining maintainer trust. Study 2 identified that on average, maintainers experienced 7.8 threats (operational complexities) and committed 2.5 errors per observation. The majority of threats and errors were inconsequential. Links between specific threats and errors leading to 36 undesired states were established. Conclusion: This research demonstrates that observations of routine maintenance operations are feasible. TEM-based results highlight successful management strategies that maintainers employ on a day-to-day basis. Application: MOSS is a novel approach for safety data collection and analysis. It helps practitioners understand the nature of maintenance errors, promote an informed culture, and support safety management systems in the maintenance domain. PMID:27411354
Hirst, Yasemin; Lim, Anita Wey Wey
2018-05-01
Safety netting is an important diagnostic strategy for patients presenting to primary care with potential (low-risk) cancer symptoms. Typically, this involves asking patients to return if symptoms persist. However, this relies on patients re-appraising their symptoms and making follow-up appointments, which could contribute to delays in diagnosis. Text messaging is increasingly used in primary care to communicate with patients, and could be used to improve safety netting. To explore the acceptability and feasibility of using text messages to safety net patients presenting with low-risk cancer symptoms in GP primary care (txt-netting). Qualitative focus group and interview study with London-based GPs. Participants were identified using convenience sampling methods. Five focus groups and two interviews were conducted with 22 GPs between August and December 2016. Sessions were audiorecorded, transcribed verbatim, and analysed using thematic analysis. GPs were amenable to the concept of using text messages in cancer safety netting, identifying it as an additional tool that could help manage patients and promote symptom awareness. There was wide variation in GP preferences for text message content, and a number of important potential barriers to txt-netting were identified. Concerns were raised about the difficulties of conveying complex safety netting advice within the constraints of a text message, and about confidentiality, widening inequalities, and workload implications. Text messages were perceived to be an acceptable potential strategy for safety netting patients with low-risk cancer symptoms. Further work is needed to ensure it is cost-effective, user friendly, confidential, and acceptable to patients. © British Journal of General Practice 2018.
Nurse managers describe their practice environments.
Warshawsky, Nora E; Lake, Sharon W; Brandford, Arica
2013-01-01
Hospital work environments that support the professional practice of nurses are critical to patient safety. Nurse managers are responsible for creating these professional practice environments for staff nurses, yet little is known about the environments needed to support nurse managers. Domains of nurse managers' practice environment have recently been defined. This is a secondary analysis of 2 cross-sectional studies of organizational characteristics that influence nurse manager practice. Content analysis of the free text comments from 127 nurse managers was used to illustrate the 8 domains of nurse managers' practice environments. Nurse managers valued time spent with their staff; therefore, workloads must permit meaningful interaction. Directors demonstrated trust when they empowered nurse managers to make decisions. Administrative leaders should build patient safety cultures on the basis of shared accountability and mutual respect among the health care team. The expectations of nurse managers have greatly expanded in the volume and complexity of direct reports, patient care areas, and job functions. The nurse managers in this analysis reported characteristics of their practice environments that limit their role effectiveness and may negatively impact organizational performance. Further research is needed to understand the effects of nurse managers' practice environments on staff and patient outcomes.
Analysis of food taints and off-flavours: a review.
Ridgway, K; Lalljie, S P D; Smith, R M
2010-02-01
Taints and off-flavours in foods are a major concern to the food industry. Identification of the compound(s) causing a taint or off-flavour in food and accurate quantification are critical in assessing the potential safety risks of a product or ingredient. Even when the tainting compound(s) are not at a level that would cause a safety concern, taints and off-flavours can have a significant impact on the quality and consumers' acceptability of products. The analysis of taints and off-flavour compounds presents an analytical challenge especially in an industrial laboratory environment because of the low levels, often complex matrices and potential for contamination from external laboratory sources. This review gives an outline of the origins of chemical taints and off-flavours and looks at the methods used for analysis and the merits and drawbacks of each technique. Extraction methods and instrumentation are covered along with possible future developments. Generic screening methods currently lack the sensitivity required to detect the low levels required for some tainting compounds and a more targeted approach is often required. This review highlights the need for a rapid but sensitive universal method of extraction for the unequivocal determination of tainting compounds in food.
Safety and Suitability for Service Assessment Testing for Surface and Underwater Launched Munitions
2014-12-05
test efficiency that tend to associate the Analytical S3 Test Approach with large, complex munition systems and the Empirical S3 Test Approach with...the smaller, less complex munition systems . 8.1 ANALYTICAL S3 TEST APPROACH. The Analytical S3 test approach, as shown in Figure 3, evaluates...assets than the Analytical S3 Test approach to establish the safety margin of the system . This approach is generally applicable to small munitions
Joudrier, P
2009-01-01
In this presentation, we review the complexity of the different biological events which occur during life cell cycles. Indeed transgenesis is not an unknown event for cells. In the second part of this article, the complex and complete evaluation process destined to assure the food safety of GMOs, before they are released on the market, is describd. Some ansers to questions frequently asked about the GMOs are given. It is concludedthat GMOs are probably more safe than their conventional non-GM counterpart.
A probabilistic technique for the assessment of complex dynamic system resilience
NASA Astrophysics Data System (ADS)
Balchanos, Michael Gregory
In the presence of operational uncertainty, one of the greatest challenges in systems engineering is to ensure system effectiveness, mission capability and survivability for large scale, complex system architectures. Historic events such as the 2003 Northeastern Blackout, and the 2005 Hurricane Katrina, have underlined the great importance of system safety, and survivability. With safety management currently applied on a reactive basis to emerging incidents and risk challenges, there is a paradigm shift from passive, reactive and diagnosis-based approaches to the development of architectures that will autonomously manage safety and survivability through active, proactive and prognosis-based engineering solutions. The shift aims to bring safety considerations early in the engineering design process, in order to reduce retrofitting and additional safety certification costs, increase flexibility in risk management, and essentially make safety be "built-in" the design. As a possible enabling research direction, resilience engineering is an emerging discipline, pertinent to safety management, which offers alternative insights on the design of more safe and survivable system architectures. Conceptually, resilience engineering brings new perspectives on the understanding of system safety, accidents, failures, performance degradations and risk. A resilient system can "absorb" the impact of change due to unexpected disturbances, while it "adapts" to change, in order to maintain the system's physical integrity and capability to carry on with its mission. The leading hypothesis advocates that if a complex dynamic system is more resilient, then it would be more survivable, thus more effective, despite the unexpected disturbances that could affect its normal operating conditions. For investigating the impact of more resilient systems on survivability and safety, a framework for theoretical resilience estimations has been formulated. It constitutes the basis for quantitative techniques for total system resilience evaluation, based on scenario-based, dynamic system simulations. Physics-based Modeling and Simulation (M&S) is applied for dynamical system behavior analysis, which includes system performance, health monitoring, damage propagation and overall mission capability. For the development of the assessment framework and testing of a resilience assessment technique, a small-scale canonical problem has been formulated, involving a computational model of a degradable and reconfigurable spring-mass-damper SDOF system, in a multiple main and redundant spring configuration. A rule-based feedback controller is responsible for system performance recovery, through the application of different reconfiguration strategies and strategic activation of the necessary main or redundant springs. Uncertainty effects on system operation are introduced through disturbance factors, such as external forces with varying magnitude, input frequency, event duration and occurrence time. Such factors are the basis for scenario formulation, in support of a Monte Carlo simulation analysis. Case studies with varying levels of damping and different reconfiguration strategies, involve the investigation of operational uncertainty effects on system performance, mission capability, and system survivability. These studies furthermore explore uncertainty effects on resilience functions that describe the system's capacities on "restoring" mission capability, on "absorbing" the effects of changing conditions, and on "adapting" to the occurring change. The proposed resilience assessment technique or the Topological Investigation for Resilient and Effective Systems, through Increased Architecture Survivability (TIRESIAS) is then applied and demonstrated for a naval system application, in the form of a reduced scale, reconfigurable cooling network of a naval combatant. Uncertainty effects are modeled through combinations of different number of network fluid leaks. The TIRESIAS approach on the system baseline (32-control valve configuration) has allowed for the investigation of leak effects on survival times, mission capability degradations, as well as the resilience function capacities. As part of the technique demonstration, case studies were conducted for different architecture configurations, which have been generated for different total number of control valves and valve locations on the topology.
Safety management of a complex R&D ground operating system
NASA Technical Reports Server (NTRS)
Connors, J.; Mauer, R. A.
1975-01-01
Report discusses safety program implementation for large R&D operating system. Analytical techniques are defined and suggested as tools for identifying potential hazards and determining means to effectively control or eliminate hazards.
Patient safety: Needs and initiatives.
Bion, Julian
2008-04-01
Patient safety has become a major defining issue for healthcare at the beginning of the 21(st) century. Viewed from the perspective of reliability of delivery of best practice, healthcare systems demonstrate a degree of imperfection which would not be tolerated in industry. In part, this is because of uncertainty about what constitutes best practice, combined with complex interventions in complex systems. The acutely ill patient is particularly challenging, and as the majority of admissions to hospitals are emergencies, it makes sense to focus on this group as a coherent entity. Changing clinical behavior is central to improving safety, and this requires a systems-wide approach integrating care throughout patient journey, combined with incorporating reliability training in life-long learning.
NASA Technical Reports Server (NTRS)
Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.
2006-01-01
System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.
Tanner, C; Gans, D; White, J; Nath, R; Pohl, J
2015-01-01
The role of electronic health records (EHR) in enhancing patient safety, while substantiated in many studies, is still debated. This paper examines early EHR adopters in primary care to understand the extent to which EHR implementation is associated with the workflows, policies and practices that promote patient safety, as compared to practices with paper records. Early adoption is defined as those who were using EHR prior to implementation of the Meaningful Use program. We utilized the Physician Practice Patient Safety Assessment (PPPSA) to compare primary care practices with fully implemented EHR to those utilizing paper records. The PPPSA measures the extent of adoption of patient safety practices in the domains: medication management, handoffs and transition, personnel qualifications and competencies, practice management and culture, and patient communication. Data from 209 primary care practices responding between 2006-2010 were included in the analysis: 117 practices used paper medical records and 92 used an EHR. Results showed that, within all domains, EHR settings showed significantly higher rates of having workflows, policies and practices that promote patient safety than paper record settings. While these results were expected in the area of medication management, EHR use was also associated with adoption of patient safety practices in areas in which the researchers had no a priori expectations of association. Sociotechnical models of EHR use point to complex interactions between technology and other aspects of the environment related to human resources, workflow, policy, culture, among others. This study identifies that among primary care practices in the national PPPSA database, having an EHR was strongly empirically associated with the workflow, policy, communication and cultural practices recommended for safe patient care in ambulatory settings.
Pretagostini, R; Gabbrielli, F; Fiaschetti, P; Oliveti, A; Cenci, S; Peritore, D; Stabile, D
2010-05-01
Starting from the report on medical errors published in 1999 by the US Institute of Medicine, a number of different approaches to risk management have been developed for maximum risk reduction in health care activities. The health care authorities in many countries have focused attention on patient safety, employing action research programs that are based on quite different principles. We performed a systematic Medline research of the literature since 1999. The following key words were used, also combining boolean operators and medical subheading terms: "adverse event," "risk management," "error," and "governance." Studies published in the last 5 years were particularly classified in various groups: risk management in health care systems; safety in specific hospital activities; and health care institutions' official documents. Methods of action researches have been analysed and their characteristics compared. Their suitability for safety development in donation, retrieval, and transplantation processes were discussed in the reality of the Italian transplant network. Some action researches and studies were dedicated to entire national healthcare systems, whereas others focused on specific risks. Many research programs have undergone critical review in the literature. Retrospective analysis has centered on so-called sentinel events to particularly analyze only a minor portion of the organizational phenomena, which can be the origin of an adverse event, an incident, or an error. Sentinel events give useful information if they are studied in highly engineered and standardized organizations like laboratories or tissue establishments, but they show several limits in the analysis of organ donation, retrieval, and transplantation processes, which are characterized by prevailing human factors, with high intrinsic risk and variability. Thus, they are poorly effective to deliver sure elements to base safety management improvement programs, especially regarding multidisciplinary systems with high complexity. In organ transplantation, the possibility to increase safety seems greater using proactive research, mainly centred on organizational processes together with retrospective analyses but not limited to sentinel event reports. Copyright (c) 2010. Published by Elsevier Inc.
Daker-White, Gavin; Hays, Rebecca; Esmail, Aneez; Minor, Brian; Barlow, Wendy; Brown, Benjamin; Blakeman, Thomas; Bower, Peter
2014-01-01
Introduction Increasing numbers of older people are living with multiple long-term health conditions but global healthcare systems and clinical guidelines have traditionally focused on the management of single conditions. Having two or more long-term conditions, or ‘multimorbidity’, is associated with a range of adverse consequences and poor outcomes and could put patients at increased risk of safety failures. Traditionally, most research into patient safety failures has explored hospital or inpatient settings. Much less is known about patient safety failures in primary care. Our core aims are to understand the mechanisms by which multimorbidity leads to safety failures, to explore the different ways in which patients and services respond (or fail to respond), and to identify opportunities for intervention. Methods and analysis We plan to undertake an applied ethnographic study of patients with multimorbidity. Patients’ interactions and environments, relevant to their healthcare, will be studied through observations, diary methods and semistructured interviews. A framework, based on previous studies, will be used to organise the collection and analysis of field notes, observations and other qualitative data. This framework includes the domains: access breakdowns, communication breakdowns, continuity of care errors, relationship breakdowns and technical errors. Ethics and dissemination Ethical approval was received from the National Health Service Research Ethics Committee for Wales. An individual case study approach is likely to be most fruitful for exploring the mechanisms by which multimorbidity leads to safety failures. A longitudinal and multiperspective approach will allow for the constant comparison of patient, carer and healthcare worker expectations and experiences related to the provision, integration and management of complex care. This data will be used to explore ways of engaging patients and carers more in their own care using shared decision-making, patient empowerment or other relevant models. PMID:25138807
Castel, Evan S; Ginsburg, Liane R; Zaheer, Shahram; Tamim, Hala
2015-08-14
Identifying and understanding factors influencing fear of repercussions for reporting and discussing medical errors in nurses and physicians remains an important area of inquiry. Work is needed to disentangle the role of clinician characteristics from those of the organization-level and unit-level safety environments in which these clinicians work and learn, as well as probing the differing reporting behaviours of nurses and physicians. This study examines the influence of clinician demographics (age, gender, and tenure), organization demographics (teaching status, location of care, and province) and leadership factors (organization and unit leadership support for safety) on fear of repercussions, and does so for nurses and physicians separately. A cross-sectional analysis of 2319 nurse and 386 physician responders from three Canadian provinces to the Modified Stanford patient safety climate survey (MSI-06). Data were analyzed using exploratory factor analysis, multiple linear regression, and hierarchical linear regression. Age, gender, tenure, teaching status, and province were not significantly associated with fear of repercussions for nurses or physicians. Mental health nurses had poorer fear responses than their peers outside of these areas, as did community physicians. Strong organization and unit leadership support for safety explained the most variance in fear for both nurses and physicians. The absence of associations between several plausible factors including age, tenure and teaching status suggests that fear is a complex construct requiring more study. Substantially differing fear responses across locations of care indicate areas where interventions may be needed. In addition, since factors affecting fear of repercussions appear to be different for nurses and physicians, tailoring patient safety initiatives to each group may, in some instances, be fruitful. Although further investigation is needed to examine these and other factors in detail, supportive safety leadership appears to be central to reducing fear of reporting errors for both nurses and physicians.
Rostami, Paryaneh; Ashcroft, Darren M; Tully, Mary P
2018-01-01
Reducing medication-related harm is a global priority; however, impetus for improvement is impeded as routine medication safety data are seldom available. Therefore, the Medication Safety Thermometer was developed within England's National Health Service. This study aimed to explore the implementation of the tool into routine practice from users' perspectives. Fifteen semi-structured interviews were conducted with purposely sampled National Health Service staff from primary and secondary care settings. Interview data were analysed using an initial thematic analysis, and subsequent analysis using Normalisation Process Theory. Secondary care staff understood that the Medication Safety Thermometer's purpose was to measure medication safety and improvement. However, other uses were reported, such as pinpointing poor practice. Confusion about its purpose existed in primary care, despite further training, suggesting unsuitability of the tool. Decreased engagement was displayed by staff less involved with medication use, who displayed less ownership. Nonetheless, these advocates often lacked support from management and frontline levels, leading to an overall lack of engagement. Many participants reported efforts to drive scale-up of the use of the tool, for example, by securing funding, despite uncertainty around how to use data. Successful improvement was often at ward-level and went unrecognised within the wider organisation. There was mixed feedback regarding the value of the tool, often due to a perceived lack of "capacity". However, participants demonstrated interest in learning how to use their data and unexpected applications of data were reported. Routine medication safety data collection is complex, but achievable and facilitates improvements. However, collected data must be analysed, understood and used for further work to achieve improvement, which often does not happen. The national roll-out of the tool has accelerated shared learning; however, a number of difficulties still exist, particularly in primary care settings, where a different approach is likely to be required.
Ashcroft, Darren M.; Tully, Mary P.
2018-01-01
Background Reducing medication-related harm is a global priority; however, impetus for improvement is impeded as routine medication safety data are seldom available. Therefore, the Medication Safety Thermometer was developed within England’s National Health Service. This study aimed to explore the implementation of the tool into routine practice from users’ perspectives. Method Fifteen semi-structured interviews were conducted with purposely sampled National Health Service staff from primary and secondary care settings. Interview data were analysed using an initial thematic analysis, and subsequent analysis using Normalisation Process Theory. Results Secondary care staff understood that the Medication Safety Thermometer’s purpose was to measure medication safety and improvement. However, other uses were reported, such as pinpointing poor practice. Confusion about its purpose existed in primary care, despite further training, suggesting unsuitability of the tool. Decreased engagement was displayed by staff less involved with medication use, who displayed less ownership. Nonetheless, these advocates often lacked support from management and frontline levels, leading to an overall lack of engagement. Many participants reported efforts to drive scale-up of the use of the tool, for example, by securing funding, despite uncertainty around how to use data. Successful improvement was often at ward-level and went unrecognised within the wider organisation. There was mixed feedback regarding the value of the tool, often due to a perceived lack of “capacity”. However, participants demonstrated interest in learning how to use their data and unexpected applications of data were reported. Conclusion Routine medication safety data collection is complex, but achievable and facilitates improvements. However, collected data must be analysed, understood and used for further work to achieve improvement, which often does not happen. The national roll-out of the tool has accelerated shared learning; however, a number of difficulties still exist, particularly in primary care settings, where a different approach is likely to be required. PMID:29489842
Avaliani, S L; Novikov, S M; Shashina, T A; Dodina, N S; Kislitsin, V A; Mishina, A L
2014-01-01
The lack of adequate legislative and regulatory framework for ensuring minimization of the health risks in the field of environmental protection is the obstacle for the application of the risk analysis methodology as a leading tool for administrative activity in Russia. "Principles of the state policy in the sphere of ensuring chemical and biological safety of the Russian Federation for the period up to 2025 and beyond", approved by the President of the Russian Federation on 01 November 2013, No PR-25 73, are aimed at the legal support for the health risk analysis methodology. In the article there have been supposed the main stages of the operative control of the environmental quality, which lead to the reduction of the health risk to the acceptable level. The further improvement of the health risk analysis methodology in Russia should contribute to the implementation of the state policy in the sphere of chemical and biological safety through the introduction of complex measures on neutralization of chemical and biological threats to the human health and the environment, as well as evaluation of the economic effectiveness of these measures. The primary step should be the legislative securing of the quantitative value for the term: "acceptable risk".
Fang, Ruo-si; Dong, Ya-chen; Chen, Feng; Chen, Qi-he
2015-10-01
Rice wine is a traditional Chinese fermented alcohol drink. Spontaneous fermentation with the use of the Chinese starter and wheat Qu lead to the growth of various microorganisms during the complete brewing process. It's of great importance to fully understand the composition of bacteria diversity in rice wine in order to improve the quality and solve safety problems. In this study, a more comprehensive bacterial description was shown with the use of bacteria diversity analysis, which enabled us to have a better understanding. Rarefaction, rank abundance, alpha Diversity, beta diversity and principal coordinates analysis simplified their complex bacteria components and provide us theoretical foundation for further investigation. It has been found bacteria diversity is more abundant at mid-term and later stage of brewing process. Bacteria community analysis reveals there is a potential safety hazard existing in the fermentation, since most of the sequence reads are assigned to Enterobacter (7900 at most) and Pantoea (7336 at most), followed by Staphylococcus (2796 at most) and Pseudomonas (1681 at most). Lactic acid bacteria are rare throughout the fermentation process which is not in accordance with other reports. This work may offer us an opportunity to investigate micro ecological fermentation system in food industry. © 2015 Institute of Food Technologists®
Ho, Lap; Cheng, Haoxiang; Wang, Jun; Simon, James E; Wu, Qingli; Zhao, Danyue; Carry, Eileen; Ferruzzi, Mario G; Faith, Jeremiah; Valcarcel, Breanna; Hao, Ke; Pasinetti, Giulio M
2018-03-05
The development of a given botanical preparation for eventual clinical application requires extensive, detailed characterizations of the chemical composition, as well as the biological availability, biological activity, and safety profiles of the botanical. These issues are typically addressed using diverse experimental protocols and model systems. Based on this consideration, in this study we established a comprehensive database and analysis framework for the collection, collation, and integrative analysis of diverse, multiscale data sets. Using this framework, we conducted an integrative analysis of heterogeneous data from in vivo and in vitro investigation of a complex bioactive dietary polyphenol-rich preparation (BDPP) and built an integrated network linking data sets generated from this multitude of diverse experimental paradigms. We established a comprehensive database and analysis framework as well as a systematic and logical means to catalogue and collate the diverse array of information gathered, which is securely stored and added to in a standardized manner to enable fast query. We demonstrated the utility of the database in (1) a statistical ranking scheme to prioritize response to treatments and (2) in depth reconstruction of functionality studies. By examination of these data sets, the system allows analytical querying of heterogeneous data and the access of information related to interactions, mechanism of actions, functions, etc., which ultimately provide a global overview of complex biological responses. Collectively, we present an integrative analysis framework that leads to novel insights on the biological activities of a complex botanical such as BDPP that is based on data-driven characterizations of interactions between BDPP-derived phenolic metabolites and their mechanisms of action, as well as synergism and/or potential cancellation of biological functions. Out integrative analytical approach provides novel means for a systematic integrative analysis of heterogeneous data types in the development of complex botanicals such as polyphenols for eventual clinical and translational applications.
A traffic situation analysis system
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Rosner, Marcin
2011-01-01
The observation and monitoring of traffic with smart visions systems for the purpose of improving traffic safety has a big potential. For example embedded vision systems built into vehicles can be used as early warning systems, or stationary camera systems can modify the switching frequency of signals at intersections. Today the automated analysis of traffic situations is still in its infancy - the patterns of vehicle motion and pedestrian flow in an urban environment are too complex to be fully understood by a vision system. We present steps towards such a traffic monitoring system which is designed to detect potentially dangerous traffic situations, especially incidents in which the interaction of pedestrians and vehicles might develop into safety critical encounters. The proposed system is field-tested at a real pedestrian crossing in the City of Vienna for the duration of one year. It consists of a cluster of 3 smart cameras, each of which is built from a very compact PC hardware system in an outdoor capable housing. Two cameras run vehicle detection software including license plate detection and recognition, one camera runs a complex pedestrian detection and tracking module based on the HOG detection principle. As a supplement, all 3 cameras use additional optical flow computation in a low-resolution video stream in order to estimate the motion path and speed of objects. This work describes the foundation for all 3 different object detection modalities (pedestrians, vehi1cles, license plates), and explains the system setup and its design.
REgulatory Management: Communication About Technology-Based Innovations Can Be Improved
2001-02-01
locations and was built to accommodate a variety of users’ computing environments. • FDA’s Center for Food Safety and Applied Nutrition’s Voluntary...transportation communities. Food Safety Initiative Ensuring the safety of the nation’s food supply is the responsibility of an interlocking monitoring system...that watches over food production and distribution at every level of government—local, state, and national. Given the complex set of food safety laws
The Strategy to Align Road Safety Education to the Further Education and Training Band Curriculum
ERIC Educational Resources Information Center
Malan, Lianne; van Dijk, Gerda; Fourie, David
2016-01-01
Road safety education is a complex phenomenon which should be viewed holistically if taken into account the interconnectedness of education, infrastructure and enforcement. Effective road safety education is specifically important for learners in the Further Education and Training (FET) band, as they are active contributors to a community. The…
Health and Safety Legislation in Australia: Complexity for Training Remains
ERIC Educational Resources Information Center
Bahn, Susanne; Barratt-Pugh, Llandis
2014-01-01
This paper presents the findings from a study that examined the impact of the National Occupational Health and Safety Strategy 2002-2012 and the harmonisation of the Work Health and Safety Act 2011 on Australian training design, delivery and outcomes. There has been a comparative reduction in work related injuries, fatalities and disease, and…
Patient safety in thoracic surgery and European Society of Thoracic Surgeons checklist.
Novoa, Nuria M
2015-04-01
Improving patient safety seems to be a new interesting clinical subject but, in fact, it is no new. It has to do with one of the oldest ethical principles of our profession: curing and not harming. The important research that has been done in a short period of time has brought in new insight to this complex area that is fast developing. The creation of safety managing systems will allow coordinating efforts from very different, although complementary, areas to create real safety culture and safety climate in every organization. In the surgical settings, teamwork is basic to provide good quality of care. Safety leaders in every team have an important role in establishing priorities, summarizing proposals, coordinating efforts, launching new initiatives and transmitting that safety efforts are worth taken. Preparedness and anticipation are key points for avoiding most of the diverse types of patient harm that can occur. As has been published, a great number of errors can be avoided simply using crosscheck based on specialized checklist that reviews every important detail of the procedure. This strategy has been demonstrated very useful at other high risk industries such as aviation, nuclear or food management. The Safe Surgery Saves Lives program launched in 2002 by the WHO has taught us that improvement is possible using a simple checklist. More complex and detail checklist can be more adequate for more complex procedures and settings. The proposed ESTS checklist reviews different areas of possible error in deeper detail allowing the finest adjustment of the patient before the skin incision. It has been recently released to the general thoracic community and monitors its use and usefulness has to be warrantied.
Anderson, Janet E; Kodate, Naonori; Walters, Rhiannon; Dodds, Anneliese
2013-04-01
Recent critiques of incident reporting suggest that its role in managing safety has been over emphasized. The objective of this study was to examine the perceived effectiveness of incident reporting in improving safety in mental health and acute hospital settings by asking staff about their perceptions and experiences. Qualitative research design using documentary analysis and semi-structured interviews. Two large teaching hospitals in London; one providing acute and the other mental healthcare. Sixty-two healthcare practitioners with experience of reporting and analysing incidents. Incident reporting was perceived as having a positive effect on safety, not only by leading to changes in care processes but also by changing staff attitudes and knowledge. Staff discussed examples of both instrumental and conceptual uses of the knowledge generated by incident reports. There are difficulties in using incident reports to improve safety in healthcare at all stages of the incident reporting process. Differences in the risks encountered and the organizational systems developed in the two hospitals to review reported incidents could be linked to the differences we found in attitudes to incident reporting between the two hospitals. Incident reporting can be a powerful tool for developing and maintaining an awareness of risks in healthcare practice. Using incident reports to improve care is challenging and the study highlighted the complexities involved and the difficulties faced by staff in learning from incident data.
Understanding safety and production risks in rail engineering planning and protection.
Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia
2009-07-01
Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.
Reliability and safety of the electrical power supply complex of the Hanford production reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, F.D.
Safety has been and must continue to be the inviolable modulus by which the operation of a nuclear reactor must be judged. A malfunction in any reactor may well result in a release of fission products which may dissipate over a wide geographical area. Such dissipation may place the health, happiness and even the lives of the people in the region in serious jeopardy. As a result, the property damage and liability cost may reach astronomical values in the order of magnitude of billions of dollars. Reliability of the electrical network is an indispensable factor in attaining a high ordermore » of safety assurance. Progress in the peaceful use of atomic energy may take the form of electrical power generation using the nuclear reactor as a source of thermal energy. In view of these factors it seems appropriate and profitable that a critical engineering study be made of the safety and reliability of the Hanford reactors without regard to cost economics. This individual and independent technical engineering analysis was made without regard to Hanford traditional engineering and administration assignments. The main objective has been to focus attention on areas which seem to merit further detailed study on conditions which seem to need adjustment but most of all on those changes which will improve reactor safety. This report is the result of such a study.« less
Making the Hubble Space Telescope servicing mission safe
NASA Technical Reports Server (NTRS)
Bahr, N. J.; Depalo, S. V.
1992-01-01
The implementation of the HST system safety program is detailed. Numerous safety analyses are conducted through various phases of design, test, and fabrication, and results are presented to NASA management for discussion during dedicated safety reviews. Attention is given to the system safety assessment and risk analysis methodologies used, i.e., hazard analysis, fault tree analysis, and failure modes and effects analysis, and to how they are coupled with engineering and test analysis for a 'synergistic picture' of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification, are presented as examples of this safety process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, P.
The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.
Reviewing methodologically disparate data: a practical guide for the patient safety research field.
Brown, Katrina F; Long, Susannah J; Athanasiou, Thanos; Vincent, Charles A; Kroll, J Simon; Sevdalis, Nick
2012-02-01
This article addresses key questions frequently asked by researchers conducting systematic reviews in patient safety. This discipline is relatively young, and asks complex questions about complex aspects of health care delivery and experience, therefore its studies are typically methodologically heterogeneous, non-randomized and complex; but content rich and highly relevant to practice. Systematic reviews are increasingly necessary to drive forward practice and research in this area, but the data do not always lend themselves to 'standard' review methodologies. This accessible 'how-to' article demonstrates that data diversity need not preclude high-quality systematic reviews. It draws together information from published guidelines and experience within our multidisciplinary patient safety research group to provide entry-level advice for the clinician-researcher new to systematic reviewing, to non-biomedical research data or to both. It offers entry-level advice, illustrated with detailed practical examples, on defining a research question, creating a comprehensive search strategy, selecting articles for inclusion, assessing study quality, extracting data, synthesizing data and evaluating the impact of your review. The article concludes with a comment on the vital role of robust systematic reviews in the continuing advancement of the patient safety field. © 2010 Blackwell Publishing Ltd.
Operating room data management: improving efficiency and safety in a surgical block.
Agnoletti, Vanni; Buccioli, Matteo; Padovani, Emanuele; Corso, Ruggero M; Perger, Peter; Piraccini, Emanuele; Orelli, Rebecca Levy; Maitan, Stefano; Dell'amore, Davide; Garcea, Domenico; Vicini, Claudio; Montella, Teresa Maria; Gambale, Giorgio
2013-03-11
European Healthcare Systems are facing a difficult period characterized by increasing costs and spending cuts due to economic problems. There is the urgent need for new tools which sustain Hospitals decision makers work. This project aimed to develop a data recording system of the surgical process of every patient within the operating theatre. The primary goal was to create a practical and easy data processing tool to give hospital managers, anesthesiologists and surgeons the information basis to increase operating theaters efficiency and patient safety. The developed data analysis tool is embedded in an Oracle Business Intelligence Environment, which processes data to simple and understandable performance tachometers and tables. The underlying data analysis is based on scientific literature and the projects teams experience with tracked data. The system login is layered and different users have access to different data outputs depending on their professional needs. The system is divided in the tree profile types Manager, Anesthesiologist and Surgeon. Every profile includes subcategories where operators can access more detailed data analyses. The first data output screen shows general information and guides the user towards more detailed data analysis. The data recording system enabled the registration of 14.675 surgical operations performed from 2009 to 2011. Raw utilization increased from 44% in 2009 to 52% in 2011. The number of high complexity surgical procedures (≥120 minutes) has increased in certain units while decreased in others. The number of unscheduled procedures performed has been reduced (from 25% in 2009 to 14% in 2011) while maintaining the same percentage of surgical procedures. The number of overtime events decreased in 2010 (23%) and in 2011 (21%) compared to 2009 (28%) and the delays expressed in minutes are almost the same (mean 78 min). The direct link found between the complexity of surgical procedures, the number of unscheduled procedures and overtime show a positive impact of the project on OR management. Despite a consistency in the complexity of procedures (19% in 2009 and 21% in 2011), surgical groups have been successful in reducing the number of unscheduled procedures (from 25% in 2009 to 14% in 2011) and overtime (from 28% in 2009 to 21% in 2011). The developed project gives healthcare managers, anesthesiologists and surgeons useful information to increase surgical theaters efficiency and patient safety. In difficult economic times is possible to develop something that is of some value to the patient and healthcare system too.
Operating room data management: improving efficiency and safety in a surgical block
2013-01-01
Background European Healthcare Systems are facing a difficult period characterized by increasing costs and spending cuts due to economic problems. There is the urgent need for new tools which sustain Hospitals decision makers work. This project aimed to develop a data recording system of the surgical process of every patient within the operating theatre. The primary goal was to create a practical and easy data processing tool to give hospital managers, anesthesiologists and surgeons the information basis to increase operating theaters efficiency and patient safety. Methods The developed data analysis tool is embedded in an Oracle Business Intelligence Environment, which processes data to simple and understandable performance tachometers and tables. The underlying data analysis is based on scientific literature and the projects teams experience with tracked data. The system login is layered and different users have access to different data outputs depending on their professional needs. The system is divided in the tree profile types Manager, Anesthesiologist and Surgeon. Every profile includes subcategories where operators can access more detailed data analyses. The first data output screen shows general information and guides the user towards more detailed data analysis. The data recording system enabled the registration of 14.675 surgical operations performed from 2009 to 2011. Results Raw utilization increased from 44% in 2009 to 52% in 2011. The number of high complexity surgical procedures (≥120 minutes) has increased in certain units while decreased in others. The number of unscheduled procedures performed has been reduced (from 25% in 2009 to 14% in 2011) while maintaining the same percentage of surgical procedures. The number of overtime events decreased in 2010 (23%) and in 2011 (21%) compared to 2009 (28%) and the delays expressed in minutes are almost the same (mean 78 min). The direct link found between the complexity of surgical procedures, the number of unscheduled procedures and overtime show a positive impact of the project on OR management. Despite a consistency in the complexity of procedures (19% in 2009 and 21% in 2011), surgical groups have been successful in reducing the number of unscheduled procedures (from 25% in 2009 to 14% in 2011) and overtime (from 28% in 2009 to 21% in 2011). Conclusions The developed project gives healthcare managers, anesthesiologists and surgeons useful information to increase surgical theaters efficiency and patient safety. In difficult economic times is possible to develop something that is of some value to the patient and healthcare system too. PMID:23496977
Understanding Risk Tolerance and Building an Effective Safety Culture
NASA Technical Reports Server (NTRS)
Loyd, David
2018-01-01
Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.
DOT National Transportation Integrated Search
2014-03-01
Recent research in highway safety has focused on the more advanced and statistically proven techniques of highway : safety analysis. This project focuses on the two most recent safety analysis tools, the Highway Safety Manual (HSM) : and SafetyAnalys...
Numerical Computation of Homogeneous Slope Stability
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927
Numerical computation of homogeneous slope stability.
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
[Safety in intensive care medicine. Can we learn from aviation?].
Graf, J; Pump, S; Maas, W; Stüben, U
2012-05-01
Safety is of extraordinary value in commercial aviation. Therefore, sophisticated and complex systems have been developed to ensure safe operation. Within this system, the pilots are of specific concern: they form the human-machine interface and have a special responsibility in controlling and monitoring all aircraft systems. In order to prepare pilots for their challenging task, specific selection of suitable candidates is crucial. In addition, for every commercial pilot regulatory requirements demand a certain number of simulator training sessions and check flights to be completed at prespecified intervals. In contrast, career choice for intensive care medicine most likely depends on personal reasons rather than eligibility or aptitude. In intensive care medicine, auditing, licensing, or mandatory training are largely nonexistent. Although knowledge of risk management and safety culture in aviation can be transferred to the intensive care unit, the diversity of corporate culture and tradition of leadership and training will represent a barrier for the direct transfer of standards or procedures. To accomplish this challenging task, the analysis of appropriate fields of action with regard to structural requirements and the process of change are essential.
A Novel Interdisciplinary Approach to Socio-Technical Complexity
NASA Astrophysics Data System (ADS)
Bassetti, Chiara
The chapter presents a novel interdisciplinary approach that integrates micro-sociological analysis into computer-vision and pattern-recognition modeling and algorithms, the purpose being to tackle socio-technical complexity at a systemic yet micro-grounded level. The approach is empirically-grounded and both theoretically- and analytically-driven, yet systemic and multidimensional, semi-supervised and computable, and oriented towards large scale applications. The chapter describes the proposed approach especially as for its sociological foundations, and as applied to the analysis of a particular setting --i.e. sport-spectator crowds. Crowds, better defined as large gatherings, are almost ever-present in our societies, and capturing their dynamics is crucial. From social sciences to public safety management and emergency response, modeling and predicting large gatherings' presence and dynamics, thus possibly preventing critical situations and being able to properly react to them, is fundamental. This is where semi/automated technologies can make the difference. The work presented in this chapter is intended as a scientific step towards such an objective.
Structural Design and Monitoring Analysis of Foundation Pit Support in Yiwu Huishang Tiandi
NASA Astrophysics Data System (ADS)
Zhang, Chunsu
2017-08-01
Huishang Tiandi deep foundation pit in Yiwu is a two-story basement,which is located in the downtown area and adjacent to the city center main traffic trunk. The surrounding environment is too com-plex to slope. The excavation depth is large, the formation is weak and complex, and the groundwater level is high.In order to ensure the safety of the foundation wall and the surrounding environment, the deformation of the foundation pit support is strictly controlled, and the deformation and internal force of the foundation supporting structure and the surrounding building are monitored.The deformation law of the foundation pit is obtained through the analysis of the horizontal displacement, the deformation rate of the supporting struc-ture, the surrounding environment of the foundation pit and the internal force of the anchor cable. The relia-bility and rationality of the design of foundation pit support are verified. It is of reference value for the de-sign and construction of other deep foundation pit engineering in Yiwu area.
Hidden dangers: Environmental consequences of preparing for war
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birks, J.W.; Ehrlich, A.H.
1990-01-01
This compilation of chapters by some of the world's foremost non-governmental experts, focuses on the military's nuclear mess. Hidden Dangers suggests that in the end, events, not politics, changed operations' in the nuclear complex. After Chernobyl, safety became the pressing issue. Although the continuing stream of revelations of safety and environmental violations within the US nuclear weapons complex may make the 1990 book seem out of date, it remains an indispensable primer for those concerned with the social and environmental consequences of nuclear weapons production.
A novel approach to characterize information radiation in complex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao
2016-06-01
The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.
Pedestrian Detection by Laser Scanning and Depth Imagery
NASA Astrophysics Data System (ADS)
Barsi, A.; Lovas, T.; Molnar, B.; Somogyi, A.; Igazvolgyi, Z.
2016-06-01
Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall).
Using systems thinking in patient safety: a case study on medicines management.
Brimble, Mandy; Jones, Aled
2017-06-29
Systems thinking is used as a way of understanding behaviours and actions in complex healthcare organisations. An important premise of the concept is that every action in a system causes a reaction elsewhere in that system. These reactions can lead to unintended consequences, sometimes long after the original action, and so are not always attributed to them. This article applies systems thinking to a medicines management case study, to highlight how quality-improvement practitioners can use the approach to underpin planning and implementation of patient-safety initiatives. The case study is specific to transcribing in children's hospices, but the strategies can be applied to other areas. The article explains that, while root cause analysis tools are useful for identifying the cause of, and possible solutions to, problems, they need to be considered carefully in terms of unintended consequences, and how the system into which the solution is implemented can be affected by the change. Analysis of problems using a systems-thinking approach can help practitioners to develop robust and well informed business cases to present to decision makers.
Improving patient safety: patient-focused, high-reliability team training.
McKeon, Leslie M; Cunningham, Patricia D; Oswaks, Jill S Detty
2009-01-01
Healthcare systems are recognizing "human factor" flaws that result in adverse outcomes. Nurses work around system failures, although increasing healthcare complexity makes this harder to do without risk of error. Aviation and military organizations achieve ultrasafe outcomes through high-reliability practice. We describe how reliability principles were used to teach nurses to improve patient safety at the front line of care. Outcomes include safety-oriented, teamwork communication competency; reflections on safety culture and clinical leadership are discussed.
Matrix Game Methodology - Support to V2010 Olympic Marine Security Planners
2011-02-01
OMOC was called the Integrated Safety /Security Matrix Game – Marine III, and was held 16-17 June 2009. This was the most extensive and complex of...Protection Matrix Game Marine Two .................................................. 12 3.3 Integrated Safety /Security Matrix Game – Marine III...Integrated Safety /Security Matrix Game – Marine III Scenarios........................... 53 ISSMG Marine III – Team Groupings
ERIC Educational Resources Information Center
Tella, Susanna; Smith, Nancy-Jane; Partanen, Pirjo; Turunen, Hannele
2016-01-01
Learning to ensure patient safety in complex health care environments is an internationally recognised concern. This article explores and compares Finnish (n = 22) and British (n = 32) pre-registration nursing students' important learning events about patient safety from their work placements in health care organisations. Written descriptions were…
Brief history of patient safety culture and science.
Ilan, Roy; Fowler, Robert
2005-03-01
The science of safety is well established in such disciplines as the automotive and aviation industry. In this brief history of safety science as it pertains to patient care, we review remote and recent publications that have guided the maturation of this field that has particular relevance to the complex structure of systems, personnel, and therapies involved in caring for the critically ill.
2011-01-01
Background This study seeks to broaden current understandings of what patient safety means in mental healthcare and how it is accomplished. We propose a qualitative observational study of how safety is produced or not produced in the complex context of everyday professional mental health practice. Such an approach intentionally contrasts with much patient safety research which assumes that safety is achieved and improved through top-down policy directives. We seek instead to understand and articulate the connections and dynamic interactions between people, materials, and organisational, legal, moral, professional and historical safety imperatives as they come together at particular times and places to perform safe or unsafe practice. As such we advocate an understanding of patient safety 'from the ground up'. Methods/Design The proposed project employs a six-phase data collection framework in two mental health settings: an inpatient unit and a community team. The first four phases comprise multiple modes of focussed, unobtrusive observation of professionals at work, to enable us to trace the conceptualisation and enactment of safety as revealed in dialogue and narrative, use of artefacts and space, bodily activity and patterns of movement, and in the accomplishment of specific work tasks. An interview phase and a social network analysis phase will subsequently be conducted to offer comparative perspectives on the observational data. This multi-modal and holistic approach to studying patient safety will complement existing research, which is dominated by instrumentalist approaches to discovering factors contributing to error, or developing interventions to prevent or manage adverse events. Discussion This ethnographic research framework, informed by the principles of practice theories and in particular actor-network ideas, provides a tool to aid the understanding of patient safety in mental healthcare. The approach is novel in that it seeks to articulate an 'anatomy of patient safety' as it actually occurs, in terms of the networks of elements coalescing to enable the conceptual and material performance of safety in mental health settings. By looking at how patient safety happens or does not happen, this study will enable us to better understand how we might in future productively tackle its improvement. PMID:21569572
Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management
NASA Astrophysics Data System (ADS)
Bellomo, N.; Clarke, D.; Gibelli, L.; Townsend, P.; Vreugdenhil, B. J.
2016-09-01
This paper proposes an essay concerning the understanding of human behaviours and crisis management of crowds in extreme situations, such as evacuation through complex venues. The first part focuses on the understanding of the main features of the crowd viewed as a living, hence complex system. The main concepts are subsequently addressed, in the second part, to a critical analysis of mathematical models suitable to capture them, as far as it is possible. Then, the third part focuses on the use, toward safety problems, of a model derived by the methods of the mathematical kinetic theory and theoretical tools of evolutionary game theory. It is shown how this model can depict critical situations and how these can be managed with the aim of minimizing the risk of catastrophic events.
Improving driver decisions and performance in high-speed, multilane, complex conditions.
DOT National Transportation Integrated Search
2009-01-01
In an effort to reduce fatalities resulting from traffic collisions, Californias Strategic Highway Safety Plan identified : 16 Challenge Areas under the State Highway Safety Plan. Improper driving decisions about the right of way and : turning bec...
Enforcing Job Safety: A Managerial View
ERIC Educational Resources Information Center
Barnako, Frank R.
1975-01-01
The views of management or of employees regarding enforcement of the job safety law range from general satisfaction to calls for repeal of the act. The complexity of standards, statistics and recordkeeping, and enforcement procedures are major areas of concern. (MW)
New developments in UTMOST : application to electronic stability control.
DOT National Transportation Integrated Search
2009-10-01
The Unified Tool for Mapping Opportunities for Safety Technology (UTMOST) : is a model of crash data that incorporates the complex relationships among different : vehicle and driver variables. It is designed to visualize the effect of multiple safety...
Extended GTST-MLD for aerospace system safety analysis.
Guo, Chiming; Gong, Shiyu; Tan, Lin; Guo, Bo
2012-06-01
The hazards caused by complex interactions in the aerospace system have become a problem that urgently needs to be settled. This article introduces a method for aerospace system hazard interaction identification based on extended GTST-MLD (goal tree-success tree-master logic diagram) during the design stage. GTST-MLD is a functional modeling framework with a simple architecture. Ontology is used to extend the ability of system interaction description in GTST-MLD by adding the system design knowledge and the past accident experience. From the level of functionality and equipment, respectively, this approach can help the technician detect potential hazard interactions. Finally, a case is used to show the method. © 2011 Society for Risk Analysis.
Safety evaluation model of urban cross-river tunnel based on driving simulation.
Ma, Yingqi; Lu, Linjun; Lu, Jian John
2017-09-01
Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.
Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.
1993-01-01
This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.
Instructional practices at Farm Safety 4 Just Kids (FS4JK) safety day camps.
Mazur, J M; Cole, H P; Reed, D; Claunch, D
2005-05-01
The instructional methods used with 1,347 youth in seven Farm Safety 4 Just Kids (FS4JK) day camp sessions conducted in five states during the summer and fall of 2002 were videotaped. The videotapes, instructor questionnaires, and day camp materials were analyzed using an observation protocol that focused on instructional practices and an interaction analysis of instructor-student talk during the sessions. Results showed that instruction focused on hazard recognition, a high level of participant attention during all the sessions observed, and safety day camp content relevant to rural participants regardless of whether they live or work on a farm. Recommendations for improving instructional practice include better use of print materials, more interactive, participatory activities for students, and reduction of instructor-centered, didactic approaches. Given the high level of students' attention, increased involvement of students in active, participatory approaches might enhance the effectiveness of the instruction by: (1) further engaging students through personalizing hazard recognition, (2) contextualizing reports of injuries, (3) examining the complexities of choosing safe behaviors, and (4) paying more attention to the consequences of injury events. Role-playing, narrative simulations, and other types of interactive and collaborative exercises are instructional approaches that support the inclusion of the pre-event contingencies and post-event consequences that are part of all injury events.
Adaptive Sampling using Support Vector Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Mandelli; C. Smith
2012-11-01
Reliability/safety analysis of stochastic dynamic systems (e.g., nuclear power plants, airplanes, chemical plants) is currently performed through a combination of Event-Tress and Fault-Trees. However, these conventional methods suffer from certain drawbacks: • Timing of events is not explicitly modeled • Ordering of events is preset by the analyst • The modeling of complex accident scenarios is driven by expert-judgment For these reasons, there is currently an increasing interest into the development of dynamic PRA methodologies since they can be used to address the deficiencies of conventional methods listed above.
Challenges in Developing Competency-based Training Curriculum for Food Safety Regulators in India.
Thippaiah, Anitha; Allagh, Komal Preet; Murthy, G V
2014-07-01
The Food Safety and Standards Act have redefined the roles and responsibilities of food regulatory workforce and calls for highly skilled human resources as it involves complex management procedures. 1) Identify the competencies needed among the food regulatory workforce in India. 2) Develop a competency-based training curriculum for food safety regulators in the country. 3) Develop training materials for use to train the food regulatory workforce. The Indian Institute of Public Health, Hyderabad, led the development of training curriculum on food safety with technical assistance from the Royal Society for Public Health, UK and the National Institute of Nutrition, India. The exercise was to facilitate the implementation of new Act by undertaking capacity building through a comprehensive training program. A competency-based training needs assessment was conducted before undertaking the development of the training materials. THE TRAINING PROGRAM FOR FOOD SAFETY OFFICERS WAS DESIGNED TO COMPRISE OF FIVE MODULES TO INCLUDE: Food science and technology, Food safety management systems, Food safety legislation, Enforcement of food safety regulations, and Administrative functions. Each module has a facilitator guide for the tutor and a handbook for the participant. Essentials of Food Hygiene-I (Basic level), II and III (Retail/ Catering/ Manufacturing) were primarily designed for training of food handlers and are part of essential reading for food safety regulators. The Food Safety and Standards Act calls for highly skilled human resources as it involves complex management procedures. Despite having developed a comprehensive competency-based training curriculum by joint efforts by the local, national, and international agencies, implementation remains a challenge in resource-limited setting.
14 CFR 417.231 - Collision avoidance analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 417.231..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that...
Associations between perceived social environment and neighborhood safety: Health implications.
De Jesus, Maria; Puleo, Elaine; Shelton, Rachel C; Emmons, Karen M
2010-09-01
This study examined the associations between social networks, social support, social cohesion, and perceived neighborhood safety among an ethnically diverse sample of 1352 residents living in 12 low-income public housing sites in Boston, Massachusetts. For males and females, social cohesion was associated with perceived safety. For males, a smaller social network was associated with greater feelings of safety. Social support was not a significant predictor of perceived safety. The findings reported here are useful in exploring a potential pathway through which social environmental factors influence health and in untangling the complex set of variables that may influence perceived safety. Copyright 2010 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...
3D Simulation of External Flooding Events for the RISMC Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad
2015-09-01
Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to themore » design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.« less
Mathematics and statistics research progress report, period ending June 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchamp, J. J.; Denson, M. V.; Heath, M. T.
1983-08-01
This report is the twenty-sixth in the series of progress reports of Mathematics and Statistics Research of the Computer Sciences organization, Union Carbide Corporation Nuclear Division. Part A records research progress in analysis of large data sets, applied analysis, biometrics research, computational statistics, materials science applications, numerical linear algebra, and risk analysis. Collaboration and consulting with others throughout the Oak Ridge Department of Energy complex are recorded in Part B. Included are sections on biological sciences, energy, engineering, environmental sciences, health and safety, and safeguards. Part C summarizes the various educational activities in which the staff was engaged. Part Dmore » lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less
[Risk Management: concepts and chances for public health].
Palm, Stefan; Cardeneo, Margareta; Halber, Marco; Schrappe, Matthias
2002-01-15
Errors are a common problem in medicine and occur as a result of a complex process involving many contributing factors. Medical errors significantly reduce the safety margin for the patient and contribute additional costs in health care delivery. In most cases adverse events cannot be attributed to a single underlying cause. Therefore an effective risk management strategy must follow a system approach, which is based on counting and analysis of near misses. The development of defenses against the undesired effects of errors should be the main focus rather than asking the question "Who blundered?". Analysis of near misses (which in this context can be compared to indicators) offers several methodological advantages as compared to the analysis of errors and adverse events. Risk management is an integral element of quality management.
Risk analysis for veterinary biologicals released into the environment.
Silva, S V; Samagh, B S; Morley, R S
1995-12-01
All veterinary biologicals licensed in Canada must be shown to be pure, potent, safe and effective. A risk-based approach is used to evaluate the safety of all biologicals, whether produced by conventional methods or by molecular biological techniques. Traditionally, qualitative risk assessment methods have been used for this purpose. More recently, quantitative risk assessment has become available for complex issues. The quantitative risk assessment method uses "scenario tree analysis' to predict the likelihood of various outcomes and their respective impacts. The authors describe the quantitative risk assessment approach which is used within the broader context of risk analysis (i.e. risk assessment, risk management and risk communication) to develop recommendations for the field release of veterinary biologicals. The general regulatory framework for the licensing of veterinary biologicals in Canada is also presented.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
New health and safety initiatives at the Department of Energy (DOE)
NASA Technical Reports Server (NTRS)
Ziemer, Paul L.
1993-01-01
This document touches on some of the more important lessons learned and the more noteworthy initiatives DOE has put into motion in the last three years to protect the health and safety of our contractor employees. What we have learned in the process should come as no surprise to those of you who have been working in the field: (1) that management commitment to safety and health is critical to a successful program; (2) that meaningful employee participation in all aspects of the program enhances its effectiveness at every level; and (3) that the dedication and expertise of medical and occupational safety and health professionals are needed if the challenging problems presented by the complex and technologically advanced environment at DOE facilities are to be overcome. I believe that we have made a good beginning in the long and arduous task of building an Occupational Safety and Health Program that will serve as a model for others, and I can assure you that we intend to continue our efforts to protect every worker within the complex from occupational injury and disease.
Dialysis Facility Safety: Processes and Opportunities.
Garrick, Renee; Morey, Rishikesh
2015-01-01
Unintentional human errors are the source of most safety breaches in complex, high-risk environments. The environment of dialysis care is extremely complex. Dialysis patients have unique and changing physiology, and the processes required for their routine care involve numerous open-ended interfaces between providers and an assortment of technologically advanced equipment. Communication errors, both within the dialysis facility and during care transitions, and lapses in compliance with policies and procedures are frequent areas of safety risk. Some events, such as air emboli and needle dislodgments occur infrequently, but are serious risks. Other adverse events include medication errors, patient falls, catheter and access-related infections, access infiltrations and prolonged bleeding. A robust safety system should evaluate how multiple, sequential errors might align to cause harm. Systems of care can be improved by sharing the results of root cause analyses, and "good catches." Failure mode effects and analyses can be used to proactively identify and mitigate areas of highest risk, and methods drawn from cognitive psychology, simulation training, and human factor engineering can be used to advance facility safety. © 2015 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
2000-12-31
Accidents involving chemicals or radioactive materials represent a significant threat to the environment, public : health and safety, and community well-being. In an increasingly complex and interconnected world, no community : is immune from the thr...
48 CFR 50.205-1 - SAFETY Act Considerations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CONTRACT MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT Support Anti-terrorism by... performance characteristics are addressed. This is important because the processing times for issuing... applications to DHS and the technical complexity of individual applications. (c) Industry outreach. When...
Liu, Yunbo; Wear, Keith A.; Harris, Gerald R.
2017-01-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement uncertainty and signal analysis still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small PVDF capsule hydrophone and two different fiber-optic hydrophones. The focal waveform and beam distribution of a single element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveform. Compressional pressure, rarefactional pressure, and focal beam distribution were compared up to 10.6/−6.0 MPa (p+ and p−) (1.05 MHz) and 20.65/−7.20 MPa (3.3 MHz). In particular, the effects of spatial averaging, local nonlinear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed an uncertainty of no better than 10–15% on hydrophone-based HITU pressure characterization. PMID:28735734
Liu, Yunbo; Wear, Keith A; Harris, Gerald R
2017-10-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.
DoD Veterinary Service Activity Role in DoD Food Safety.
1998-01-01
medical research and development; zoonotic disease prevention and control; and food safety and quality assurance. The latter mission is not all encompassing...within DoD. This paper reviews the division of responsibilities, within DoD, for food safety and quality assurance. The complexity of the division...and the problem it causes joint operations planners are explored. A proposal for integrating overall strategic responsibility for food safety and quality assurance into the DoD Veterinary Service Activity is developed.
Aviation Safety Concerns for the Future
NASA Technical Reports Server (NTRS)
Smith, Brian E.; Roelen, Alfred L. C.; den Hertog, Rudi
2016-01-01
The Future Aviation Safety Team (FAST) is a multidisciplinary international group of aviation professionals that was established to identify possible future aviation safety hazards. The principle was adopted that future hazards are undesirable consequences of changes, and a primary activity of FAST became identification and prioritization of possible future changes affecting aviation. Since 2004, FAST has been maintaining a catalogue of "Areas of Change" (AoC) that could potentially influence aviation safety. The horizon for such changes is between 5 to 20 years. In this context, changes must be understood as broadly as possible. An AoC is a description of the change, not an identification of the hazards that result from the change. An ex-post analysis of the AoCs identified in 2004 demonstrates that changes catalogued many years previous were directly implicated in the majority of fatal aviation accidents over the past ten years. This paper presents an overview of the current content of the AoC catalogue and a subsequent discussion of aviation safety concerns related to these possible changes. Interactions among these future changes may weaken critical functions that must be maintained to ensure safe operations. Safety assessments that do not appreciate or reflect the consequences of significant interaction complexity will not be fully informative and can lead to inappropriate trade-offs and increases in other risks. The FAST strongly encourages a system-wide approach to safety risk assessment across the global aviation system, not just within the domain for which future technologies or operational concepts are being considered. The FAST advocates the use of the "Areas of Change" concept, considering that several possible future phenomena may interact with a technology or operational concept under study producing unanticipated hazards.
Panesar, Sukhmeet S; Netuveli, Gopalakrishnan; Carson-Stevens, Andrew; Javad, Sundas; Patel, Bhavesh; Parry, Gareth; Donaldson, Liam J; Sheikh, Aziz
2013-11-21
The Orthopaedic Error Index for hospitals aims to provide the first national assessment of the relative safety of provision of orthopaedic surgery. Cross-sectional study (retrospective analysis of records in a database). The National Reporting and Learning System is the largest national repository of patient-safety incidents in the world with over eight million error reports. It offers a unique opportunity to develop novel approaches to enhancing patient safety, including investigating the relative safety of different healthcare providers and specialties. We extracted all orthopaedic error reports from the system over 1 year (2009-2010). The Orthopaedic Error Index was calculated as a sum of the error propensity and severity. All relevant hospitals offering orthopaedic surgery in England were then ranked by this metric to identify possible outliers that warrant further attention. 155 hospitals reported 48 971 orthopaedic-related patient-safety incidents. The mean Orthopaedic Error Index was 7.09/year (SD 2.72); five hospitals were identified as outliers. Three of these units were specialist tertiary hospitals carrying out complex surgery; the remaining two outlier hospitals had unusually high Orthopaedic Error Indexes: mean 14.46 (SD 0.29) and 15.29 (SD 0.51), respectively. The Orthopaedic Error Index has enabled identification of hospitals that may be putting patients at disproportionate risk of orthopaedic-related iatrogenic harm and which therefore warrant further investigation. It provides the prototype of a summary index of harm to enable surveillance of unsafe care over time across institutions. Further validation and scrutiny of the method will be required to assess its potential to be extended to other hospital specialties in the UK and also internationally to other health systems that have comparable national databases of patient-safety incidents.
Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern
NASA Astrophysics Data System (ADS)
Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne
The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.
Bai, Xiao-ping; Zhang, Xi-wei
2013-01-01
Selecting construction schemes of the building engineering project is a complex multiobjective optimization decision process, in which many indexes need to be selected to find the optimum scheme. Aiming at this problem, this paper selects cost, progress, quality, and safety as the four first-order evaluation indexes, uses the quantitative method for the cost index, uses integrated qualitative and quantitative methodologies for progress, quality, and safety indexes, and integrates engineering economics, reliability theories, and information entropy theory to present a new evaluation method for building construction project. Combined with a practical case, this paper also presents detailed computing processes and steps, including selecting all order indexes, establishing the index matrix, computing score values of all order indexes, computing the synthesis score, sorting all selected schemes, and making analysis and decision. Presented method can offer valuable references for risk computing of building construction projects.
Final safety analysis report for the Galileo Mission: Volume 2: Book 1, Accident model document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Accident Model Document (AMD) is the second volume of the three volume Final Safety Analysis Report (FSAR) for the Galileo outer planetary space science mission. This mission employs Radioisotope Thermoelectric Generators (RTGs) as the prime electrical power sources for the spacecraft. Galileo will be launched into Earth orbit using the Space Shuttle and will use the Inertial Upper Stage (IUS) booster to place the spacecraft into an Earth escape trajectory. The RTG's employ silicon-germanium thermoelectric couples to produce electricity from the heat energy that results from the decay of the radioisotope fuel, Plutonium-238, used in the RTG heat source.more » The heat source configuration used in the RTG's is termed General Purpose Heat Source (GPHS), and the RTG's are designated GPHS-RTGs. The use of radioactive material in these missions necessitates evaluations of the radiological risks that may be encountered by launch complex personnel as well as by the Earth's general population resulting from postulated malfunctions or failures occurring in the mission operations. The FSAR presents the results of a rigorous safety assessment, including substantial analyses and testing, of the launch and deployment of the RTGs for the Galileo mission. This AMD is a summary of the potential accident and failure sequences which might result in fuel release, the analysis and testing methods employed, and the predicted source terms. Each source term consists of a quantity of fuel released, the location of release and the physical characteristics of the fuel released. Each source term has an associated probability of occurrence. 27 figs., 11 tabs.« less
Conversion Preliminary Safety Analysis Report for the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Baek, J. S.; Hanson, A. L.
The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in anmore » aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.« less
Power Goals for NASA's Exploration Program
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.
2009-01-01
Exciting Future Programs ahead for NASA. Power is needed for all Exploration vehicles and for the missions. For long term missions as in Lunar and Mars programs, safe, high energy/ultra high energy batteries are required. Safety is top priority for human-rated missions. Two-fault tolerance to catastrophic failures is required for human-rated safety To meet power safety goals -inherent cell safety may be required; it can lessen complexity of external protective electronics and prevents dependency on hardware that may also have limitations. Inherent cell safety will eliminate the need to carry out screening of all cells (X-rays, vibration, etc.)
Future challenges to microbial food safety.
Havelaar, Arie H; Brul, Stanley; de Jong, Aarieke; de Jonge, Rob; Zwietering, Marcel H; Ter Kuile, Benno H
2010-05-30
Despite significant efforts by all parties involved, there is still a considerable burden of foodborne illness, in which micro-organisms play a prominent role. Microbes can enter the food chain at different steps, are highly versatile and can adapt to the environment allowing survival, growth and production of toxic compounds. This sets them apart from chemical agents and thus their study from food toxicology. We summarize the discussions of a conference organized by the Dutch Food and Consumer Products Safety Authority and the European Food Safety Authority. The goal of the conference was to discuss new challenges to food safety that are caused by micro-organisms as well as strategies and methodologies to counter these. Management of food safety is based on generally accepted principles of Hazard Analysis Critical Control Points and of Good Manufacturing Practices. However, a more pro-active, science-based approach is required, starting with the ability to predict where problems might arise by applying the risk analysis framework. Developments that may influence food safety in the future occur on different scales (from global to molecular) and in different time frames (from decades to less than a minute). This necessitates development of new risk assessment approaches, taking the impact of different drivers of change into account. We provide an overview of drivers that may affect food safety and their potential impact on foodborne pathogens and human disease risks. We conclude that many drivers may result in increased food safety risks, requiring active governmental policy setting and anticipation by food industries whereas other drivers may decrease food safety risks. Monitoring of contamination in the food chain, combined with surveillance of human illness and epidemiological investigations of outbreaks and sporadic cases continue to be important sources of information. New approaches in human illness surveillance include the use of molecular markers for improved outbreak detection and source attribution, sero-epidemiology and disease burden estimation. Current developments in molecular techniques make it possible to rapidly assemble information on the genome of various isolates of microbial species of concern. Such information can be used to develop new tracking and tracing methods, and to investigate the behavior of micro-organisms under environmentally relevant stress conditions. These novel tools and insight need to be applied to objectives for food safety strategies, as well as to models that predict microbial behavior. In addition, the increasing complexity of the global food systems necessitates improved communication between all parties involved: scientists, risk assessors and risk managers, as well as consumers. Copyright 2009 Elsevier B.V. All rights reserved.
Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: a randomized trial.
Troche, M S; Okun, M S; Rosenbek, J C; Musson, N; Fernandez, H H; Rodriguez, R; Romrell, J; Pitts, T; Wheeler-Hegland, K M; Sapienza, C M
2010-11-23
Dysphagia is the main cause of aspiration pneumonia and death in Parkinson disease (PD) with no established restorative behavioral treatment to date. Reduced swallow safety may be related to decreased elevation and excursion of the hyolaryngeal complex. Increased submental muscle force generation has been associated with expiratory muscle strength training (EMST) and subsequent increases in hyolaryngeal complex movement provide a strong rationale for its use as a dysphagia treatment. The current study's objective was to test the treatment outcome of a 4-week device-driven EMST program on swallow safety and define the physiologic mechanisms through measures of swallow timing and hyoid displacement. This was a randomized, blinded, sham-controlled EMST trial performed at an academic center. Sixty participants with PD completed EMST, 4 weeks, 5 days per week, for 20 minutes per day, using a calibrated or sham, handheld device. Measures of swallow function including judgments of swallow safety (penetration-aspiration [PA] scale scores), swallow timing, and hyoid movement were made from videofluoroscopic images. No pretreatment group differences existed. The active treatment (EMST) group demonstrated improved swallow safety compared to the sham group as evidenced by improved PA scores. The EMST group demonstrated improvement of hyolaryngeal function during swallowing, findings not evident for the sham group. EMST may be a restorative treatment for dysphagia in those with PD. The mechanism may be explained by improved hyolaryngeal complex movement. This intervention study provides Class I evidence that swallow safety as defined by PA score improved post EMST.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
ERIC Educational Resources Information Center
Dias, Martin A.
2012-01-01
The purpose of this dissertation is to examine information systems-enabled interorganizational collaborations called public safety networks--their proliferation, information systems architecture, and technology evolution. These networks face immense pressures from member organizations, external stakeholders, and environmental contingencies. This…
Systems safety monitoring using the National Full-Scale Aerodynamic Complex Bar Chart Monitor
NASA Technical Reports Server (NTRS)
Jung, Oscar
1990-01-01
Attention is given to the Bar Chart Monitor system designed for safety monitoring of all model and facility test-related articles in wind tunnels. The system's salient features and its integration into the data acquisition system are discussed.
DOT National Transportation Integrated Search
2010-10-07
"This project examined the safety and operation of hydrogen (H2) fueling system infrastructure in : northern climates. A multidisciplinary team lead by the University of Vermont (UVM), : combined with investigators from Zhejiang and Tsinghua Universi...
Overview of Risk Mitigation for Safety-Critical Computer-Based Systems
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2015-01-01
This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.
Researching safety culture: deliberative dialogue with a restorative lens.
Lorenzini, Elisiane; Oelke, Nelly D; Marck, Patricia Beryl; Dall'agnol, Clarice Maria
2017-10-01
Safety culture is a key component of patient safety. Many patient safety strategies in health care have been adapted from high-reliability organizations (HRO) such as aviation. However, to date, attempts to transform the cultures of health care settings through HRO approaches have had mixed results. We propose a methodological approach for safety culture research, which integrates the theory and practice of restoration science with the principles and methods of deliberative dialogue to support active engagement in critical reflection and collective debate. Our aim is to describe how these two innovative approaches in health services research can be used together to provide a comprehensive effective method to study and implement change in safety culture. Restorative research in health care integrates socio-ecological theory of complex adaptive systems concepts with collaborative, place-sensitive study of local practice contexts. Deliberative dialogue brings together all stakeholders to collectively develop solutions on an issue to facilitate change. Together these approaches can be used to actively engage people in the study of safety culture to gain a better understanding of its elements. More importantly, we argue that the synergistic use of these approaches offers enhanced potential to move health care professionals towards actionable strategies to improve patient safety within today's complex health care systems. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOT National Transportation Integrated Search
2010-12-01
This report documents the Safety Measurement System (SMS) methodology developed to support the Comprehensive Safety Analysis 2010 (CSA 2010) Initiative for the Federal Motor Carrier Safety Administration (FMCSA). The SMS is one of the major tools for...
Lu, Miaojia; Cheung, Clara Man; Li, Heng; Hsu, Shu-Chien
2016-09-01
The construction industry in Hong Kong increased its safety investment by 300% in the past two decades; however, its accident rate has plateaued to around 50% for one decade. Against this backdrop, researchers have found inconclusive results on the causal relationship between safety investment and safety performance. Using agent-based modeling, this study takes an unconventional bottom-up approach to study safety performance on a construction site as an outcome of a complex system defined by interactions among a worksite, individual construction workers, and different safety investments. Instead of focusing on finding the absolute relationship between safety investment and safety performance, this study contributes to providing a practical framework to investigate how different safety investments interacting with different parameters such as human and environmental factors could affect safety performance. As a result, we could identify cost-effective safety investments under different construction scenarios for delivering optimal safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less
Software Safety Progress in NASA
NASA Technical Reports Server (NTRS)
Radley, Charles F.
1995-01-01
NASA has developed guidelines for development and analysis of safety-critical software. These guidelines have been documented in a Guidebook for Safety Critical Software Development and Analysis. The guidelines represent a practical 'how to' approach, to assist software developers and safety analysts in cost effective methods for software safety. They provide guidance in the implementation of the recent NASA Software Safety Standard NSS-1740.13 which was released as 'Interim' version in June 1994, scheduled for formal adoption late 1995. This paper is a survey of the methods in general use, resulting in the NASA guidelines for safety critical software development and analysis.
NASA Technical Reports Server (NTRS)
Zelkin, Natalie; Henriksen, Stephen
2011-01-01
This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.
Initiating Event Analysis of a Lithium Fluoride Thorium Reactor
NASA Astrophysics Data System (ADS)
Geraci, Nicholas Charles
The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to arrive at a list of key initiating events that can be used to address vulnerabilities during the design phases of LFTR development.
Experimental Fuels Facility Re-categorization Based on Facility Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiss, Troy P.; Andrus, Jason
The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less
Development of requirements on safety cases of machine industry products for power engineering
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Brezgin, V. I.; Brodov, Yu. M.; Gorodnova, N. V.; Kultyshev, A. Yu.; Tolmachev, V. V.; Shablova, E. G.
2016-12-01
This article considers security assurance for power engineering machinery in the design and production phases. The Federal Law "On Technical Regulation" and the Customs Union Technical Regulations "On Safety of Machinery and Equipment" are analyzed in the legal, technical, and economic aspect with regard to power engineering machine industry products. From the legal standpoint, it is noted that the practical enforcement of most norms of the Law "On Technical Regulation" makes it necessary to adopt subordinate statutory instruments currently unavailable; moreover, the current level of adoption of technical regulations leaves much to be desired. The intensive integration processes observed in the Eurasian Region in recent years have made it a more pressing task to harmonize the laws of the region's countries, including their technical regulation framework. The technical aspect of analyzing the technical regulation of the Customs Union has been appraised by the IDEF0 functional modeling method. The object of research is a steam turbine plant produced at the turbine works. When developing the described model, we considered the elaboration of safety case (SC) requirements from the standpoint of the chief designer of the turbine works as the person generally responsible for the elaboration of the SC document. The economic context relies on risk analysis and appraisal methods. In their respect, these are determined by the purposes and objectives of analysis, complexity of considered objects, availability of required data, and expertise of specialists hired to conduct the analysis. The article proposes the description of all sources of hazard and scenarios of their actualization in all production phases of machinery life cycle for safety assurance purposes. The detection of risks and hazards allows forming the list of unwanted events. It describes the sources of hazard, various risk factors, conditions for their rise and development, tentative risk appraisals, and elaboration of tentative guidelines for reducing hazard and risk levels.
Safety System Design for Technology Education. A Safety Guide for Technology Education Courses K-12.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This manual is designed to involve both teachers and students in planning and controlling a safety system for technology education classrooms. The safety program involves students in the design and maintenance of the system by including them in the analysis of the classroom environment, job safety analysis, safety inspection, and machine safety…
14 CFR Appendix B of Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2010 CFR
2010-01-01
... Performed by Certified Personnel 4.0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and Assumptions 4.1.2Sample Calculation and Products 4.1.3 Launch Specific Updates and Final Flight Safety Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety...
14 CFR Appendix B of Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2012 CFR
2012-01-01
... Performed by Certified Personnel 4.0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and Assumptions 4.1.2Sample Calculation and Products 4.1.3 Launch Specific Updates and Final Flight Safety Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety...
14 CFR Appendix B of Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2011 CFR
2011-01-01
... Performed by Certified Personnel 4.0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and Assumptions 4.1.2Sample Calculation and Products 4.1.3 Launch Specific Updates and Final Flight Safety Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety...
Fatigue in Residency Education: Understanding the Influence of Work Hours Regulations in Europe.
Taylor, Taryn S; Teunissen, Pim W; Dornan, Tim; Lingard, Lorelei
2017-12-01
Although one proposed solution to the problem of fatigued medical trainees is the implementation of work hours regulations, concerns about the effectiveness of these regulations are growing. Canada remains one of the few Western jurisdictions without legislated regulation. Recent research suggests that fatigue is a complex social construct, rather than simply a lack of sleep; thus, the authors explored how regulations and fatigue are understood in countries with established work hours frameworks to better inform other jurisdictions looking to address trainee fatigue. Using constructivist grounded theory methodology, the authors conducted individual, semistructured interviews in 2015-2016 with 13 postgraduate medical trainees from four European countries with established work hours regulations. Data collection and analysis proceeded iteratively, and the authors used a constant comparative approach to analysis. Trainees reported that they were commonly fatigued and that they violated the work hours restrictions for various reasons, including educational pursuits. Although they understood the regulations were legislated specifically to ensure safe patient care and optimize trainee well-being, they also described implicit meanings (e.g., monitoring for trainee efficiency) and unintended consequences (e.g., losing a sense of vocation). Work hours regulations carry multiple, conflicting meanings for trainees that are captured by three predominant rhetorics: the rhetoric of patient safety, of well-being, and of efficiency. Tensions within each of those rhetorics reveal that managing fatigue within clinical training environments is complex. These findings suggest that straightforward solutions are unlikely to solve the problem of fatigue, assure patient safety, and improve trainee well-being.
14 CFR 417.227 - Toxic release hazard analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Toxic release hazard analysis. 417.227..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.227 Toxic release hazard analysis. A flight safety analysis must establish flight commit criteria that protect the public from any...
41 CFR 102-80.130 - Who must perform the equivalent level of safety analysis?
Code of Federal Regulations, 2010 CFR
2010-07-01
...-SAFETY AND ENVIRONMENTAL MANAGEMENT Accident and Fire Prevention Equivalent Level of Safety Analysis... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who must perform the equivalent level of safety analysis? 102-80.130 Section 102-80.130 Public Contracts and Property Management...
Ensuring Payload Safety in Missions with Special Partnerships
NASA Technical Reports Server (NTRS)
Staubus, Calvert A.; Willenbring, Rachel C.; Blankenship, Michael D.
2016-01-01
The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions.
Challenges in Developing Competency-based Training Curriculum for Food Safety Regulators in India
Thippaiah, Anitha; Allagh, Komal Preet; Murthy, G. V.
2014-01-01
Context: The Food Safety and Standards Act have redefined the roles and responsibilities of food regulatory workforce and calls for highly skilled human resources as it involves complex management procedures. Aims: 1) Identify the competencies needed among the food regulatory workforce in India. 2) Develop a competency-based training curriculum for food safety regulators in the country. 3) Develop training materials for use to train the food regulatory workforce. Settings and Design: The Indian Institute of Public Health, Hyderabad, led the development of training curriculum on food safety with technical assistance from the Royal Society for Public Health, UK and the National Institute of Nutrition, India. The exercise was to facilitate the implementation of new Act by undertaking capacity building through a comprehensive training program. Materials and Methods: A competency-based training needs assessment was conducted before undertaking the development of the training materials. Results: The training program for Food Safety Officers was designed to comprise of five modules to include: Food science and technology, Food safety management systems, Food safety legislation, Enforcement of food safety regulations, and Administrative functions. Each module has a facilitator guide for the tutor and a handbook for the participant. Essentials of Food Hygiene-I (Basic level), II and III (Retail/ Catering/ Manufacturing) were primarily designed for training of food handlers and are part of essential reading for food safety regulators. Conclusion: The Food Safety and Standards Act calls for highly skilled human resources as it involves complex management procedures. Despite having developed a comprehensive competency-based training curriculum by joint efforts by the local, national, and international agencies, implementation remains a challenge in resource-limited setting. PMID:25136155
A Synthetic Vision Preliminary Integrated Safety Analysis
NASA Technical Reports Server (NTRS)
Hemm, Robert; Houser, Scott
2001-01-01
This report documents efforts to analyze a sample of aviation safety programs, using the LMI-developed integrated safety analysis tool to determine the change in system risk resulting from Aviation Safety Program (AvSP) technology implementation. Specifically, we have worked to modify existing system safety tools to address the safety impact of synthetic vision (SV) technology. Safety metrics include reliability, availability, and resultant hazard. This analysis of SV technology is intended to be part of a larger effort to develop a model that is capable of "providing further support to the product design and development team as additional information becomes available". The reliability analysis portion of the effort is complete and is fully documented in this report. The simulation analysis is still underway; it will be documented in a subsequent report. The specific goal of this effort is to apply the integrated safety analysis to SV technology. This report also contains a brief discussion of data necessary to expand the human performance capability of the model, as well as a discussion of human behavior and its implications for system risk assessment in this modeling environment.
Safety in the skies : personnel and parties in NTSB aviation accident investigations : master volume
DOT National Transportation Integrated Search
2001-01-01
Recent high-profile commercial aviation mishaps have stretched the National Transportation Safety Board's (NTSB) resources to the limit and are testing the agency's ability to unravel the sorts of complex failures that lead to tragic accidents. In re...
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.
2012-01-01
The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.
NASA Technical Reports Server (NTRS)
Koontz, Steve
2015-01-01
In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the possible role of GCR secondary particle showers in addressing an important homeland security problem, finding nuclear contraband and weapons, will be briefly reviewed.
Surgical Safety Checklist compliance: a job done poorly!
Sparks, Eric A; Wehbe-Janek, Hania; Johnson, Rebecca L; Smythe, W Roy; Papaconstantinou, Harry T
2013-11-01
The Surgical Safety Checklist (SSC) has been introduced as an effective tool for reducing perioperative mortality and complications. Although reported completion rates are high, objective compliance is not well defined. The purpose of this retrospective analysis is to determine SSC compliance as measured by accuracy and completion, and factors that can affect compliance. In September 2010, our institution implemented an adaptation of the World Health Organization's SSC in an effort to improve patient safety and outcomes. A tool was developed for objective evaluation of overall compliance (maximum score 40) that was an aggregate score of completion and accuracy (20 each). Random samples of SSCs were analyzed at specific, predefined, time points throughout the first year after implementation. Procedure start time, operative time, and case complexity were assessed to determine association with compliance. A total of 671 SSCs were analyzed. The participation rate improved from 33% (95 of 285) at week 1 to 94% (249 of 265) at 1 year (p < 0.0001, chi-square test). Mean overall compliance score was 27.7 (± 5.4 SD) of 40 possible points (69.3% ± 13.5% of total possible score; n = 671) and did not change over time. Although completion scores were high (16.9 ± 2.7 out of 20 [84.5% ± 13.6%]), accuracy was poor (10.8 ± 3.4 out of 20 [54.1% ± 16.9%]). Overall compliance score was significantly associated with case start-time (p < 0.05), and operative time and case complexity showed no association. Our data indicate that although implementation of an SSC results in a high level of overall participation and completion, accuracy remained poor. Identification of barriers to effective use is needed, as improper checklist use can adversely affect patient safety. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Kapur, Ajay; Potters, Louis
2012-01-01
The purpose of this work was to develop and implement six sigma practices toward the enhancement of patient safety in an electronic, quality checklist-driven, multicenter, paperless radiation medicine department. A quality checklist process map (QPM), stratified into consultation through treatment-completion stages was incorporated into an oncology information systems platform. A cross-functional quality management team conducted quality-function-deployment and define-measure-analyze-improve-control (DMAIC) six sigma exercises with a focus on patient safety. QPM procedures were Pareto-sorted in order of decreasing patient safety risk with failure mode and effects analysis (FMEA). Quantitative metrics for a grouped set of highest risk procedures were established. These included procedural delays, associated standard deviations and six sigma Z scores. Baseline performance of the QPM was established over the previous year of usage. Data-driven analysis led to simplification, standardization, and refinement of the QPM with standard deviation, slip-day reduction, and Z-score enhancement goals. A no-fly policy (NFP) for patient safety was introduced at the improve-control DMAIC phase, with a process map interlock imposed on treatment initiation in the event of FMEA-identified high-risk tasks being delayed or not completed. The NFP was introduced in a pilot phase with specific stopping rules and the same metrics used for performance assessments. A custom root-cause analysis database was deployed to monitor patient safety events. Relative to the baseline period, average slip days and standard deviations for the risk-enhanced QPM procedures improved by over threefold factors in the NFP period. The Z scores improved by approximately 20%. A trend for proactive delays instead of reactive hard stops was observed with no adverse effects of the NFP. The number of computed potential no-fly delays per month dropped from 60 to 20 over a total of 520 cases. The fraction of computed potential no-fly cases that were delayed in NFP compliance rose from 28% to 45%. Proactive delays rose to 80% of all delayed cases. For potential no-fly cases, event reporting rose from 18% to 50%, while for actually delayed cases, event reporting rose from 65% to 100%. With complex technologies, resource-compromised staff, and pressures to hasten treatment initiation, the use of the six sigma driven process interlocks may mitigate potential patient safety risks as demonstrated in this study. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A Study on Urban Road Traffic Safety Based on Matter Element Analysis
Hu, Qizhou; Zhou, Zhuping; Sun, Xu
2014-01-01
This paper examines a new evaluation of urban road traffic safety based on a matter element analysis, avoiding the difficulties found in other traffic safety evaluations. The issue of urban road traffic safety has been investigated through the matter element analysis theory. The chief aim of the present work is to investigate the features of urban road traffic safety. Emphasis was placed on the construction of a criterion function by which traffic safety achieved a hierarchical system of objectives to be evaluated. The matter element analysis theory was used to create the comprehensive appraisal model of urban road traffic safety. The technique was used to employ a newly developed and versatile matter element analysis algorithm. The matter element matrix solves the uncertainty and incompatibility of the evaluated factors used to assess urban road traffic safety. The application results showed the superiority of the evaluation model and a didactic example was included to illustrate the computational procedure. PMID:25587267
Applying human factors and ergonomics to the misuse of nonsterile clinical gloves in acute care.
Wilson, Jennie; Bak, Aggie; Loveday, Heather P
2017-07-01
Health care workers (HCWs) are recommended to wear nonsterile clinical gloves (NSCG) for direct contact with blood and body fluids. However, there is evidence of extensive inappropriate NSCG use. A mixed-methods study comprising observation of NSCG use in 2 acute hospitals and semistructured HCW interviews. Qualitative data were categorized using thematic analysis. Findings were mapped to the Systems Engineering Initiative for Patient Safety model and used to develop a strategy for improving NSCG use. Two hundred seventy-eight procedures performed in 178 episodes of care involved the use of NSCG. NSCG were inappropriate for 59% of procedures (165 out of 278). Risk of cross-contamination occurred in 49% (87 out of 178) episodes. Twenty-six HCWs were interviewed; emotion and socialization were key factors influencing decisions to use NSCG. Data from observation and thematic analysis were mapped to 6 interacting components of the Systems Engineering Initiative for Patient Safety work system. Interventions targeting each component informed quality improvement strategies CONCLUSIONS: Despite intense promotion of hand hygiene as the key measure to protect patients from health care-associated infection, NSCG dominate routine clinical practice and potential cross-contamination occurs in 50% of care episodes. Such practice is associated with significant environmental and financial costs and adversely affects patient safety. The application of human factors and ergonomics to the complex drivers of inappropriate NSCG behavior may be more effective than conventional approaches of education and policy in achieving the goal of preventing health care-associated infection and improving patient safety. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
State-space based analysis and forecasting of macroscopic road safety trends in Greece.
Antoniou, Constantinos; Yannis, George
2013-11-01
In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mahmud, Ehtisham; Naghi, Jesse; Ang, Lawrence; Harrison, Jonathan; Behnamfar, Omid; Pourdjabbar, Ali; Reeves, Ryan; Patel, Mitul
2017-07-10
The aims of this study were to evaluate the feasibility and technical success of robotically assisted percutaneous coronary intervention (R-PCI) for the treatment of coronary artery disease (CAD) in clinical practice, especially in complex lesions, and to determine the safety and clinical success of R-PCI compared with manual percutaneous coronary intervention (M-PCI). R-PCI is safe and feasible for simple coronary lesions. The utility of R-PCI for complex coronary lesions is unknown. All consecutive PCI procedures performed robotically (study group) or manually (control group) over 18 months were included. R-PCI technical success, defined as the completion of the procedure robotically or with partial manual assistance and without a major adverse cardiovascular event, was determined. Procedures ineligible for R-PCI (i.e., atherectomy, planned 2-stent strategy for bifurcation lesion, chronic total occlusion requiring hybrid approach) were excluded for analysis from the M-PCI group. Clinical success, defined as completion of the PCI procedure without a major adverse cardiovascular event, procedure time, stent use, and fluoroscopy time were compared between groups. A total of 315 patients (mean age 67.7 ± 11.8 years; 78% men) underwent 334 PCI procedures (108 R-PCIs, 157 lesions, 78.3% type B2/C; 226 M-PCIs, 336 lesions, 68.8% type B2/C). Technical success with R-PCI was 91.7% (rate of manual assistance 11.1%, rate of manual conversion 7.4%, rate of major adverse cardiovascular events 0.93%). Clinical success (99.1% with R-PCI vs. 99.1% with M-PCI; p = 1.00), stent use (stents per procedure 1.59 ± 0.79 with R-PCI vs. 1.54 ± 0.75 with M-PCI; p = 0.73), and fluoroscopy time (18.2 ± 10.4 min with R-PCI vs. 19.2 ± 11.4 min with M-PCI; p = 0.39) were similar between the groups, although procedure time was longer in the R-PCI group (44:30 ± 26:04 min:s vs. 36:34 ± 23:03 min:s; p = 0.002). Propensity-matched analysis confirmed that procedure time was longer in the robotic group (42:59 ± 26:14 min:s with R-PCI vs. 34:01 ± 17:14 min:s with M-PCI; p = 0.007), although clinical success remained similar (98.8% with R-PCI vs. 100% with M-PCI; p = 1.00). This study demonstrates the feasibility, safety, and high technical success of R-PCI for the treatment of complex coronary disease. Furthermore, comparable clinical outcomes, without an adverse effect on stent use or fluoroscopy time, were observed with R-PCI and M-PCI. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Gap analysis: a method to assess core competency development in the curriculum.
Fater, Kerry H
2013-01-01
To determine the extent to which safety and quality improvement core competency development occurs in an undergraduate nursing program. Rapid change and increased complexity of health care environments demands that health care professionals are adequately prepared to provide high quality, safe care. A gap analysis compared the present state of competency development to a desirable (ideal) state. The core competencies, Nurse of the Future Nursing Core Competencies, reflect the ideal state and represent minimal expectations for entry into practice from pre-licensure programs. Findings from the gap analysis suggest significant strengths in numerous competency domains, deficiencies in two competency domains, and areas of redundancy in the curriculum. Gap analysis provides valuable data to direct curriculum revision. Opportunities for competency development were identified, and strategies were created jointly with the practice partner, thereby enhancing relevant knowledge, attitudes, and skills nurses need for clinical practice currently and in the future.
Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Sulyma, Peter
2008-01-01
The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos
2014-09-01
One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.
Oyarzabal, Omar A; Rowe, Ellen
2017-04-01
The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP). In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56%) provided the most appropriate definition of hazard, 19 participants (27%) provided the most appropriate definition of risk, 14 participants (20%) provided the most appropriate definitions of both hazard and risk, and 23 participants (32%) did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P < 0.05). Thirty participants (42%) stated that the most valuable thing they learned with this interactive module was the difference between hazard and risk, and 40 participants (65%) responded that they did not attend similar presentations in the past. The fact that less than one third of the participants answered properly to the definitions of hazard and risk at baseline is not surprising. However, these results highlight the need for the incorporation of modules to discuss these important food safety terms and include more active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important food safety terms that serve as building blocks for the understanding of more complex food safety topics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Nuclear Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
9 CFR 381.82 - Diseases of the leukosis complex.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one or...
Canister Storage Building (CSB) Design Basis Accident Analysis Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
CROWE, R.D.; PIEPHO, M.G.
2000-03-23
This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.
A Virtual Laboratory for Aviation and Airspace Prognostics Research
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh
2017-01-01
Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X-Plane simulator and X-PlaneConnect toolbox, the live aircraft module which connects fielded aircraft using onboard cellular communications devices, the hardware in the loop (HITL) module which connects laboratory based bench-top hardware testbeds and the research module which contains diagnostics and prognostics tools for analysis of live air traffic situations and vehicle health conditions. The testbed also features other modules for data recording and playback, information visualization, and air traffic generation. Software reliability, safety, and latency are some of the critical design considerations in development of the testbed.
Patient safety - the role of human factors and systems engineering.
Carayon, Pascale; Wood, Kenneth E
2010-01-01
Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.
Error reduction, patient safety and institutional ethics committees.
Meaney, Mark E
2004-01-01
Institutional ethics committees remain largely absent from the literature on error reduction and patient safety. In this paper, the author endeavors to fill the gap. As noted in the Hastings Center's recent report, "Promoting Patient Safety," the occurrence of medical error involves complex web of multiple factors. Human misstep is certainly one such factor, but not the only one. This paper builds on the Hastings Center's report in arguing that institutional ethics committees ought to play an integral role in the transformation of a "culture of blame" to a "culture of safety" in healthcare delivery.
Concept analysis of safety climate in healthcare providers.
Lin, Ying-Siou; Lin, Yen-Chun; Lou, Meei-Fang
2017-06-01
To report an analysis of the concept of safety climate in healthcare providers. Compliance with safe work practices is essential to patient safety and care outcomes. Analysing the concept of safety climate from the perspective of healthcare providers could improve understanding of the correlations between safety climate and healthcare provider compliance with safe work practices, thus enhancing quality of patient care. Concept analysis. The electronic databases of CINAHL, MEDLINE, PubMed and Web of Science were searched for literature published between 1995-2015. Searches used the keywords 'safety climate' or 'safety culture' with 'hospital' or 'healthcare'. The concept analysis method of Walker and Avant analysed safety climate from the perspective of healthcare providers. Three attributes defined how healthcare providers define safety climate: (1) creation of safe working environment by senior management in healthcare organisations; (2) shared perception of healthcare providers about safety of their work environment; and (3) the effective dissemination of safety information. Antecedents included the characteristics of healthcare providers and healthcare organisations as a whole, and the types of work in which they are engaged. Consequences consisted of safety performance and safety outcomes. Most studies developed and assessed the survey tools of safety climate or safety culture, with a minority consisting of interventional measures for improving safety climate. More prospective studies are needed to create interventional measures for improving safety climate of healthcare providers. This study is provided as a reference for use in developing multidimensional safety climate assessment tools and interventional measures. The values healthcare teams emphasise with regard to safety can serve to improve safety performance. Having an understanding of the concept of and interventional measures for safety climate allows healthcare providers to ensure the safety of their operations and their patients. © 2016 John Wiley & Sons Ltd.
Smith, Alan D; Motley, Darlene
2009-01-01
Technology in healthcare environments has increasingly become a vital way to communicate vital information in a safe, reliable, precise and secure manner. Healthcare is an arena that is constantly changing and very fast paced, but adoption of electronic prescribing (e-prescribing) has been comparatively slow and painful in the USA. Medical professionals need a system to communicate medications and diagnosis, with patients' safety as the major consideration, especially with the many complexities associated with drug-interactions and allergies. Via multivariate analysis and linear regression analysis, it was found that degree of e-prescribing acceptance is highly predictable by constructs of Technological Sophistication, Operational Factors and Maturity Factors, which are very stable ease-of-use variables derived from the TAM Model by Davis (1989).
Interchange Safety Analysis Tool (ISAT) : user manual
DOT National Transportation Integrated Search
2007-06-01
This User Manual describes the usage and operation of the spreadsheet-based Interchange Safety Analysis Tool (ISAT). ISAT provides design and safety engineers with an automated tool for assessing the safety effects of geometric design and traffic con...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salguero, Laura Marie; Huff, Johnathon; Matta, Anthony R.
Sandia National Laboratories is an organization with a wide range of research and development activities that include nuclear, explosives, and chemical hazards. In addition, Sandia has over 2000 labs and over 40 major test facilities, such as the Thermal Test Complex, the Lightning Test Facility, and the Rocket Sled Track. In order to support safe operations, Sandia has a diverse Environment, Safety, and Health (ES&H) organization that provides expertise to support engineers and scientists in performing work safely. With such a diverse organization to support, the ES&H program continuously seeks opportunities to improve the services provided for Sandia by usingmore » various methods as part of their risk management strategy. One of the methods being investigated is using enterprise architecture analysis to mitigate risk inducing characteristics such as normalization of deviance, organizational drift, and problems in information flow. This paper is a case study for how a Department of Defense Architecture Framework (DoDAF) model of the ES&H enterprise, including information technology applications, can be analyzed to understand the level of risk associated with the risk inducing characteristics discussed above. While the analysis is not complete, we provide proposed analysis methods that will be used for future research as the project progresses.« less
Quantitative Medical Image Analysis for Clinical Development of Therapeutics
NASA Astrophysics Data System (ADS)
Analoui, Mostafa
There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.
75 FR 13337 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
....00 PFC Level: North terminal complex conceptual design. Cargo service road. Decision Date: December 1... and II). Aircraft rescue and firefighting building (design). Runway 24 runway safety area improvements (design). Runway 24 runway safety area improvements (grading/drainage). Runway 6 localizer (design...
29 CFR 2204.107 - Allowable fees and expenses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT IN PROCEEDINGS BEFORE THE OCCUPATIONAL SAFETY AND HEALTH REVIEW... of the applicant; (4) The time reasonably spent in light of the difficulty or complexity of the...
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2010-01-01
Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.
Safety Metrics for Human-Computer Controlled Systems
NASA Technical Reports Server (NTRS)
Leveson, Nancy G; Hatanaka, Iwao
2000-01-01
The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.
Safety culture assessment in petrochemical industry: a comparative study of two algerian plants.
Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai
2014-06-01
To elucidate the relationship between safety culture maturity and safety performance of a particular company. To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance.
Safety Culture Assessment in Petrochemical Industry: A Comparative Study of Two Algerian Plants
Boughaba, Assia; Hassane, Chabane; Roukia, Ouddai
2014-01-01
Background To elucidate the relationship between safety culture maturity and safety performance of a particular company. Methods To identify the factors that contribute to a safety culture, a survey questionnaire was created based mainly on the studies of Fernández-Muñiz et al. The survey was randomly distributed to 1000 employees of two oil companies and realized a rate of valid answer of 51%. Minitab 16 software was used and diverse tests, including the descriptive statistical analysis, factor analysis, reliability analysis, mean analysis, and correlation, were used for the analysis of data. Ten factors were extracted using the analysis of factor to represent safety culture and safety performance. Results The results of this study showed that the managers' commitment, training, incentives, communication, and employee involvement are the priority domains on which it is necessary to stress the effort of improvement, where they had all the descriptive average values lower than 3.0 at the level of Company B. Furthermore, the results also showed that the safety culture influences the safety performance of the company. Therefore, Company A with a good safety culture (the descriptive average values more than 4.0), is more successful than Company B in terms of accident rates. Conclusion The comparison between the two petrochemical plants of the group Sonatrach confirms these results in which Company A, the managers of which are English and Norwegian, distinguishes itself by the maturity of their safety culture has significantly higher evaluations than the company B, who is constituted of Algerian staff, in terms of safety management practices and safety performance. PMID:25180135
Mine safety assessment using gray relational analysis and bow tie model
2018-01-01
Mine safety assessment is a precondition for ensuring orderly and safety in production. The main purpose of this study was to prevent mine accidents more effectively by proposing a composite risk analysis model. First, the weights of the assessment indicators were determined by the revised integrated weight method, in which the objective weights were determined by a variation coefficient method and the subjective weights determined by the Delphi method. A new formula was then adopted to calculate the integrated weights based on the subjective and objective weights. Second, after the assessment indicator weights were determined, gray relational analysis was used to evaluate the safety of mine enterprises. Mine enterprise safety was ranked according to the gray relational degree, and weak links of mine safety practices identified based on gray relational analysis. Third, to validate the revised integrated weight method adopted in the process of gray relational analysis, the fuzzy evaluation method was used to the safety assessment of mine enterprises. Fourth, for first time, bow tie model was adopted to identify the causes and consequences of weak links and allow corresponding safety measures to be taken to guarantee the mine’s safe production. A case study of mine safety assessment was presented to demonstrate the effectiveness and rationality of the proposed composite risk analysis model, which can be applied to other related industries for safety evaluation. PMID:29561875
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Research and Analysis on Energy Consumption Features of Civil Airports
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Wen; Wang, Jianping; Xu, Junku; Su, Jixiang
2017-11-01
Civil aviation is an important part of China’s transportation system, and also the fastest-growing field of comprehensive transportation. Airports, as a key infrastructure of the air transportation system, are the junctions of air and ground transportation. Large airports are generally comprehensive transportation hubs that integrate various modes of transportation, serving as important functional zones of cities. Compared with other transportation hubs, airports cover a wide area, with plenty of functional sections, complex systems and strong specialization, while airport buildings represented by terminals have exhibited characteristics of large space, massive energy consumption, high requirement for safety and comfort, as well as concentrated and rapidly changing passenger flows. Through research and analysis on energy consumption features of civil airports, and analysis on energy consumption features of airports with different sizes or in different climate regions, this article has drawn conclusions therefrom.
Beyond a series of security nets: Applying STAMP & STPA to port security
Williams, Adam D.
2015-11-17
Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less
Beyond a series of security nets: Applying STAMP & STPA to port security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Adam D.
Port security is an increasing concern considering the significant role of ports in global commerce and today’s increasingly complex threat environment. Current approaches to port security mirror traditional models of accident causality -- ‘a series of security nets’ based on component reliability and probabilistic assumptions. Traditional port security frameworks result in isolated and inconsistent improvement strategies. Recent work in engineered safety combines the ideas of hierarchy, emergence, control and communication into a new paradigm for understanding port security as an emergent complex system property. The ‘System-Theoretic Accident Model and Process (STAMP)’ is a new model of causality based on systemsmore » and control theory. The associated analysis process -- System Theoretic Process Analysis (STPA) -- identifies specific technical or procedural security requirements designed to work in coordination with (and be traceable to) overall port objectives. This process yields port security design specifications that can mitigate (if not eliminate) port security vulnerabilities related to an emphasis on component reliability, lack of coordination between port security stakeholders or economic pressures endemic in the maritime industry. As a result, this article aims to demonstrate how STAMP’s broader view of causality and complexity can better address the dynamic and interactive behaviors of social, organizational and technical components of port security.« less
49 CFR 229.307 - Safety analysis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Safety analysis. 229.307 Section 229.307 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229.307 Safety...
49 CFR 229.307 - Safety analysis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Safety analysis. 229.307 Section 229.307 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229.307 Safety...
49 CFR 229.307 - Safety analysis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Safety analysis. 229.307 Section 229.307 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Electronics § 229.307 Safety...
DOE Office of Scientific and Technical Information (OSTI.GOV)
PECH, S.H.
This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an amendment to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... alternative best signifies the vision, goals, and purposes of the Complex. We will emphasize restoring and... safety and public compliance with refuge regulations. Administration plans will stress the need for...
NASA Technical Reports Server (NTRS)
Oishi, Meeko; Tomlin, Claire; Degani, Asaf
2003-01-01
Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.
Evaluation of Margins of Safety in Brazed Joints
NASA Technical Reports Server (NTRS)
Flom, Yury; Wang, Len; Powell, Mollie M.; Soffa, Matthew A.; Rommel, Monica L.
2009-01-01
One of the essential steps in assuring reliable performance of high cost critical brazed structures is the assessment of the Margin of Safety (MS) of the brazed joints. In many cases the experimental determination of the failure loads by destructive testing of the brazed assembly is not practical and cost prohibitive. In such cases the evaluation of the MS is performed analytically by comparing the maximum design loads with the allowable ones and incorporating various safety or knock down factors imposed by the customer. Unfortunately, an industry standard methodology for the design and analysis of brazed joints has not been developed. This paper provides an example of an approach that was used to analyze an AlBeMet 162 (38%Be-62%Al) structure brazed with the AWS BAlSi-4 (Al-12%Si) filler metal. A practical and conservative interaction equation combining shear and tensile allowables was developed and validated to evaluate an acceptable (safe) combination of tensile and shear stresses acting in the brazed joint. These allowables are obtained from testing of standard tensile and lap shear brazed specimens. The proposed equation enables the assessment of the load carrying capability of complex brazed joints subjected to multi-axial loading.
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a...
14 CFR 417.217 - Overflight gate analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Overflight gate analysis. 417.217 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.217 Overflight gate analysis. For a launch that involves flight over a populated or other protected area, the flight safety...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2012-01-01 2012-01-01 false Contents of applications; technical information in final...
14 CFR Appendix J to Part 417 - Ground Safety Analysis Report
Code of Federal Regulations, 2014 CFR
2014-01-01
... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2014-01-01 2014-01-01 false Contents of applications; technical information in final...
14 CFR Appendix J to Part 417 - Ground Safety Analysis Report
Code of Federal Regulations, 2013 CFR
2013-01-01
... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...
14 CFR Appendix J to Part 417 - Ground Safety Analysis Report
Code of Federal Regulations, 2010 CFR
2010-01-01
... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...
14 CFR Appendix J to Part 417 - Ground Safety Analysis Report
Code of Federal Regulations, 2011 CFR
2011-01-01
... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...
10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2011-01-01 2011-01-01 false Contents of applications; technical information in final...
14 CFR Appendix J to Part 417 - Ground Safety Analysis Report
Code of Federal Regulations, 2012 CFR
2012-01-01
... information required by this appendix. J417.3Ground safety analysis report chapters (a) Introduction. A ground... analysis report must include a chapter that provides detailed safety information about each launch vehicle... data. A hazard analysis form must contain or reference all information necessary to understand the...
Information Services at the Nuclear Safety Analysis Center.
ERIC Educational Resources Information Center
Simard, Ronald
This paper describes the operations of the Nuclear Safety Analysis Center. Established soon after an accident at the Three Mile Island nuclear power plant near Harrisburg, Pennsylvania, its efforts were initially directed towards a detailed analysis of the accident. Continuing functions include: (1) the analysis of generic nuclear safety issues,…
41 CFR 102-80.105 - What information must be included in an equivalent level of safety analysis?
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Safety Analysis § 102-80.105 What information must be included in an equivalent level of safety... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What information must be included in an equivalent level of safety analysis? 102-80.105 Section 102-80.105 Public Contracts and...
41 CFR 102-80.105 - What information must be included in an equivalent level of safety analysis?
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Safety Analysis § 102-80.105 What information must be included in an equivalent level of safety... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What information must be included in an equivalent level of safety analysis? 102-80.105 Section 102-80.105 Public Contracts and...
41 CFR 102-80.105 - What information must be included in an equivalent level of safety analysis?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Safety Analysis § 102-80.105 What information must be included in an equivalent level of safety... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What information must be included in an equivalent level of safety analysis? 102-80.105 Section 102-80.105 Public Contracts and...
41 CFR 102-80.105 - What information must be included in an equivalent level of safety analysis?
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Safety Analysis § 102-80.105 What information must be included in an equivalent level of safety... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What information must be included in an equivalent level of safety analysis? 102-80.105 Section 102-80.105 Public Contracts and...
Systems Analysis of NASA Aviation Safety Program: Final Report
NASA Technical Reports Server (NTRS)
Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen
2013-01-01
A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.
Hostenkamp, Gisela; Fischer, Katharina Elisabeth; Borch-Johnsen, Knut
2016-12-01
To analyse the impact of drug safety warnings from the European Medicines Agency (EMA) on drug utilisation and their interaction with information released through national reimbursement bodies. Insurance claims data on anti-diabetic drug prescriptions in primary care in Germany and Denmark were analysed using interrupted time series analysis, with EMA drug warnings for thiazolidinediones (TZDs) in 2007 and 2011 as the intervention. Monthly drug utilisation data per substance in defined daily dosages (DDD) consumed per 1000 insurees were retrieved from the Danish national drug prescriptions register and one large statutory sickness fund in Germany. TZDs were generally reimbursed in Germany but restricted to individual reimbursement in Denmark. Consequently, utilisation of TZDs was much higher in Germany in 2007 compared with Denmark. For rosiglitazone, the drug warning had a significant impact on utilisation, reducing the number of DDD per 1000 insurees per day by -0.0105 in Denmark and -0.0312 in Germany (p-values<0.05). For pioglitazone, neither of the drug warnings had a significant effect on utilisation. The impact of EMA drug warnings differed across countries and might be mediated by information released through national reimbursement bodies and physician associations. Increasing complexity of new drugs and modified approval procedures require a strengthening of information exchange between drug regulation bodies and physicians to ensure patient safety. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
PreSSUB II: The prehospital stroke study at the Universitair Ziekenhuis Brussel II
Espinoza, Alexis Valenzuela; Van Hooff, Robbert-Jan; De Smedt, Ann; Moens, Maarten; Yperzeele, Laetitia; Nieboer, Koenraad; Hubloue, Ives; De Keyser, Jacques; Dupont, Alain; De Wit, Liesbet; Putman, Koen; Brouns, Raf
2015-01-01
Rationale Stroke is a time-critical medical emergency requiring specialized treatment. Prehospital delay contributes significantly to delayed or missed treatment opportunities. In-ambulance telemedicine can bring stroke expertise to the prehospital arena and facilitate this complex diagnostic and therapeutic process. Aims This study evaluates the efficacy, safety, feasibility, reliability and cost-effectiveness of in-ambulance telemedicine for patients with suspicion of acute stroke. We hypothesize that this approach will reduce the delay to in-hospital treatment by streamlining the diagnostic process and that prehospital stroke care will be improved by expert stroke support via telemedicine during the ambulance transportation. Design PreSSUB II is an interventional, prospective, randomized, open-blinded, end-point, single-center trial comparing standard emergency care by the Paramedic Intervention Team of the Universitair Ziekenhuis Brussel (control) with standard emergency care complemented with in-ambulance teleconsultation service by stroke experts (PreSSUB). Study Outcomes The primary efficacy endpoint is the call-to-brain imaging time. Secondary endpoints for the efficacy analysis include the prevalence of medical events diagnosed and corrected during in-ambulance teleconsultation, the proportion of patients with ischemic stroke receiving recanalization therapy, the assessment of disability, functional status, quality of life and overall well-being. Mortality at 90 days after stroke is the primary safety endpoint. Secondary safety analysis will involve the registration of any adverse event. Other analyses include assessment of feasibility and reliability and a health economic evaluation. PMID:27847888
Sources of Safety Data and Statistical Strategies for Design and Analysis: Clinical Trials.
Zink, Richard C; Marchenko, Olga; Sanchez-Kam, Matilde; Ma, Haijun; Jiang, Qi
2018-03-01
There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be intimately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including data visualization), and interpretation. In this manuscript, we review the challenges associated with the analysis of safety endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared to other sources. Clinical trials are an important source of safety data that contribute to the totality of safety information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.
DOT National Transportation Integrated Search
2013-09-01
The Florida Department of Transportation (FDOT) is dedicated to engineering safer roadways, but safety requires engineers and planners to go beyond their usual scope to understand behavior of road users of all ages. Driving, for example, is a complex...
Socio-cultural impacts of contemporary tourism.
Jovicić, Dobrica
2011-06-01
The topic of the paper is devoted to analysis of socio-cultural impacts of tourism, as effects on the people of host communities resulting from their direct and indirect associations with tourists. The social and cultural impacts of tourism are the ways in which tourism is contributing to changes in value systems, individual behavior, family structure and relationships, collective lifestyles, safety levels, moral conduct, traditional ceremonies and community organizations. Special attention is devoted to considering complexity of tourists/host interrelationships and discussing the techniques for appraisal of quality and quantity of socio-cultural changes which tourism provokes in local communities.
Measuring quality in anatomic pathology.
Raab, Stephen S; Grzybicki, Dana Marie
2008-06-01
This article focuses mainly on diagnostic accuracy in measuring quality in anatomic pathology, noting that measuring any quality metric is complex and demanding. The authors discuss standardization and its variability within and across areas of care delivery and efforts involving defining and measuring error to achieve pathology quality and patient safety. They propose that data linking error to patient outcome are critical for developing quality improvement initiatives targeting errors that cause patient harm in addition to using methods of root cause analysis, beyond those traditionally used in cytologic-histologic correlation, to assist in the development of error reduction and quality improvement plans.
Light aircraft crash safety program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.
1974-01-01
NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.
Comments on the "Byzantine Self-Stabilizing Pulse Synchronization" Protocol: Counter-examples
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Siminiceanu, Radu
2006-01-01
Embedded distributed systems have become an integral part of many safety-critical applications. There have been many attempts to solve the self-stabilization problem of clocks across a distributed system. An analysis of one such protocol called the Byzantine Self-Stabilizing Pulse Synchronization (BSS-Pulse-Synch) protocol from a paper entitled "Linear Time Byzantine Self-Stabilizing Clock Synchronization" by Daliot, et al., is presented in this report. This report also includes a discussion of the complexity and pitfalls of designing self-stabilizing protocols and provides counter-examples for the claims of the above protocol.
Clements Eaton, Emma Catherine; Cox, Rachel
2015-01-01
A sample of women (n = 5) participated in a qualitative service evaluation concerning an open-ended, therapeutic group for women only. Data analysis followed suggestions by Halcomb and Davidson (2006). Main themes derived from the evaluation included: 'Groups are different from individual work', 'Belonging/ not being alone', 'Performance in the group', 'The group as a safety net', 'Life improvements and hope for the future' and 'The extent of emotional despair felt'. In this paper, several sub-themes within the main themes and relevant theories and implications for theory and service provision are discussed.
Tosello, Michèle; Lévêque, Françoise; Dutillieu, Stéphanie; Hernandez, Guillaume; Vautier, Jean-François
2012-01-01
This communication presents some elements which come from the experience feedback at CEA about the conditions for the successful integration of HOF in the nuclear safety analysis. To point out some of these conditions, one of the concepts proposed by Edgar Morin to describe the functioning of "complex" systems: the dialogical principle has been used. The idea is to look for some dialogical pairs. The elements of this kind of pair are both complementary and antagonist to one another. Three dialogical pairs are presented in this communication. The first two pairs are related to the organization of the HOF network and the last one is related to the methods which are used to analyse the working situations. The three pairs are: specialist - non-specialist actors of the network, centralized - distributed human resources in the network and microscopic - macroscopic levels of HOF methods to analyse the working situations. To continuously improve these three dialogical pairs, it is important to keep the differences which exist between the two elements of a pair and to find and maintain a balance between the two elements of the pairs.
Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket
NASA Astrophysics Data System (ADS)
Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus
2018-05-01
Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali T-Raissi
The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammoniamore » and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.« less
Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharirli, M.; Rand, J.L.; Sasser, M.K.
1992-01-01
The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less
Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharirli, M.; Rand, J.L.; Sasser, M.K.
1992-12-01
The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less
Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio
2012-01-01
Objective Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Design and setting Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. Primary outcome To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. Results In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. Conclusions FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children. PMID:23253870
Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio
2012-01-01
Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children.
Regulatory Compliance in Multi-Tier Supplier Networks
NASA Technical Reports Server (NTRS)
Goossen, Emray R.; Buster, Duke A.
2014-01-01
Over the years, avionics systems have increased in complexity to the point where 1st tier suppliers to an aircraft OEM find it financially beneficial to outsource designs of subsystems to 2nd tier and at times to 3rd tier suppliers. Combined with challenging schedule and budgetary pressures, the environment in which safety-critical systems are being developed introduces new hurdles for regulatory agencies and industry. This new environment of both complex systems and tiered development has raised concerns in the ability of the designers to ensure safety considerations are fully addressed throughout the tier levels. This has also raised questions about the sufficiency of current regulatory guidance to ensure: proper flow down of safety awareness, avionics application understanding at the lower tiers, OEM and 1st tier oversight practices, and capabilities of lower tier suppliers. Therefore, NASA established a research project to address Regulatory Compliance in a Multi-tier Supplier Network. This research was divided into three major study efforts: 1. Describe Modern Multi-tier Avionics Development 2. Identify Current Issues in Achieving Safety and Regulatory Compliance 3. Short-term/Long-term Recommendations Toward Higher Assurance Confidence This report presents our findings of the risks, weaknesses, and our recommendations. It also includes a collection of industry-identified risks, an assessment of guideline weaknesses related to multi-tier development of complex avionics systems, and a postulation of potential modifications to guidelines to close the identified risks and weaknesses.
The Future of Pork Production in the World: Towards Sustainable, Welfare-Positive Systems.
McGlone, John J
2013-05-15
Among land animals, more pork is eaten in the world than any other meat. The earth holds about one billion pigs who deliver over 100 mmt of pork to people for consumption. Systems of pork production changed from a forest-based to pasture-based to dirt lots and finally into specially-designed buildings. The world pork industry is variable and complex not just in production methods but in economics and cultural value. A systematic analysis of pork industry sustainability was performed. Sustainable production methods are considered at three levels using three examples in this paper: production system, penning system and for a production practice. A sustainability matrix was provided for each example. In a comparison of indoor vs. outdoor systems, the food safety/zoonoses concerns make current outdoor systems unsustainable. The choice of keeping pregnant sows in group pens or individual crates is complex in that the outcome of a sustainability assessment leads to the conclusion that group penning is more sustainable in the EU and certain USA states, but the individual crate is currently more sustainable in other USA states, Asia and Latin America. A comparison of conventional physical castration with immunological castration shows that the less-common immunological castration method is more sustainable (for a number of reasons). This paper provides a method to assess the sustainability of production systems and practices that take into account the best available science, human perception and culture, animal welfare, the environment, food safety, worker health and safety, and economics (including the cost of production and solving world hunger). This tool can be used in countries and regions where the table values of a sustainability matrix change based on local conditions. The sustainability matrix can be used to assess current systems and predict improved systems of the future.
Code of Federal Regulations, 2010 CFR
2010-07-01
... equivalent level of safety. (c) As a third option, other technical analysis procedures, as approved by the... Equivalent Level of Safety Analysis § 102-80.115 Is there more than one option for establishing that an... areas of safety. Available safe egress times would be developed based on analysis of a number of assumed...
Requirements Analysis for the Army Safety Management Information System (ASMIS)
1989-03-01
8217_>’ Telephone Number « .. PNL-6819 Limited Distribution Requirements Analysis for the Army Safety Management Information System (ASMIS) Final...PNL-6819 REQUIREMENTS ANALYSIS FOR THE ARMY SAFETY MANAGEMENT INFORMATION SYSTEM (ASMIS) FINAL REPORT J. S. Littlefield A. L. Corrigan March...accidents. This accident data is available under the Army Safety Management Information System (ASMIS) which is an umbrella for many databases
Qualitative Future Safety Risk Identification an Update
NASA Technical Reports Server (NTRS)
Barr, Lawrence C.
2017-01-01
The purpose of this report is to document the results of a high-level qualitative study that was conducted to identify future aviation safety risks and to assess the potential impacts to the National Airspace System (NAS) of NASA Aviation Safety research on these risks. Multiple external sources (for example, the National Transportation Safety Board, the Flight Safety Foundation, the National Research Council, and the Joint Planning and Development Office) were used to develop a compilation of future safety issues risks, also referred to as future tall poles. The primary criterion used to identify the most critical future safety risk issues was that the issue must be cited in several of these sources as a safety area of concern. The tall poles in future safety risk, in no particular order of importance, are as follows: Runway Safety, Loss of Control In Flight, Icing Ice Detection, Loss of Separation, Near Midair Collision Human Fatigue, Increasing Complexity and Reliance on Automation, Vulnerability Discovery, Data Sharing and Dissemination, and Enhanced Survivability in the Event of an Accident.
Safety Case Development as an Information Modelling Problem
NASA Astrophysics Data System (ADS)
Lewis, Robert
This paper considers the benefits from applying information modelling as the basis for creating an electronically-based safety case. It highlights the current difficulties of developing and managing large document-based safety cases for complex systems such as those found in Air Traffic Control systems. After a review of current tools and related literature on this subject, the paper proceeds to examine the many relationships between entities that can exist within a large safety case. The paper considers the benefits to both safety case writers and readers from the future development of an ideal safety case tool that is able to exploit these information models. The paper also introduces the idea that the safety case has formal relationships between entities that directly support the safety case argument using a methodology such as GSN, and informal relationships that provide links to direct and backing evidence and to supporting information.
Spangaro, Jo; Herring, Sigrid; Koziol-Mclain, Jane; Rutherford, Alison; Frail, Mary-Anne; Zwi, Anthony B
2016-10-01
intimate partner violence is a significant global health problem but remains largely hidden. Understanding decisions about whether or not to disclose violence in response to routine enquiry in health settings can inform safe and responsive systems. Elevated rates of violence and systematic disadvantage found among Indigenous women globally, can impact on their decisions to disclose violence. This study aimed to test, among Indigenous women, a model for decisions on whether to disclose intimate partner violence in the context of antenatal routine screening. we employed Qualitative Configurative Analysis, a method developed for the social sciences to study complex phenomena with intermediate sample sizes. Data were drawn from single semi- structured interviews with Indigenous women 28+ weeks pregnant attending antenatal care. Interviews addressed decisions to disclose recent intimate partner violence in the context of routine enquiry during the antenatal care. Interview transcripts were binary coded for conditions identified a priori from the model being tested and also from themes identified within the current study and analysed using Qualitative Configurative Analysis to determine causal conditions for the outcome of disclosure or non-disclosure of violence experienced. five Aboriginal and Maternal Infant Health Services (two urban and three regional), and one mainstream hospital, in New South Wales, Australia. indigenous women who had experienced partner violence in the previous year and who had been asked about this as part of an antenatal booking-in visit. Of the 12 participants six had elected to disclose their experience of violence to the midwife, and six had chosen not to do so. pathways to disclosure and non-disclosure were mapped using Qualitative Configurative Analysis. Conditions relevant to decisions to disclose were similar to the conditions for non-Aboriginal women found in our earlier study. Unique to Aboriginal women's decisions to disclose abuse was cultural safety. Cultural safety included elements we titled: Borrowed trust, Build the relationship first, Come at it slowly and People like me are here. The absence of cultural safety Its absence was also a factor in decisions not to disclose experiences of violence by this group of women. cultural safety was central to Indigenous women's decision to disclose violence and processes for creating safety are identified. Other forms of safety which influenced disclosure included: safety from detection by the abuser; safety from shame; and safety from institutional control. Disclosure was promoted by direct asking by the midwife and a perception of care. Non-disclosure was associated with a lack of care and a lack of all four types of safety. Experiences of institutional racism were associated with Indigenous women's perceived risk of control by others, particularly child protection services. policies to ask abuse questions at first visits and models where continuity of care is not maintained, are problematic for Aboriginal women, among whom relationship building is important as is ample warning about questions to be asked. Strategies are needed to build cultural safety to counter widespread racism and promote safe opportunities for Indigenous women to disclose intimate partner violence and receive support. Elements of cultural safety are necessary for vulnerable or marginalised populations to fully utilise available health services. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Nurse manager cognitive decision-making amidst stress and work complexity.
Shirey, Maria R; Ebright, Patricia R; McDaniel, Anna M
2013-01-01
The present study provides insight into nurse manager cognitive decision-making amidst stress and work complexity. Little is known about nurse manager decision-making amidst stress and work complexity. Because nurse manager decisions have the potential to impact patient care quality and safety, understanding their decision-making processes is useful for designing supportive interventions. This qualitative descriptive study interviewed 21 nurse managers from three hospitals to answer the research question: What decision-making processes do nurse managers utilize to address stressful situations in their nurse manager role? Face-to-face interviews incorporating components of the Critical Decision Method illuminated expert-novice practice differences. Content analysis identified one major theme and three sub-themes. The present study produced a cognitive model that guides nurse manager decision-making related to stressful situations. Experience in the role, organizational context and situation factors influenced nurse manager cognitive decision-making processes. Study findings suggest that chronic exposure to stress and work complexity negatively affects nurse manager health and their decision-making processes potentially threatening individual, patient and organizational outcomes. Cognitive decision-making varies based on nurse manager experience and these differences have coaching and mentoring implications. This present study contributes a current understanding of nurse manager decision-making amidst stress and work complexity. © 2012 Blackwell Publishing Ltd.
Sabio Paz, Verónica; Panattieri, Néstor D; Cristina Godio, Farmacéutica; Ratto, María E; Arpí, Lucrecia; Dackiewicz, Nora
2015-10-01
Patient safety and quality of care has become a challenge for health systems. Health care is an increasingly complex and risky activity, as it represents a combination of human, technological and organizational processes. It is necessary, therefore, to take effective actions to reduce the adverse events and mitigate its impact. This glossary is a local adaptation of key terms and concepts from the international bibliographic sources. The aim is providing a common language for assessing patient safety processes and compare them.
Safety and Suitability for Service Assessment Testing for Aircraft Launched Munitions
2013-07-01
2013 12 benefits in terms of cost and test efficiency that tend to associate the Analytical S3 Test Approach with complex missile systems and the... systems containing expensive, non-safety related components. c. When using the Analytical S3 Test Approach for aircraft launched bombs, full BTCA is...establish safety margin of the system . Details of the Empirical Test Flow with full and reduced BTCA options are provided in Appendix B, Annexes 3 and
Patient Safety: The Role of Human Factors and Systems Engineering
Carayon, Pascale; Wood, Kenneth E.
2011-01-01
Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237
Viewpoint on ISA TR84.0.02--simplified methods and fault tree analysis.
Summers, A E
2000-01-01
ANSI/ISA-S84.01-1996 and IEC 61508 require the establishment of a safety integrity level for any safety instrumented system or safety related system used to mitigate risk. Each stage of design, operation, maintenance, and testing is judged against this safety integrity level. Quantitative techniques can be used to verify whether the safety integrity level is met. ISA-dTR84.0.02 is a technical report under development by ISA, which discusses how to apply quantitative analysis techniques to safety instrumented systems. This paper discusses two of those techniques: (1) Simplified equations and (2) Fault tree analysis.
Chevreau, Maxime; Romand, Xavier; Gaudin, Philippe; Juvin, Robert; Baillet, Athan
2017-07-01
Complex Regional Pain Syndrome Type 1 is a severely disabling pain syndrome with no definite established treatment. We have performed a systematic literature review and meta-analysis of all randomized controlled trials to assess the benefit of bisphosphonates on pain and function in patients with Complex Regional Pain Syndrome Type 1. A systematic literature search was performed in the Medline, Embase and Cochrane databases. Two authors selected independently blinded randomized trials comparing bisphosphonates to placebo on short-term (J30 to J40) and medium term pain (M2-M3), safety and function in patients with CRPS 1. The methodological quality of the studies was analyzed. Data were aggregated using the method of the inverse of the variance. 258 articles were identified. Four trials of moderate to good quality comprising 181 patients (90 in the bisphosphonate group and 91 in the placebo group) were included in this meta-analysis. Short-term pain Visual Analog Scale was significantly lower in the bisphosphonate group versus the placebo group (SMD=-2.6, 95%CI [-1.8, -3.4], P<0.001), as well as the medium term Visual Analog Scale pain (SMD=-2.5, 95%CI [-1.4, -3.6], P<0.001). There were more adverse events in the bisphosphonate group (35.5%) than in the placebo group (16.4%) with a relative risk of 2.1 (95%CI [1.3, 3.5], P=0.004) and a number needed to harm of 4.6, (95%CI [2.4, 168.0]) but no serious side effects. Our results suggest that bisphosphonates reduce pain in patients with Complex Regional Pain Syndrome type 1. Other studies are needed to determine their effectiveness. Copyright © 2017. Published by Elsevier SAS.
Deriving Safety Cases from Machine-Generated Proofs
NASA Technical Reports Server (NTRS)
Basir, Nurlida; Fischer, Bernd; Denney, Ewen
2009-01-01
Proofs provide detailed justification for the validity of claims and are widely used in formal software development methods. However, they are often complex and difficult to understand, because they use machine-oriented formalisms; they may also be based on assumptions that are not justified. This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical applications. Here, we present an approach to develop safety cases that correspond to formal proofs found by automated theorem provers and reveal the underlying argumentation structure and top-level assumptions. We concentrate on natural deduction proofs and show how to construct the safety cases by covering the proof tree with corresponding safety case fragments.
Improving safety on rural local and tribal roads site safety analysis - user guide #1.
DOT National Transportation Integrated Search
2014-08-01
This User Guide presents an example of how rural local and Tribal practitioners can study conditions at a preselected site. It demonstrates the step-by-step safety analysis process presented in Improving Safety on Rural Local and Tribal Roads Saf...
DOT National Transportation Integrated Search
2010-12-01
This project mainly focuses on exit ramp performance analysis of safety and operations. In addition, issues of advance guide sign for exit ramp are also mentioned. : Safety analysis evaluates safety performances of different exit ramps used in Florid...
Parallel computation of multigroup reactivity coefficient using iterative method
NASA Astrophysics Data System (ADS)
Susmikanti, Mike; Dewayatna, Winter
2013-09-01
One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.