Sample records for complex sample matrices

  1. Detection of E. coli O157:H7 in complex matrices under varying flow parameters with a robotic fluorometric assay system

    NASA Astrophysics Data System (ADS)

    Leskinen, Stephaney D.; Schlemmer, Sarah M.; Kearns, Elizabeth A.; Lim, Daniel V.

    2009-02-01

    The development of rapid assays for detection of microbial pathogens in complex matrices is needed to protect public health due to continued outbreaks of disease from contaminated foods and water. An Escherichia coli O157:H7 detection assay was designed using a robotic, fluorometric assay system. The system integrates optics, fluidics, robotics and software for the detection of foodborne pathogens or toxins in as many as four samples simultaneously. It utilizes disposable fiber optic waveguides coated with biotinylated antibodies for capture of target analytes from complex sample matrices. Computer-controlled rotation of sample cups allows complete contact between the sample and the waveguide. Detection occurs via binding of a fluorophore-labeled antibody to the captured target, which leads to an increase in the fluorescence signal. Assays are completed within twenty-five minutes. Sample matrices included buffer, retentate (material recovered from the filter of the Automated Concentration System (ACS) following hollow fiber ultrafiltration), spinach wash and ground beef. The matrices were spiked with E. coli O157:H7 (103-105 cells/ml) and the limits of detection were determined. The effect of sample rotation on assay sensitivity was also examined. Rotation parameters for each sample matrix included 10 ml with rotation, 5 ml with rotation and 0.1 ml without rotation. Detection occurred at 104 cells/ml in buffer and spinach wash and at 105 cells/ml in retentate and ground beef. Detection was greater for rotated samples in each matrix except ground beef. Enhanced detection of E. coli from large, rotated volumes of complex matrices was confirmed.

  2. Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals?

    PubMed

    Jahnke, Annika; Mayer, Philipp

    2010-07-16

    The partitioning of non-polar analytes into the silicone polydimethylsiloxane (PDMS) is the basis for many analytical approaches such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE) and environmental passive sampling. Recently, the methods have been applied to increasingly complex sample matrices. The present work investigated the possible effect of complex matrices on the sorptive properties of PDMS. First, SPME fibers with a 30 microm PDMS coating were immersed in 15 different matrices, including sediment, suspensions of soil and humic substances, mayonnaise, meat, fish, olive oil and fish oil. Second, the surface of the fibers was wiped clean, and together with matrix-free control fibers, they were exposed via headspace to 7 non-polar halogenated organic chemicals in spiked olive oil. The fibers were then solvent-extracted, analyzed, and the ratios of the mean concentrations in the matrix-immersed fibers to the control fibers were determined for all matrices. These ratios ranged from 92% to 112% for the four analytes with the highest analytical precision (i.e. polychlorinated biphenyls (PCBs) 3, 28, 52 and brominated diphenyl ether (BDE) 3), and they ranged from 74% to 133% for the other three compounds (i.e. PCBs 101, 105 and gamma-hexachlorocyclohexane (HCH)). We conclude that, for non-polar, hydrophobic chemicals, the sorptive properties of the PDMS were not modified by the diverse investigated media and consequently that PDMS is suited for sampling of these analytes even in highly complex matrices. 2010 Elsevier B.V. All rights reserved.

  3. Effect of Binding Components in Complex Sample Matrices on Recovery in Direct Immersion Solid-Phase Microextraction: Friends or Foe?

    PubMed

    Alam, Md Nazmul; Pawliszyn, Janusz

    2018-02-20

    The development of matrix compatible coatings for solid-phase microextraction (SPME) has enabled direct extraction of analytes from complex sample matrices. The direct immersion (DI) mode of SPME when utilized in conjunction with such extraction phases facilitates extraction of a wide range of analytes from complex matrices without the incurrence of fouling or coating saturation. In this work, mathematical models and computational simulations were employed to investigate the effect of binding components present in complex samples on the recovery of small molecules varying in logP for extractions carried out using the direct immersion approach. The presented findings corroborate that the studied approach indeed enables the extraction of both polar and nonpolar analytes from complex matrices, provided a suitable sorbent is employed. Further results indicated that, in certain cases, the kinetics of extraction of a given analyte in its free form might be dependent on the desorption kinetics of their bound form from matrix components, which might lower total recoveries of analytes with high affinity for the matrix. However, the binding of analytes to matrix components also enables SPME to extract a balanced quantity of different logP analytes, facilitated by multiphase equilibria, with a single extraction device.

  4. Determination of phytate in high molecular weight, charged organic matrices by two-dimensional size exclusion-ion chromatography

    USDA-ARS?s Scientific Manuscript database

    A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....

  5. Detection of Botulinum Neurotoxin Serotype A, B, and F Proteolytic Activity in Complex Matrices with Picomolar to Femtomolar Sensitivity

    PubMed Central

    Dunning, F. Mark; Ruge, Daniel R.; Piazza, Timothy M.; Stanker, Larry H.; Zeytin, Füsûn N.

    2012-01-01

    Rapid, high-throughput assays that detect and quantify botulinum neurotoxin (BoNT) activity in diverse matrices are required for environmental, clinical, pharmaceutical, and food testing. The current standard, the mouse bioassay, is sensitive but is low in throughput and precision. In this study, we present three biochemical assays for the detection and quantification of BoNT serotype A, B, and F proteolytic activities in complex matrices that offer picomolar to femtomolar sensitivity with small assay volumes and total assay times of less than 24 h. These assays consist of magnetic beads conjugated with BoNT serotype-specific antibodies that are used to purify BoNT from complex matrices before the quantification of bound BoNT proteolytic activity using the previously described BoTest reporter substrates. The matrices tested include human serum, whole milk, carrot juice, and baby food, as well as buffers containing common pharmaceutical excipients. The limits of detection were below 1 pM for BoNT/A and BoNT/F and below 10 pM for BoNT/B in most tested matrices using 200-μl samples and as low as 10 fM for BoNT/A with an increased sample volume. Together, these data describe rapid, robust, and high-throughput assays for BoNT detection that are compatible with a wide range of matrices. PMID:22923410

  6. What Can Quantum Optics Say about Computational Complexity Theory?

    NASA Astrophysics Data System (ADS)

    Rahimi-Keshari, Saleh; Lund, Austin P.; Ralph, Timothy C.

    2015-02-01

    Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output.

  7. Isolation and quantification of botulinum neurotoxin from complex matrices using the BoTest matrix assays.

    PubMed

    Dunning, F Mark; Piazza, Timothy M; Zeytin, Füsûn N; Tucker, Ward C

    2014-03-03

    Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing. Furthermore, the bioassay's use of animals has resulted in calls by drug product regulatory authorities and animal-rights proponents in the US and abroad to replace the mouse bioassay for BoNT testing. Several in vitro replacement assays have been developed that work well with purified BoNT in simple buffers, but most have not been shown to be applicable to testing in highly complex matrices. Here, a protocol for the detection of BoNT in complex matrices using the BoTest Matrix assays is presented. The assay consists of three parts: The first part involves preparation of the samples for testing, the second part is an immunoprecipitation step using anti-BoNT antibody-coated paramagnetic beads to purify BoNT from the matrix, and the third part quantifies the isolated BoNT's proteolytic activity using a fluorogenic reporter. The protocol is written for high throughput testing in 96-well plates using both liquid and solid matrices and requires about 2 hr of manual preparation with total assay times of 4-26 hr depending on the sample type, toxin load, and desired sensitivity. Data are presented for BoNT/A testing with phosphate-buffered saline, a drug product, culture supernatant, 2% milk, and fresh tomatoes and includes discussion of critical parameters for assay success.

  8. On-line approaches for the determination of residues and contaminants in complex samples.

    PubMed

    Fumes, Bruno Henrique; Andrade, Mariane Aissa; Franco, Maraíssa Silva; Lanças, Fernando Mauro

    2017-01-01

    The determination of residues and contaminants in complex matrices such as in the case of food, environmental, and biological samples requires a combination of several steps to succeed in the aimed goal. At least three independent steps are integrated to provide the best available situation to deal with such matrices: (1) a sample preparation technique is employed to isolate the target compounds from the rest of the matrix; (2) a chromatographic (second) step further "purifies" the isolated compounds from the co-extracted matrix interferences; (3) a spectroscopy-based device acts as chromatographic detector (ideally containing a tandem high-resolution mass analyzer) for the qualitative and quantitative analysis. These techniques can be operated in different modes including the off-line and the on-line modes. The present report focus the on-line coupling techniques aiming the determination of analytes present in complex matrices. The fundamentals of these approaches as well as the most common set ups are presented and discussed, as well as a review on the recent applications of these two approaches to the fields of bioanalytical, environmental, and food analysis are critically discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    NASA Astrophysics Data System (ADS)

    Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.

  10. Application of headspace and direct immersion solid-phase microextraction in the analysis of organothiophosphates related to the Chemical Weapons Convention from water and complex matrices.

    PubMed

    Althoff, Marc André; Bertsch, Andreas; Metzulat, Manfred; Klapötke, Thomas M; Karaghiosoff, Konstantin L

    2017-11-01

    The successful application of headspace (HS) and direct immersion (DI) solid phase microextraction (SPME) for the unambiguous identification and characterization of a series of toxic thiophosphate esters, such as Amiton (I), from aqueous phases and complex matrices (e.g. grass and foliage) has been demonstrated. A Thermo Scientific gas chromatograph (GC) - tandem mass spectrometer (MS/MS) system with a TriPlus RSH® autosampler and a SPME tool was used to investigate the effect of different parameters that influence the extraction efficiency: e.g. pH of the sample matrix and extraction temperature. The developed methods were employed for the detection of several Amiton derivatives (Schedule II of the CWC) that are structurally closely related to each other; some of which are new and have not been reported in literature previously. In addition, a novel DI SPME method from complex matrices for the analysis of organophosphates related to the CWC was developed. The studies clearly show that DI SPME for complex matrices is superior to HS extraction and can potentially be applied to other related compounds controlled under the CWC. Copyright © 2017. Published by Elsevier B.V.

  11. Preliminary construction of integral analysis for characteristic components in complex matrices by in-house fabricated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry.

    PubMed

    Tang, Zhentao; Hou, Wenqian; Liu, Xiuming; Wang, Mingfeng; Duan, Yixiang

    2016-08-26

    Integral analysis plays an important role in study and quality control of substances with complex matrices in our daily life. As the preliminary construction of integral analysis of substances with complex matrices, developing a relatively comprehensive and sensitive methodology might offer more informative and reliable characteristic components. Flavoring mixtures belonging to the representatives of substances with complex matrices have now been widely used in various fields. To better study and control the quality of flavoring mixtures as additives in food industry, an in-house fabricated solid-phase microextraction (SPME) fiber was prepared based on sol-gel technology in this work. The active organic component of the fiber coating was multi-walled carbon nanotubes (MWCNTs) functionalized with hydroxyl-terminated polydimethyldiphenylsiloxane, which integrate the non-polar and polar chains of both materials. In this way, more sensitive extraction capability for a wider range of compounds can be obtained in comparison with commercial SPME fibers. Preliminarily integral analysis of three similar types of samples were realized by the optimized SPME-GC-MS method. With the obtained GC-MS data, a valid and well-fit model was established by partial least square discriminant analysis (PLS-DA) for classification of these samples (R2X=0.661, R2Y=0.996, Q2=0.986). The validity of the model (R2=0.266, Q2=-0.465) has also approved the potential to predict the "belongingness" of new samples. With the PLS-DA and SPSS method, further screening out the markers among three similar batches of samples may be helpful for monitoring and controlling the quality of the flavoring mixtures as additives in food industry. Conversely, the reliability and effectiveness of the GC-MS data has verified the comprehensive and efficient extraction performance of the in-house fabricated fiber. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Chitanda, Jackson M.; Zhang, Haixia; Pahl, Erica; Purves, Randy W.; El-Aneed, Anas

    2016-10-01

    The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H]-. Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H]+ or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites.

  13. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals.

    PubMed

    Chitanda, Jackson M; Zhang, Haixia; Pahl, Erica; Purves, Randy W; El-Aneed, Anas

    2016-10-01

    The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H](-). Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H](+) or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites. Graphical Abstract ᅟ.

  14. Environmental and human monitoring of Americium-241 utilizing extraction chromatography and alpha-spectrometry.

    PubMed

    Goldstein, S J; Hensley, C A; Armenta, C E; Peters, R J

    1997-03-01

    Recent developments in extraction chromatography have simplified the separation of americium from complex matrices in preparation for alpha-spectroscopy relative to traditional methods. Here we present results of procedures developed/adapted for water, air, and bioassay samples with less than 1 g of inorganic residue. Prior analytical methods required the use of a complex, multistage procedure for separation of americium from these matrices. The newer, simplified procedure requires only a single 2 mL extraction chromatographic separation for isolation of Am and lanthanides from other components of the sample. This method has been implemented on an extensive variety of "real" environmental and bioassay samples from the Los Alamos area, and consistently reliable and accurate results with appropriate detection limits have been obtained. The new method increases analytical throughput by a factor of approximately 2 and decreases environmental hazards from acid and mixed-waste generation relative to the prior technique. Analytical accuracy, reproducibility, and reliability are also significantly improved over the more complex and laborious method used previously.

  15. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy.

    PubMed

    Luo, P; Morrison, I; Dudkiewicz, A; Tiede, K; Boyes, E; O'Toole, P; Park, S; Boxall, A B

    2013-04-01

    Imaging and characterization of engineered nanoparticles (ENPs) in water, soils, sediment and food matrices is very important for research into the risks of ENPs to consumers and the environment. However, these analyses pose a significant challenge as most existing techniques require some form of sample manipulation prior to imaging and characterization, which can result in changes in the ENPs in a sample and in the introduction of analytical artefacts. This study therefore explored the application of a newly designed instrument, the atmospheric scanning electron microscope (ASEM), which allows the direct characterization of ENPs in liquid matrices and which therefore overcomes some of the limitations associated with existing imaging methods. ASEM was used to characterize the size distribution of a range of ENPs in a selection of environmental and food matrices, including supernatant of natural sediment, test medium used in ecotoxicology studies, bovine serum albumin and tomato soup under atmospheric conditions. The obtained imaging results were compared to results obtained using conventional imaging by transmission electron microscope (TEM) and SEM as well as to size distribution data derived from nanoparticle tracking analysis (NTA). ASEM analysis was found to be a complementary technique to existing methods that is able to visualize ENPs in complex liquid matrices and to provide ENP size information without extensive sample preparation. ASEM images can detect ENPs in liquids down to 30 nm and to a level of 1 mg L(-1) (9×10(8) particles mL(-1) , 50 nm Au ENPs). The results indicate ASEM is a highly complementary method to existing approaches for analyzing ENPs in complex media and that its use will allow those studying to study ENP behavior in situ, something that is currently extremely challenging to do. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  16. Measuring Endocrine-active Chemicals at ng/L Concentrations in Water

    EPA Science Inventory

    Analytical chemistry challenges for supporting aquatic toxicity research and risk assessment are many: need for low detection limits, complex sample matrices, small sample size, and equipment limitations to name a few. Certain types of potent endocrine disrupting chemicals (EDCs)...

  17. Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry.

    PubMed

    Dupré, Mathieu; Gilquin, Benoit; Fenaille, François; Feraudet-Tarisse, Cécile; Dano, Julie; Ferro, Myriam; Simon, Stéphanie; Junot, Christophe; Brun, Virginie; Becher, François

    2015-08-18

    The development of rapid methods for unambiguous identification and precise quantification of protein toxins in various matrices is essential for public health surveillance. Nowadays, analytical strategies classically rely on sensitive immunological assays, but mass spectrometry constitutes an attractive complementary approach thanks to direct measurement and protein characterization ability. We developed here an innovative multiplex immuno-LC-MS/MS method for the simultaneous and specific quantification of the three potential biological warfare agents, ricin, staphylococcal enterotoxin B, and epsilon toxin, in complex human biofluids and food matrices. At least 7 peptides were targeted for each toxin (43 peptides in total) with a quadrupole-Orbitrap high-resolution instrument for exquisite detection specificity. Quantification was performed using stable isotope-labeled toxin standards spiked early in the sample. Lower limits of quantification were determined at or close to 1 ng·mL(-1). The whole process was successfully applied to the quantitative analysis of toxins in complex samples such as milk, human urine, and plasma. Finally, we report new data on toxin stability with no evidence of toxin degradation in milk in a 48 h time frame, allowing relevant quantitative toxin analysis for samples collected in this time range.

  18. Multiwall carbon nanotube- zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples.

    PubMed

    Yazdi, Mahnaz Nozohour; Yamini, Yadollah; Asiabi, Hamid

    2018-06-15

    The purpose of this study was to evaluate the application of hollow fiber solid-phase microextraction (HF-SPME) followed by HPLC-UV to determine the ultra-trace amounts of polycyclic aromatic hydrocarbons (PAHs) as model analytes in complex coffee and tea samples. HF-SPME can be effectively used as an alternative to the direct immersion SPME (DI-SPME) method in complex matrices. The DI-SPME method suffers from serious limitation in dirty and complicated matrices with low sample clean-up, while the HF-SPME method has high clean-up and selectivity due to the high porosity of hollow fiber that can pick out analyte from complicated matrices. As a hollow fiber sorbent, a novel multiwall carbon nanotube/zirconium oxide nanocomposite (MWCNT/ZrO 2 ) was fabricated. The excellent adsorption of PAHs on the sorbent was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. Under the optimized extraction conditions, the wide linear range of 0.1-200 μg L -1 with coefficients of determination better than 0.998 and low detection limits of 0.033-0.16 μg L -1 with satisfactory precision (RSD < 6.6%) were obtained. The relative recoveries obtained by spiking the PAHs in water, coffee and tea samples were in the range of 92.0-106.0%. Compared to other methods, MWCNT/ZrO 2 hollow fiber solid phase microextraction demonstrated a good capability for determination of PAHs in complex coffee and tea samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling

    DOE PAGES

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...

    2016-10-27

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  20. Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices

    PubMed Central

    Pauly, Diana; Worbs, Sylvia; Kirchner, Sebastian; Shatohina, Olena; Dorner, Martin B.; Dorner, Brigitte G.

    2012-01-01

    Background In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. Methodology/Findings This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index–time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. Conclusions/Significance The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices. PMID:22532852

  1. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    PubMed

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  2. Environmental and human monitoring of Americium-241 utilizing extraction chromatography and {alpha}-Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, S.J.; Hensley, C.A.; Armenta, C.E.

    1997-03-01

    Recent developments in extraction chromatography have simplified the separation of americium from complex matrices in preparation for {alpha}-spectroscopy relative to traditional methods. Here we present results of procedures developed/adapted for water, air, and bioassay samples with less than 1 g of inorganic residue. Prior analytical methods required the use of a complex, multistage procedure for separation of americium from these matrices. The newer, simplified procedure requires only a single 2 mL extraction chromatographic separation for isolation of Am and lanthanides from other components of the sample. This method has been implemented on an extensive variety of `real` environmental and bioassaymore » samples from the Los Alamos area, and consistently reliable and accurate results with appropriate detection limits have been obtained. The new method increases analytical throughput by a factor of {approx}2 and decreases environmental hazards from acid and mixed-waste generation relative to the prior technique. Analytical accuracy, reproducibility, and reliability are also significantly improved over the more complex and laborious method used previously. 24 refs., 2 figs., 2 tabs.« less

  3. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE PAGES

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...

    2016-09-23

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  4. Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.

    Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less

  5. Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC-MS and LC-MS.

    PubMed

    Williams, Audrey M; Vu, Alexander K; Mayer, Brian P; Hok, Saphon; Valdez, Carlos A; Alcaraz, Armando

    2018-08-15

    Chemical attribution signatures indicative of O-isobutyl S-(2-diethylaminoethyl) methylphosphonothioate (Russian VX) synthetic routes were investigated in spiked food samples. Attribution signatures were identified using a multifaceted approach: Russian VX was synthesized using six synthetic routes and the chemical attribution signatures identified by GC-MS and LC-MS. Three synthetic routes were then down selected and spiked into complex matrices: bottled water, baby food, milk, liquid eggs, and hot dogs. Sampling and extraction methodologies were developed for these materials and used to isolate the attribution signatures and Russian VX from each matrix. Recoveries greater than 60% were achieved for most signatures in all matrices; some signatures provided recoveries greater than 100%, indicating some degradation during sample preparation. A chemometric model was then developed and validated with the concatenated data from GC-MS and LC-MS analyses of the signatures; the classification results of the model were > 75% for all samples. This work is part three of a three-part series in this issue of the United States-Sweden collaborative efforts towards the understanding of the chemical attribution signatures of Russian VX in crude materials and in food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Quantitation of lead-210 (210Pb) using lead-203 (203Pb) as a "Massless" yield tracer.

    PubMed

    May, D; Nelson, A N; Schultz, M K

    2017-05-01

    Determination of Pb-210 ( 210 Pb) in aqueous solution is a common radioanalytical challenge in environmental science. Widely used methods for undertaking these analyses (e.g., ASTM D7535) rely on the use of stable lead (Pb) as a yield tracer that takes into account losses of 210 Pb that inevitably occur during elemental/radiochemical separations of the procedures. Although effective, these methods introduce technical challenges that can be difficult to track and potentially introduce uncertainty that can be difficult to quantify. Examples of these challenges include interference from endogenous stable Pb in complex sample matrices; contamination of stable Pb carrier with 210 Pb; and high detection limits due to counting efficiency limitations. We hypothesized that many of these challenges could be avoided by the use of the electron-capture, gamma-emitting isotope, 203 Pb as a chemical yield tracer in the analysis of 210 Pb. A series of experiments were performed to evaluate the efficacy of 203 Pb as a tracer. Four different matrices were analyzed, including a complex matrix (hydraulic-fracturing produced fluids); and samples comprising less complicated matrices (i.e., river water, deionized water, and tap water). Separation techniques and counting methodologies were also compared and optimized. Due to a relatively short-half life (52 h), 203 Pb tracer is effectively massless for the purposes of chemical separations, allowing for reduced chromatography column resin bed volumes. Because 203 Pb is a gamma emitter (279 keV; 81% intensity), recovery can be determined non-destructively in a variety of matrices, including liquid scintillation cocktail. The use of liquid scintillation as a counting methodology allowed for determination of 210 Pb activities via 210 Pb or 210 Po; and recoveries of greater than 90% are routinely achievable using this approach. The improved method for the analysis of 210 Pb in aqueous matrices allows for the analysis of complex matrices, at reduced cost, while providing greater counting flexibility in achieving acceptable detections limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Specific enrichment of a targeted nitrotyrosine-containing peptide from complex matrices and relative quantification for liquid chromatography-mass spectrometry analysis.

    PubMed

    Yang, Yun

    2017-02-17

    Protein tyrosine nitration is considered an important non-enzymatic post-translational modification. In the tyrosine nitration process, 3-nitrotyrosine is formed and recognized as a biomarker of nitrosative/nitrative stress implicated in inflammatory responses and age-related disorders. In view of the complexity of biological samples and the ultra-low abundance of protein-incorporated nitrotyrosine, selective enrichment of nitrotyrosine-containing peptides prior to chromatographic separation is crucial. Herein, I report a simple yet highly specific and efficient enrichment method for nitrotyrosine-containing peptides. After blocking all primary amines in the sample by acetylation with acetic anhydride, I then further converted all nitrotyrosine residues into aminotyrosine residues by reduction with dithiothreitol and hemin. Therefore, I eliminated the side-product with 80Da adduct, since inevitable considerable amount of which was generated in the widely used reduction mediated by sodium dithionite. Both acetylation and reduction yields were close to 100%, and my one-pot sample derivatization applied no solid phase extraction steps or sample transference to avoid sample loss. To capture and release aminotyrosine-containing peptides, I synthesized an N-hydroxysuccinimide-ester-functionalized stationary phase which had very high affinity towards amino groups and possessed a base-cleavable ester linker to retrieve targeted peptides by hydrolysis. I validated this strategy by highly efficient enrichment of the targeted peptide from complex matrices of trypsin-digested bovine serum albumin (BSA) and human plasma spiked with derivatized nitrotyrosine-containing angiotensin II. My enrichment method successfully removed most untargeted peptides in those samples. By relative quantification with home-made identical and stable-isotope labelled internal standards, I investigated the recoveries of a nitrotyrosine-containing peptide from complex biological matrices during enrichment for the first time. Mean recoveries were 49.8% and 41.1% (n=6) for the enrichment of nitrotyrosine-containing angiotensin II from 1:100 (w/w) BSA digest and from 1:10 000 (w/w) human plasma digest, respectively. My enrichment method demonstrated great potential in future applications to clinical samples and biomarker discovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Multari, Rosalie A; Cremers, David A; Scott, Thomas; Kendrick, Peter

    2013-03-13

    In laser-induced breakdown spectroscopy (LIBS), a series of powerful laser pulses are directed at a surface to form microplasmas from which light is collected and spectrally analyzed to identify the surface material. In most cases, no sample preparation is needed, and results can be automated and made available within seconds to minutes. Advances in LIBS spectral data analysis using multivariate regression techniques have led to the ability to detect organic chemicals in complex matrices such as foods. Here, the use of LIBS to differentiate samples contaminated with aldrin, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, chlorpyrifos, and dieldrin in the complex matrices of tissue fats and rendering oils is described. The pesticide concentrations in the samples ranged from 0.005 to 0.1 μg/g. All samples were successfully differentiated from each other and from control samples. Sample concentrations could also be differentiated for all of the pesticides and the dioxin included in this study. The results presented here provide first proof-of-principle data for the ability to create LIBS-based instrumentation for the rapid analysis of pesticide and dioxin contamination in tissue fat and rendered oils.

  9. NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey.

    PubMed

    Schievano, Elisabetta; Tonoli, Marco; Rastrelli, Federico

    2017-12-19

    The knowledge of carbohydrate composition is greatly important to determine the properties of natural matrices such as foodstuff and food ingredients. However, because of the structural similarity and the multiple isomeric forms of carbohydrates in solution, their analysis is often a complex task. Here we propose an NMR analytical procedure based on highly selective chemical shift filters followed by TOCSY, which allows us to acquire specific background-free signals for each sugar. The method was tested on raw honey samples dissolved in water with no other pretreatment. In total, 22 sugars typically found in honey were quantified: 4 monosaccharides (glucose, fructose, mannose, rhamnose), 11 disaccharides (sucrose, trehalose, turanose, maltose, maltulose, palatinose, melibiose and melezitose, isomaltose, gentiobiose nigerose, and kojibiose), and 7 trisaccharides (raffinose, isomaltotriose, erlose, melezitose, maltotriose, panose, and 1-kestose). Satisfactory results in terms of limit of quantification (0.03-0.4 g/100g honey), precision (% RSD: 0.99-4.03), trueness (bias % 0.4-4.2), and recovery (97-104%) were obtained. An accurate control of the instrumental temperature and of the sample pH endows an optimal chemical shift reproducibility, making the procedure amenable to automation and suitable to routine analysis. While validated on honey, which is one of the most complex natural matrices in terms of saccharides composition, this innovative approach can be easily transferred to other natural matrices.

  10. Headspace-SPME-GC/MS as a simple cleanup tool for sensitive 2,6-diisopropylphenol analysis from lipid emulsions and adaptable to other matrices.

    PubMed

    Pickl, Karin E; Adamek, Viktor; Gorges, Roland; Sinner, Frank M

    2011-07-15

    Due to increased regulatory requirements, the interaction of active pharmaceutical ingredients with various surfaces and solutions during production and storage is gaining interest in the pharmaceutical research field, in particular with respect to development of new formulations, new packaging material and the evaluation of cleaning processes. Experimental adsorption/absorption studies as well as the study of cleaning processes require sophisticated analytical methods with high sensitivity for the drug of interest. In the case of 2,6-diisopropylphenol - a small lipophilic drug which is typically formulated as lipid emulsion for intravenous injection - a highly sensitive method in the concentration range of μg/l suitable to be applied to a variety of different sample matrices including lipid emulsions is needed. We hereby present a headspace-solid phase microextraction (HS-SPME) approach as a simple cleanup procedure for sensitive 2,6-diisopropylphenol quantification from diverse matrices choosing a lipid emulsion as the most challenging matrix with regard to complexity. By combining the simple and straight forward HS-SPME sample pretreatment with an optimized GC-MS quantification method a robust and sensitive method for 2,6-diisopropylphenol was developed. This method shows excellent sensitivity in the low μg/l concentration range (5-200μg/l), good accuracy (94.8-98.8%) and precision (intraday-precision 0.1-9.2%, inter-day precision 2.0-7.7%). The method can be easily adapted to other, less complex, matrices such as water or swab extracts. Hence, the presented method holds the potential to serve as a single and simple analytical procedure for 2,6-diisopropylphenol analysis in various types of samples such as required in, e.g. adsorption/absorption studies which typically deal with a variety of different surfaces (steel, plastic, glass, etc.) and solutions/matrices including lipid emulsions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Evaluation of analytical methodology for the detection of hormones and their attenuation during aquifer recharge and recovery cycles.

    PubMed

    de Lima Stebbins, Daniela; Docs, Jon; Lowe, Paula; Cohen, Jason; Lei, Hongxia

    2016-05-18

    The hormones listed in the screening survey list 2 of the Unregulated Contaminant Monitoring Rule 3 (estrone, 17-β-estradiol, 17-α-ethynylestradiol, 16-α-hydroxyestradiol (estriol), equilin, testosterone and 4-androstene-3,17-dione) were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Two analytical methods were compared: EPA method 539 and the isotope dilution method. EPA method 539 was successfully utilized in river and drinking water matrices with fortified recoveries of 98.9 to 108.5%. Samples from the Hillsborough River reflected levels below the method detection limit (MDL) for the majority of the analytes, except estrone (E1), which was detected at very low concentrations (<0.5 to 1 ng L(-1)) in the majority of samples. No hormones were detected in drinking water samples. The isotope dilution method was used to analyze reclaimed and aquifer storage and recovery (ASR) water samples as a result of strong matrix/solid phase extraction (SPE) losses observed in these more complex matrices. Most of the compounds were not detected or found at relatively low concentrations in the ASR samples. Attenuation of 50 to 99.1% was observed as a result of the ASR recharge/recovery cycles for most of the hormones, except for estriol (E3). Relatively stable concentrations of E3 were found, with only 10% attenuation at one of the sites and no measureable attenuation at another location. These results have substantiated that while EPA method 539 works well for most environmental samples, the isotope dilution method is more robust when dealing with complex matrices such as reclaimed and ASR samples.

  12. Coupling corona discharge for ambient extractive ionization mass spectrometry.

    PubMed

    Hu, Bin; Zhang, Xinglei; Li, Ming; Peng, Xuejiao; Han, Jing; Yang, Shuiping; Ouyang, Yongzhong; Chen, Huanwen

    2011-12-07

    Unlike the extractive electrospray ionization (EESI) technique described elsewhere, a corona discharge instead of electrospray ionization has been utilized to charge a neutral solvent spray under ambient conditions for the generation of highly charged microdroplets, which impact a neutral sample plume for the extractive ionization of the analytes in raw samples without any sample pretreatment. Using the positive ion mode, molecular radical cations were easily generated for the detection of non-polar compounds (e.g., benzene, cyclohexane, etc.), while protonated molecular ions of polar compounds (e.g., acetonitrile, acetic ether) were readily produced for the detection. By dispensing the matrix in a relatively large space, this method tolerates highly complex matrices. For a given sample such as lily fragrances, more compounds were detected by the method established here than the EESI technique. An acceptable relative standard deviation (RSD 8.9%, n = 11) was obtained for the direct measurement of explosives (10 ppb) in waste water samples. The experimental data demonstrate that this method could simultaneously detect both polar and non-polar analytes with high sensitivity, showing promising applications for the rapid detection of a wide variety of compounds present in complex matrices.

  13. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil.

    PubMed

    Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali

    2016-03-01

    The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.

  14. Complex symmetric matrices with strongly stable iterates

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1985-01-01

    Complex-valued symmetric matrices are studied. A simple expression for the spectral norm of such matrices is obtained, by utilizing a unitarily congruent invariant form. A sharp criterion is provided for identifying those symmetric matrices whose spectral norm is not exceeding one: such strongly stable matrices are usually sought in connection with convergent difference approximations to partial differential equations. As an example, the derived criterion is applied to conclude the strong stability of a Lax-Wendroff scheme.

  15. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples.

    PubMed

    Kalb, Suzanne R; Schieltz, David M; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R

    2015-11-25

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin's activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.

  16. Field matric potential sensor

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A method of determining matric potential of a sample, the method comprising placing the sample in a container, the container having an opening; and contacting the sample with a tensiometer via the opening. An apparatus for determining matric potential of a sample, the apparatus comprising a housing configured to receive a sample; a portable matric potential sensing device extending into the housing and having a porous member; and a wall closing the housing to insulate the sample and at least a portion of the matric potential sensing device including the porous member.

  17. Determination of ten pyrethroids in various fruit juices: comparison of dispersive liquid-liquid microextraction sample preparation and QuEChERS method combined with dispersive liquid-liquid microextraction.

    PubMed

    Zhang, Yaohai; Zhang, Xuelian; Jiao, Bining

    2014-09-15

    Dispersive liquid-liquid microextraction (DLLME) sample preparation and the quick, easy, cheap, effective, rugged and safe (QuEChERS) method combined with DLLME were developed and compared for the analysis of ten pyrethroids in various fruit juices using gas chromatography-electron capture detection (GC-ECD). QuEChERS-DLLME method has found its widespread applications to all the fruit juices including those samples with more complex matrices (orange, lemon, kiwi and mango) while DLLME was confined to the fruit juices with simpler matrices (apple, pear, grape and peach). The two methods provided acceptable recoveries and repeatability. In addition, the applicabilities of two methods were demonstrated with the real samples and further confirmed by gas chromatography-mass spectrometry (GC-MS). Copyright © 2014. Published by Elsevier Ltd.

  18. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices.

    PubMed

    Feichtmeier, Nadine S; Ruchter, Nadine; Zimmermann, Sonja; Sures, Bernd; Leopold, Kerstin

    2016-01-01

    Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag(+)) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt(ad)) between silver ions and 20-nm AgNPs vary in a range from -2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method.

  19. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    PubMed

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time <2 min. The high degree of selectivity and sensitivity toward sulfur compounds of the detector offers the ability to measure low sulfur levels with a detection limit in the range of 20 ppb w/w S. The equimolar response characteristic of the detector allows the quantitation of unknown sulfur compounds and simplifies the calibration process. Response is linear over a concentration range of five orders of magnitude, with a high degree of repeatability. The detector's lack of response to hydrocarbons enables direct analysis without the need for time-consuming sample preparation and chromatographic separation processes. This flow injection-based sulfur chemiluminescence detection technique is ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A general electrochemical method for label-free screening of protein–small molecule interactions†

    PubMed Central

    Cash, Kevin J.; Ricci, Francesco

    2010-01-01

    Here we report a versatile method by which the interaction between a protein and a small molecule, and the disruption of that interaction by competition with other small molecules, can be monitored electrochemically directly in complex sample matrices. PMID:19826675

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  2. Potentiometric detection in UPLC as an easy alternative to determine cocaine in biological samples.

    PubMed

    Daems, Devin; van Nuijs, Alexander L N; Covaci, Adrian; Hamidi-Asl, Ezat; Van Camp, Guy; Nagels, Luc J

    2015-07-01

    The analytical methods which are often used for the determination of cocaine in complex biological matrices are a prescreening immunoassay and confirmation by chromatography combined with mass spectrometry. We suggest an ultra-high-pressure liquid chromatography combined with a potentiometric detector, as a fast and practical method to detect and quantify cocaine in biological samples. An adsorption/desorption model was used to investigate the usefulness of the potentiometric detector to determine cocaine in complex matrices. Detection limits of 6.3 ng mL(-1) were obtained in plasma and urine, which is below the maximum residue limit (MRL) of 25 ng mL(-1). A set of seven plasma samples and 10 urine samples were classified identically by both methods as exceeding the MRL or being inferior to it. The results obtained with the UPLC/potentiometric detection method were compared with the results obtained with the UPLC/MS method for samples spiked with varying cocaine concentrations. The intraclass correlation coefficient was 0.997 for serum (n =7) and 0.977 for urine (n =8). As liquid chromatography is an established technique, and as potentiometry is very simple and cost-effective in terms of equipment, we believe that this method is potentially easy, inexpensive, fast and reliable. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Commutative semigroups of real and complex matrices. [with use of the jordan form

    NASA Technical Reports Server (NTRS)

    Brown, D. R.

    1974-01-01

    The computation of divergence is studied. Covariance matrices to be analyzed admit a common diagonalization, or even triangulation. Sufficient conditions are given for such phenomena to take place, the arguments cover both real and complex matrices, and are not restricted to Hermotian or other special forms. Specifically, it is shown to be sufficient that the matrices in question commute in order to admit a common triangulation. Several results hold in the case that the matrices in question form a closed and bounded set, rather than only in the finite case.

  4. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    PubMed

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  5. Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red Flesh Dragon Fruit (Hylocereus polyrhizus) Matrices Using QuEChERS Sample Preparation Methods Followed by LC-MS/MS Determination.

    PubMed

    Noegrohati, Sri; Hernadi, Elan; Asviastuti, Syanti

    2018-06-01

    Production of red flesh dragon fruit (Hylocereus polyrhizus) was hampered by Colletotrichum sp. Pre-harvest application of azoxystrobin and difenoconazole mixture is recommended, therefore, a selective and sensitive multi residues analytical method is required in monitoring and evaluating the commodity's safety. LC-MS/MS is a well-established analytical technique for qualitative and quantitative determination in complex matrices. However, this method is hurdled by co-eluted coextractives interferences. This work evaluated the pH effect of acetate buffered and citrate buffered QuEChERS sample preparation in their effectiveness of matrix effect reduction. Citrate buffered QuEChERS proved to produce clean final extract with relative matrix effect 0.4%-0.7%. Method validation of the selected sample preparation followed by LC-MS/MS for whole dragon fruit, flesh and peel matrices fortified at 0.005, 0.01, 0.1 and 1 g/g showed recoveries 75%-119%, intermediate repeatability 2%-14%. The expanded uncertainties were 7%-48%. Based on the international acceptance criteria, this method is valid.

  6. Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART).

    PubMed

    Gómez-Ríos, Germán Augusto; Gionfriddo, Emanuela; Poole, Justen; Pawliszyn, Janusz

    2017-07-05

    The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.

  7. Evaluation of an electronic nose for improved biosolids alkaline-stabilization treatment and odor management

    USDA-ARS?s Scientific Manuscript database

    Electronic nose sensors are designed to detect differences in complex air sample matrices. For example, they have been used in the food industry to monitor process performance and quality control. However, no information is available on the application of sensor arrays to monitor process performanc...

  8. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  9. Analysis of flavor and perfume using an internally cooled coated fiber device.

    PubMed

    Chen, Yong; Begnaud, Frédéric; Chaintreau, Alain; Pawliszyn, Janusz

    2007-05-01

    A miniaturized internally cooled coated fiber device was applied for the analysis of flavors and fragrances from various matrices. Its integration with a CTC CombiPAL autosampler enabled high throughput for the analysis of analytes in complex matrices that required simultaneous heating of the matrices and cooling of the fiber coating to achieve high extraction efficiency. It was found that up to ten times increase of extraction efficiencies was observed when the device was used to extract flavor compounds in water, even when limited sample temperatures were used to preserve the integrity of target compounds. The extraction of the flavor compounds in water with the device was reproducible, with RSD not larger than 15%. The lower limits of the linear ranges were in the low ppb range, which was about one order of magnitude smaller than those obtained with the commercialized 100 microm PDMS fibers. Exhaustive extraction of some perfume ingredients from a complex matrix (shampoo) was realized. All achieved recoveries were not less than 80%. The repeatability of the extraction of the perfume compounds from shampoo was better than 10%. The linear ranges were about 1-3000 microg/g, and the LOD was about 0.2-1 microg/g. The automated internally cooled coated fiber device was demonstrated to be a powerful sample preparation tool in flavor and fragrance analysis.

  10. Effect of dissolved organic matter on pre-equilibrium passive sampling: A predictive QSAR modeling study.

    PubMed

    Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng

    2018-04-13

    Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-06-01

    A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.

  12. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples

    PubMed Central

    Kalb, Suzanne R.; Schieltz, David M.; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R.

    2015-01-01

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices. PMID:26610568

  13. Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry.

    PubMed

    Jansson, Daniel; Lindström, Susanne Wiklund; Norlin, Rikard; Hok, Saphon; Valdez, Carlos A; Williams, Audrey M; Alcaraz, Armando; Nilsson, Calle; Åstot, Crister

    2018-08-15

    This work is part two of a three-part series in this issue of a Sweden-United States collaborative effort towards the understanding of the chemical attribution signatures of Russian VX (VR) in synthesized samples and complex food matrices. In this study, we describe the sourcing of VR present in food based on chemical analysis of attribution signatures by liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with multivariate data analysis. Analytical data was acquired from seven different foods spiked with VR batches that were synthesized via six different routes in two separate laboratories. The synthesis products were spiked at a lethal dose into seven food matrices: water, orange juice, apple purée, baby food, pea purée, liquid eggs and hot dog. After acetonitrile sample extraction, the samples were analyzed by LC-MS/MS operated in MRM mode. A multivariate statistical calibration model was built on the chemical attribution profiles from 118 VR spiked food samples. Using the model, an external test-set of the six synthesis routes employed for VR production was correctly identified with no observable major impact of the food matrices to the classification. The overall performance of the statistical models was found to be exceptional (94%) for the test set samples retrospectively classified to their synthesis routes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The bilinear complexity and practical algorithms for matrix multiplication

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.

    2013-12-01

    A method for deriving bilinear algorithms for matrix multiplication is proposed. New estimates for the bilinear complexity of a number of problems of the exact and approximate multiplication of rectangular matrices are obtained. In particular, the estimate for the boundary rank of multiplying 3 × 3 matrices is improved and a practical algorithm for the exact multiplication of square n × n matrices is proposed. The asymptotic arithmetic complexity of this algorithm is O( n 2.7743).

  15. Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.

    PubMed

    Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María

    2013-07-01

    Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evidence for Extended Aqueous Alteration in CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Trigo-Rodriquez, J. M.; Moyano-Cambero, C. E.; Mestres, N.; Fraxedas, J.; Zolensky, M.; Nakamura, T.; Martins, Z.

    2013-01-01

    We are currently studying the chemical interrelationships between the main rockforming components of carbonaceous chondrites (hereafter CC), e.g. silicate chondrules, refractory inclusions and metal grains, and the surrounding meteorite matrices. It is thought that the fine-grained materials that form CC matrices are representing samples of relatively unprocessed protoplanetary disk materials [1-3]. In fact, modern non-destructive analytical techniques have shown that CC matrices host a large diversity of stellar grains from many distinguishable stellar sources [4]. Aqueous alteration has played a role in homogeneizing the isotopic content that allows the identification of presolar grains [5]. On the other hand, detailed analytical techniques have found that the aqueously-altered CR, CM and CI chondrite groups contain matrices in which the organic matter has experienced significant processing concomitant to the formation of clays and other minerals. In this sense, clays have been found to be directly associated with complex organics [6, 7]. CR chondrites are particularly relevant in this context as this chondrite group contains abundant metal grains in the interstitial matrix, and inside glassy silicate chondrules. It is important because CR are known for exhibiting a large complexity of organic compounds [8-10], and only metallic Fe is considered essential in Fischer-Tropsch catalysis of organics [11-13]. Therefore, CR chondrites can be considered primitive materials capable to provide clues on the role played by aqueous alteration in the chemical evolution of their parent asteroids.

  17. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  18. Progress and development of analytical methods for gibberellins.

    PubMed

    Pan, Chaozhi; Tan, Swee Ngin; Yong, Jean Wan Hong; Ge, Liya

    2017-01-01

    Gibberellins, as a group of phytohormones, exhibit a wide variety of bio-functions within plant growth and development, which have been used to increase crop yields. Many analytical procedures, therefore, have been developed for the determination of the types and levels of endogenous and exogenous gibberellins. As plant tissues contain gibberellins in trace amounts (usually at the level of nanogram per gram fresh weight or even lower), the sample pre-treatment steps (extraction, pre-concentration, and purification) for gibberellins are reviewed in details. The primary focus of this comprehensive review is on the various analytical methods designed to meet the requirements for gibberellins analyses in complex matrices with particular emphasis on high-throughput analytical methods, such as gas chromatography, liquid chromatography, and capillary electrophoresis, mostly combined with mass spectrometry. The advantages and drawbacks of the each described analytical method are discussed. The overall aim of this review is to provide a comprehensive and critical view on the different analytical methods nowadays employed to analyze gibberellins in complex sample matrices and their foreseeable trends. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples.

    PubMed

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling.

    PubMed

    Forcisi, Sara; Moritz, Franco; Kanawati, Basem; Tziotis, Dimitrios; Lehmann, Rainer; Schmitt-Kopplin, Philippe

    2013-05-31

    The present review gives an introduction into the concept of metabolomics and provides an overview of the analytical tools applied in non-targeted metabolomics with a focus on liquid chromatography (LC). LC is a powerful analytical tool in the study of complex sample matrices. A further development and configuration employing Ultra-High Pressure Liquid Chromatography (UHPLC) is optimized to provide the largest known liquid chromatographic resolution and peak capacity. Reasonably UHPLC plays an important role in separation and consequent metabolite identification of complex molecular mixtures such as bio-fluids. The most sensitive detectors for these purposes are mass spectrometers. Almost any mass analyzer can be optimized to identify and quantify small pre-defined sets of targets; however, the number of analytes in metabolomics is far greater. Optimized protocols for quantification of large sets of targets may be rendered inapplicable. Results on small target set analyses on different sample matrices are easily comparable with each other. In non-targeted metabolomics there is almost no analytical method which is applicable to all different matrices due to limitations pertaining to mass analyzers and chromatographic tools. The specifications of the most important interfaces and mass analyzers are discussed. We additionally provide an exemplary application in order to demonstrate the level of complexity which remains intractable up to date. The potential of coupling a high field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ICR-FT/MS), the mass analyzer with the largest known mass resolving power, to UHPLC is given with an example of one human pre-treated plasma sample. This experimental example illustrates one way of overcoming the necessity of faster scanning rates in the coupling with UHPLC. The experiment enabled the extraction of thousands of features (analytical signals). A small subset of this compositional space could be mapped into a mass difference network whose topology shows specificity toward putative metabolite classes and retention time. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Analysis of nanoparticles with an optical sensor based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Stäb, J.; Furin, D.; Fechner, P.; Proll, G.; Soriano-Dotor, L. M.; Ruiz-Palomero, C.; Valcárcel, M.; Gauglitz, G.

    2017-05-01

    Nanomaterials play an important role in science and in every day products. This is due to their varied and specific properties, whereby especially engineered nanoparticles (ENPs) have shown various beneficial properties for a wide range of application in consumables (e.g. cosmetics, drinks, food and food packaging). Silver nanoparticles for instance are hidden in meat packaging materials or in deodorants. Reasons for this can be found in the antibacterial effect of silver, which leads to high applicability in consumer products. However, ENPs are under permanent discussion due to their unforeseen hazards and an unknown disposition in living organisms and the environment. So far, there is a lack of methods, which allows for the fast and effective characterization and quantification of such nanoparticles in complex matrices (e.g. creams, fruit juice), since matrix components can impede a specific detection of the analyte. It was the objective of project INSTANT to address this topic and compose a method to detect nanoparticles as a first step. Therefore, the development of a sensor system with an upstream sample preparation for the characterization and quantification of specific nanoparticles in complex matrices using a label free optical sensor array in combination with novel recognition elements was developed. The promising optical technology iRIfS (imaging reflectometric interference sensor) was used for this purpose. As a recognition element, functionalized carbon nanotubes can be effectively used. Owing to their excellent electronical, mechanical and chemical properties, CNTs have already been used for extracting ENPs from complex matrices as sorbent material by filtration. After successful immobilization of CNTs on microscope glass slides e.g. the detection of stabilized silver nanoparticles extracted by a sample preparation unit using the iRIfS technology was performed.

  2. Fast Inference with Min-Sum Matrix Product.

    PubMed

    Felzenszwalb, Pedro F; McAuley, Julian J

    2011-12-01

    The MAP inference problem in many graphical models can be solved efficiently using a fast algorithm for computing min-sum products of n × n matrices. The class of models in question includes cyclic and skip-chain models that arise in many applications. Although the worst-case complexity of the min-sum product operation is not known to be much better than O(n(3)), an O(n(2.5)) expected time algorithm was recently given, subject to some constraints on the input matrices. In this paper, we give an algorithm that runs in O(n(2) log n) expected time, assuming that the entries in the input matrices are independent samples from a uniform distribution. We also show that two variants of our algorithm are quite fast for inputs that arise in several applications. This leads to significant performance gains over previous methods in applications within computer vision and natural language processing.

  3. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: a review.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L

    2012-11-28

    Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Validated method for quantification of genetically modified organisms in samples of maize flour.

    PubMed

    Kunert, Renate; Gach, Johannes S; Vorauer-Uhl, Karola; Engel, Edwin; Katinger, Hermann

    2006-02-08

    Sensitive and accurate testing for trace amounts of biotechnology-derived DNA from plant material is the prerequisite for detection of 1% or 0.5% genetically modified ingredients in food products or raw materials thereof. Compared to ELISA detection of expressed proteins, real-time PCR (RT-PCR) amplification has easier sample preparation and detection limits are lower. Of the different methods of DNA preparation CTAB method with high flexibility in starting material and generation of sufficient DNA with relevant quality was chosen. Previous RT-PCR data generated with the SYBR green detection method showed that the method is highly sensitive to sample matrices and genomic DNA content influencing the interpretation of results. Therefore, this paper describes a real-time DNA quantification based on the TaqMan probe method, indicating high accuracy and sensitivity with detection limits of lower than 18 copies per sample applicable and comparable to highly purified plasmid standards as well as complex matrices of genomic DNA samples. The results were evaluated with ValiData for homology of variance, linearity, accuracy of the standard curve, and standard deviation.

  5. Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas chromatography-tandem mass spectrometry.

    PubMed

    Fox, A

    1999-05-28

    Bacterial cellular polysaccharides are composed of a variety of sugar monomers. These sugars serve as chemical markers to identify specific species or genera or to determine their physiological status. Some of these markers can also be used for trace detection of bacteria or their constituents in complex clinical or environmental matrices. Analyses are performed, in our hands, employing hydrolysis followed by the alditol acetate derivatization procedure. Substantial improvements have been made to sample preparation including simplification and computer-controlled automation. For characterization of whole cell bacterial hydrolysates, sugars are analyzed by gas chromatography-mass spectrometry (GC-MS). Simple chromatograms are generated using selected ion monitoring (SIM). Using total ion GC-MS, sugars can be readily identified. In more complex clinical and environmental samples, markers for bacteria are present at sufficiently low concentrations that more advanced instrumentation, gas chromatography-tandem mass spectrometry (GC-MS-MS), is preferred for optimal analysis. Using multiple reaction monitoring, MS-MS is used (replacing more conventional SIM) to ignore extraneous chromatographic peaks. Triple quadrupole and ion trap GC-MS-MS instruments have both been used successfully. Absolute chemical identification of sugar markers at trace levels is achieved, using MS-MS, by the product spectrum.

  6. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples

    PubMed Central

    Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C

    2018-01-01

    An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines three selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Method validation resulted in a linearity range of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a reliable software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. PMID:28415015

  7. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples.

    PubMed

    Triebl, Alexander; Trötzmüller, Martin; Hartler, Jürgen; Stojakovic, Tatjana; Köfeler, Harald C

    2017-05-15

    An improved approach for selective and sensitive identification and quantitation of lipid molecular species using reversed phase chromatography coupled to high resolution mass spectrometry was developed. The method is applicable to a wide variety of biological matrices using a simple liquid-liquid extraction procedure. Together, this approach combines multiple selectivity criteria: Reversed phase chromatography separates lipids according to their acyl chain length and degree of unsaturation and is capable of resolving positional isomers of lysophospholipids, as well as structural isomers of diacyl phospholipids and glycerolipids. Orbitrap mass spectrometry delivers the elemental composition of both positive and negative ions with high mass accuracy. Finally, automatically generated tandem mass spectra provide structural insight into numerous glycerolipids, phospholipids, and sphingolipids within a single run. Calibration showed linearity ranges of more than four orders of magnitude, good values for accuracy and precision at biologically relevant concentration levels, and limits of quantitation of a few femtomoles on column. Hundreds of lipid molecular species were detected and quantified in three different biological matrices, which cover well the wide variety and complexity of various model organisms in lipidomic research. Together with a software package, this method is a prime choice for global lipidomic analysis of even the most complex biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Recent advances in analytical methods for the determination of 4-alkylphenols and bisphenol A in solid environmental matrices: A critical review.

    PubMed

    Salgueiro-González, N; Castiglioni, S; Zuccato, E; Turnes-Carou, I; López-Mahía, P; Muniategui-Lorenzo, S

    2018-09-18

    The problem of endocrine disrupting compounds (EDCs) in the environment has become a worldwide concern in recent decades. Besides their toxicological effects at low concentrations and their widespread use in industrial and household applications, these pollutants pose a risk for non-target organisms and also for public safety. Analytical methods to determine these compounds at trace levels in different matrices are urgently needed. This review critically discusses trends in analytical methods for well-known EDCs like alkylphenols and bisphenol A in solid environmental matrices, including sediment and aquatic biological samples (from 2006 to 2018). Information about extraction, clean-up and determination is covered in detail, including analytical quality parameters (QA/QC). Conventional and novel analytical techniques are compared, with their advantages and drawbacks. Ultrasound assisted extraction followed by solid phase extraction clean-up is the most widely used procedure for sediment and aquatic biological samples, although softer extraction conditions have been employed for the latter. The use of liquid chromatography followed by tandem mass spectrometry has greatly increased in the last five years. The majority of these methods have been employed for the analysis of river sediments and bivalve molluscs because of their usefulness in aquatic ecosystem (bio)monitoring programs. Green, simple, fast analytical methods are now needed to determine these compounds in complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering.

    PubMed

    Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan

    2017-03-01

    Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2016, The International Biometric Society.

  10. New approaches to the analysis of complex samples using fluorescence lifetime techniques and organized media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertz, P.R.

    Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less

  11. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill.

    PubMed

    Adhikari, Puspa L; Wong, Roberto L; Overton, Edward B

    2017-10-01

    Accurate characterization of petroleum hydrocarbons in complex and weathered oil residues is analytically challenging. This is primarily due to chemical compositional complexity of both the oil residues and environmental matrices, and the lack of instrumental selectivity due to co-elution of interferences with the target analytes. To overcome these analytical selectivity issues, we used an enhanced resolution gas chromatography coupled with triple quadrupole mass spectrometry in Multiple Reaction Monitoring (MRM) mode (GC/MS/MS-MRM) to eliminate interferences within the ion chromatograms of target analytes found in environmental samples. This new GC/MS/MS-MRM method was developed and used for forensic fingerprinting of deep-water and marsh sediment samples containing oily residues from the Deepwater Horizon oil spill. The results showed that the GC/MS/MS-MRM method increases selectivity, eliminates interferences, and provides more accurate quantitation and characterization of trace levels of alkyl-PAHs and biomarker compounds, from weathered oil residues in complex sample matrices. The higher selectivity of the new method, even at low detection limits, provides greater insights on isomer and homolog compositional patterns and the extent of oil weathering under various environmental conditions. The method also provides flat chromatographic baselines for accurate and unambiguous calculation of petroleum forensic biomarker compound ratios. Thus, this GC/MS/MS-MRM method can be a reliable analytical strategy for more accurate and selective trace level analyses in petroleum forensic studies, and for tacking continuous weathering of oil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  14. Proteoform-specific protein binding of small molecules in complex matrices

    USDA-ARS?s Scientific Manuscript database

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  15. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  16. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  17. Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices.

    PubMed

    Nahorniak, Michelle L; Booksh, Karl S

    2006-12-01

    A field portable, single exposure excitation-emission matrix (EEM) fluorometer has been constructed and used in conjunction with parallel factor analysis (PARAFAC) to determine the sub part per billion (ppb) concentrations of several aqueous polycyclic aromatic hydrocarbons (PAHs), such as benzo(k)fluoranthene and benzo(a)pyrene, in various matrices including aqueous motor oil extract and asphalt leachate. Multiway methods like PARAFAC are essential to resolve the analyte signature from the ubiquitous background in environmental samples. With multiway data and PARAFAC analysis it is shown that reliable concentration determinations can be achieved with minimal standards in spite of the large convoluting fluorescence background signal. Thus, rapid fieldable EEM analyses may prove to be a good screening method for tracking pollutants and prioritizing sampling and analysis by more complete but time consuming and labor intensive EPA methods.

  18. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  19. Model selection with multiple regression on distance matrices leads to incorrect inferences.

    PubMed

    Franckowiak, Ryan P; Panasci, Michael; Jarvis, Karl J; Acuña-Rodriguez, Ian S; Landguth, Erin L; Fortin, Marie-Josée; Wagner, Helene H

    2017-01-01

    In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM) to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC), its small-sample correction (AICc), and the Bayesian information criterion (BIC) to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.

  20. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage.

    PubMed

    Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann

    2017-11-15

    Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna

    2010-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.

  2. New biosensors for food safety screening solutions

    NASA Astrophysics Data System (ADS)

    Dyer, Maureen A.; Oberholtzer, Jennifer A.; Mulligan, David C.; Hanson, William P.

    2009-05-01

    Hanson Technologies has developed the automated OmniFresh 1000 system to sample large volumes of produce wash water, collect the pathogens, and detect their presence. By collecting a continuous sidestream of wash water, the OmniFresh uses a sample that represent the entire lot of produce being washed. The OmniFresh does not require bacterial culture or enrichment, and it detects both live and dead bacteria in the collected sample using an in-line sensor. Detection occurs in an array biosensor capable of handling large samples with complex matrices. Additionally, sample can be sent for traditional confirming tests after the screening performed by the OmniFresh.

  3. Determination of the total concentration and speciation of metal ions in river, estuarine and seawater samples.

    PubMed

    Alberti, Giancarla; Biesuz, Raffaela; Pesavento, Maria

    2008-12-01

    Different natural water samples were investigated to determine the total concentration and the distribution of species for Cu(II), Pb(II), Al(III) and U(VI). The proposed method, named resin titration (RT), was developed in our laboratory to investigate the distribution of species for metal ions in complex matrices. It is a competition method, in which a complexing resin competes with natural ligands present in the sample to combine with the metal ions. In the present paper, river, estuarine and seawater samples, collected during a cruise in Adriatic Sea, were investigated. For each sample, two RTs were performed, using different complexing resins: the iminodiacetic Chelex 100 and the carboxylic Amberlite CG50. In this way, it was possible to detect different class of ligands. Satisfactory results have been obtained and are commented on critically. They were summarized by principal component analysis (PCA) and the correlations with physicochemical parameters allowed one to follow the evolution of the metals along the considered transect. It should be pointed out that, according to our findings, the ligands responsible for metal ions complexation are not the major components of the water system, since they form considerably weaker complexes.

  4. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Loquet, Denis; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph

    2017-01-01

    Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13 C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13 C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13 C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13 C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13 C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13 C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.

  5. The algebra of complex 2 × 2 matrices and a general closed Baker-Campbell-Hausdorff formula

    NASA Astrophysics Data System (ADS)

    Foulis, D. L.

    2017-07-01

    We derive a closed formula for the Baker-Campbell-Hausdorff series expansion in the case of complex 2×2 matrices. For arbitrary matrices A and B, and a matrix Z such that \\exp Z = \\exp A \\exp B , our result expresses Z as a linear combination of A and B, their commutator [A, B] , and the identity matrix I. The coefficients in this linear combination are functions of the traces and determinants of A and B, and the trace of their product. The derivation proceeds purely via algebraic manipulations of the given matrices and their products, making use of relations developed here, based on the Cayley-Hamilton theorem, as well as a characterization of the consequences of [A, B] and/or its determinant being zero or otherwise. As a corollary of our main result we also derive a closed formula for the Zassenhaus expansion. We apply our results to several special cases, most notably the parametrization of the product of two SU(2) matrices and a verification of the recent result of Van-Brunt and Visser (2015 J. Phys. A: Math. Theor. 48 225207) for complex 2×2 matrices, in this latter case deriving also the related Zassenhaus formula which turns out to be quite simple. We then show that this simple formula should be valid for all matrices and operators.

  6. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Immobilization of long-lived radionuclides in carbon matrices produced with the use of polyimide binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulakhatov, Murat; Bartenev, Sergey; Firsin, Nikolai

    Available in abstract form only. Full text of publication follows: Conditions for immobilization of long-lived radionuclides {sup 99}Tc, {sup 129}I and {sup 241}Am in carbon matrices were investigated by using their chemical analogs. Stable isotopes of rhenium, iodine and europium were used as chemical analogs of {sup 99}Tc, {sup 129}I and {sup 241}Am, respectively. It is shown that the carbon matrices incorporating the above elements can be produced by carbonization of composites with ITA-31 polyimide binder of the following composition: equal molar ratio between dianhydride of 3,3/,4,4/-benzophenone-tetracarboxylic acid and tetraacetyl derivative of 4,4/-diaminodiphenyl ester, radionuclide being investigated or its chemicalmore » analog and carbon fabric as reinforcing component. The elements under investigation were used both in the form of salts or oxides and in the form of their complexes with ion-exchange resins. The produced composites were carbonized in inert gas (argon) or in vacuum. The physical-chemical properties of the samples were studied. It was revealed that the resultant matrices meet the requirements imposed on waste storage and final disposal. (authors)« less

  8. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1988-01-01

    Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.

  9. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  10. Isolated glyoxylic acid-water 1:1 complexes in low temperature argon matrices.

    PubMed

    Lundell, Jan; Olbert-Majkut, Adriana

    2015-02-05

    The 1:1 hydrogen bonded complexes between glyoxylic acid (GA) and water are studied in low temperature argon matrices. Four different complex structures were found in deposited matrices. The lowest energy conformer (T1) of GA was found to form complex, where the water molecule was attached to the opposite side of the intramolecular hydrogen bond in the molecule (T1B). Interestingly, this complex was estimated to be+8.0 kJ mol(-1) higher in energy than the most stable structure (T1A), where the water is inserted into the internal hydrogen bond, and also found in solid argon but in smaller abundance. For the second-lowest energy conformer of GA (T2), the two lowest-energy complex structures were identified, with the most stable complex structure (T2A) also being the most abundant in the matrices. The difference between experiment and computational energetic order of the two complex structures of the same GA conformer is explained by contributions of deformation energy upon complexation and the effect of the environment. The computed BSSE-corrected interaction energies are for the two most stable complexes of the two GA conformers for T1A and T2A -42.11 and -45.03 kJ mol(-1), respectively, at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  12. Highly Stable Lyophilized Homogeneous Bead-Based Immunoassays for On-Site Detection of Bio Warfare Agents from Complex Matrices.

    PubMed

    Mechaly, Adva; Marx, Sharon; Levy, Orly; Yitzhaki, Shmuel; Fisher, Morly

    2016-06-21

    This study shows the development of dry, highly stable immunoassays for the detection of bio warfare agents in complex matrices. Thermal stability was achieved by the lyophilization of the complete, homogeneous, bead-based immunoassay in a special stabilizing buffer, resulting in a ready-to-use, simple assay, which exhibited long shelf and high-temperature endurance (up to 1 week at 100 °C). The developed methodology was successfully implemented for the preservation of time-resolved fluorescence, Alexa-fluorophores, and horse radish peroxidase-based bead assays, enabling multiplexed detection. The multiplexed assay was successfully implemented for the detection of Bacillus anthracis, botulinum B, and tularemia in complex matrices.

  13. Eigenvalue statistics for the sum of two complex Wishart matrices

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    2014-09-01

    The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.

  14. Towards the Rational Design of Ionic Liquid Matrices for Secondary Ion Mass Spectrometry: Role of the Anion

    NASA Astrophysics Data System (ADS)

    Dertinger, Jennifer J.; Walker, Amy V.

    2013-08-01

    The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.

  15. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish.

    PubMed

    Jo, Hyeyeong; Son, Min-Hui; Seo, Sung-Hee; Chang, Yoon-Seok

    2017-07-01

    Hexabromocyclododecane (HBCD) contamination and its diastereomeric profile were investigated in a multi-media environment along a river at the local scale in air, soil, sludge, sediment, and fish samples. The spatial distribution of HBCD in each matrix showed a different result. The highest concentrations of HBCD in air and soil were detected near a general industrial complex; in the sediment and sludge samples, they were detected in the down-stream region (i.e., urban area). Each matrix showed the specific distribution patterns of HBCD diastereomers, suggesting continuous inputs of contaminants, different physicochemical properties, or isomerizations. The particle phases in air, sludge, and fish matrices were dominated by α-HBCD, owing to HBCD's various isomerization processes and different degradation rate in the environment, and metabolic capabilities of the fish; in contrast, the sediment and soil matrices were dominated by γ-HBCD because of the major composition of the technical mixtures and the strong adsorption onto solid particles. Based on these results, the prevalent and matrix-specific distribution of HBCD diastereomers suggested that more careful consideration should be given to the characteristics of the matrices and their effects on the potential influence of HBCD at the diastereomeric level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review

    PubMed Central

    Islas, Gabriela; Hernandez, Prisciliano

    2017-01-01

    To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027

  17. Determination of alkylphenol and alkylphenolethoxylates in biota by liquid chromatography with detection by tandem mass spectrometry and fluorescence spectroscopy

    USGS Publications Warehouse

    Schmitz-Afonso, I.; Loyo-Rosales, J.E.; de la Paz Aviles, M.; Rattner, B.A.; Rice, C.P.

    2003-01-01

    A quantitative method for the simultaneous determination of octylphenol, nonylphenol and the corresponding ethoxylates (1 to 5) in biota is presented. Extraction methods were developed for egg and fish matrices based on accelerated solvent extraction followed by a solid-phase extraction cleanup, using octadecylsilica or aminopropyl cartridges. Identification and quantitation were accomplished by liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) and compared to the traditional liquid chromatography with fluorescence spectroscopy detection. LC-MS-MS provides high sensitivity and specificity required for these complex matrices and an accurate quantitation with the use of 13C-labeled internal standards. Quantitation limits by LC-MS-MS ranged from 4 to 12 ng/g in eggs, and from 6 to 22 ng/g in fish samples. These methods were successfully applied to osprey eggs from the Chesapeake Bay and fish from the Great Lakes area. Total levels found in osprey egg samples were up to 18 ng/g wet mass and as high as 8.2 ug/g wet mass in the fish samples.

  18. Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples.

    PubMed

    Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan

    2017-09-15

    This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.

  19. Comparison of Different Matrices as Potential Quality Control Samples for Neurochemical Dementia Diagnostics.

    PubMed

    Lelental, Natalia; Brandner, Sebastian; Kofanova, Olga; Blennow, Kaj; Zetterberg, Henrik; Andreasson, Ulf; Engelborghs, Sebastiaan; Mroczko, Barbara; Gabryelewicz, Tomasz; Teunissen, Charlotte; Mollenhauer, Brit; Parnetti, Lucilla; Chiasserini, Davide; Molinuevo, Jose Luis; Perret-Liaudet, Armand; Verbeek, Marcel M; Andreasen, Niels; Brosseron, Frederic; Bahl, Justyna M C; Herukka, Sanna-Kaisa; Hausner, Lucrezia; Frölich, Lutz; Labonte, Anne; Poirier, Judes; Miller, Anne-Marie; Zilka, Norbert; Kovacech, Branislav; Urbani, Andrea; Suardi, Silvia; Oliveira, Catarina; Baldeiras, Ines; Dubois, Bruno; Rot, Uros; Lehmann, Sylvain; Skinningsrud, Anders; Betsou, Fay; Wiltfang, Jens; Gkatzima, Olymbia; Winblad, Bengt; Buchfelder, Michael; Kornhuber, Johannes; Lewczuk, Piotr

    2016-03-01

    Assay-vendor independent quality control (QC) samples for neurochemical dementia diagnostics (NDD) biomarkers are so far commercially unavailable. This requires that NDD laboratories prepare their own QC samples, for example by pooling leftover cerebrospinal fluid (CSF) samples. To prepare and test alternative matrices for QC samples that could facilitate intra- and inter-laboratory QC of the NDD biomarkers. Three matrices were validated in this study: (A) human pooled CSF, (B) Aβ peptides spiked into human prediluted plasma, and (C) Aβ peptides spiked into solution of bovine serum albumin in phosphate-buffered saline. All matrices were tested also after supplementation with an antibacterial agent (sodium azide). We analyzed short- and long-term stability of the biomarkers with ELISA and chemiluminescence (Fujirebio Europe, MSD, IBL International), and performed an inter-laboratory variability study. NDD biomarkers turned out to be stable in almost all samples stored at the tested conditions for up to 14 days as well as in samples stored deep-frozen (at - 80°C) for up to one year. Sodium azide did not influence biomarker stability. Inter-center variability of the samples sent at room temperature (pooled CSF, freeze-dried CSF, and four artificial matrices) was comparable to the results obtained on deep-frozen samples in other large-scale projects. Our results suggest that it is possible to replace self-made, CSF-based QC samples with large-scale volumes of QC materials prepared with artificial peptides and matrices. This would greatly facilitate intra- and inter-laboratory QC schedules for NDD measurements.

  20. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  1. Comparing HPLC-ESI-ITMS and UPLC-ESI-OA-TOF-MS in Characterizing Macrolide Antibiotics and Illicit Drugs in Complex Environmental Matrices

    EPA Science Inventory

    Among the challenges of characterizing emerging contaminants in complex environmental matrices (e.g., biosolids, sewage, or wastewater) are the co-eluting interferences. For example, surfactants, fats, and humic acids, can be preferentially ionized instead of the analyte(s) of in...

  2. Quantitative on-line analysis of sulfur compounds in complex hydrocarbon matrices.

    PubMed

    Djokic, Marko R; Ristic, Nenad D; Olahova, Natalia; Marin, Guy B; Van Geem, Kevin M

    2017-08-04

    An improved method for on-line measurement of sulfur containing compounds in complex matrices is presented. The on-line system consists of a specifically designed sampling system connected to a comprehensive two-dimensional gas chromatograph (GC×GC) equipped with two capillary columns (Rtx ® -1 PONA×SGE BPX50), a flame ionization detector (FID) and a sulfur chemiluminescence detector (SCD). The result is an unprecedented sensitivity down to ppm level (1 ppm-w) for various sulfur containing compounds in very complex hydrocarbon matrices. In addition to the GC×GC-SCD, the low molecular weight sulfur containing compounds such as hydrogen sulfide (H 2 S) and carbonyl sulfide (COS) can be analyzed using a thermal conductivity detector of a so-called refinery gas analyzer (RGA). The methodology was extensively tested on a continuous flow pilot plant for steam cracking, in which quantification of sulfur containing compounds in the reactor effluent was carried out using 3-chlorothiophene as internal standard. The GC×GC-FID/-SCD settings were optimized for ppm analysis of sulfur compounds in olefin-rich (ethylene- and propylene-rich) hydrocarbon matrices produced by steam cracking of petroleum feedstocks. Besides that is primarily used for analysis of the hydrocarbon matrix, FID of the GC×GC-FID/-SCD set-up serves to double check the amount of added sulfur internal standard which is crucial for a proper quantification of sulfur compounds. When vacuum gas oil containing 780 ppm-w of elemental sulfur in the form of benzothiophenes and dibenzothiophenes is subjected to steam cracking, the sulfur balance was closed, with 75% of the sulfur contained in the feed is converted to hydrogen sulfide, 13% to alkyl homologues of thiophene while the remaining 12% is present in the form of alkyl homologues of benzothiophenes. The methodology can be applied for many other conversion processes which use sulfur containing feeds such as hydrocracking, catalytic cracking, kerogen evolution, bio-waste pyrolysis, supercritical water treatment, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Conventional Matrices Loaded Onto a Graphene Layer Enhances MALDI-TOF/TOF Signal: Its Application to Improve Detection of Phosphorylated Peptides

    NASA Astrophysics Data System (ADS)

    Rodríguez, Carlos E.; Palacios, Javier; Fajardo, Ignacio; Urdiales, José Luis; Le Guével, Xavier; Lozano, José; Sánchez-Jiménez, Francisca

    2016-02-01

    This is the first study where graphene is used as a MALDI adjuvant in combination with the traditional matrix α-cyano-4-hydroxycinnamic acid (CHCA) to improve the signal intensity of peptide samples. Use of this amended matrix not only leads to increased signals but also to a higher number of peaks detected in complex samples. Additionally, the use of graphene has a stabilizing effect that can also be exploited to improve the detection of easily cleavable molecules.

  4. Normal response function method for mass and stiffness matrix updating using complex FRFs

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Modak, S. V.

    2012-10-01

    Quite often a structural dynamic finite element model is required to be updated so as to accurately predict the dynamic characteristics like natural frequencies and the mode shapes. Since in many situations undamped natural frequencies and mode shapes need to be predicted, it has generally been the practice in these situations to seek updating of only mass and stiffness matrix so as to obtain a reliable prediction model. Updating using frequency response functions (FRFs) has been one of the widely used approaches for updating, including updating of mass and stiffness matrices. However, the problem with FRF based methods, for updating mass and stiffness matrices, is that these methods are based on use of complex FRFs. Use of complex FRFs to update mass and stiffness matrices is not theoretically correct as complex FRFs are not only affected by these two matrices but also by the damping matrix. Therefore, in situations where updating of only mass and stiffness matrices using FRFs is required, the use of complex FRFs based updating formulation is not fully justified and would lead to inaccurate updated models. This paper addresses this difficulty and proposes an improved FRF based finite element model updating procedure using the concept of normal FRFs. The proposed method is a modified version of the existing response function method that is based on the complex FRFs. The effectiveness of the proposed method is validated through a numerical study of a simple but representative beam structure. The effect of coordinate incompleteness and robustness of method under presence of noise is investigated. The results of updating obtained by the improved method are compared with the existing response function method. The performance of the two approaches is compared for cases of light, medium and heavily damped structures. It is found that the proposed improved method is effective in updating of mass and stiffness matrices in all the cases of complete and incomplete data and with all levels and types of damping.

  5. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    PubMed

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-07

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  7. Colorimetric detection of catalytic reactivity of nanoparticles in complex matrices.

    PubMed

    Corredor, Charlie; Borysiak, Mark D; Wolfer, Jay; Westerhoff, Paul; Posner, Jonathan D

    2015-03-17

    There is a need for new methodologies to quickly assess the presence and reactivity of nanoparticles (NPs) in commercial, environmental, and biological samples since current detection techniques require expensive and complex analytical instrumentation. Here, we investigate a simple and portable colorimetric detection assay that assesses the surface reactivity of NPs, which can be used to detect the presence of NPs, in complex matrices (e.g., environmental waters, serum, urine, and in dissolved organic matter) at as low as part per billion (ppb) or ng/mL concentration levels. Surface redox reactivity is a key emerging property related to potential toxicity of NPs with living cells, and is used in our assays as a key surrogate for the presence of NPs and a first tier analytical strategy toward assessing NP exposures. We detect a wide range of metal (e.g., Ag and Au) and oxide (e.g., CeO2, SiO2, VO2) NPs with a diameter range of 5 to 400 nm and multiple capping agents (tannic acid (TA), polyvinylpyrrolidone (PVP), branched polyethylenimine (BPEI), polyethylene glycol (PEG)). This method is sufficiently sensitive (ppb levels) to measure concentrations typically used in toxicological studies, and uses inexpensive, commercially available reagents.

  8. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  9. Photophysics of Ru(II)— and Os(II)—polypyridine complexes in poly(ethyleneoxide) matrices

    NASA Astrophysics Data System (ADS)

    Campagna, Sebastiano; Bartolotta, Antonino; Marco, Gaetano Di

    1993-04-01

    Photophysical properties of Ru(bpy) 32+, Ru(bpy) 2(biq) 2+, and Os(bpy) 32+ (bpy=2,2'-bipyridine; biq=2,2'-biquinoline) in poly(ethyleneoxide) matrices (PEO) constituted by (CH 2CH 2O) repeating units, with average molecular weight 400 (PEO-400, a highly viscous fluid) and 600000 dalton (PEO-600000, a semicrystalline solid) have been studied at room temperature and 77 K. Comparison with similar systems is made. The absorption spectra, luminescence spectra and lifetimes at room temperature of the three complexes in both matrices are in agreement with the typical features reported for the same complexes in fluid solutions, and indicate that fast excited state relaxation via solvent reorganization occurs in both PEO matrices at room temperature. Such behaviour is not usual for solid matrices and is attributed to the microheterogeneous nature of PEO-600000 and to the ability of the solid PEO amorphous region to stabilize polar species within the timescale of radiative relaxation. The results suggest that PEO-600000 is a promising medium for studying electron and energy transfer processes having mild driving forces in the solid state at room temperature.

  10. Introducing capillary electrophoresis with laser-induced fluorescence (CE-LIF) as a potential analysis and quantification tool for galactooligosaccharides extracted from complex food matrices.

    PubMed

    Albrecht, Simone; Schols, Henk A; Klarenbeek, Bert; Voragen, Alphons G J; Gruppen, Harry

    2010-03-10

    The analysis and quantification of (galacto)oligosaccharides from food matrices demands both a reproducible extraction method as well as a sensitive and accurate analytical method. Three typical matrices, namely, infant formula, fruit juice, and a maltodextrin-rich preparation, to which a commercial galactooligosaccharide mixture was added in a product concentration range from 1.25 to 30%, served as model substrates. Solid-phase extraction on graphitized carbon material upon enzymatic amyloglucosidase pretreatment enabled a good recovery and a selective purification of the different galactooligosaccharide structures from the exceeding amounts of particularly lactose and maltodextrins. With the implementation of capillary electrophoresis in combination with laser-induced fluorescence (CE-LIF) detection, a new possibility facilitating a sensitive qualitative and quantitative determination of the galactooligosaccharide contents in the different food matrices is outlined. Simultaneous monitoring and quantifying prebiotic oligosaccharides embedded in food matrices presents a promising and important step toward an efficient monitoring of individual oligosaccharides and is of interest for research areas dealing with small quantities of oligosaccharides embedded in complex matrices, e.g., body liquids.

  11. Solid phase excitation-emission fluorescence method for the classification of complex substances: Cortex Phellodendri and other traditional Chinese medicines as examples.

    PubMed

    Gu, Yao; Ni, Yongnian; Kokot, Serge

    2012-09-13

    A novel, simple and direct fluorescence method for analysis of complex substances and their potential substitutes has been researched and developed. Measurements involved excitation and emission (EEM) fluorescence spectra of powdered, complex, medicinal herbs, Cortex Phellodendri Chinensis (CPC) and the similar Cortex Phellodendri Amurensis (CPA); these substances were compared and discriminated from each other and the potentially adulterated samples (Caulis mahoniae (CM) and David poplar bark (DPB)). Different chemometrics methods were applied for resolution of the complex spectra, and the excitation spectra were found to be the most informative; only the rank-ordering PROMETHEE method was able to classify the samples with single ingredients (CPA, CPC, CM) or those with binary mixtures (CPA/CPC, CPA/CM, CPC/CM). Interestingly, it was essential to use the geometrical analysis for interactive aid (GAIA) display for a full understanding of the classification results. However, these two methods, like the other chemometrics models, were unable to classify composite spectral matrices consisting of data from samples of single ingredients and binary mixtures; this suggested that the excitation spectra of the different samples were very similar. However, the method is useful for classification of single-ingredient samples and, separately, their binary mixtures; it may also be applied for similar classification work with other complex substances.

  12. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    PubMed Central

    Lim, Lucy; Yan, Fangzhi; Bach, Stephen; Pihakari, Katianna; Klein, David

    2016-01-01

    Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS) has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices. PMID:26784175

  13. Determination of acrylamide in various food matrices: evaluation of LC and GC mass spectrometric methods.

    PubMed

    Becalski, Adam; Lau, Benjamin P Y; Lewis, David; Seaman, Stephen W; Sun, Wing F

    2005-01-01

    Recent concerns surrounding the presence of acrylamide in many types of thermally processed food have brought about the need for the development of analytical methods suitable for determination of acrylamide in diverse matrices with the goals of improving overall confidence in analytical results and better understanding of method capabilities. Consequently, the results are presented of acrylamide testing in commercially available food products--potato fries, potato chips, crispbread, instant coffee, coffee beans, cocoa, chocolate and peanut butter, obtained by using the same sample extract. The results obtained by using LC-MS/MS, GC/MS (El), GC/HRMS (El)--with or without derivatization--and the use of different analytical columns, are discussed and compared with respect to matrix borne interferences, detection limits and method complexities.

  14. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing.

    PubMed

    Raz, Sabina Rebe; Marchesini, Gerardo R; Bremer, Maria G E G; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-11-21

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices--the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave penetration depth, we have fabricated a non-fouling sieve above the sensing region. The sieve shields the evanescent wave from nonspecific interactions which interfere with SPR sensing by minimizing the fouled area of the polymeric gel and preventing the translocation of large particles, e.g. micelles or aggregates. The nanopatterned macropores were fabricated by means of colloidal lithography and plasma enhanced chemical vapor deposition of a polyethylene oxide-like film on top of a polymeric gel matrix commonly used in surface plasmon resonance analysis. The sieve was characterized using surface plasmon resonance imaging, contact angle, atomic force microscopy and scanning electron microscopy. The performance of the sieve was studied using an immunoassay for detection of antibiotic residues in full fat milk and porcine serum. The non-fouling membrane presented pores in the 92-138 nm range organized in a hexagonal crystal lattice with a clearance of about 5% of the total surface. Functionally, the membrane with the nanopatterned macropores showed significant improvements in immunoassay robustness and sensitivity in untreated complex samples. The utilization of the sensor built-in sieve for measurements in complex matrices offers reduction in pre-analytical sample preparation steps and thus shortens the total analysis time.

  15. Development and validation of a solid phase extraction sample cleanup procedure for the recovery of trace levels of nitro-organic explosives in soil.

    PubMed

    Thomas, Jennifer L; Donnelly, Christopher C; Lloyd, Erin W; Mothershead, Robert F; Miller, Mark L

    2018-03-01

    An improved cleanup method has been developed for the recovery of trace levels of 12 nitro-organic explosives in soil, which is important not only for the forensic community, but also has environmental implications. A wide variety of explosives or explosive-related compounds were evaluated, including nitramines, nitrate esters, nitroaromatics, and a nitroalkane. Fortified soil samples were extracted with acetone, processed via solid phase extraction (SPE), and then analyzed by gas chromatography with electron capture detection. The following three SPE sorbents in cartridge format were compared: Empore™ SDB-XC, Oasis ® HLB, and Bond Elut NEXUS cartridges. The NEXUS cartridges provided the best overall recoveries for the 12 explosives in potting soil (average 48%) and the fastest processing times (<30min). It also rejected matrix components from spent motor oil on potting soil. The SPE method was validated by assessing limit of detection (LOD), processed sample stability, and interferences. All 12 compounds were detectable at 0.02μg explosive/gram of soil or lower in the three matrices tested (potting soil, sand, and loam) over three days. Seven explosives were stable up to seven days at 2μg/g and three were stable at 0.2μg/g, both in processed loam, which was the most challenging matrix. In the interference study, five interferences above the determined LOD for soil were detected in matrices collected across the United States and in purchased all-purpose sand, potting soil, and loam. This represented a 3.2% false positive rate for the 13 matrices processed by the screening method for interferences. The reported SPE cleanup method provides a fast and simple extraction process for separating organic explosives from matrix components, facilitating sample throughput and reducing instrument maintenance. In addition, a comparison study of the validated SPE method versus conventional syringe filtration was completed and highlighted the benefits of sample cleanup for removing matrix interferences, while also providing lower supply cost, order of magnitude lower LODs for most explosives, higher percent recoveries for complex matrices, and fewer instrument maintenance issues. Published by Elsevier B.V.

  16. Hg-Xe exciplex formation in mixed Xe/Ar matrices: molecular dynamics and luminescence study.

    PubMed

    Lozada-García, Rolando; Rojas-Lorenzo, Germán; Crépin, Claudine; Ryan, Maryanne; McCaffrey, John G

    2015-03-19

    Luminescence of Hg((3)P1) atoms trapped in mixed Ar/Xe matrices containing a small amount of Xe is reported. Broad emission bands, strongly red-shifted from absorption are recorded which are assigned to strong complexes formed between the excited mercury Hg* and xenon atoms. Molecular dynamics calculations are performed on simulated Xe/Ar samples doped with Hg to follow the behavior of Hg* in the mixed rare gas matrices leading to exciplex formation. The role of Xe atoms in the first solvation shell (SS1) around Hg was investigated in detail, revealing the formation of two kinds of triatomic exciplexes; namely, Xe-Hg*-Xe and Ar-Hg*-Xe. The first species exists only when two xenon atoms are present in SS1 with specific geometries allowing the formation of a linear or quasi-linear exciplex. In the other geometries, or in the presence of only one Xe in SS1, a linear Ar-Hg*-Xe exciplex is formed. The two kinds of exciplexes have different emission bands, the most red-shifted being that involving two Xe atoms, whose emission is very close to that observed in pure Xe matrices. Simulations give a direct access to the analysis of the experimental absorption, emission, and excitation spectra, together with the dynamics of exciplexes formation.

  17. Code Samples Used for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  18. LC-MS/MS signal suppression effects in the analysis of pesticides in complex environmental matrices.

    PubMed

    Choi, B K; Hercules, D M; Gusev, A I

    2001-02-01

    The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.

  19. Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer.

    PubMed

    Okimoto, Gordon; Zeinalzadeh, Ashkan; Wenska, Tom; Loomis, Michael; Nation, James B; Fabre, Tiphaine; Tiirikainen, Maarit; Hernandez, Brenda; Chan, Owen; Wong, Linda; Kwee, Sandi

    2016-01-01

    Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a MMDS should provide a more focused view of the biology underlying complex diseases such as cancer that would not be apparent from the analysis of a single data type alone. As multi-modal data rapidly accumulate in research laboratories and public databases such as The Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable knowledge has been slowed by the lack of computational tools capable of analyzing MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT) algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix approximations of rank-1. The JAMMIT algorithm jointly approximates an arbitrary number of data matrices by rank-1 outer-products composed of "sparse" left-singular vectors (eigen-arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is common to all the matrices. The non-zero coefficients of the eigen-arrays identify small subsets of variables for each data type (i.e., signatures) that in aggregate, or individually, best explain a dominant eigen-signal defined on the columns of the data matrices. The approximation is specified by a single "sparsity" parameter that is selected based on false discovery rate estimated by permutation testing. Multiple signals of interest in a given MDDS are sequentially detected and modeled by iterating JAMMIT on "residual" data matrices that result from a given sparse approximation. We show that JAMMIT outperforms other joint analysis algorithms in the detection of multiple signatures embedded in simulated MDDS. On real multimodal data for ovarian and liver cancer we show that JAMMIT identified multi-modal signatures that were clinically informative and enriched for cancer-related biology. Sparse matrix approximations of rank-1 provide a simple yet effective means of jointly reducing multiple, big data types to a small subset of variables that characterize important clinical and/or biological attributes of the bio-samples from which the data were acquired.

  20. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  1. On complex matrices with simple spectrum that are unitarily similar to real matrices

    NASA Astrophysics Data System (ADS)

    Ikramov, Khakim D.

    2011-04-01

    Suppose that one should verify whether a given complex n × n matrix can be converted into a real matrix by a unitary similarity transformation. Sufficient conditions for this property to hold were found in an earlier publication of this author. These conditions are relaxed in the following way: as before, the spectrum is required to be simple, but pairs of complex conjugate eigenvalues λ ,bar λ are now allowed. However, the eigenvectors corresponding to such eigenvalues must not be orthogonal.

  2. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation

    PubMed Central

    Cole, Grace; McCaffrey, Joanne; Ali, Ahlam A.; McBride, John W.; McCrudden, Cian M.; Vincente-Perez, Eva M.; Donnelly, Ryan F.; McCarthy, Helen O.

    2017-01-01

    ABSTRACT DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application. PMID:27846370

  3. An Efficient MCMC Algorithm to Sample Binary Matrices with Fixed Marginals

    ERIC Educational Resources Information Center

    Verhelst, Norman D.

    2008-01-01

    Uniform sampling of binary matrices with fixed margins is known as a difficult problem. Two classes of algorithms to sample from a distribution not too different from the uniform are studied in the literature: importance sampling and Markov chain Monte Carlo (MCMC). Existing MCMC algorithms converge slowly, require a long burn-in period and yield…

  4. Multivariate curve resolution applied to kinetic-spectroscopic data matrices: Dye determination in foods by means of enzymatic oxidation.

    PubMed

    Boeris, Valeria; Arancibia, Juan A; Olivieri, Alejandro C

    2017-07-01

    In this work, the combination of chemometric techniques with kinetic-spectroscopic data allowed quantifying two dyes (tartrazine and carminic acid) in complex matrices as mustard, ketchup, asparagus soup powder, pumpkin soup powder, plum jam and orange-strawberry juice. Quantitative analysis was performed without the use of tedious sample pretreatment, due to the achievement of the second-order advantage. The results obtained showed an improvement in simplicity, speed and cost with respect to usual separation techniques, allowing to properly quantifying these dyes obtaining limits of detection below 0.6mgL -1 . In addition, to the best of our knowledge, is the first time that kinetic-spectroscopic data are obtained from the action of laccase for analytical purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method.

    PubMed

    Dümichen, Erik; Barthel, Anne-Kathrin; Braun, Ulrike; Bannick, Claus G; Brand, Kathrin; Jekel, Martin; Senz, Rainer

    2015-11-15

    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analysis and imaging of biocidal agrochemicals using ToF-SIMS.

    PubMed

    Converso, Valerio; Fearn, Sarah; Ware, Ecaterina; McPhail, David S; Flemming, Anthony J; Bundy, Jacob G

    2017-09-06

    ToF-SIMS has been increasingly widely used in recent years to look at biological matrices, in particular for biomedical research, although there is still a lot of development needed to maximise the value of this technique in the life sciences. The main issue for biological matrices is the complexity of the mass spectra and therefore the difficulty to specifically and precisely detect analytes in the biological sample. Here we evaluated the use of ToF-SIMS in the agrochemical field, which remains a largely unexplored area for this technique. We profiled a large number of biocidal active ingredients (herbicides, fungicides, and insecticides); we then selected fludioxonil, a halogenated fungicide, as a model compound for more detailed study, including the effect of co-occurring biomolecules on detection limits. There was a wide range of sensitivity of the ToF-SIMS for the different active ingredient compounds, but fludioxonil was readily detected in real-world samples (wheat seeds coated with a commercial formulation). Fludioxonil did not penetrate the seed to any great depth, but was largely restricted to a layer coating the seed surface. ToF-SIMS has clear potential as a tool for not only detecting biocides in biological samples, but also mapping their distribution.

  7. Algorithm-Eigenvalue Estimation of Hyperspectral Wishart Covariance Matrices from a Limited Number of Samples

    DTIC Science & Technology

    2015-03-01

    ALGORITHM—EIGENVALUE ESTIMATION OF HYPERSPECTRAL WISHART COVARIANCE MATRICES FROM A LIMITED NUMBER OF SAMPLES ECBC-TN-067 Avishai Ben- David ...NUMBER 6. AUTHOR(S) Ben- David , Avishai (ECBC) and Davidson, Charles E. (STC) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...and published by Avishai Ben- David and Charles E. Davidson (Eigenvalue Estimation of Hyperspectral WishartCovariance Matrices from Limited Number of

  8. Calculation of controllability and observability matrices for special case of continuous-time multi-order fractional systems.

    PubMed

    Hassanzadeh, Iman; Tabatabaei, Mohammad

    2017-03-28

    In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC-MS/MS.

    PubMed

    Manubolu, Manjunath; Lee, Jiyoung; Riedl, Kenneth M; Kua, Zi Xun; Collart, Lindsay P; Ludsin, Stuart A

    2018-06-01

    Human-driven environmental change has increased the occurrence of harmful cyanobacteria blooms in aquatic ecosystems. Concomitantly, exposure to microcystin (MC), a cyanobacterial toxin that can accumulate in animals, edible plants, and agricultural soils, has become a growing public health concern. For accurate estimation of health risks and timely monitoring, availability of reliable detection methods is imperative. Nonetheless, quantitative analysis of MCs in many types of biological and environmental samples has proven challenging because matrix interferences can hinder sample preparation and extraction procedures, leading to poor MC recovery. Herein, controlled experiments were conducted to enhance the use of ultra-performance liquid-chromatography tandem-mass spectrometry (UPLC-MS/MS) to recover MC-LR and MC-RR at a range of concentrations in seafood (fish), vegetables (lettuce), and environmental (soil) matrices. Although these experiments offer insight into detailed technical aspects of the MC homogenization and extraction process (i.e., sonication duration and centrifugation speed during homogenization; elution solvent to use during the final extraction), they centered on identifying the best (1) solvent system to use during homogenization (2-3 tested per matrix) and (2) single-phase extraction (SPE) column type (3 tested) to use for the final extraction. The best procedure consisted of the following, regardless of sample type: centrifugation speed = 4200 × g; elution volume = 8 mL; elution solvent = 80% methanol; and SPE column type = hydrophilic-lipophilic balance (HLB), with carbon also being satisfactory for fish. For sonication, 2 min, 5 min, and 10 min were optimal for fish, lettuce, and soil matrices, respectively. Using the recommended HLB column, the solvent systems that led to the highest recovery of MCs were methanol:water:butanol for fish, methanol:water for lettuce, and EDTA-Na 4 P 2 O 7 for soils. Given that the recommended procedures resulted in average MC-LR and MC-RR recoveries that ranged 93 to 98%, their adoption for the preparation of samples with complex matrices before UPLC-MS/MS analysis is encouraged. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations

    PubMed Central

    Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.

    2013-01-01

    Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359

  11. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Pang, Xiao-Qing; Xu, Jing-Jing

    2016-01-01

    A simple, rapid, and highly selective trace matrix solid phase dispersion (MSPD) technique, coupled with ultra-performance liquid chromatography-ultraviolet detection, was proposed for extracting flavonoids from orange fruit peel matrices. Molecular sieve SBA-15 was applied for the first time as a solid support in trace MSPD. Parameters, such as the type of dispersant, mass ratio of the sample to the dispersant, grinding time, and elution pH, were optimized in detail. The optimal extraction conditions involved dispersing a powdered fruit peel sample (25 mg) into 25mg of SBA-15 and then eluting the target analytes with 500 μL of methanol. A satisfactory linearity (r(2) > 0.9990) was obtained, and the calculated limits of detection reached 0.02-0.03 μg/mL for the compounds. The results showed that the method developed was successfully applied to determine the content of flavonoids in complex fruit peel matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Miscellaneous methods for measuring matric or water potential

    USGS Publications Warehouse

    Scanlon, Bridget R.; Andraski, Brian J.; Bilskie, Jim; Dane, Jacob H.; Topp, G. Clarke

    2002-01-01

    A variety of techniques to measure matric potential or water potential in the laboratory and in the field are described in this section. The techniques described herein require equilibration of some medium whose matric or water potential can be determined from previous calibration or can be measured directly. Under equilibrium conditions the matric or water potential of the medium is equal to that of the soil. The techniques can be divided into: (i) those that measure matric potential and (ii) those that measure water potential (sum of matric and osmotic potentials). Matric potential is determined when the sensor matrix is in direct contact with the soil, so salts are free to diffuse in or out of the sensor matrix, and the equilibrium measurement therefore reflects matric forces acting on the water. Water potential is determined when the sensor is separated from the soil by a vapor gap, so salts are not free to move in or out of the sensor, and the equilibrium measurement reflects the sum of the matric and osmotic forces acting on the water.Seven different techniques are described in this section. Those that measure matric potential include (i) heat dissipation sensors, (ii) electrical resistance sensors, (iii) frequency domain and time domain sensors, and (iv) electro-optical switches. A method that can be used to measure matric potential or water potential is the (v) filter paper method. Techniques that measure water potential include (vi) the Dew Point Potentiameter (Decagon Devices, Inc., Pullman, WA1) (water activity meter) and (vii) vapor equilibration.The first four techniques are electronically based methods for measuring matric potential. Heat dissipation sensors and electrical resistance sensors infer matric potential from previously determined calibration relations between sensor heat dissipation or electrical resistance and matric potential. Frequency-domain and timedomain matric potential sensors measure water content, which is related to matric potential of the sensor through calibration. Electro-optical switches measure changes in light transmission through thin, nylon filters as they absorb or desorb water in response to changes in matric potential. Heat dissipation sensors and electrical resistance sensors are used primarily in the field to provide information on matric potential. Frequency domain matric potential sensors are new and have not been widely used. Time domain matric potential sensors and electro-optical switches are new and have not been commercialized. For the fifth technique, filter paper is used as the standard matrix. The filter paper technique measures matric potential when the filter paper is in direct contact with soil or water potential when separated from soil by a vapor gap. The Dew Point Potentiameter calculates water potential from the measured dew point and sample temperature. The vapor equilibration technique involves equilibration of soil samples with salt solutions of known osmotic potential. The filter paper, Dew Point Potentiameter, and vapor equilibration techniques are generally used in the laboratory to measure water potential of disturbed field samples or to measure water potential for water retention functions.

  13. Convenient, inexpensive quantification of elemental sulfur by simultaneous in situ reduction and colorimetric detection.

    PubMed

    Kwasniewski, Misha T; Allison, Rachel B; Wilcox, Wayne F; Sacks, Gavin L

    2011-10-03

    Rapid, inexpensive, and convenient methods for quantifying elemental sulfur (S(0)) with low or sub-μgg(-1) limits of detection would be useful for a range of applications where S(0) can act as a precursor for noxious off-aromas, e.g., S(0) in pesticide residues on winegrapes or as a contaminant in drywall. However, existing quantification methods rely on toxic reagents, expensive and cumbersome equipment, or demonstrate poor selectivity. We have developed and optimized an inexpensive, rapid method (∼15 min per sample) for quantifying S(0) in complex matrices. Following dispersion of the sample in PEG-400 and buffering, S(0) is quantitatively reduced to H(2)S in situ by dithiothreitol and simultaneously quantified by commercially available colorimetric H(2)S detection tubes. By employing multiple tubes, the method demonstrated linearity from 0.03 to 100 μg S(0) g(-1) for a 5 g sample (R(2)=0.994, mean CV=6.4%), and the methodological detection limit was 0.01 μg S(0) g(-1). Interferences from sulfite or sulfate were not observed. Mean recovery of an S(0) containing sulfur fungicide in grape macerate was 84.7% with a mean CV of 10.4%. Mean recovery of S(0) in a colloidal sulfur preparation from a drywall matrix was 106.6% with a mean CV of 6.9%. Comparable methodological detection limits, sensitivity, and recoveries were achieved in grape juice, grape macerate and with 1g drywall samples, indicating that the methodology should be robust across a range of complex matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Development and optimization of SPE-HPLC-UV/ELSD for simultaneous determination of nine bioactive components in Shenqi Fuzheng Injection based on Quality by Design principles.

    PubMed

    Wang, Lu; Qu, Haibin

    2016-03-01

    A method combining solid phase extraction, high performance liquid chromatography, and ultraviolet/evaporative light scattering detection (SPE-HPLC-UV/ELSD) was developed according to Quality by Design (QbD) principles and used to assay nine bioactive compounds within a botanical drug, Shenqi Fuzheng Injection. Risk assessment and a Plackett-Burman design were utilized to evaluate the impact of 11 factors on the resolutions and signal-to-noise of chromatographic peaks. Multiple regression and Pareto ranking analysis indicated that the sorbent mass, sample volume, flow rate, column temperature, evaporator temperature, and gas flow rate were statistically significant (p < 0.05) in this procedure. Furthermore, a Box-Behnken design combined with response surface analysis was employed to study the relationships between the quality of SPE-HPLC-UV/ELSD analysis and four significant factors, i.e., flow rate, column temperature, evaporator temperature, and gas flow rate. An analytical design space of SPE-HPLC-UV/ELSD was then constructed by calculated Monte Carlo probability. In the presented approach, the operating parameters of sample preparation, chromatographic separation, and compound detection were investigated simultaneously. Eight terms of method validation, i.e., system-suitability tests, method robustness/ruggedness, sensitivity, precision, repeatability, linearity, accuracy, and stability, were accomplished at a selected working point. These results revealed that the QbD principles were suitable in the development of analytical procedures for samples in complex matrices. Meanwhile, the analytical quality and method robustness were validated by the analytical design space. The presented strategy provides a tutorial on the development of a robust QbD-compliant quantitative method for samples in complex matrices.

  15. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  16. Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets

    NASA Astrophysics Data System (ADS)

    Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua

    2017-09-01

    In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.

  17. Optical image encryption using triplet of functions

    NASA Astrophysics Data System (ADS)

    Yatish; Fatima, Areeba; Nishchal, Naveen Kumar

    2018-03-01

    We propose an image encryption scheme that brings into play a technique using a triplet of functions to manipulate complex-valued functions. Optical cryptosystems using this method are an easier approach toward the ciphertext generation that avoids the use of holographic setup to record phase. The features of this method were shown in the context of double random phase encoding and phase-truncated Fourier transform-based cryptosystems using gyrator transform. In the first step, the complex function is split into two matrices. These matrices are separated, so they contain the real and imaginary parts. In the next step, these two matrices and a random distribution function are acted upon by one of the functions in the triplet. During decryption, the other two functions in the triplet help us retrieve the complex-valued function. The simulation results demonstrate the effectiveness of the proposed idea. To check the robustness of the proposed scheme, attack analyses were carried out.

  18. Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples.

    PubMed

    Bratkowska, D; Fontanals, N; Cormack, P A G; Borrull, F; Marcé, R M

    2012-02-17

    A monolithic, hydrophilic stir bar coating based upon a copolymer of methacrylic acid and divinylbenzene [poly(MAA-co-DVB)] was synthesised and evaluated as a new polymeric phase for the stir bar sorptive extraction (SBSE) of polar compounds from complex environmental water samples. The experimental conditions for the extraction and liquid desorption in SBSE were optimised. Liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was used for the determination of a group of polar pharmaceuticals in environmental water matrices. The extraction performance of the poly(MAA-co-DVB) stir bar was compared to the extraction performance of a commercially available polydimethylsiloxane stir bar; it was found that the former gave rise to significantly higher extraction efficiency of polar analytes (% recovery values near to 100% for most of the studied analytes) than the commercial product. The developed method was applied to determine the studied analytes at low ng L⁻¹ in different complex environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Disposable and removable nucleic acid extraction and purification cartridges for automated flow-through systems

    DOEpatents

    Regan, John Frederick

    2014-09-09

    Removable cartridges are used on automated flow-through systems for the purpose of extracting and purifying genetic material from complex matrices. Different types of cartridges are paired with specific automated protocols to concentrate, extract, and purifying pathogenic or human genetic material. Their flow-through nature allows large quantities sample to be processed. Matrices may be filtered using size exclusion and/or affinity filters to concentrate the pathogen of interest. Lysed material is ultimately passed through a filter to remove the insoluble material before the soluble genetic material is delivered past a silica-like membrane that binds the genetic material, where it is washed, dried, and eluted. Cartridges are inserted into the housing areas of flow-through automated instruments, which are equipped with sensors to ensure proper placement and usage of the cartridges. Properly inserted cartridges create fluid- and air-tight seals with the flow lines of an automated instrument.

  20. Eigenvalue Tests and Distributions for Small Sample Order Determination for Complex Wishart Matrices

    DTIC Science & Technology

    1994-08-13

    theoretic order determination criteria for ARMA(p, q) models can be expressed in the form of equation 4.2. The word ARIMA should not be a distractor...subjectivity is not necessarily bad. It enables us to build tractable models and efficiently achieve reasonable results. The charge of "subjectivity" lodged...signal processing studies because it simplifies the mathematics involved and it is not a bad model for a wide range of situations. Wooding [293] is

  1. Profiling of Sugar Nucleotides.

    PubMed

    Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A

    2017-01-01

    Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.

  2. Single-run determination of polybrominated diphenyl ethers (PBDEs) di- to deca-brominated in fish meal, fish oil and fish feed by isotope dilution: application of automated sample purification and gas chromatography/ion trap tandem mass spectrometry (GC/ITMS).

    PubMed

    Blanco, Sonia Lucía; Vieites, Juan M

    2010-07-05

    The present paper describes the application of automated cleanup and fractionation procedures of the Power Prep system (Fluid Management Systems) for the determination of polybrominated diphenyl ethers (PBDEs) in feeding stuffs and fish meal and oil. Gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITMS) allowed the analysis of di- to deca-BDEs in the samples matrices used in fish aquaculture. The method developed enabled the determination of 26 native PBDE congeners and 11 (13)C(12)-labelled congeners, including deca-BDE 209, in a single-run analysis, using isotope dilution. The automated cleanup, consisting of a succession of multilayer silica and basic alumina columns previously applied by Wyrzykowska et al. (2009) [28] in combustion flue gas, was successfully applied in our complex matrices. The method allowed an increase in productivity, i.e. lower time was required to process samples, and simultaneous purification of several samples was achieved at a time, reducing analyst dedication and human error input. Average recoveries of 43-96% were obtained. GC/ITMS can overcome the complexity originating from the sample matrix, eliminating matrix effects by tandem MS, to enable the detection of congeners penta- to nona-BDEs where interferent masses were present. The provisional detection limits, estimated in the samples, were 5-30 pg for di-, tri-, tetra-, and penta-BDEs, 20-65 pg for hexa-, hepta-, octa- and nona-BDEs, and 105 pg for deca-BDE. Reduction of deca-BDE 209 blank values is of concern to ongoing research. Good accuracy was obtained by application of the whole procedure, representing an efficient, low-cost and fast alternative for routine analyses. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  4. Two-dimensional fingerprinting approach for comparison of complex substances analysed by HPLC-UV and fluorescence detection.

    PubMed

    Ni, Yongnian; Liu, Ying; Kokot, Serge

    2011-02-07

    This work is concerned with the research and development of methodology for analysis of complex mixtures such as pharmaceutical or food samples, which contain many analytes. Variously treated samples (swill washed, fried and scorched) of the Rhizoma atractylodis macrocephalae (RAM) traditional Chinese medicine (TCM) as well as the common substitute, Rhizoma atractylodis (RA) TCM were chosen as examples for analysis. A combined data matrix of chromatographic 2-D HPLC-DAD-FLD (two-dimensional high performance liquid chromatography with diode array and fluorescence detectors) fingerprint profiles was constructed with the use of the HPLC-DAD and HPLC-FLD individual data matrices; the purpose was to collect maximum information and to interpret this complex data with the use of various chemometrics methods e.g. the rank-ordering multi-criteria decision making (MCDM) PROMETHEE and GAIA, K-nearest neighbours (KNN), partial least squares (PLS), back propagation-artificial neural networks (BP-ANN) methods. The chemometrics analysis demonstrated that the combined 2-D HPLC-DAD-FLD data matrix does indeed provide more information and facilitates better performing classification/prediction models for the analysis of such complex samples as the RAM and RA ones noted above. It is suggested that this fingerprint approach is suitable for analysis of other complex, multi-analyte substances.

  5. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: an overview.

    PubMed

    Motilva, Maria-José; Serra, Aida; Macià, Alba

    2013-05-31

    Phenolic compounds, which are widely distributed in plant-derived foods, recently attracted much attention due to their health benefits, so their determination in food samples is a topic of increasing interest. In the last few years, the development of chromatographic columns packed with sub-2μm particles and the modern high resolution mass spectrometry (MS) have opened up new possibilities for improving the analytical methods for complex sample matrices, such as ingredients, foods and biological samples. In addition, they have emerged as an ideal tool for profiling complex samples due to its speed, efficiency, sensitivity and selectivity. The present review addresses the use of the improved liquid chromatography (LC), ultra-high performance LC (UHPLC), coupled to MS or tandem MS (MS/MS) as the detector system for the determination of phenolic compounds in food samples. Additionally, the different strategies to extract, quantify the phenolic compounds and to reduce the matrix effect (%ME) are also reviewed. Finally, a briefly outline future trends of UHPLC-MS methods is commented. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Products of random matrices from fixed trace and induced Ginibre ensembles

    NASA Astrophysics Data System (ADS)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  7. Isolation and determination of ivermectin in post-mortem and in vivo tissues of dung beetles using a continuous solid phase extraction method followed by LC-ESI+-MS/MS

    PubMed Central

    Ortiz, Antonio J.; Cortez, Vieyle; Azzouz, Abdelmonaim

    2017-01-01

    A new analytical method based on solvent extraction, followed by continuous solid-phase extraction (SPE) clean-up using a polymeric sorbent, was demonstrated to be applicable for the detection of ivermectin in complex biological matrices of dung beetles (hemolymph, excreta or dry tissues) using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI+–MS/MS). Using a signal-to-noise ratio of 3:1, the limit of detection (LOD) in the insect matrices at trace levels was 0.01 ng g–1 and the limit of quantification (LOQ) was 0.1 ng g–1. The proposed method was successfully used to quantitatively determine the levels of ivermectin in the analysis of small samples in in vivo and post mortem samples, demonstrating the usefulness for quantitative analyses that are focused on future pharmacokinetic and bioavailability studies in insects and the establishment of a new protocol to study the impact of ivermectin on non-target arthropods such as dung beetles and other insects that are related with the “dung community”. Because satisfactory precision and accuracy values were obtained in both in vivo matrices, we suggest that the method can be consistently used for quantitative determinations that are focused on future pharmacokinetic and bioavailability studies in insects. Furthermore, this new analytical method was successfully applied to biological samples of dead dung beetles from the field suggesting that the method can be used to establish a new routine analysis of ivermectin residues in insect carcasses that is applied to complement typical mortality tests. PMID:28207908

  8. Joining of Components of Complex Structures for Improved Dynamic Response

    DTIC Science & Technology

    2011-10-28

    system- level mass and stiffness matrices and force vector (at each frequency in the range of interest). To address this issue a series of complex...displacements of all candidate joint locations by using the system- level mass and stiffness matrices and force vector (at each frequency in the range of...joints. In contrast, Li et al. [10] proposed a fastener layout/topology that achieves an almost uniform stress level in each joint, and adopted

  9. Development of a highly sensitive and selective method for extractive spectrophotometric determination of aluminum(III) from environmental matrices, synthetic mixtures, and alloys using orthohydroxypropiophenoneisonicotinoylhydrazone.

    PubMed

    Ramachandraiah, C; Rajesh Kumar, J; Adinarayana Reddy, S; Lee, Jin-Young; Varada Reddy, A

    2010-01-01

    Orthohydroxypropiophenoneisonicotinoylhydrazone (OHPINH) is proposed as a new sensitive reagent for the spectrophotometric determination of aluminum(III). OHPINH formed a greenish-yellow colored complex with aluminum(III) in buffer solutions of pH 1 to 3. The color in pH 2 was stable for more than 48 h. The complex solution has given maximum absorbance at 390 nm when the reagent was chosen as blank and the absorbance of the reagent at this wavelength is negligible; the molar absorptivity and Sandell's sensitivity being 0.6371x10(4) L mol(-1) cm(-1) and 4.234x10(-3) microg cm(-2), respectively. The system obeys Beer's law in the range of 0.5-3.5 microg mL(-1) with excellent linearity in terms of the correlation coefficient value of 0.999. Most of the common metal ions generally found associated with aluminum(III) do not interfere. The repeatability of the method was checked by finding the relative standard deviation. The developed method has been successfully employed for the determination of aluminum(III) environmental matrices like medicinal and leafy samples, alloys, and synthetic mixtures.

  10. Review of analytical methods for the quantification of iodine in complex matrices.

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K

    2011-09-19

    Iodine is an essential element of human nutrition. Nearly a third of the global population has insufficient iodine intake and is at risk of developing Iodine Deficiency Disorders (IDD). Most countries have iodine supplementation and monitoring programs. Urinary iodide (UI) is the biomarker used for epidemiological studies; only a few methods are currently used routinely for analysis. These methods either require expensive instrumentation with qualified personnel (inductively coupled plasma-mass spectrometry, instrumental nuclear activation analysis) or oxidative sample digestion to remove potential interferences prior to analysis by a kinetic colorimetric method originally introduced by Sandell and Kolthoff ~75 years ago. The Sandell-Kolthoff (S-K) method is based on the catalytic effect of iodide on the reaction between Ce(4+) and As(3+). No available technique fully fits the needs of developing countries; research into inexpensive reliable methods and instrumentation are needed. There have been multiple reviews of methods used for epidemiological studies and specific techniques. However, a general review of iodine determination on a wide-ranging set of complex matrices is not available. While this review is not comprehensive, we cover the principal developments since the original development of the S-K method. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices

    PubMed Central

    ARMSTRONG, JENNA L.; DILLS, RUSSELL L.; YU, JIANBO; YOST, MICHAEL G.; FENSKE, RICHARD A.

    2018-01-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15–1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78–113% from XAD-2 active air sampling tubes and 71–108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74–94% after time periods ranging from 2–10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method. PMID:24328542

  12. A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices.

    PubMed

    Armstrong, Jenna L; Dills, Russell L; Yu, Jianbo; Yost, Michael G; Fenske, Richard A

    2014-01-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15-1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78-113% from XAD-2 active air sampling tubes and 71-108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74-94% after time periods ranging from 2-10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method.

  13. Novel strategies for capturing health-protective mango phytochemicals in shelf stable food matrices.

    PubMed

    Guzman, Ivette; Grace, Mary H; Yousef, Gad G; Raskin, Ilya; Lila, Mary Ann

    2015-03-01

    Cost-effective methods for concentration and stabilization of otherwise perishable mango fruit phytoactives into shelf stable high protein ingredients were developed to combat stunting (malnutrition) in rural Africa. Mango juices complexed with sunflower oil and protein-rich legume flours yielded carotenoid-enriched oils and pelleted polyphenol-enriched flour matrices. Carotenoids from juices were concentrated 9-10 times in the fortified sunflower oil. Protein-rich soy and peanut flours captured 2.2-3.2 mg/g polyphenols from the juices. Alternatively, mango juice was sorbed and co-dried with flours, which stably bound the polyphenols, carotenoids, and natural sugars in soy or peanut protein-rich matrices. The concentration of provitamin A carotenoids was almost doubled and total polyphenols were enriched 4-5 times higher in the matrices compared to fresh pureed juice. Both strategies require minimal instrumentation, are compatible with rural village dietary practices; and capture the benefits of otherwise perishable seasonal resources by complexing healthful proteins together with phytoactive compounds.

  14. Current trends in sample preparation for cosmetic analysis.

    PubMed

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effectiveness of Hydraulic Parameterization Strategies for Simulating Moisture Dynamics in a Deep Semi-Arid Vadose Zone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2012-12-01

    Over the past fifteen years, the University of Arizona has carried out four controlled infiltration experiments in a 3600 m2, 15 meter deep vadose zone (Maricopa, Arizona) in which the evolution of moisture content (9 wells, 25 cm resolution), and matric potential (27 locations) was monitored and the subsurface stratigraphy, texture (1042 samples), and bulk density (251 samples) was characterized. In order to simulate the subsurface moisture dynamics it is necessary to define the 3D structure of the subsurface hydraulic characteristics (i.e. moisture retention and hydraulic functions). Several simple to complex strategies are possible ranging from stratigraphy based layering using hydraulic parameters derived from core samples to sophisticated numerical inversions based on 3D geostatistics and site-specific pedotransfer functions. A range of approaches will be evaluated on objective metrics that quantify how well the observed moisture dynamics are matched by simulations. We will evaluate the worth of auxiliary data such as observed matric potentials and quantity the number of texture samples needed to arrive at effective descriptions of subsurface structure. In addition, we will discuss more subjective metrics that evaluate the relative effort involved and estimate monetary cost of each method. While some of the results will only be valid for the studied site, some general conclusions will be possible about the effectiveness of particular methods for other semi-arid sites.

  16. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    PubMed

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Agricultural matrices affect ground ant assemblage composition inside forest fragments

    PubMed Central

    Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493

  18. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    PubMed

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  19. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appearmore » feasible.« less

  20. Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution.

    PubMed

    de Oliveira, Felipe Bandoni; Porto, Arthur; Marroig, Gabriel

    2009-04-01

    The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r2) for all Catarrhini genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull.

  1. Development of a multiple-class analytical method based on the use of synthetic matrices for the simultaneous determination of commonly used commercial surfactants in wastewater by liquid chromatography-tandem mass spectrometry.

    PubMed

    Alexandre, Bergé; Barbara, Giroud; Laure, Wiest; Bruno, Domenjoud; Adriana, Gonzalez-Ospina; Emmanuelle, Vulliet

    2016-06-10

    Discharges of surfactants from wastewater treatment plants are often considered as the principal vector of pollution into the environment. The analysis of complex matrices, such as urban wastewater, suspended solids and biological sludge requires careful preparation of the sample to obtain a sensitive, selective and reproducible analysis. A simple, fast, effective and multi-residue method based on the SPE (water) and QuEChERS (solid matrices) approaches using synthetic matrices for validation and quantification, has been developed for the determination of 16 surfactants in wastewater, suspended solids and biological sludge. This work resulted in an innovative method that was validated to detect and assess several classes of surfactants such as quaternary ammonium compounds, betaïns, alkylphenols and their ethoxylated or sulfated derivatives in urban wastewater and solid matrices. The optimised extraction method exhibited recoveries comprised between 83% and 120% for all the tested compounds in the dissolved matrix and between 50% and 109% for particulate matrix. The limits of quantification of all compounds were comprised between 0.1 and 1.0μg/L for dissolved matrix and between 2 and 1000ng/g (dry weight) in particulate matrix. Linearity was assessed for all compounds within the [LOQ-250LOQ] range. Confidence intervals were also computed in real matrices with less than 15% margin of error for all studied surfactants. This work has confirmed, first and foremost, that surfactants are indeed highly concentrated in urban wastewater. As expected, linear alkylbenzene sulfonates were present at significant concentrations (up to 1-2mg/L). In addition, although biological processing results in significant removal of the total pollution, the residual concentrations at output of WWTP remain significant (up to 100μg/L). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Surveying the quantum group symmetries of integrable open spin chains

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  3. A quantitative approach for pesticide analysis in grape juice by direct interfacing of a matrix compatible SPME phase to dielectric barrier discharge ionization-mass spectrometry.

    PubMed

    Mirabelli, Mario F; Gionfriddo, Emanuela; Pawliszyn, Janusz; Zenobi, Renato

    2018-02-12

    We evaluated the performance of a dielectric barrier discharge ionization (DBDI) source for pesticide analysis in grape juice, a fairly complex matrix due to the high content of sugars (≈20% w/w) and pigments. A fast sample preparation method based on direct immersion solid-phase microextraction (SPME) was developed, and novel matrix compatible SPME fibers were used to reduce in-source matrix suppression effects. A high resolution LTQ Orbitrap mass spectrometer allowed for rapid quantification in full scan mode. This direct SPME-DBDI-MS approach was proven to be effective for the rapid and direct analysis of complex sample matrices, with limits of detection in the parts-per-trillion (ppt) range and inter- and intra-day precision below 30% relative standard deviation (RSD) for samples spiked at 1, 10 and 10 ng ml -1 , with overall performance comparable or even superior to existing chromatographic approaches.

  4. DART - LTQ ORBITRAP as an expedient tool for the identification of synthetic cannabinoids.

    PubMed

    Habala, Ladislav; Valentová, Jindra; Pechová, Iveta; Fuknová, Mária; Devínsky, Ferdinand

    2016-05-01

    Synthetic cannabinoids as designer drugs constitute a major problem due to their rapid increase in number and the difficulties connected with their identification in complex mixtures. DART (Direct Analysis in Real Time) has emerged as an advantageous tool for the direct and rapid analysis of complex samples by mass spectrometry. Here we report on the identification of six synthetic cannabinoids originating from seized material in various matrices, employing the combination of ambient pressure ion source DART and hybrid ion trap - LTQ ORBITRAP mass spectrometer. This report also describes the sampling techniques for the provided herbal material containing the cannabinoids, either directly as plant parts or as an extract in methanol and their influence on the outcome of the analysis. The high resolution mass spectra supplied by the LTQ ORBITRAP instrument allowed for an unambiguous assignment of target compounds. The utilized instrumental coupling proved to be a convenient way for the identification of synthetic cannabinoids in real-world samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A European network for food-borne parasites (Euro-FBP): meeting report on 'Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices'.

    PubMed

    Klotz, Christian; Šoba, Barbara; Skvarč, Miha; Gabriël, Sarah; Robertson, Lucy J

    2017-11-09

    Food-borne parasites (FBPs) are a neglected topic in food safety, partly due to a lack of awareness of their importance for public health, especially as symptoms tend not to develop immediately after exposure. In addition, methodological difficulties with both diagnosis in infected patients and detection in food matrices result in under-detection and therefore the potential for underestimation of their burden on our societies. This, in consequence, leads to lower prioritization for basic research, e.g. for development new and more advanced detection methods for different food matrices and diagnostic samples, and thus a vicious circle of neglect and lack of progress is propagated. The COST Action FA1408, A European Network for Foodborne Parasites (Euro-FBP) aims to combat the impact of FBP on public health by facilitating the multidisciplinary cooperation and partnership between groups of researchers and between researchers and stakeholders. The COST Action TD1302, the European Network for cysticercosis/taeniosis, CYSTINET, has a specific focus on Taenia solium and T. saginata, two neglected FBPs, and aims to advance knowledge and understanding of these zoonotic disease complexes via collaborations in a multidisciplinary scientific network. This report summarizes the results of a meeting within the Euro-FBP consortium entitled 'Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices' and of the joined Euro-FBP and CYSTINET meeting.

  6. The diagonalization of cubic matrices

    NASA Astrophysics Data System (ADS)

    Cocolicchio, D.; Viggiano, M.

    2000-08-01

    This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.

  7. The selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene by solid-phase extraction with MgO microspheres as sorbents.

    PubMed

    Jin, Jing; Li, Yun; Zhang, Zhiping; Su, Fan; Qi, Peipei; Lu, Xianbo; Chen, Jiping

    2011-12-23

    A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Development and single-laboratory validation of a UHPLC-MS/MS method for quantitation of microcystins and nodularin in natural water, cyanobacteria, shellfish and algal supplement tablet powders.

    PubMed

    Turner, Andrew D; Waack, Julia; Lewis, Adam; Edwards, Christine; Lawton, Linda

    2018-02-01

    A simple, rapid UHPLC-MS/MS method has been developed and optimised for the quantitation of microcystins and nodularin in wide variety of sample matrices. Microcystin analogues targeted were MC-LR, MC-RR, MC-LA, MC-LY, MC-LF, LC-LW, MC-YR, MC-WR, [Asp3] MC-LR, [Dha7] MC-LR, MC-HilR and MC-HtyR. Optimisation studies were conducted to develop a simple, quick and efficient extraction protocol without the need for complex pre-analysis concentration procedures, together with a rapid sub 5min chromatographic separation of toxins in shellfish and algal supplement tablet powders, as well as water and cyanobacterial bloom samples. Validation studies were undertaken on each matrix-analyte combination to the full method performance characteristics following international guidelines. The method was found to be specific and linear over the full calibration range. Method sensitivity in terms of limits of detection, quantitation and reporting were found to be significantly improved in comparison to LC-UV methods and applicable to the analysis of each of the four matrices. Overall, acceptable recoveries were determined for each of the matrices studied, with associated precision and within-laboratory reproducibility well within expected guidance limits. Results from the formalised ruggedness analysis of all available cyanotoxins, showed that the method was robust for all parameters investigated. The results presented here show that the optimised LC-MS/MS method for cyanotoxins is fit for the purpose of detection and quantitation of a range of microcystins and nodularin in shellfish, algal supplement tablet powder, water and cyanobacteria. The method provides a valuable early warning tool for the rapid, routine extraction and analysis of natural waters, cyanobacterial blooms, algal powders, food supplements and shellfish tissues, enabling monitoring labs to supplement traditional microscopy techniques and report toxicity results within a short timeframe of sample receipt. The new method, now accredited to ISO17025 standard, is simple, quick, applicable to multiple matrices and is highly suitable for use as a routine, high-throughout, fast turnaround regulatory monitoring tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.

    PubMed

    Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María

    2017-01-01

    This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.

  10. Malware Analysis Using Visualized Image Matrices

    PubMed Central

    Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  11. Bayes linear covariance matrix adjustment

    NASA Astrophysics Data System (ADS)

    Wilkinson, Darren J.

    1995-12-01

    In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.

  12. Data-Driven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal Acquisition by Compressive Sensing.

    PubMed

    Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao

    2017-04-01

    Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.

  13. Evaluation of the capabilities of atmospheric pressure chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like polychlorobiphenyls in complex-matrix food samples.

    PubMed

    Portolés, T; Sales, C; Abalos, M; Sauló, J; Abad, E

    2016-09-21

    The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated. In first place, ionization and fragmentation behavior of DL-PCBs on the APCI source under charge transfer conditions has been studied followed by their fragmentation in the collision cell. Linearity, repeatability and sensitivity have been studied obtaining instrumental limits of detection and quantification of 0.0025 and 0.005 pg μL(-1) (2.5 and 5 fg on column) respectively for every DL-PCB. Finally, application to real samples has been carried out and DL-PCB congeners (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189) have been detected in the different samples in the range of 0.40-10000 pg g(-1). GC-(APCI)MS/MS has been proved as a suitable alternative to the traditionally accepted confirmation method based on the use of high resolution mass spectrometry and other triple quadrupole tandem mass spectrometry techniques operating with electron ionization. The development of MS/MS methodologies for the analysis of dioxins and DL-PCBs is nowadays particularly important, since this technique was included as a confirmatory method in the present European Union regulations that establish the requirements for the determination of these compounds in food and feed matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review.

    PubMed

    Gräfe, Markus; Donner, Erica; Collins, Richard N; Lombi, Enzo

    2014-04-25

    Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology. Copyright © 2014. Published by Elsevier B.V.

  15. PAH detection in Quercus robur leaves and Pinus pinaster needles: A fast method for biomonitoring purpose.

    PubMed

    De Nicola, F; Concha Graña, E; Aboal, J R; Carballeira, A; Fernández, J Á; López Mahía, P; Prada Rodríguez, D; Muniategui Lorenzo, S

    2016-06-01

    Due to the complexity and heterogeneity of plant matrices, new procedure should be standardized for each single biomonitor. Thus, here is described a matrix solid-phase dispersion extraction method, previously used for moss samples, improved and modified for the analyses of PAHs in Quercus robur leaves and Pinus pinaster needles, species widely used in biomonitoring studies across Europe. The improvements compared to the previous procedure are the use of Florisil added with further clean-up sorbents, 10% deactivated silica for pine needles and PSA for oak leaves, being these matrices rich in interfering compounds, as shown by the gas chromatography-mass spectrometry analyses acquired in full scan mode. Good trueness, with values in the range 90-120% for the most of compounds, high precision (intermediate precision between 2% and 12%) and good sensitivity using only 250mg of samples (limits of quantification lower than 3 and 1.5ngg(-1), respectively for pine and oak) were achieved by the selected procedures. These methods proved to be reliable for PAH analyses and, having advantage of fastness, can be used in biomonitoring studies of PAH air contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Resampling-based Methods in Single and Multiple Testing for Equality of Covariance/Correlation Matrices

    PubMed Central

    Yang, Yang; DeGruttola, Victor

    2016-01-01

    Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients. PMID:22740584

  17. Resampling-based methods in single and multiple testing for equality of covariance/correlation matrices.

    PubMed

    Yang, Yang; DeGruttola, Victor

    2012-06-22

    Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.

  18. Analysis of Volatile Markers for Virgin Olive Oil Aroma Defects by SPME-GC/FID: Possible Sources of Incorrect Data.

    PubMed

    Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L

    2015-12-09

    The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.

  19. Water Quality Research Program: Recent Developments in the Analysis of Metals in Water, Wastewater, and Other Matrices.

    DTIC Science & Technology

    1987-11-01

    for various types of samples and acids. The system features PFA -closed vessels that will tolerate up to 100 psi, a Teflon-lined cavity that reduces...complexes. Selec- tivity is accomplished by masking agents and pH adjustment and sorption on a small XAD-4 resin column. Evaporation of solvent 119...same pH, Cr(VI) is selectively reduced to Cr(III) and accumulated by adsorption at -0.3 V versus SCE (Batley and Matousek 1980). 150. Sorption , ion

  20. Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices.

    PubMed

    Nyhan, L; Begley, M; Mutel, A; Qu, Y; Johnson, N; Callanan, M

    2018-09-01

    The aim of this study was to develop a model to predict growth of Listeria in complex food matrices as a function of pH, water activity and undissociated acetic and propionic acid concentration i.e. common food hurdles. Experimental growth curves of Listeria in food products and broth media were collected from ComBase, the literature and industry sources from which a bespoke secondary gamma model was constructed. Model performance was evaluated by comparing predictions to measured growth rates in growth media (BHI broth) and two adjusted food matrices (zucchini purée and béarnaise sauce). In general, observed growth rates were higher in broth than in the food matrices which resulted in the model over-estimating growth in the adjusted food matrices. In addition, model outputs were more accurate for conditions without acids, indicating that the organic acid component of the model was a source of inaccuracy. In summary, a new predictive growth model for innovating or renovating food products that rely on multi-hurdle technology was created. This study is the first to report on modelling of propionic acid as an inhibitor of Listeria in combination with other hurdles. Our findings provide valuable insights into predictive model design and performance and highlight the importance of experimental validation of models in real food matrices rather than laboratory media alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards

    PubMed Central

    Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.

    2015-01-01

    Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842

  2. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards.

    PubMed

    Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E

    2015-10-01

    Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.

  3. An improved approach to the analysis of drug-protein binding by distance geometry

    NASA Technical Reports Server (NTRS)

    Goldblum, A.; Kieber-Emmons, T.; Rein, R.

    1986-01-01

    The calculation of side chain centers of coordinates and the subsequent generation of side chain-side chain and side chain-backbone distance matrices is suggested as an improved method for viewing interactions inside proteins and for the comparison of protein structures. The use of side chain distance matrices is demonstrated with free PTI, and the use of difference distance matrices for side chains is shown for free and trypsin-bound PTI as well as for the X-ray structures of trypsin complexes with PTI and with benzamidine. It is found that conformational variations are reflected in the side chain distance matrices much more than in the standard C-C distance representations.

  4. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices

    NASA Astrophysics Data System (ADS)

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed.

  5. Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients.

    PubMed

    Grace, Mary H; Truong, An N; Truong, Van-Den; Raskin, Ilya; Lila, Mary Ann

    2015-09-01

    Blackcurrant, blueberry, and muscadine grape juices were efficiently sorbed, concentrated, and stabilized into dry granular ingredient matrices which combined anti-inflammatory and antioxidant fruit polyphenols with sweet potato functional constituents (carotenoids, vitamins, polyphenols, fibers). Total phenolics were highest in blackcurrant-orange sweet potato ingredient matrices (34.03 mg/g), and lowest in muscadine grape-yellow sweet potato matrices (10.56 mg/g). Similarly, anthocyanins were most concentrated in blackcurrant-fortified orange and yellow sweet potato matrices (5.40 and 6.54 mg/g, respectively). Alternatively, other protein-rich edible matrices (defatted soy flour, light roasted peanut flour, and rice protein concentrate) efficiently captured polyphenols (6.09-9.46 mg/g) and anthocyanins (0.77-1.27 mg/g) from purple-fleshed sweet potato juice, with comparable efficiency. Antioxidant activity correlated well with total phenolic content. All formulated ingredient matrices stabilized and preserved polyphenols for up to 24 weeks, even when stored at 37°C. Complexation with juice-derived polyphenols did not significantly alter protein or carbohydrate profiles of the matrices. Sensory evaluation of the ingredient matrices suggested potential uses for a wide range of functional food products.

  6. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms

    PubMed Central

    Fagbamila, Idowu Oluwabunmi; Barco, Lisa; Mancin, Marzia; Kwaga, Jacob; Ngulukun, Sati Samuel; Zavagnin, Paola; Lettini, Antonia Anna; Lorenzetto, Monica; Abdu, Paul Ayuba; Kabir, Junaidu; Umoh, Jarlath; Ricci, Antonia; Muhammad, Maryam

    2017-01-01

    Commercial poultry farms (n° 523), located in all the six regions of Nigeria were sampled with a view to generate baseline information about the distribution of Salmonella serovars in this country. Five different matrices (litter, dust, faeces, feed and water) were collected from each visited farm. Salmonella was isolated from at least one of the five matrices in 228 farms, with a farm prevalence of 43.6% (CI95[39.7–48.3%]). Altogether, 370 of 2615 samples collected (14.1%, CI95[12.8; 15.5%]) contained Salmonella. Considering the number of positive farms and the number of positive samples, it was evident that for the majority of the sampled farms, few samples were positive for Salmonella. With regard to the matrices, there was no difference in Salmonella prevalence among the five matrices considered. Of the 370 isolates serotyped, eighty-two different serotypes were identified and Salmonella Kentucky was identified as having the highest isolation rate in all the matrices sampled (16.2%), followed by S. Poona and S. Elisabethville. S. Kentucky was distributed across the country, whereas the other less frequent serovars had a more circumscribed diffusion. This is one of few comprehensive studies on the occurrence and distribution of Salmonella in commercial chicken layer farms from all the six regions of Nigeria. The relatively high prevalence rate documented in this study may be attributed to the generally poor infrastructure and low biosecurity measures in controlling stray animals, rodents and humans. Data collected could be valuable for instituting effective intervention strategies for Salmonella control in Nigeria and also in other developing countries with a similar poultry industry structure, with the final aim of reducing Salmonella spread in animals and ultimately in humans. PMID:28278292

  7. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms.

    PubMed

    Fagbamila, Idowu Oluwabunmi; Barco, Lisa; Mancin, Marzia; Kwaga, Jacob; Ngulukun, Sati Samuel; Zavagnin, Paola; Lettini, Antonia Anna; Lorenzetto, Monica; Abdu, Paul Ayuba; Kabir, Junaidu; Umoh, Jarlath; Ricci, Antonia; Muhammad, Maryam

    2017-01-01

    Commercial poultry farms (n° 523), located in all the six regions of Nigeria were sampled with a view to generate baseline information about the distribution of Salmonella serovars in this country. Five different matrices (litter, dust, faeces, feed and water) were collected from each visited farm. Salmonella was isolated from at least one of the five matrices in 228 farms, with a farm prevalence of 43.6% (CI95[39.7-48.3%]). Altogether, 370 of 2615 samples collected (14.1%, CI95[12.8; 15.5%]) contained Salmonella. Considering the number of positive farms and the number of positive samples, it was evident that for the majority of the sampled farms, few samples were positive for Salmonella. With regard to the matrices, there was no difference in Salmonella prevalence among the five matrices considered. Of the 370 isolates serotyped, eighty-two different serotypes were identified and Salmonella Kentucky was identified as having the highest isolation rate in all the matrices sampled (16.2%), followed by S. Poona and S. Elisabethville. S. Kentucky was distributed across the country, whereas the other less frequent serovars had a more circumscribed diffusion. This is one of few comprehensive studies on the occurrence and distribution of Salmonella in commercial chicken layer farms from all the six regions of Nigeria. The relatively high prevalence rate documented in this study may be attributed to the generally poor infrastructure and low biosecurity measures in controlling stray animals, rodents and humans. Data collected could be valuable for instituting effective intervention strategies for Salmonella control in Nigeria and also in other developing countries with a similar poultry industry structure, with the final aim of reducing Salmonella spread in animals and ultimately in humans.

  8. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  9. Structural and spectroscopic characterization of DMF complexes with nitrogen, carbon dioxide, ammonia and water. Infrared matrix isolation and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena; Mielke, Zofia; Haupa, Karolina

    2018-02-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of the complexes between N,N-dimethylformamide (DMF) and nitrogen, carbon dioxide, water, ammonia trapped in solid argon matrices is reported. The 1:1 molecular complexes have been identified in the DMF/B/Ar matrices (B = N2, CO, H2O, NH3); their structures were determined by comparison of the spectra with the results of calculations. The analysis of the experimental and theoretical data indicate that the DMF-N2, CO complexes present in the matrices are stabilized by (C=)O⋯N and (C=)O⋯C van der Waals interactions. In turn, in the DMF-H2O, NH3 complexes the (C=)O⋯H(OH) and (C=)O⋯H(NH2) hydrogen bonding is present in which the carbonyl group of DMF acts as a proton acceptor. In all systems studied the C-H⋯X (X = N, C, O) bonding is a second intermolecular force stabilizing the planar complexes. Some spectral features indicate that for DMF-H2O, DMF-NH3 systems the nonplanar structures with the C=O⋯H interaction are also present. The study demonstrated the strong sensitivity of the CH stretching wavenumber to an involvement of the C-H and/or C=O groups of DMF in an intermolecular interaction.

  10. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    PubMed Central

    Matisová, Eva; Hrouzková, Svetlana

    2012-01-01

    Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677

  11. The Effect of Unequal Samples, Heterogeneity of Covariance Matrices, and Number of Variables on Discriminant Analysis Classification Tables and Related Statistics.

    ERIC Educational Resources Information Center

    Spearing, Debra; Woehlke, Paula

    To assess the effect on discriminant analysis in terms of correct classification into two groups, the following parameters were systematically altered using Monte Carlo techniques: sample sizes; proportions of one group to the other; number of independent variables; and covariance matrices. The pairing of the off diagonals (or covariances) with…

  12. Rapid Radiochemical Methods for Asphalt Paving Material ...

    EPA Pesticide Factsheets

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  13. Simultaneous Quantitation of Atenolol, Metoprolol, and Propranolol in Biological Matrices Via LC/MS

    DTIC Science & Technology

    2005-05-01

    Simultaneous Quantitation of Atenolol, Metoprolol , and Propranolol in Biological Matrices Via LC/MS Robert D. Johnson Russell J. Lewis Civil...authorized 1 SIMULTANEOUS QUANTITATION OF ATENOLOL, METOPROLOL , AND PROPRANOLOL IN BIOLOGICAL MATRICES VIA LC/MS INTRODUCTION The Federal Aviation...detect beta-blocker compounds such as atenolol, metoprolol , or propranolol in the submitted biological samples. In forensic toxicol- ogy laboratories

  14. Supercritical fluid chromatography with photodiode array detection for pesticide analysis in papaya and avocado samples.

    PubMed

    Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Gonzalez, Jorge; Jurado, José M; Muñiz-Valencia, Roberto

    2015-04-01

    To improve the analysis of pesticides in complex food matrices with economic importance, alternative chromatographic techniques, such as supercritical fluid chromatography, can be used. Supercritical fluid chromatography has barely been applied for pesticide analysis in food matrices. In this paper, an analytical method using supercritical fluid chromatography coupled to a photodiode array detection has been established for the first time for the quantification of pesticides in papaya and avocado. The extraction of methyl parathion, atrazine, ametryn, carbofuran, and carbaryl was performed through the quick, easy, cheap, effective, rugged, and safe methodology. The method was validated using papaya and avocado samples. For papaya, the correlation coefficient values were higher than 0.99; limits of detection and quantification ranged from 130-380 and 220-640 μg/kg, respectively; recovery values ranged from 72.8-94.6%; precision was lower than 3%. For avocado, limit of detection values were ˂450 μg/kg; precision was lower than 11%; recoveries ranged from 50.0-94.2%. Method feasibility was tested for lime, banana, mango, and melon samples. Our results demonstrate that the proposed method is applicable to methyl parathion, atrazine, ametryn, and carbaryl, toxics pesticides used worldwide. The methodology presented in this work could be applicable to other fruits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Anomaly detection in reconstructed quantum states using a machine-learning technique

    NASA Astrophysics Data System (ADS)

    Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki

    2014-02-01

    The accurate detection of small deviations in given density matrices is important for quantum information processing. Here we propose a method based on the concept of data mining. We demonstrate that the proposed method can more accurately detect small erroneous deviations in reconstructed density matrices, which contain intrinsic fluctuations due to the limited number of samples, than a naive method of checking the trace distance from the average of the given density matrices. This method has the potential to be a key tool in broad areas of physics where the detection of small deviations of quantum states reconstructed using a limited number of samples is essential.

  16. Natural Variation in Stress Hormones, Comparisons Across Matrices, and Impacts Resulting from Induced Stress in the Bottlenose Dolphin.

    PubMed

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E; Kellar, Nicholas M; Cockrem, John; Romano, Tracy; Booth, Rebecca K; Wasser, Samuel K

    2016-01-01

    Knowledge regarding stress hormones and how they vary in response to seasonality, gender, age, and reproductive status for any marine mammal is limited. Furthermore, stress hormones may be measured in more than one matrix (e.g., feces, blood, blubber), but the relationships between levels of a given hormone across these matrices are unknown, further complicating the interpretations of hormones measured in samples collected from wild animals. A study is underway to address these issues in a population of bottlenose dolphins trained for voluntary participation in sample collections from different matrices and across season and time of day.

  17. Infrared spectra of some acetone—magnesium adducts

    NASA Astrophysics Data System (ADS)

    Hisatsune, I. C.

    Co-deposition of atomic magnesium with excess acetone at liquid-nitrogen temperature produces an unstable charge-transfer complex with a characteristic carbonyl infrared band at 1595 cm -1 and stable acetone adducts in which the metal atom bridges the carbonyl bond (π-complex) or coordinates to the oxygen atom (σ-complex). Infrared spectra of these complexes with (CH 3) 2CO and (CD 3) 2CO have been obtained. Corroborations for these adducts were obtained from infrared studies of acetone matrices with atomic copper and acetaldehyde matrices with atomic magnesium and with atomic copper. Infrared spectra of an acetone adduct and a dimethyl ether adduct of the Grignard reagent CH 3MgI have also been obtained. Hydrolysis of a σ-adduct gives acetone but isopropyl alcohol is obtained from hydrolysis of the π-adduct.

  18. Equiangular tight frames and unistochastic matrices

    NASA Astrophysics Data System (ADS)

    Goyeneche, Dardo; Turek, Ondřej

    2017-06-01

    We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d, denoted ETF (d, N), exists if and only if a certain bistochastic matrix, univocally determined by N and d, belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit-qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors.

  19. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  20. Assessing Environmental Exposure to β-N-Methylamino-L-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods.

    PubMed

    Baker, Teesha C; Tymm, Fiona J M; Murch, Susan J

    2018-01-01

    β-N-Methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.

  1. Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.

  2. Complex mixture analysis by photoionization mass spectrometry with a VUV hydrogen laser source

    NASA Astrophysics Data System (ADS)

    Huth, T. C.; Denton, M. B.

    1985-12-01

    Trace organic analysis in complex matrix presents one of the most challenging problems in analytical mass spectrometry. When ionization is accomplished non-selectively using electron impact, extensive sample clean-up is often necessary in order to isolate the analyte from the matrix. Sample preparation can be greatly reduced when the VUV H2 laser is used to selectively photoionize only a small fraction of compounds introduced into the ion source. This device produces parent ions only for all compounds whose ionization potentials lie below a threshold value determined by the photon energy of 7.8 eV. The only observed interference arises from electron impact ionization, when scattered laser radiation interacts with metal surfaces, producing electrons which are then accelerated by potential fields inside the source. These can be suppressed to levels acceptable for practical analysis through proper instrumental design. Results are presented which indicate the ability of this ion source to discriminate against interfering matrix components, in simple extracts from a variety of complex real world matrices, such as brewed coffee, beer, and urine.

  3. Self-assembled structures of 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol in hydrophobic polymer matrices prepared using different heat treatments

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chi; Tseng, Shen-Jhen; Huang, Po-Hsun

    2015-11-01

    We report a method for tuning the nanoarchitectures of 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS) with poly(vinylidene fluoride) (PVDF) polymer matrices. Hydrophobic PVDF facilitated the formation of nanofibrils during heating. The self-assembly behaviors of DMDBS were further tuned by altering the different heat treatments. When the samples were prepared with a rapid heating rate (shorter annealing time), smaller amounts of melted PVDF were excluded due to the shorter time for aggregation of DMDBS, leading to larger complex structures of DMDBS and PVDF. Therefore, longer and thicker nanofibrils (around 100 nm) were observed using scanning electron microscopy. As the samples were prepared with a slow heating rate (longer annealing time), DMDBS had more time to aggregate, and therefore, larger amounts of melted PVDF were excluded. Smaller complex structures of DMDBS and PVDF caused the formation of shorter and thinner nanofibrils (around 40 nm). In addition, small-angle X-ray scattering results indicated that the longer and thicker nanofibrils were mostly excluded outside the PVDF crystalline bundles after cooling because they were too large to be easily incorporated between the PVDF crystalline lamellae. However, a large portion of the smaller and thinner nanofibrils was trapped between the crystalline lamellae after cooling due to their smaller sizes. As expected, the PVDF spherulitic morphologies were affected, but the PVDF crystalline microstructures were not significantly altered by the addition of DMDBS, as shown by the results from polarized optical microscopy and Fourier transform infrared spectroscopy.

  4. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  5. Three-dimensional polarization algebra.

    PubMed

    R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto

    2016-10-01

    If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.

  6. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices.

    PubMed

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed. (c) 1999 American Institute of Physics.

  7. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    PubMed

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Matrix effects on organic pollutants analysis in marine sediment

    NASA Astrophysics Data System (ADS)

    Azis, M. Y.; Asia, L.; Piram, A.; Buchari, B.; Doumenq, P.; Setiyanto, H.

    2018-05-01

    Interference from the matrix sample can influence of the accurate analytical method. Accelerated Solvent Extraction and their purification methods were tried to separate the organic micropollutants respectively in marine sediment. Those matrix were as organic pollutants evaluation in marine environment. Polychlorinated Biphenyls (PCBs) and Organochlorine pesticides (OCPs) are two examples organic pollutant in environment which are carcinogenic and mutagenic. Marine sediments are important matrices of information regarding the human activities in coastal areas as well as the fate and behavior of organic pollutants, which are persistent in long-term. This research purpose to evaluate the matrice effect and the recovery from marine sediment spiking with several standar solution and deuterium of molecular target from organic pollutants in not polluted sample of sediment. Matrice samples was tested from indicate in unpolluted location. The methods were evaluated with standard calibration curve (linearity < 0.999, LOQ various ranged 0.5-1000 pg.μL-1 and LOD > LOQ). Recovery (YE) relative, Matrice Effect (ME) relative correction with deuteriated standar were evaluated the interference the matrix. Interference effect for OCPs compounds were higher than PCBs in marine sediment.

  9. Electrospun Zein/PCL Fibrous Matrices Release Tetracycline in a Controlled Manner, Killing Staphylococcus aureus Both in Biofilms and Ex Vivo on Pig Skin, and are Compatible with Human Skin Cells.

    PubMed

    Alhusein, Nour; Blagbrough, Ian S; Beeton, Michael L; Bolhuis, Albert; De Bank, Paul A

    2016-01-01

    To investigate the destruction of clinically-relevant bacteria within biofilms via the sustained release of the antibiotic tetracycline from zein-based electrospun polymeric fibrous matrices and to demonstrate the compatibility of such wound dressing matrices with human skin cells. Zein/PCL triple layered fibrous dressings with entrapped tetracycline were electrospun. The successful entrapment of tetracycline in these dressings was validated. The successful release of bioactive tetracycline, the destruction of preformed biofilms, and the viability of fibroblast (FEK4) cells were investigated. The sustained release of tetracycline from these matrices led to the efficient destruction of preformed biofilms from Staphylococcus aureus MRSA252 in vitro, and of MRSA252 and ATCC 25923 bacteria in an ex vivo pig skin model using 1 × 1 cm square matrices containing tetracycline (30 μg). Human FEK4 cells grew normally in the presence of these matrices. The ability of the zein-based matrices to destroy bacteria within increasingly complex in vitro biofilm models was clearly established. An ex vivo pig skin assay showed that these matrices, with entrapped tetracycline, efficiently kill bacteria and this, combined with their compatibility with a human skin cell line suggest these matrices are well suited for applications in wound healing and infection control.

  10. Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients

    PubMed Central

    Grace, Mary H; Truong, An N; Truong, Van-Den; Raskin, Ilya; Lila, Mary Ann

    2015-01-01

    Blackcurrant, blueberry, and muscadine grape juices were efficiently sorbed, concentrated, and stabilized into dry granular ingredient matrices which combined anti-inflammatory and antioxidant fruit polyphenols with sweet potato functional constituents (carotenoids, vitamins, polyphenols, fibers). Total phenolics were highest in blackcurrant-orange sweet potato ingredient matrices (34.03 mg/g), and lowest in muscadine grape-yellow sweet potato matrices (10.56 mg/g). Similarly, anthocyanins were most concentrated in blackcurrant-fortified orange and yellow sweet potato matrices (5.40 and 6.54 mg/g, respectively). Alternatively, other protein-rich edible matrices (defatted soy flour, light roasted peanut flour, and rice protein concentrate) efficiently captured polyphenols (6.09–9.46 mg/g) and anthocyanins (0.77–1.27 mg/g) from purple-fleshed sweet potato juice, with comparable efficiency. Antioxidant activity correlated well with total phenolic content. All formulated ingredient matrices stabilized and preserved polyphenols for up to 24 weeks, even when stored at 37°C. Complexation with juice-derived polyphenols did not significantly alter protein or carbohydrate profiles of the matrices. Sensory evaluation of the ingredient matrices suggested potential uses for a wide range of functional food products. PMID:26405527

  11. Infrared and density functional theory studies of isoprene-water complexes in noble gas matrices

    NASA Astrophysics Data System (ADS)

    Ito, Fumiyuki

    2017-11-01

    The interaction of 2-methyl-1,3-butadiene (isoprene) with a H2O molecule in low-temperature noble gas matrices (Ar or Kr) was investigated using infrared absorption spectroscopy. Vibrational peaks arising from 1:1 isoprene-H2O adducts were assigned and compared with the results of quantum chemical calculations. The comparison led to the conclusion that the H2O molecule in the complex preferentially H-bonds to one of the two unsaturated Cdbnd C bonds, and that the binding energy of the complex is comparable to that of the C6H6-H2O complex. The present study suggests that the change in the charge distribution of isoprene due to the formation of a complex with H2O may lead to alteration of the reactivity with respect to the insertion of OH radicals, thereby influencing the formation of aerosols in the atmosphere.

  12. TiO₂-Based Photocatalytic Geopolymers for Nitric Oxide Degradation.

    PubMed

    Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele

    2016-06-24

    This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO₂ by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

  13. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-01

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach.

  14. A new voltammetric strategy for sensitive and selective determination of gallium using cupferron as a complexing agent.

    PubMed

    Grabarczyk, Malgorzata; Wardak, Cecylia

    2014-01-01

    This article describes a differential pulse adsorptive stripping voltammetric method for the trace determination of gallium in environmental water samples. It is based on the adsorptive deposition of the complex Ga(III)-cupferron at the hanging mercury drop electrode (HMDE) at -0.4 V (versus Ag/AgCl) and its cathodic stripping during the potential scan. The method was optimized as concerns the main electrochemical parameters that affect the voltammetric determination (supporting electrolyte, pH, cupferron concentration, deposition potential and time). The calibration graph is linear from 5 × 10(-10) to 5 × 10(-7) mol L(-1) with a detection limit calculated as 1.3 × 10(-10) mol L(-1) for deposition time of 30 s. The influence of interfering substances such as surfactants and humic substances present in the matrices of natural water samples on the Ga(III) signal was examined and a satisfying minimization of these interferences was proposed. The procedure was applied to direct determination of gallium in environmental water samples.

  15. Analysis of the structure of poly-3-hydroxybutyrate ultrathin fibers modified with iron (III) complex with tetraphenylporphyrin

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Karpova, S. G.; Lobanov, A. V.; Tyubaeva, P. M.; Artemov, N. S.; Iordansky, A. L.

    2017-12-01

    In the treatment of many infectious diseases and cancer, transdermal systems based on solid polymer matrices or gels containing functional substances with antiseptic (antibacterial) properties are often used. One of the most promising types of matrices with antiseptic properties are the ones of nano- and microfiber-bonded cloth obtained by electrospinning based on biopolymer poly(3-hydroxybutyrate). The present work investigates the effects of iron (III) complex with tetraphenylporphyrin and the influence on the geometry, crystalline order and molecular dynamics in the intercrystalline (amorphous phase) of ultrathin PHB fibers.

  16. Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices

    NASA Technical Reports Server (NTRS)

    Mackinnon, I. D. R.

    1980-01-01

    High-resolution transmission electron microscopy has confirmed earlier observations that the character of the Murchison and Mighei fine-grained matrices is complex in mineralogy and texture. Layer structure minerals occur as planar laths, rounded grains or subhedral grains, and range in size from less than 100 A to about 1 micrometer. Serpentine-type and brucite-type structures predominate in the CM matrices. The occurrence of Povlen chrysolite and a vein of disordered mixed-layer and brucite-type material cutting a large lizardite-type grain suggests that at least some of the matrix materials were formed by alteration of preexisting material.

  17. Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices

    NASA Astrophysics Data System (ADS)

    Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.

    2017-08-01

    We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.

  18. On Fluctuations of Eigenvalues of Random Band Matrices

    NASA Astrophysics Data System (ADS)

    Shcherbina, M.

    2015-10-01

    We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

  19. Sports drug testing using complementary matrices: Advantages and limitations.

    PubMed

    Thevis, Mario; Geyer, Hans; Tretzel, Laura; Schänzer, Wilhelm

    2016-10-25

    Today, routine doping controls largely rely on testing whole blood, serum, and urine samples. These matrices allow comprehensively covering inorganic as well as low and high molecular mass organic analytes relevant to doping controls and are collecting and transferring from sampling sites to accredited anti-doping laboratories under standardized conditions. Various aspects including time and cost-effectiveness as well as intrusiveness and invasiveness of the sampling procedure but also analyte stability and breadth of the contained information have been motivation to consider and assess values potentially provided and added to modern sports drug testing programs by alternative matrices. Such alternatives could be dried blood spots (DBS), dried plasma spots (DPS), oral fluid (OF), exhaled breath (EB), and hair. In this review, recent developments and test methods concerning these alternative matrices and expected or proven contributions as well as limitations of these specimens in the context of the international anti-doping fight are presented and discussed, guided by current regulations for prohibited substances and methods of doping as established by the World Anti-Doping Agency (WADA). Focusing on literature published between 2011 and 2015, examples for doping control analytical assays concerning non-approved substances, anabolic agents, peptide hormones/growth factors/related substances and mimetics, β 2 -agonists, hormone and metabolic modulators, diuretics and masking agents, stimulants, narcotics, cannabinoids, glucocorticoids, and beta-blockers were selected to outline the advantages and limitations of the aforementioned alternative matrices as compared to conventional doping control samples (i.e. urine and blood/serum). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A generic standard additions based method to determine endogenous analyte concentrations by immunoassays to overcome complex biological matrix interference.

    PubMed

    Pang, Susan; Cowen, Simon

    2017-12-13

    We describe a novel generic method to derive the unknown endogenous concentrations of analyte within complex biological matrices (e.g. serum or plasma) based upon the relationship between the immunoassay signal response of a biological test sample spiked with known analyte concentrations and the log transformed estimated total concentration. If the estimated total analyte concentration is correct, a portion of the sigmoid on a log-log plot is very close to linear, allowing the unknown endogenous concentration to be estimated using a numerical method. This approach obviates conventional relative quantification using an internal standard curve and need for calibrant diluent, and takes into account the individual matrix interference on the immunoassay by spiking the test sample itself. This technique is based on standard additions for chemical analytes. Unknown endogenous analyte concentrations within even 2-fold diluted human plasma may be determined reliably using as few as four reaction wells.

  1. New method for estimation of fluence complexity in IMRT fields and correlation with gamma analysis

    NASA Astrophysics Data System (ADS)

    Hanušová, T.; Vondráček, V.; Badraoui-Čuprová, K.; Horáková, I.; Koniarová, I.

    2015-01-01

    A new method for estimation of fluence complexity in Intensity Modulated Radiation Therapy (IMRT) fields is proposed. Unlike other previously published works, it is based on portal images calculated by the Portal Dose Calculation algorithm in Eclipse (version 8.6, Varian Medical Systems) in the plane of the EPID aS500 detector (Varian Medical Systems). Fluence complexity is given by the number and the amplitudes of dose gradients in these matrices. Our method is validated using a set of clinical plans where fluence has been smoothed manually so that each plan has a different level of complexity. Fluence complexity calculated with our tool is in accordance with the different levels of smoothing as well as results of gamma analysis, when calculated and measured dose matrices are compared. Thus, it is possible to estimate plan complexity before carrying out the measurement. If appropriate thresholds are determined which would distinguish between acceptably and overly modulated plans, this might save time in the re-planning and re-measuring process.

  2. Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with β-cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical and biological evaluation.

    PubMed

    Souza, Sarah Oliveira Lamas; Cotrim, Monique Alvarenga Pinto; Oréfice, Rodrigo Lambert; Carvalho, Suzana Gonçalves; Dutra, Jessyca Aparecida Paes; de Paula Careta, Francisco; Resende, Juliana Alves; Villanova, Janaina Cecília Oliveira

    2018-05-10

    Cooperation between researchers in the areas of medical, pharmaceutical and materials science has facilitated the development of pharmaceutical dosage forms that elicit therapeutic effects and protective action with a single product. In addition to optimizing pharmacologic action, such dosage forms provide greater patient comfort and increase success and treatment compliance. In the present work, we prepared semipermeable bioactive electrospun fibers for use as wound dressings containing silver sulfadiazine complexed with β-cyclodextrin in a poly(Ɛ-caprolactone) nanofiber matrix aiming to reduce the direct contact between silver and skin and to modulate the drug release. Wound dressings were prepared by electrospinning, and were subjected to ATR-FT-IR and TG/DTG assays to evaluate drug stability. The hydrophilicity of the fibrous nanostructure in water and PBS buffer was studied by goniometry. Electrospun fibers permeability and swelling capacity were assessed, and a dissolution test was performed. In vitro biological tests were realized to investigate the biological compatibility and antimicrobial activity. We obtained flexible matrices that were each approximately 1.0 g in weight. The electrospun fibers were shown to be semipermeable, with water vapor transmission and swelling indexes compatible with the proposed objective. The hydrophilicity was moderate. Matrices containing pure drug modulated drug release adequately during 24 h but presented a high hemolytic index. Complexation promoted a decrease in the hemolytic index and in the drug release but did not negatively impact antimicrobial activity. The drug was released predominantly by diffusion. These results indicate that electrospun PCL matrices containing β-cyclodextrin/silver sulfadiazine inclusion complexes are a promising pharmaceutical dosage form for wound healing.

  3. The composite complex span: French validation of a short working memory task.

    PubMed

    Gonthier, Corentin; Thomassin, Noémylle; Roulin, Jean-Luc

    2016-03-01

    Most studies in individual differences in the field of working memory research use complex span tasks to measure working memory capacity. Various complex span tasks based on different materials have been developed, and these tasks have proven both reliable and valid; several complex span tasks are often combined to provide a domain-general estimate of working memory capacity with even better psychometric properties. The present work sought to address two issues. Firstly, having participants perform several full-length complex span tasks in succession makes for a long and tedious procedure. Secondly, few complex span tasks have been translated and validated in French. We constructed a French working memory task labeled the Composite Complex Span (CCS). The CCS includes shortened versions of three classic complex span tasks: the reading span, symmetry span, and operation span. We assessed the psychometric properties of the CCS, including test-retest reliability and convergent validity, with Raven's Advanced Progressive Matrices and with an alpha span task; the CCS demonstrated satisfying qualities in a sample of 1,093 participants. This work provides evidence that shorter versions of classic complex span tasks can yield valid working memory estimates. The materials and normative data for the CCS are also included.

  4. Review Over a 3-Year Period of European Union Proficiency Tests for Detection of Staphylococcal Enterotoxins in Food Matrices.

    PubMed

    Nia, Yacine; Mutel, Isabelle; Assere, Adrien; Lombard, Bertrand; Auvray, Frederic; Hennekinne, Jacques-Antoine

    2016-04-13

    Staphylococcal food poisoning outbreaks are a major cause of foodborne illnesses in Europe and their notifications have been mandatory since 2005. Even though the European regulation on microbiological criteria for food defines a criterion on staphylococcal enterotoxin (SE) only in cheese and dairy products, European Food Safety Authority (EFSA) data reported that various types of food matrices are involved in staphylococcal food poisoning outbreaks. The European Screening Method (ESM) of European Union Reference Laboratory for Coagulase Positive Staphylococci (EURL CPS) was validated in 2011 for SE detection in food matrices and is currently the official method used for screening purposes in Europe. In this context, EURLCPS is annually organizing Inter-Laboratory Proficiency Testing Trials (ILPT) to evaluate the competency of the European countries' National Reference Laboratories (NRLs) to analyse SE content in food matrices. A total of 31 NRLs representing 93% of European countries participated in these ILPTs. Eight food matrices were used for ILPT over the period 2013-2015, including cheese, freeze-dried cheese, tuna, mackerel, roasted chicken, ready-to-eat food, milk, and pastry. Food samples were spiked with four SE types (i.e., SEA, SEC, SED, and SEE) at various concentrations. Homogeneity and stability studies showed that ILPT samples were both homogeneous and stable. The analysis of results obtained by participants for a total of 155 blank and 620 contaminated samples allowed for evaluation of trueness (>98%) and specificity (100%) of ESM. Further to the validation study of ESM carried out in 2011, these three ILPTs allowed for the assessment of the proficiency of the NRL network and the performance of ESM on a large variety of food matrices and samples. The ILPT design presented here will be helpful for the organization of ILPT on SE detection by NRLs or other expert laboratories.

  5. Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices

    PubMed Central

    Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher

    2015-01-01

    We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations. PMID:25919667

  6. Salmonella detection in poultry samples. Comparison of two commercial real-time PCR systems with culture methods for the detection of Salmonella spp. in environmental and fecal samples of poultry.

    PubMed

    Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M

    2012-01-01

    The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.

  7. Complex eigenvalue analysis of rotating structures

    NASA Technical Reports Server (NTRS)

    Patel, J. S.; Seltzer, S. M.

    1972-01-01

    A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.

  8. TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation

    PubMed Central

    Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele

    2016-01-01

    This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features. PMID:28773634

  9. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  10. Hierarchical matrices implemented into the boundary integral approaches for gravity field modelling

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Vipiana, Francesca

    2017-04-01

    Boundary integral approaches applied for gravity field modelling have been recently developed to solve the geodetic boundary value problems numerically, or to process satellite observations, e.g. from the GOCE satellite mission. In order to obtain numerical solutions of "cm-level" accuracy, such approaches require very refined level of the disretization or resolution. This leads to enormous memory requirements that need to be reduced. An implementation of the Hierarchical Matrices (H-matrices) can significantly reduce a numerical complexity of these approaches. A main idea of the H-matrices is based on an approximation of the entire system matrix that is split into a family of submatrices. Large submatrices are stored in factorized representation, while small submatrices are stored in standard representation. This allows reducing memory requirements significantly while improving the efficiency. The poster presents our preliminary results of implementations of the H-matrices into the existing boundary integral approaches based on the boundary element method or the method of fundamental solution.

  11. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.

    PubMed

    Svenningsen, Nanna B; Martínez-García, Esteban; Nicolaisen, Mette H; de Lorenzo, Victor; Nybroe, Ole

    2018-06-01

    In natural environments most bacteria live in biofilms embedded in complex matrices of extracellular polymeric substances (EPS). This lifestyle is known to increase protection against environmental stress. Pseudomonas putida mt-2 harbours genes for the production of at least four different EPS polysaccharides, including alginate and cellulose. Little is known about the functional properties of cellulose, while alginate attenuates the accumulation of reactive oxygen species (ROS) caused by matric stress. By using mutants that are deficient in either alginate or cellulose production we show that even cellulose attenuates the accumulation of matric stress-induced ROS for cells in biofilms. Further, both cellulose and alginate attenuate ROS generated through exposure to copper. Interestingly, the two EPS polysaccharides protect cells in both liquid culture and in biofilms against ROS caused by matric stress, indicating that cellulose and alginate do not need to be produced as an integral part of the biofilm lifestyle to provide tolerance towards environmental stressors.

  12. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  13. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  14. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo.

    PubMed

    Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  16. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less

  17. An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Alton, G. D.; Bilheux, J.-C.

    2005-12-01

    An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).

  18. Random matrix theory of singular values of rectangular complex matrices I: Exact formula of one-body distribution function in fixed-trace ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Satoshi; Toda, Mikito; Kubotani, Hiroto

    The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state ismore » so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovsek-Wilf-Zeilberger theory that calculates definite hypergeometric sums in a closed form.« less

  19. (E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Xiao, Zhaohui; Xiao, Chunsheng; Wang, Huixin; Wang, Bing; Li, Ying; Chen, Xuesi; Guo, Xinhua

    2016-04-01

    Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS.

  20. New fluorescence correlation spectroscopy enabling direct observation of spatiotemporal dependence of diffusion constants as an evidence of anomalous transport in extracellular matrices.

    PubMed

    Masuda, Akiko; Ushida, Kiminori; Okamoto, Takayuki

    2005-05-01

    The potential of fluorescence correlation spectroscopy (FCS) is extended to enable the direct observation of anomalous subdiffusion (ASD) in inhomogeneous media that are of great importance particularly in many biological systems, such as membranes, cytoplasm, and extracellular matrices (ECMs). Because ASD can be confirmed by monitoring the spatiotemporal dependence of observable diffusion coefficients (D(obs)), the size of the effective confocal volume (V(eff)) for FCS sampling (sampling volume) was continuously changed on a scale of 300-500 nm using a motorized variable beam expander through which an illuminating laser beam passes. This new method, namely, sampling-volume-controlled (SVC)-FCS, was applied to the analysis of hyaluronan (HA) aqueous solutions where the D(obs) of light-emitting solute (Alexa 488) markedly changed, corresponding to the change in V(eff) (220-340 nm in the half-axis), because the network structure of HA of 7-33 nm (nanostructure) interferes with the material transport within it. The results indicate that moderate ASD may occur even in the presence of a small amount ( approximately 0.1 wt %) of HA in ECM. Because the change in D(obs) along with the traveling distance (the mean-square displacement) can be identified even in systems with no deformation of the autocorrelation function, this technique has a great potential for general applications to many biological systems in which ASD shows complex time and space dependences.

  1. Multi-component determination of atmospheric semi-volatile organic compounds in soils and vegetation from Tarragona County, Catalonia, Spain.

    PubMed

    Domínguez-Morueco, Noelia; Carvalho, Mariana; Sierra, Jordi; Schuhmacher, Marta; Domingo, José Luis; Ratola, Nuno; Nadal, Martí

    2018-08-01

    Tarragona County (Spain) is home to the most important chemical/petrochemical industrial complex in Southern Europe, which raises concerns about the presence and effects of the numerous environmental contaminants. In order to assess the levels and patterns of five classes of semi-volatile organic compounds (SVOCs) - polycyclic aromatic hydrocarbons (PAHs), synthetic musks (SMs), polychlorinated biphenyls (PCBs), brominated flame retardants (BFRs) and one organochlorine pesticide, hexachlorobenzene (HCB), 27 samples of soil and vegetation (Piptatherum L.) from different areas (petrochemical, chemical, urban/residential, and background) of Tarragona County were analysed. The results show that PAHs levels in soils ranged from 45.12 to 158.00ng/g and the urban areas presented the highest concentrations, mainly associated with the presence of a nearby highway and several roads with heavy traffic. PAHs levels in vegetation samples ranged from 42.13 to 80.08ng/g, where the greatest influence came from the urban and petrochemical areas. In the case of SMs, levels in soils and vegetation samples ranged from 5.42 to 10.04ng/g and from 4.08 to 17.94ng/g, respectively, and in both cases, background areas (at least 30km away from the main SVOCs emission sources) showed the highest levels, suggesting an influence of the personal care products derived from beach-related tourism in the coast. PCBs (from 6.62 to 14.07ng/g in soils; from 0.52 to 4.41ng/g in vegetation) prevailed in the chemical area in both matrices, probably associated with the presence of two sub-electrical stations located in the vicinities. In general terms, BFRs and HCB values recorded in soil and vegetation samples were quite similar between matrices and sampling areas. Copyright © 2018. Published by Elsevier B.V.

  2. SLOCC classification of n qubits invoking the proportional relationships for spectrums and standard Jordan normal forms

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2018-01-01

    We investigate the proportional relationships for spectrums and standard Jordan normal forms (SJNFs) of the 4 by 4 matrices constructed from coefficient matrices of two SLOCC (stochastic local operations and classical communication) equivalent states of n qubits. The proportional relationships permit a reduction of SLOCC classification of n (≥ 4) qubits to a classification of 4 by 4 complex matrices. Invoking the proportional relationships for spectrums and SJNFs, pure states of n (≥ 4) qubits are partitioned into 12 groups or less and 34 families or less under SLOCC, respectively. Specially, it is true for four qubits.

  3. The detector response matrices of the burst and transient source experiment (BATSE) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Horack, John M.; Lestrade, John Patrick

    1995-01-01

    The detector response matrices for the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) are described, including their creation and operation in data analysis. These response matrices are a detailed abstract representation of the gamma-ray detectors' operating characteristics that are needed for data analysis. They are constructed from an extensive set of calibration data coupled with a complex geometry electromagnetic cascade Monte Carlo simulation code. The calibration tests and simulation algorithm optimization are described. The characteristics of the BATSE detectors in the spacecraft environment are also described.

  4. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay: Normalization of superinduction results for improved sample potency estimation

    PubMed Central

    Baston, David S.; Denison, Michael S.

    2011-01-01

    The chemically activated luciferase expression (CALUX) system is a mechanistically based recombinant luciferase reporter gene cell bioassay used in combination with chemical extraction and clean-up methods for the detection and relative quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like halogenated aromatic hydrocarbons in a wide variety of sample matrices. While sample extracts containing complex mixtures of chemicals can produce a variety of distinct concentration-dependent luciferase induction responses in CALUX cells, these effects are produced through a common mechanism of action (i.e. the Ah receptor (AhR)) allowing normalization of results and sample potency determination. Here we describe the diversity in CALUX response to PCDD/Fs from sediment and soil extracts and not only report the occurrence of superinduction of the CALUX bioassay, but we describe a mechanistically based approach for normalization of superinduction data that results in a more accurate estimation of the relative potency of such sample extracts. PMID:21238730

  5. Fast and simultaneous determination of 12 polyphenols in apple peel and pulp by using chemometrics-assisted high-performance liquid chromatography with diode array detection.

    PubMed

    Wang, Tong; Wu, Hai-Long; Xie, Li-Xia; Zhu, Li; Liu, Zhi; Sun, Xiao-Dong; Xiao, Rong; Yu, Ru-Qin

    2017-04-01

    In this work, a smart chemometrics-enhanced strategy, high-performance liquid chromatography, and diode array detection coupled with second-order calibration method based on alternating trilinear decomposition algorithm was proposed to simultaneously quantify 12 polyphenols in different kinds of apple peel and pulp samples. The proposed strategy proved to be a powerful tool to solve the problems of coelution, unknown interferences, and chromatographic shifts in the process of high-performance liquid chromatography analysis, making it possible for the determination of 12 polyphenols in complex apple matrices within 10 min under simple conditions of elution. The average recoveries with standard deviations, and figures of merit including sensitivity, selectivity, limit of detection, and limit of quantitation were calculated to validate the accuracy of the proposed method. Compared to the quantitative analysis results from the classic high-performance liquid chromatography method, the statistical and graphical analysis showed that our proposed strategy obtained more reliable results. All results indicated that our proposed method used in the quantitative analysis of apple polyphenols was an accurate, fast, universal, simple, and green one, and it was expected to be developed as an attractive alternative method for simultaneous determination of multitargeted analytes in complex matrices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluating the efficacy of a structure-derived amino acid substitution matrix in detecting protein homologs by BLAST and PSI-BLAST.

    PubMed

    Goonesekere, Nalin Cw

    2009-01-01

    The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.

  7. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures.

  8. Hormonal profiling: Development of a simple method to extract and quantify phytohormones in complex matrices by UHPLC-MS/MS.

    PubMed

    Delatorre, Carolina; Rodríguez, Ana; Rodríguez, Lucía; Majada, Juan P; Ordás, Ricardo J; Feito, Isabel

    2017-01-01

    Plant growth regulators (PGRs) are very different chemical compounds that play essential roles in plant development and the regulation of physiological processes. They exert their functions by a mechanism called cross-talk (involving either synergistic or antagonistic actions) thus; it is for great interest to study as many PGRs as possible to obtain accurate information about plant status. Much effort has been applied to develop methods capable of analyze large numbers of these compounds but frequently excluding some chemical families or important PGRs within each family. In addition, most of the methods are specially designed for matrices easy to work with. Therefore, we wanted to develop a method which achieved the requirements lacking in the literature and also being fast and reliable. Here we present a simple, fast and robust method for the extraction and quantification of 20 different PGRs using UHPLC-MS/MS optimized in complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of indirect impedance for measuring microbial growth in complex food matrices.

    PubMed

    Johnson, N; Chang, Z; Bravo Almeida, C; Michel, M; Iversen, C; Callanan, M

    2014-09-01

    The suitability of indirect impedance to accurately measure microbial growth in real food matrices was investigated. A variety of semi-solid and liquid food products were inoculated with Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Lactobacillus plantarum, Pseudomonas aeruginosa, Escherichia coli, Salmonella enteriditis, Candida tropicalis or Zygosaccharomyces rouxii and CO2 production was monitored using a conductimetric (Don Whitely R.A.B.I.T.) system. The majority (80%) of food and microbe combinations produced a detectable growth signal. The linearity of conductance responses in selected food products was investigated and a good correlation (R(2) ≥ 0.84) was observed between inoculum levels and times to detection. Specific growth rate estimations from the data were sufficiently accurate for predictive modeling in some cases. This initial evaluation of the suitability of indirect impedance to generate microbial growth data in complex food matrices indicates significant potential for the technology as an alternative to plating methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  11. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells

    PubMed Central

    McGhee, Claire E.; Loh, Kang Yong

    2017-01-01

    The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging the metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications. PMID:28458112

  12. SERS-based viral fingerprinting: current capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Driskell, J. D.; Abell, J. L.; Dluhy, R. A.; Zhao, Y.-P.; Tripp, R. A.

    2010-04-01

    Silver nanorod array substrates are fabricated by oblique angle deposition and characterized for optimal SERS performance. Using UV-visible-NIR spectrophotometry we show that the nanorods have a transverse surface plasmon resonance mode at ~357 nm and a broad absorbance spanning 600-800 nm when excited along the longitudinal direction. We demonstrate that SERS enhancement is optimized using an excitation wavelength of 633 or 785 nm. The large area uniformity in SERS signal (<10% variation) and reproducibility among preparations (<15% variation) provides a unique opportunity for SERS-based whole-organism fingerprinting. Egg prepared avian influenza virus and clinical sputum samples of human influenza virus were investigated to demonstrate SERS-based detection of a virus in a complex sample matrix and to assess the effect of different background matrices on the detection of similar viruses.

  13. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    PubMed Central

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  14. Textures of Yukawa coupling matrices in the 2HDM type III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carcamo, A. E.; Martinez, R.; Rodriguez, J.-Alexis

    2008-07-02

    The quark mass matrices ansatze proposed by Fritzsch, Du-Xing and Fukuyama-Nishiura in the framework of the general two Higgs doublet model are studied. The corresponding Cabbibo-Kobayashi-Maskawa matrix elements are computed in all cases and compared with their experimental values. The complex phases of the anstaze are taken into account and the CP violating phase {delta} is computed. Finally some phenomenology is discussed.

  15. Testing of gastric contents for peanut proteins in a 13-year old anaphylaxis victim.

    PubMed

    Beavers, Charles; Stauble, M Elaine; Jortani, Saeed A

    2014-02-15

    We report the case of a 13-y female who went into anaphylactic shock following the ingestion of a meal suspected to be contaminated by peanuts. The teenager had a known sensitivity to peanuts, however, the restaurant claimed that no peanut products were used in the preparation of her meal. The gastric contents of the decedent were retained and tested for peanut proteins due to the possible legal liability of the proprietor. Using antibodies against peanut proteins (roasted and unroasted), we optimized a method to detect total soluble peanut proteins by Western-blot analysis in gastric contents. In addition, we validated two commercially available tests which were originally intended for detection of peanut proteins in food matrices to examine the same gastric sample. One was an enzyme-linked immunosorbent assay (ELISA) that utilized polyclonal antibodies against Ara h 1 (Tepnel Life Sciences). The other was a laminar-flow assay directed against Ara h 1, Ara h 2 and Ara h 3 (R-Biopharm). A positive food-based control was created by reducing bread and peanuts (1:1, w/w) with water (1:1, w/v) using a mortar and pestle. A food-based negative food control was created similar to the positive control, except the peanuts were omitted and the amount of bread was doubled. The Western-blot assay was sensitive down to 2.5ng/ml of total peanut protein. The laminar flow was the most rapid and least complex. The ELISA was the most analytically sensitive with a cut-off of 1ng/ml of Ara h 1 protein compared to the laminar flow which had a cut-off of 4ng/ml Ara h 1 equivalent. Both ELISA and laminar flow assays were able to detect peanut proteins in the food matrices and positive controls, and not in negative controls. No peanut related proteins were detected in the decedent's gastric sample. The gastric sample spiked with peanuts was reliably detectable. The anaphylaxis patient had no peanut allergens detected in her gastric contents by any of the three methods employed. Both commercially available assays are easily adaptable for testing peanut allergens in the gastric contents as judged by the results of the immunoassays as well as the Western blot analysis. Due to the rising need for detecting peanut proteins in various heterogeneous and complex matrices, the use of appropriate controls should be also considered in these unique investigations. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    PubMed

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Can nail, hair and urine be used for biomonitoring of human exposure to perfluorooctane sulfonate and perfluorooctanoic acid?

    PubMed

    Li, Jingguang; Guo, Feifei; Wang, Yuxin; Zhang, Jialing; Zhong, Yuxin; Zhao, Yunfeng; Wu, Yongning

    2013-03-01

    Because of the disadvantages of invasive sampling, it is desirable to explore non-invasive matrices for human biomonitoring of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The aim of this study was to evaluate the application of nail, hair and urine for human biomonitoring of PFOS and PFOA. The concentrations of PFOS and PFOA in matched nail, hair, urine and serum samples collected from 64 donors were measured. The chemicals of interest were detected with high detection frequency in these matrices (90%-100%) except for PFOA in urine samples (56%). Generally, the gender influences on the levels of PFOS and PFOA in these non-invasive matrices were in agreement with that in serum. For PFOS, the coefficients of Spearman correlation between serum samples and nail, hair and urine samples were 0.786 (p<0.001), 0.545 (p<0.001) and 0.302 (p<0.05), respectively. For PFOA, the correlation was only observed between nail samples and serum samples with a correlation coefficient of 0.299 (p<0.05). The results suggested that nail has more potential than hair and urine to be applied in human biomonitoring for PFOS and PFOA in general populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Sample preparation techniques for the determination of trace residues and contaminants in foods.

    PubMed

    Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M

    2007-06-15

    The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.

  19. Reliability and Validity Study for the Coloured Progressive Matrices Test between the Ages of 3-9 for Determining Gifted Children in the Pre-School Period

    ERIC Educational Resources Information Center

    Bildiren, Ahmet

    2017-01-01

    The objective of the study was to test the Coloured Progressive Matrices Test with regard to reliability and validity for the 3-9 age sample group because of the lack of diagnostic tools for the pre-school period. The sample group of the study was comprised of a total of 925 children with 433 girls (46.8%) and 492 boys (53.2%). Coloured…

  20. A new method for separating first row transition metals and actinides from synthetic melt glass

    DOE PAGES

    Roman, Audrey Rae; Bond, Evelyn M.

    2016-01-14

    A new method was developed for separating Co, Fe, and Sc from complex debris matrices using the extraction chromatography resin DGA. The activation products Co-58, Mn-54, and Sc-46 were used to characterize the separation of the synthetic melt glass solutions. In the separation scheme that was developed, Au, Co, Cu, Fe, Sc, and Ti were separated from the rest of the sample constituents. In this paper, the synthetic melt glass separation method, efficiency, recoveries, and the length of procedure will be discussed. In conclusion, batch contact adsorption studies for Na and Sc for DGA resin are discussed as well.

  1. Study on vulnerability matrices of masonry buildings of mainland China

    NASA Astrophysics Data System (ADS)

    Sun, Baitao; Zhang, Guixin

    2018-04-01

    The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.

  2. Development of a rapid and sensitive method for the determination of aluminum by reverse-phase high-performance liquid chromatography using a fluorescence detector.

    PubMed

    Heena; Kumar, Rajesh; Rani, Susheela; Malik, Ashok Kumar

    2015-01-01

    This study represents a new analytical high-performance liquid chromatography-fluorescence detector method for the determination of Al(III) as Al(III) complex with 8-hydroxyquinoline-5-sulfonic acid in a tap water sample and a coke sample. A micellar liquid chromatographic method is proposed for the determination of aluminum metal in the presence of cetyltrimethylammonium bromide, a cationic surfactant (0.05 M) used for the solubilization of the aluminum complex. The influence of pH and ligand concentration on the formation of the complex was studied by adding a small amount of 0.1 M sodium hydroxide. The metal chelate was detected at λEx 410 nm and λEm 510 nm. This method eliminates the need for addition of reagent or organic modifier to the mobile phase. The complex was analyzed using an Ascentis Express C18 column and a mobile phase consisting of acetonitrile, methanol and water (55 : 30 : 15). Under the optimized conditions, the linear range was 1-200 µg L(-1) and the limit of detection was 0.05 µg L(-1). The method showed a good detector response over the range of interest and was successfully applied for the determination of trace Al(III) in canned coke and water samples containing excess of Mg(II), Ca(II) and other matrices. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.

    1972-01-01

    The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.

  4. Basal Cell Carcinoma With Matrical Differentiation: Clinicopathologic, Immunohistochemical, and Molecular Biological Study of 22 Cases.

    PubMed

    Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas. Immunohistochemical analysis for BerEP4, EMA, and β-catenin can be helpful in limited biopsy specimens. From a molecular biological prospective, BCC and matrical components appear to share some of the gene mutations but have differences in others, but this observation must be validated in a large series.

  5. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  6. A mathematical model of medial consonant identification by cochlear implant users.

    PubMed

    Svirsky, Mario A; Sagi, Elad; Meyer, Ted A; Kaiser, Adam R; Teoh, Su Wooi

    2011-04-01

    The multidimensional phoneme identification model is applied to consonant confusion matrices obtained from 28 postlingually deafened cochlear implant users. This model predicts consonant matrices based on these subjects' ability to discriminate a set of postulated spectral, temporal, and amplitude speech cues as presented to them by their device. The model produced confusion matrices that matched many aspects of individual subjects' consonant matrices, including information transfer for the voicing, manner, and place features, despite individual differences in age at implantation, implant experience, device and stimulation strategy used, as well as overall consonant identification level. The model was able to match the general pattern of errors between consonants, but not the full complexity of all consonant errors made by each individual. The present study represents an important first step in developing a model that can be used to test specific hypotheses about the mechanisms cochlear implant users employ to understand speech.

  7. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  8. A mathematical model of medial consonant identification by cochlear implant users

    PubMed Central

    Svirsky, Mario A.; Sagi, Elad; Meyer, Ted A.; Kaiser, Adam R.; Teoh, Su Wooi

    2011-01-01

    The multidimensional phoneme identification model is applied to consonant confusion matrices obtained from 28 postlingually deafened cochlear implant users. This model predicts consonant matrices based on these subjects’ ability to discriminate a set of postulated spectral, temporal, and amplitude speech cues as presented to them by their device. The model produced confusion matrices that matched many aspects of individual subjects’ consonant matrices, including information transfer for the voicing, manner, and place features, despite individual differences in age at implantation, implant experience, device and stimulation strategy used, as well as overall consonant identification level. The model was able to match the general pattern of errors between consonants, but not the full complexity of all consonant errors made by each individual. The present study represents an important first step in developing a model that can be used to test specific hypotheses about the mechanisms cochlear implant users employ to understand speech. PMID:21476674

  9. Analysis of melamine and analogs in complex matrices: Advances and trends.

    PubMed

    Wang, Tingting; Ma, Junfeng; Chen, Yihui; Li, Ying; Zhang, Lihua; Zhang, Yukui

    2017-01-01

    The analysis of melamine and its analogs is of increasing research interest. Owing to their high nitrogen content and low price, they were deliberately added to artificially enhance protein concentration in a number of different types of human and animal food sources. In addition, environmental water might also be contaminated by melamine due to its use in the chemical industry and the degradation of the pesticide cyromazine. Herein we provide a detailed overview of recently developed materials and techniques for the analysis of melamine and its analogs in complex matrices, especially in dairy products (e.g., milk and powdered milk) and environmental water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio significantly increased after injecting He gas. We demonstrated that the analytical strategy was achieved improved sensitivity for the determination of various arsenic species in the landfill leachate as one of the complex matrices.

  11. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-09-30

    soundscapes , and unit of analysis methodology. The study has culminated in a complex analysis of all environmental factors that could be predictors of...regional soundscapes . To build the correlation matrices from ambient sound recordings, the raw data was first converted into a series of sound...sounds. To compare two different soundscape time periods, the correlation matrices for the two periods were then subtracted from each other

  12. In vitro bioassays for detecting dioxin-like activity--application potentials and limits of detection, a review.

    PubMed

    Eichbaum, Kathrin; Brinkmann, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hecker, Markus; Giesy, John P; Engwall, Magnus; van Bavel, Bert; Hollert, Henner

    2014-07-15

    Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Detection of myo-inositol trispyrophosphate in equine urine and plasma by hydrophillic interaction chromatography-tandem mass spectrometry.

    PubMed

    Wong, April S Y; Ho, Emmie N M; Wan, Terence S M

    2012-05-01

    Myo-inositol trispyrophosphate (ITPP) is a new drug capable of increasing the amount of oxygen in hypoxic tissues. Studies have shown that administration of ITPP increases the maximal exercise capacity in normal mice as well as mice with severe heart failure. The properties of ITPP make it an ideal candidate as a doping agent to enhance performance in racehorses. While there have been speculations in the horseracing industry that the covert use of ITPP is already widespread, no reported method exists for the detection of ITPP in equine biological samples. ITPP is a difficult-to-detect drug due to its hydrophilic nature; the complexity of equine biological matrices also adds to the problem. This paper describes for the first time a method for the detection and confirmation of ITPP in equine urine and plasma. ITPP was isolated from the sample matrices by solid-phase extraction and the extract was analyzed by hydrophilic interaction chromatography-tandem mass spectrometry. ITPP could be detected at low ppb levels in both fortified equine plasma and urine with good precision, fast instrumental turnaround time, and negligible matrix interferences. To our knowledge, this is the first report of a validated method for the detection and unequivocal confirmation of low levels of ITPP in any biological fluid. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Tracking pan-continental trends in environmental contamination using sentinel raptors-what types of samples should we use?

    PubMed

    Espín, S; García-Fernández, A J; Herzke, D; Shore, R F; van Hattum, B; Martínez-López, E; Coeurdassier, M; Eulaers, I; Fritsch, C; Gómez-Ramírez, P; Jaspers, V L B; Krone, O; Duke, G; Helander, B; Mateo, R; Movalli, P; Sonne, C; van den Brink, N W

    2016-05-01

    Biomonitoring using birds of prey as sentinel species has been mooted as a way to evaluate the success of European Union directives that are designed to protect people and the environment across Europe from industrial contaminants and pesticides. No such pan-European evaluation currently exists. Coordination of such large scale monitoring would require harmonisation across multiple countries of the types of samples collected and analysed-matrices vary in the ease with which they can be collected and the information they provide. We report the first ever pan-European assessment of which raptor samples are collected across Europe and review their suitability for biomonitoring. Currently, some 182 monitoring programmes across 33 European countries collect a variety of raptor samples, and we discuss the relative merits of each for monitoring current priority and emerging compounds. Of the matrices collected, blood and liver are used most extensively for quantifying trends in recent and longer-term contaminant exposure, respectively. These matrices are potentially the most effective for pan-European biomonitoring but are not so widely and frequently collected as others. We found that failed eggs and feathers are the most widely collected samples. Because of this ubiquity, they may provide the best opportunities for widescale biomonitoring, although neither is suitable for all compounds. We advocate piloting pan-European monitoring of selected priority compounds using these matrices and developing read-across approaches to accommodate any effects that trophic pathway and species differences in accumulation may have on our ability to track environmental trends in contaminants.

  15. Automated multi-plug filtration cleanup for liquid chromatographic-tandem mass spectrometric pesticide multi-residue analysis in representative crop commodities.

    PubMed

    Qin, Yuhong; Zhang, Jingru; Zhang, Yuan; Li, Fangbing; Han, Yongtao; Zou, Nan; Xu, Haowei; Qian, Meiyuan; Pan, Canping

    2016-09-02

    An automated multi-plug filtration cleanup (m-PFC) method on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. The automatic device was aimed to reduce labor-consuming manual operation workload in the cleanup steps. It could control the volume and the speed of pulling and pushing cycles accurately. In this work, m-PFC was based on multi-walled carbon nanotubes (MWCNTs) mixed with other sorbents and anhydrous magnesium sulfate (MgSO4) in a packed tip for analysis of pesticide multi-residues in crop commodities followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. It was validated by analyzing 25 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Salts, sorbents, m-PFC procedure, automated pulling and pushing volume, automated pulling speed, and pushing speed for each matrix were optimized. After optimization, two general automated m-PFC methods were introduced to relatively simple (apple, citrus fruit, peanut) and relatively complex (spinach, leek, green tea) matrices. Spike recoveries were within 83 and 108% and 1-14% RSD for most analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination >0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    PubMed

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  17. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins

    PubMed Central

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368

  18. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references.

    PubMed

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-15

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode

    PubMed Central

    Wajrak, Magdalena; Alameh, Kamal

    2017-01-01

    A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182

  20. RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.

    PubMed

    Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal

    2017-09-06

    A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.

  1. Toward a better determination of dairy powders surface composition through XPS matrices development.

    PubMed

    Nikolova, Y; Petit, J; Sanders, C; Gianfrancesco, A; Scher, J; Gaiani, C

    2015-01-01

    The surface composition of dairy powders prepared by mixing various amounts of micellar casein (MC), whey proteins isolate (WPI), lactose, and anhydrous milk fat (AMF) was investigated by XPS measurements. The use of matrices are generally accepted to transform surface atomic composition (i.e., C, O, N contents) into surface component composition (i.e., lactose, proteins, lipids). These atomic-based matrices were revisited and two new matrices based on the surface bond composition were developed. Surface compositions obtained from atomic and bond-based matrices were compared. A successful matrix allowing good correlations between XPS predicted and theoretical surface composition for powders free from fat was identified. Nevertheless, samples containing milk fat were found to present a possible segregation of components owing to the AMF overrepresentation on the surface. Supplementary analyses (FTIR, SEM) were carried out in order to investigate the homogeneity of the mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Biologic Monitoring of Exposure to Environmental Chemicals throughout the Life Stages: Requirements and Issues for Consideration for the National Children’s Study

    PubMed Central

    Barr, Dana B.; Wang, Richard Y.; Needham, Larry L.

    2005-01-01

    Biomonitoring of exposure is a useful tool for assessing environmental exposures. The matrices available for analyses include blood, urine, breast milk, adipose tissue, and saliva, among others. The sampling can be staged to represent the particular time period of concern: preconceptionally from both parents, from a pregnant woman during each of the three trimesters, during and immediately after childbirth, from the mother postnatally, and from the child as it develops to 21 years of age. The appropriate sample for biomonitoring will depend upon matrix availability, the time period of concern for a particular exposure or health effect, and the different classes of environmental chemicals to be monitored. This article describes the matrices available for biomonitoring during the life stages being evaluated in the National Children’s Study; the best biologic matrices for exposure assessment for each individual chemical class, including consideration of alternative matrices; the analytical methods used for analysis, including quality control procedures and less costly alternatives; the costs of analysis; optimal storage conditions; and chemical and matrix stability during long-term storage. PMID:16079083

  3. Evaluation of different derivatisation approaches for gas chromatographic-mass spectrometric analysis of carbohydrates in complex matrices of biological and synthetic origin.

    PubMed

    Becker, M; Zweckmair, T; Forneck, A; Rosenau, T; Potthast, A; Liebner, F

    2013-03-15

    Gas chromatographic analysis of complex carbohydrate mixtures requires highly effective and reliable derivatisation strategies for successful separation, identification, and quantitation of all constituents. Different single-step (per-trimethylsilylation, isopropylidenation) and two-step approaches (ethoximation-trimethylsilylation, ethoximation-trifluoroacetylation, benzoximation-trimethylsilylation, benzoximation-trifluoroacetylation) have been comprehensively studied with regard to chromatographic characteristics, informational value of mass spectra, ease of peak assignment, robustness toward matrix effects, and quantitation using a set of reference compounds that comprise eight monosaccharides (C(5)-C(6)), glycolaldehyde, and dihydroxyacetone. It has been shown that isopropylidenation and the two oximation-trifluoroacetylation approaches are least suitable for complex carbohydrate matrices. Whereas the former is limited to compounds that contain vicinal dihydroxy moieties in cis configuration, the latter two methods are sensitive to traces of trifluoroacetic acid which strongly supports decomposition of ketohexoses. It has been demonstrated for two "real" carbohydrate-rich matrices of biological and synthetic origin, respectively, that two-step ethoximation-trimethylsilylation is superior to other approaches due to the low number of peaks obtained per carbohydrate, good peak separation performance, structural information of mass spectra, low limits of detection and quantitation, minor relative standard deviations, and low sensitivity toward matrix effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: a gel-free multidimensional electrophoresis approach for proteomic profiling--exemplified on human follicular fluid.

    PubMed

    Hanrieder, Jörg; Zuberovic, Aida; Bergquist, Jonas

    2009-04-24

    Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte-wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.

  5. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    PubMed

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  6. Evaluation of bacterial diversity recovered from petroleum samples using different physical matrices.

    PubMed

    Dellagnezze, Bruna Martins; Vasconcellos, Suzan Pantaroto de; Melo, Itamar Soares de; Santos Neto, Eugênio Vaz Dos; Oliveira, Valéria Maia de

    2016-01-01

    Unraveling the microbial diversity and its complexity in petroleum reservoir environments has been a challenge throughout the years. Despite the techniques developed in order to improve methodologies involving DNA extraction from crude oil, microbial enrichments using different culture conditions can be applied as a way to increase the recovery of DNA from environments with low cellular density for further microbiological analyses. This work aimed at the evaluation of different matrices (arenite, shale and polyurethane foam) as support materials for microbial growth and biofilm formation in enrichments using a biodegraded petroleum sample as inoculum in sulfate reducing condition. Subsequent microbial diversity characterization was carried out using Scanning Electronic Microscopy (SEM), Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene libraries in order to compare the microbial biomass yield, DNA recovery efficiency and diversity among the enrichments. The DNA from microbial communities in petroleum enrichments was purified according to a protocol established in this work and used for 16S rRNA amplification with bacterial generic primers. The PCR products were cloned, and positive clones were screened by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Sequencing and phylogenetic analyses revealed that the bacterial community was mostly represented by members of the genera Petrotoga, Bacillus, Pseudomonas, Geobacillus and Rahnella. The use of different support materials in the enrichments yielded an increase in microbial biomass and biofilm formation, indicating that these materials may be employed for efficient biomass recovery from petroleum reservoir samples. Nonetheless, the most diverse microbiota were recovered from the biodegraded petroleum sample using polyurethane foam cubes as support material. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Evans, Sian E; Davies, Paul; Lubben, Anneke; Kasprzyk-Hordern, Barbara

    2015-07-02

    This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L(-1) (metoprolol) - 1321 ng L(-1) (tramadol) in influent,

  8. Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR.

    PubMed

    Gyawali, P; Ahmed, W; Jagals, P; Sidhu, J P S; Toze, S

    2015-12-01

    Hookworm infection contributes around 700 million infections worldwide especially in developing nations due to increased use of wastewater for crop production. The effective recovery of hookworm ova from wastewater matrices is difficult due to their low concentrations and heterogeneous distribution. In this study, we compared the recovery rates of (i) four rapid hookworm ova concentration methods from municipal wastewater, and (ii) two concentration methods from sludge samples. Ancylostoma caninum ova were used as surrogate for human hookworm (Ancylostoma duodenale and Necator americanus). Known concentration of A. caninum hookworm ova were seeded into wastewater (treated and raw) and sludge samples collected from two wastewater treatment plants (WWTPs) in Brisbane and Perth, Australia. The A. caninum ova were concentrated from treated and raw wastewater samples using centrifugation (Method A), hollow fiber ultrafiltration (HFUF) (Method B), filtration (Method C) and flotation (Method D) methods. For sludge samples, flotation (Method E) and direct DNA extraction (Method F) methods were used. Among the four methods tested, filtration (Method C) method was able to recover higher concentrations of A. caninum ova consistently from treated wastewater (39-50%) and raw wastewater (7.1-12%) samples collected from both WWTPs. The remaining methods (Methods A, B and D) yielded variable recovery rate ranging from 0.2 to 40% for treated and raw wastewater samples. The recovery rates for sludge samples were poor (0.02-4.7), although, Method F (direct DNA extraction) provided 1-2 orders of magnitude higher recovery rate than Method E (flotation). Based on our results it can be concluded that the recovery rates of hookworm ova from wastewater matrices, especially sludge samples, can be poor and highly variable. Therefore, choice of concentration method is vital for the sensitive detection of hookworm ova in wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    PubMed

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  10. Formularity: Software for Automated Formula Assignment of Natural and Other Organic Matter from Ultrahigh-Resolution Mass Spectra.

    PubMed

    Tolić, Nikola; Liu, Yina; Liyu, Andrey; Shen, Yufeng; Tfaily, Malak M; Kujawinski, Elizabeth B; Longnecker, Krista; Kuo, Li-Jung; Robinson, Errol W; Paša-Tolić, Ljiljana; Hess, Nancy J

    2017-12-05

    Ultrahigh resolution mass spectrometry, such as Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work, we describe software Formularity with a user-friendly interface for CIA function and newly developed search function Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenated organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. Tap water and HOC spike in Suwannee River NOM were used to assess HOC identification in complex environmental samples. Strategies for reconciliation of CIA and IPA assignments were discussed. Software and sample databases with documentation are freely available.

  11. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm.

    PubMed

    Zhang, Xiao-Hua; Wu, Hai-Long; Wang, Jian-Yao; Tu, De-Zhu; Kang, Chao; Zhao, Juan; Chen, Yao; Miu, Xiao-Xia; Yu, Ru-Qin

    2013-05-01

    This paper describes the use of second-order calibration for development of HPLC-DAD method to quantify nine polyphenols in five kinds of honey samples. The sample treatment procedure was simplified effectively relative to the traditional ways. Baselines drift was also overcome by means of regarding the drift as additional factor(s) as well as the analytes of interest in the mathematical model. The contents of polyphenols obtained by the alternating trilinear decomposition (ATLD) method have been successfully used to distinguish different types of honey. This method shows good linearity (r>0.99), rapidity (t<7.60 min) and accuracy, which may be extremely promising as an excellent routine strategy for identification and quantification of polyphenols in the complex matrices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. High-performance thin-layer chromatographic-densitometric determination of secoisolariciresinol diglucoside in flaxseed.

    PubMed

    Coran, Silvia A; Giannellini, Valerio; Bambagiotti-Alberti, Massimo

    2004-08-06

    A HPTLC-densitometric method, based on an external standard approach, was developed in order to obtain a novel procedure for routine analysis of secoisolariciresinol diglucoside (SDG) in flaxseed with a minimum of sample pre-treatment. Optimization of TLC conditions for the densitometric scanning was reached by eluting HPTLC silica gel plates in a horizontal developing chamber. Quantitation of SDG was performed in single beam reflectance mode by using a computer-controlled densitometric scanner and applying a five-point calibration in the 1.00-10.00 microg/spot range. As no sample preparation was required, the proposed HPTLC-densitometric procedure demonstrated to be reliable, yet using an external standard approach. The proposed method is precise, reproducible and accurate and can be employed profitably in place of HPLC for the determination of SDG in complex matrices.

  13. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system.

    PubMed

    Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng

    2016-03-17

    Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Versatile electrophoresis-based self-test platform.

    PubMed

    Guijt, Rosanne M

    2015-03-01

    Lab on a Chip technology offers the possibility to extract chemical information from a complex sample in a simple, automated way without the need for a laboratory setting. In the health care sector, this chemical information could be used as a diagnostic tool for example to inform dosing. In this issue, the research underpinning a family of electrophoresis-based point-of-care devices for self-testing of ionic analytes in various sample matrices is described [Electrophoresis 2015, 36, 712-721.]. Hardware, software, and methodological chances made to improve the overall analytical performance in terms of accuracy, precision, detection limit, and reliability are discussed. In addition to the main focus of lithium monitoring, new applications including the use of the platform for veterinary purposes, sodium, and for creatinine measurements are included. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh

    2016-01-01

    We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.

  16. Quantification of Tetramethylenedisulfotetramine (TETS) in Various Food Matrices by Solid Phase Extraction Liquid ChromatographyIon Trap Mass Spectrometry

    DTIC Science & Technology

    2017-04-01

    used to deliberately contaminate food or water. TETS is not absorbed through the skin; the most common route of exposure is ingestion of... contaminated foods . Thus, the development of a reliable extraction and detection technique for TETS in different foods is essential: when accidental and...TETS in various complex food matrices. TETS is a relatively persistent environmental contaminant due to its high stability in water. This extraction

  17. Fully constrained Majorana neutrino mass matrices using \\varvec{Σ(72× 3)}

    NASA Astrophysics Data System (ADS)

    Krishnan, R.; Harrison, P. F.; Scott, W. G.

    2018-01-01

    In 2002, two neutrino mixing ansatze having trimaximally mixed middle (ν _2) columns, namely tri-chi-maximal mixing ( {T}χ {M}) and tri-phi-maximal mixing ( {T}φ {M}), were proposed. In 2012, it was shown that {T}χ {M} with χ =± π /16 as well as {T}φ {M} with φ = ± π /16 leads to the solution, sin ^2 θ _{13} = 2/3 sin ^2 π /16, consistent with the latest measurements of the reactor mixing angle, θ _{13}. To obtain {T}χ {M}_{(χ =± π /16)} and {T}φ {M}_{(φ =± π /16)}, the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m_1:m_2:m_3=( 2+√{2}) /1+√{2(2+√{2)}}:1:( 2+√{2}) /-1+√{2(2+√{2)}}. In this paper we construct a flavour model based on the discrete group Σ (72× 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3× 3 matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of Σ (72× 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.

  18. Recent trends in sorption-based sample preparation and liquid chromatography techniques for food analysis.

    PubMed

    V Soares Maciel, Edvaldo; de Toffoli, Ana Lúcia; Lanças, Fernando Mauro

    2018-04-20

    The accelerated rising of the world's population increased the consumption of food, thus demanding more rigors in the control of residue and contaminants in food-based products marketed for human consumption. In view of the complexity of most food matrices, including fruits, vegetables, different types of meat, beverages, among others, a sample preparation step is important to provide more reliable results when combined with HPLC separations. An adequate sample preparation step before the chromatographic analysis is mandatory in obtaining higher precision and accuracy in order to improve the extraction of the target analytes, one of the priorities in analytical chemistry. The recent discovery of new materials such as ionic liquids, graphene-derived materials, molecularly imprinted polymers, restricted access media, magnetic nanoparticles, and carbonaceous nanomaterials, provided high sensitivity and selectivity results in an extensive variety of applications. These materials, as well as their several possible combinations, have been demonstrated to be highly appropriate for the extraction of different analytes in complex samples such as food products. The main characteristics and application of these new materials in food analysis will be presented and discussed in this paper. Another topic discussed in this review covers the main advantages and limitations of sample preparation microtechniques, as well as their off-line and on-line combination with HPLC for food analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The q-dependent detrended cross-correlation analysis of stock market

    NASA Astrophysics Data System (ADS)

    Zhao, Longfeng; Li, Wei; Fenu, Andrea; Podobnik, Boris; Wang, Yougui; Stanley, H. Eugene

    2018-02-01

    Properties of the q-dependent cross-correlation matrices of the stock market have been analyzed by using random matrix theory and complex networks. The correlation structures of the fluctuations at different magnitudes have unique properties. The cross-correlations among small fluctuations are much stronger than those among large fluctuations. The large and small fluctuations are dominated by different groups of stocks. We use complex network representation to study these q-dependent matrices and discover some new identities. By utilizing those q-dependent correlation-based networks, we are able to construct some portfolios of those more independent stocks which consistently perform better. The optimal multifractal order for portfolio optimization is around q  =  2 under the mean-variance portfolio framework, and q\\in[2, 6] under the expected shortfall criterion. These results have deepened our understanding regarding the collective behavior of the complex financial system.

  20. Interaction of N-hydroxyurea with strong proton donors: HCl and HF

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena

    2014-11-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of strong hydrogen bonded complexes of N-hydroxyurea (NH2CONHOH) with hydrogen halides (HCl and HF) trapped in solid argon matrices is reported. 1:1 and 1:2 complexes between N-hydroxyurea and hydrogen chloride, hydrogen fluoride have been identified in the NH2CONHOH/HCl/Ar, NH2CONHOH/HF/Ar matrices, respectively; their structures were determined by comparison of the spectra with the results of calculations. In the 1:1 complexes, identified for both hydrogen halide molecules, the cyclic structure stabilized by the X-H⋯O and N-H⋯X bonds is present; for the NH2CONHOH⋯HF system another isomeric 1:1 complex is also observed. Two 1:2 complexes were identified for the N-hydroxyurea-hydrogen chloride system characterised by the Cl-H⋯O and N-H⋯Cl bonds. The results of the study evidence that N-hydroxyurea is an oxygen base in the gas-phase with the carbonyl group as the strongest proton acceptor centre in the molecule.

  1. An Examination of Ethnic and Gender Differences in the Raven Coloured Progressive Matrices Test.

    ERIC Educational Resources Information Center

    Kluever, Raymond C.; Green, Kathy E.

    Response patterns to the Raven Coloured Progressive Matrices (CPM) were analyzed for a sample of 203 Hispanic and 254 Anglo first- through fifth-grade children from a rural school district in southern Colorado. Gender distributions were nearly equal. Gender and ethnic differences were examined within the context of determining whether the CPM…

  2. Differential Effects of Intelligence, Perceptual Speed and Age on Growth in Attentional Speed and Accuracy

    ERIC Educational Resources Information Center

    Goldhammer, Frank; Rauch, Wolfgang A.; Schweizer, Karl; Moosbrugger, Helfried

    2010-01-01

    The study investigates the effects of intelligence, perceptual speed and age on intraindividual growth in attentional speed and attentional accuracy over the course of a 6-minute testing session. A sample of 193 subjects completed the Advanced Progressive Matrices and the Vienna Matrices Test representing intelligence, the tests Alertness and…

  3. Modeling Radioactive Decay Chains with Branching Fraction Uncertainties

    DTIC Science & Technology

    2013-03-01

    moments methods with transmutation matrices. Uncertainty from both half-lives and branching fractions is carried through these calculations by Monte...moment methods, method for sampling from normal distributions for half- life uncertainty, and use of transmutation matrices were leveraged. This...distributions for half-life and branching fraction uncertainties, building decay chains and generating the transmutation matrix (T-matrix

  4. Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).

    ERIC Educational Resources Information Center

    Blankmeyer, Eric

    P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…

  5. Emerging spectra of singular correlation matrices under small power-map deformations

    NASA Astrophysics Data System (ADS)

    Vinayak; Schäfer, Rudi; Seligman, Thomas H.

    2013-09-01

    Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.

  6. Emerging spectra of singular correlation matrices under small power-map deformations.

    PubMed

    Vinayak; Schäfer, Rudi; Seligman, Thomas H

    2013-09-01

    Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.

  7. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and aminoethylchlorides using a C18 Hilic column. Critical isomeric compounds can be confirmed by LC-MS/MS experiments, after detecting the N-oxides from the neutral loss scanning method.

  8. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-08-14

    In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.

  9. New approach on trace analysis of triclosan in personal care products, biological and environmental matrices.

    PubMed

    Silva, Ana Rita M; Nogueira, J M F

    2008-02-15

    Stir bar sorptive extraction and liquid desorption followed by high performance liquid chromatography with diode array detection (SBSE-LD-LC-DAD) is proposed for the determination of triclosan in personal care products, biological and environmental matrices, which is included in the priority lists, set by several international regulatory organizations. Instrumental conditions and experimental parameters that affecting SBSE-LD efficiency are fully discussed. Throughout systematic assays on 25 mL water samples spiked at the 10.0 microg L(-1) level, it had been established that stir bars coated with 126 microL of polydimethylsiloxane, an equilibrium time of 1h (1000 rpm) and acetonitrile under sonification (60 min) as back-extraction solvent, allowed the best analytical performance to determine triclosan in water matrices. From the data obtained, good recovery and remarkable repeatability were attained, providing experimental average yields (78.5+/-2.2%), although slightly lower than the theoretical equilibrium (99.7%) described by the octanol-water partition coefficients (K(PDMS/W)0.9992) from 0.4 to 108.0 microg L(-1). The application of the present method to determine triclosan in real matrices such as commercial toothpaste, saliva and urban wastewater samples, allowed appropriate selectivity, high sensitivity and accuracy using the standard addition methodology. The proposed method showed to be feasible and sensitive with a low-sample volume requirement to monitor triclosan in personal care products, biological and environmental matrices at the trace level, in compliance with international regulatory directives.

  10. An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins

    PubMed Central

    Cigić, Irena Kralj; Prosen, Helena

    2009-01-01

    Mycotoxins are a group of compounds produced by various fungi and excreted into the matrices on which they grow, often food intended for human consumption or animal feed. The high toxicity and carcinogenicity of these compounds and their ability to cause various pathological conditions has led to widespread screening of foods and feeds potentially polluted with them. Maximum permissible levels in different matrices have also been established for some toxins. As these are quite low, analytical methods for determination of mycotoxins have to be both sensitive and specific. In addition, an appropriate sample preparation and pre-concentration method is needed to isolate analytes from rather complicated samples. In this article, an overview of methods for analysis and sample preparation published in the last ten years is given for the most often encountered mycotoxins in different samples, mainly in food. Special emphasis is on liquid chromatography with fluorescence and mass spectrometric detection, while in the field of sample preparation various solid-phase extraction approaches are discussed. However, an overview of other analytical and sample preparation methods less often used is also given. Finally, different matrices where mycotoxins have to be determined are discussed with the emphasis on their specific characteristics important for the analysis (human food and beverages, animal feed, biological samples, environmental samples). Various issues important for accurate qualitative and quantitative analyses are critically discussed: sampling and choice of representative sample, sample preparation and possible bias associated with it, specificity of the analytical method and critical evaluation of results. PMID:19333436

  11. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis.

    PubMed

    Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-06-01

    Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay: normalization of superinduction results for improved sample potency estimation.

    PubMed

    Baston, David S; Denison, Michael S

    2011-02-15

    The chemically activated luciferase expression (CALUX) system is a mechanistically based recombinant luciferase reporter gene cell bioassay used in combination with chemical extraction and clean-up methods for the detection and relative quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like halogenated aromatic hydrocarbons in a wide variety of sample matrices. While sample extracts containing complex mixtures of chemicals can produce a variety of distinct concentration-dependent luciferase induction responses in CALUX cells, these effects are produced through a common mechanism of action (i.e. the Ah receptor (AhR)) allowing normalization of results and sample potency determination. Here we describe the diversity in CALUX response to PCDD/Fs from sediment and soil extracts and not only report the occurrence of superinduction of the CALUX bioassay, but we describe a mechanistically based approach for normalization of superinduction data that results in a more accurate estimation of the relative potency of such sample extracts. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples.

    PubMed

    Gil, F; Hernández, A F

    2015-06-01

    Human biomonitoring has become an important tool for the assessment of internal doses of metallic and metalloid elements. These elements are of great significance because of their toxic properties and wide distribution in environmental compartments. Although blood and urine are the most used and accepted matrices for human biomonitoring, other non-conventional samples (saliva, placenta, meconium, hair, nails, teeth, breast milk) may have practical advantages and would provide additional information on health risk. Nevertheless, the analysis of these compounds in biological matrices other than blood and urine has not yet been accepted as a useful tool for biomonitoring. The validation of analytical procedures is absolutely necessary for a proper implementation of non-conventional samples in biomonitoring programs. However, the lack of reliable and useful analytical methodologies to assess exposure to metallic elements, and the potential interference of external contamination and variation in biological features of non-conventional samples are important limitations for setting health-based reference values. The influence of potential confounding factors on metallic concentration should always be considered. More research is needed to ascertain whether or not non-conventional matrices offer definitive advantages over the traditional samples and to broaden the available database for establishing worldwide accepted reference values in non-exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review.

    PubMed

    Net, Sopheak; Delmont, Anne; Sempéré, Richard; Paluselli, Andrea; Ouddane, Baghdad

    2015-05-15

    Because of their widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in the environment. Their presence has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health, so their quantification has become a necessity. Various extraction procedures as well as gas/liquid chromatography and mass spectrometry detection techniques are found as suitable for reliable detection of such compounds. However, PAEs are ubiquitous in the laboratory environment including ambient air, reagents, sampling equipment, and various analytical devices, that induces difficult analysis of real samples with a low PAE background. Therefore, accurate PAE analysis in environmental matrices is a challenging task. This paper reviews the extensive literature data on the techniques for PAE quantification in natural media. Sampling, sample extraction/pretreatment and detection for quantifying PAEs in different environmental matrices (air, water, sludge, sediment and soil) have been reviewed and compared. The concept of "green analytical chemistry" for PAE determination is also discussed. Moreover useful information about the material preparation and the procedures of quality control and quality assurance are presented to overcome the problem of sample contamination and these encountered due to matrix effects in order to avoid overestimating PAE concentrations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Bioimprinted QCM sensors for virus detection-screening of plant sap.

    PubMed

    Dickert, Franz L; Hayden, Oliver; Bindeus, Roland; Mann, Karl-J; Blaas, Dieter; Waigmann, Elisabeth

    2004-04-01

    Surface imprinting techniques on polymer-coated quartz-crystal microbalances (QCM) have been used to detect tobacco mosaic viruses (TMV) in aqueous media. Molecularly imprinted polymers (MIP), tailor-made by self organisation of monomers around a template (TMV), were generated directly on the gold electrodes. Imprinted trenches on the polymer surface mimicking the shape and surface functionality of the virus serve as recognition sites for re-adsorption after washing out of the template. The sensors are applicable to TMV detection ranging from 100 ng mL(-1) to 1 mg mL(-1) within minutes. Furthermore, direct measurements without time-consuming sample preparation are possible in complex matrices such as tobacco plant sap.

  16. Immunogenicity testing of therapeutic antibodies in ocular fluids after intravitreal injection.

    PubMed

    Wessels, Uwe; Zadak, Markus; Reiser, Astrid; Brockhaus, Janis; Ritter, Mirko; Abdolzade-Bavil, Afsaneh; Heinrich, Julia; Stubenrauch, Kay

    2018-04-11

    High drug concentrations in ocular fluids after intravitreal administration preclude the use of drug-sensitive immunoassays. A drug-tolerant immunoassay is therefore desirable for immunogenicity testing in ophthalmology. Immune complex (IC) antidrug antibody (ADA) assays were established for two species. The assays were compared with the bridging assay in ocular and plasma samples from two preclinical studies. The IC assays showed high drug tolerance, which enabled a reliable ADA detection in ocular fluids after intravitreal administration. The IC assays were superior to the bridging assay in the analysis of ocular fluids with high drug concentrations. The IC assay allows a reliable ADA detection in matrices with high drug concentrations, such as ocular fluids.

  17. Formularity: Software for Automated Formula Assignment of Natural and Other Organic Matter from Ultrahigh-Resolution Mass Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolić, Nikola; Liu, Yina; Liyu, Andrey

    Ultrahigh-resolution mass spectrometry, such as Fourier transform ion-cyclotron resonance mass spectrometry (FT-ICR MS), can resolve thousands of molecular ions in complex organic matrices. A Compound Identification Algorithm (CIA) was previously developed for automated elemental formula assignment for natural organic matter (NOM). In this work we describe a user friendly interface for CIA, titled Formularity, which includes an additional functionality to perform search of formulas based on an Isotopic Pattern Algorithm (IPA). While CIA assigns elemental formulas for compounds containing C, H, O, N, S, and P, IPA is capable of assigning formulas for compounds containing other elements. We used halogenatedmore » organic compounds (HOC), a chemical class that is ubiquitous in nature as well as anthropogenic systems, as an example to demonstrate the capability of Formularity with IPA. A HOC standard mix was used to evaluate the identification confidence of IPA. The HOC spike in NOM and tap water were used to assess HOC identification in natural and anthropogenic matrices. Strategies for reconciliation of CIA and IPA assignments are discussed. Software and sample databases with documentation are freely available from the PNNL OMICS software repository https://omics.pnl.gov/software/formularity.« less

  18. A comparison of the chemistry of pseudotachylyte breccias in the Archean Levack Gneisses of the Sudbury structure, Ontario

    NASA Technical Reports Server (NTRS)

    Thompson, Lucy M.; Spray, John G.

    1992-01-01

    The Archean Levack Gneisses of the North Range host millimeter-thick veins and centimeter-thick lenses of pseudotachylyte, as well as substantially larger meter-wide, dykelike bodies of pseudotachylytic 'breccia'. The 'breccia' occurs up to several tens of kilometers away from the Sudbury Igneous Complex and is commonly sited within or near joints and other natural weaknesses such as bedding, dyke contacts, and lithological boundaries. The larger 'breccia' dykes comprise a generally dark matrix containing rounded to subrounded and occasionally angular rock fragments derived predominantly from Levack Gneiss. Selected samples of bulk Sudbury Breccia and Sudbury Breccia matrices were chemically analyzed and compared to existing data on the Levack Gneisses and Sudbury Breccia. The matrices are apparently enriched in Fe and, to a lesser extent, Mg, Ti, and Ca compared to the wallrocks and the majority of clasts. This enrichment can be partly explained by the preferential cataclasis and/or frictional melting of hydrous ferromagnesian wallrock minerals, but also appear to require contamination by more basic exotic lithologies. This suggests that certain components of pseudotachylitic Sudbury Breccia have undergone significant transport during their formation.

  19. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer)

    PubMed Central

    Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.

    2008-01-01

    Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417

  20. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors.

    PubMed

    Liu, Ning; Ouyang, Anli; Li, Yan; Yang, Shang-Tian

    2013-01-01

    The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells. © 2013 American Institute of Chemical Engineers.

  1. Cationized pullulan 3D matrices as new materials for gene transfer.

    PubMed

    San Juan, Aurélie; Hlawaty, Hanna; Chaubet, Frédéric; Letourneur, Didier; Feldman, Laurent J

    2007-08-01

    This study deals with the development of a novel biocompatible cationized pullulan three-dimensional matrix for gene delivery. A water-soluble cationic polysaccharide, diethylaminoethyl-pullulan (DEAE-pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE-pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE-pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150-fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE-pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE-pullulan 3D matrices were loaded with up to 50 microg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO-1 fluorescence staining. Moreover, the DEAE-pullulan matrix was shown to protect pSEAP from DNase I degradation. Incubation of cultured SMCs with pSEAP-loaded DEAE-pullulan matrices resulted in significant gene transfer without cell toxicity. This study suggests that these cationized pullulan 3D matrices could be useful biomaterials for local gene transfer.

  2. Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-07-01

    We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.

  3. An Easily Built Smoking Machine for Use by Undergraduate Students in the Determination of Total Particulate Matter and Nicotine in Tobacco Smoke

    ERIC Educational Resources Information Center

    Gonzalez-Ruiz, Victor; Martin, M. Antonia; Olives, Ana I.

    2012-01-01

    Sampling mainstream cigarette smoke is a challenging and stimulating laboratory activity for undergraduate students. In addition to the public health significance, cigarette smoke is an unusual source of analytes to examine the differences between gaseous matrices versus liquid or solid matrices. Sophisticated automated smoking machines complying…

  4. The exposure of honey bees (Apis mellifera; Hymenoptera: Apidae) to pesticides: Room for improvement in research.

    PubMed

    Benuszak, Johanna; Laurent, Marion; Chauzat, Marie-Pierre

    2017-06-01

    Losses of honey bees have been repeatedly reported from many places worldwide. The widespread use of synthetic pesticides has led to concerns regarding their environmental fate and their effects on pollinators. Based on a standardised review, we report the use of a wide variety of honey bee matrices and sampling methods in the scientific papers studying pesticide exposure. Matrices such as beeswax and beebread were very little analysed despite their capacities for long-term pesticide storage. Moreover, bioavailability and transfer between in-hive matrices were poorly understood and explored. Many pesticides were studied but interactions between molecules or with other stressors were lacking. Sampling methods, targeted matrices and units of measure should have been, to some extent, standardised between publications to ease comparison and cross checking. Data on honey bee exposure to pesticides would have also benefit from the use of commercial formulations in experiments instead of active ingredients, with a special assessment of co-formulants (quantitative exposure and effects). Finally, the air matrix within the colony must be explored in order to complete current knowledge on honey bee pesticide exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties.

    PubMed

    Tiryaki, Osman

    2016-10-02

    This study was undertaken to validate the "quick, easy, cheap, effective, rugged and safe" (QuEChERS) method using Golden Delicious and Starking Delicious apple matrices spiked at 0.1 maximum residue limit (MRL), 1.0 MRL and 10 MRL levels of the four pesticides (chlorpyrifos, dimethoate, indoxacarb and imidacloprid). For the extraction and cleanup, original QuEChERS method was followed, then the samples were subjected to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for chromatographic analyses. According to t test, matrix effect was not significant for chlorpyrifos in both sample matrices, but it was significant for dimethoate, indoxacarb and imidacloprid in both sample matrices. Thus, matrix-matched calibration (MC) was used to compensate matrix effect and quantifications were carried out by using MC. The overall recovery of the method was 90.15% with a relative standard deviation of 13.27% (n = 330). Estimated method detection limit of analytes blew the MRLs. Some other parameters of the method validation, such as recovery, precision, accuracy and linearity were found to be within the required ranges.

  6. On Statistics of Bi-Orthogonal Eigenvectors in Real and Complex Ginibre Ensembles: Combining Partial Schur Decomposition with Supersymmetry

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.

    2018-06-01

    We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated `non-orthogonality overlap factor' (also known as the `eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size {N× N} . First we derive the general finite N expression for the JPD of a real eigenvalue {λ} and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its `bulk' and `edge' scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue z and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its `bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig (Phys Rev Lett 81(16):3367-3370, 1998), and we provide the `edge' scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by Bourgade and Dubach (The distribution of overlaps between eigenvectors of Ginibre matrices, 2018. arXiv:1801.01219).

  7. Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2015-12-01

    The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  8. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography-tandem mass spectrometry.

    PubMed

    Jin, Yue; Zhang, Jinzhen; Zhao, Wen; Zhang, Wenwen; Wang, Lin; Zhou, Jinhui; Li, Yi

    2017-04-15

    The aim of this study was to develop an analytical method for the analysis of a wide range of veterinary drugs in honey and royal jelly. A modified sample preparation procedure based on the quick, easy, cheap, effective, rugged and safe (QuEChERS) method was developed, followed by liquid chromatography tandem mass spectrometry determination. Use of the single sample preparation method for analysis of 42 veterinary drugs becomes more valuable because honey and royal jelly belong to completely different complex matrices. Another main advantage of the proposed method is its ability to identify and quantify 42 veterinary drugs with higher sensitivity than reference methods of China. This work has shown that the reported method was demonstrated to be convenient and reliable for the quick monitoring of veterinary drugs in honey and royal jelly samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination of type A trichothecenes in maize, wheat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Jiang, Keqiu; Nie, Dongxia; Wu, Yongjiang; Zhao, Zhihui; De Saeger, Sarah; Han, Zheng

    2015-12-04

    A solid-phase extraction (SPE) procedure using multi-walled carbon nanotubes (MWCNTs) as sorbents coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for simultaneous determination of four type A trichothecenes in maize, wheat and rice for the first time. Several key parameters including the composition of sample loading solutions, washing and elution solvents were thoroughly investigated to achieve optimal SPE recoveries and efficiency. Performance of the MWCNTs materials was significantly affected by pH, and after optimization, n-hexane and 5% methanol aqueous solution as the washing solutions and methanol containing 1% formic acid as the elution solvent presented an excellent purification efficiency for the four targets in the different matrices. The method was validated by determining the linearity (R(2)≥0.992), recovery (73.4-113.7%), precision (1.2-17.1%) and sensitivity (limit of quantification in the range of 0.02-0.10μg/kg), and was further applied for simultaneous determination of type A trichothecenes in 30 samples. Although low contamination levels of type A trichothecenes in wheat, maize and rice were observed revealing mitigated risks to consumers in Shanghai, China, the developed method has proven to be a valuable tool for type A trichothecenes monitoring in complex crop matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside.

    PubMed

    Goryński, Krzysztof; Goryńska, Paulina; Górska, Agnieszka; Harężlak, Tomasz; Jaroch, Alina; Jaroch, Karol; Lendor, Sofia; Skobowiat, Cezary; Bojko, Barbara

    2016-10-25

    Solid phase microextraction (SPME) is a technology where a small amount of an extracting phase dispersed on a solid support is exposed to the sample for a well-defined period of time. The open-bed geometry and biocompatibility of the materials used for manufacturing of the devices makes it very convenient tool for direct extraction from complex biological matrices. The flexibility of the formats permits tailoring the method according the needs of the particular application. Number of studies concerning monitoring of drugs and their metabolites, analysis of metabolome of volatile as well as non-volatile compounds, determination of ligand-protein binding, permeability and compound toxicity was already reported. All these applications were performed in different matrices including biological fluids and tissues, cell cultures, and in living animals. The low invasiveness of in vivo SPME, ability of using very small sample volumes and analysis of cell cultures permits to address the rule of 3R, which is currently acknowledged ethical standard in R&D labs. In the current review systematic evaluation of the applicability of SPME to studies required to be conduct at different stages of drug discovery and development and translational medicine is presented. The advantages and challenges are discussed based on the examples directly showing given experimental design or on the studies, which could be translated to the models routinely used in drug development process. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Inexpensive, effective novel activated carbon fibers for sample cleanup: application to multipesticide residue analysis in food commodities using a QuEChERS method.

    PubMed

    Singh, Shiv; Srivastava, Anshuman; Singh, Sheelendra Pratap

    2018-03-01

    Phenolic resin based activated carbon fibers (ACFs) were applied for the first time as a reversed-dispersive solid-phase extraction (r-DSPE) sorbent. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to determine 26 pesticides (organophosphates, organochlorines, synthetic pyrethroids, and herbicides) in different complex matrices, including cauliflower, cucumber, banana, apple, wheat, and black gram. Different physicochemical characterization techniques were used to investigate the engineering and structural properties of the r-DSPE sorbent. All the chromatographic analyses were performed with a gas chromatograph equipped with an electron capture detector. The recoveries of all 26 pesticides were acceptable (70-120%), with relative standard deviations of less than 15%. The limit of detection and the limit of quantification were 1.13-5.48 ng/g and 3.42-16.60 ng/g, respectively. In the original QuEChERS method, primary secondary amine is extensively used as the r-DSPE sorbent in the cleanup process, but it is eightfold more expensive than the ACFs used in this study. Therefore, the modified QuEChERS method using ACFs during the cleanup process is more efficient, cheaper, and more robust to determine pesticides from different types of matrices, including vegetables, grains, and fruits, and ACFs could be used as a cost-effective alternative to primary secondary amine. Graphical Abstract Sample clean-up using PSA and ACF as r-DSPE sorbent in QuEChERS method.

  12. Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge

    2016-08-15

    An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Collection of Pyrethroids in Water and Sediment Matrices: Development and Validation of a Standard Operating Procedure

    USGS Publications Warehouse

    Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn

    2009-01-01

    Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.

  14. MALDI matrices for low molecular weight compounds: an endless story?

    PubMed

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  15. Performance of laboratories analysing welding fume on filter samples: results from the WASP proficiency testing scheme.

    PubMed

    Stacey, Peter; Butler, Owen

    2008-06-01

    This paper emphasizes the need for occupational hygiene professionals to require evidence of the quality of welding fume data from analytical laboratories. The measurement of metals in welding fume using atomic spectrometric techniques is a complex analysis often requiring specialist digestion procedures. The results from a trial programme testing the proficiency of laboratories in the Workplace Analysis Scheme for Proficiency (WASP) to measure potentially harmful metals in several different types of welding fume showed that most laboratories underestimated the mass of analyte on the filters. The average recovery was 70-80% of the target value and >20% of reported recoveries for some of the more difficult welding fume matrices were <50%. This level of under-reporting has significant implications for any health or hygiene studies of the exposure of welders to toxic metals for the types of fumes included in this study. Good laboratories' performance measuring spiked WASP filter samples containing soluble metal salts did not guarantee good performance when measuring the more complex welding fume trial filter samples. Consistent rather than erratic error predominated, suggesting that the main analytical factor contributing to the differences between the target values and results was the effectiveness of the sample preparation procedures used by participating laboratories. It is concluded that, with practice and regular participation in WASP, performance can improve over time.

  16. Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay.

    PubMed

    Brandon, David L

    2011-04-01

    Ricin is a highly toxic protein present in the seeds of Ricinus communis (castor), grown principally as a source of high quality industrial lubricant and as an ornamental. Because ricin has been used for intentional poisoning in the past and could be used to contaminate food, there is a need for analytical methodology to detect ricin in food matrices. A monoclonal antibody-based method was developed for detecting and quantifying ricin in ground beef, a complex, fatty matrix. The limit of detection was 0.5 ng/g for the electrochemiluminescence (ECL) method and 1.5 ng/g for enzyme-linked immunosorbent assay (ELISA). The detection of nanogram per gram quantities of ricin spiked into retail samples of ground beef provides approximately 10,000-fold greater sensitivity than required to detect a toxic dose of ricin (>1 mg) in a 100 g sample.

  17. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  18. User's manual SIG: a general-purpose signal processing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lager, D.; Azevedo, S.

    1983-10-25

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar tomore » each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.« less

  19. Detection of Ricin Contamination in Ground Beef by Electrochemiluminescence Immunosorbent Assay

    PubMed Central

    Brandon, David L.

    2011-01-01

    Ricin is a highly toxic protein present in the seeds of Ricinus communis (castor), grown principally as a source of high quality industrial lubricant and as an ornamental. Because ricin has been used for intentional poisoning in the past and could be used to contaminate food, there is a need for analytical methodology to detect ricin in food matrices. A monoclonal antibody-based method was developed for detecting and quantifying ricin in ground beef, a complex, fatty matrix. The limit of detection was 0.5 ng/g for the electrochemiluminescence (ECL) method and 1.5 ng/g for enzyme-linked immunosorbent assay (ELISA). The detection of nanogram per gram quantities of ricin spiked into retail samples of ground beef provides approximately 10,000-fold greater sensitivity than required to detect a toxic dose of ricin (>1 mg) in a 100 g sample. PMID:22069715

  20. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1991-01-01

    A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  1. Micro-electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2014-04-11

    This contribution describes properties and utilization of free liquid membranes (FLMs) in micro-electromembrane extraction (μ-EME) of analytes from samples with complex matrices. An FLM was formed as a plug of a selected organic solvent, 1-ethyl-2-nitrobenezene (ENB) or 2-nitrophenyloctyl ether, in a narrow bore polymeric tubing and was sandwiched between a plug of aqueous donor and aqueous acceptor solution. The FLM acted as a phase interface that enabled selective transfer of analytes from donor into acceptor solution. Acceptor solution after μ-EME was analysed by capillary electrophoresis (CE). Fundamental characteristics of FLMs were depicted and discussed by presenting experimental data on their performance for various basic operational parameters, such as composition and volume of donor/acceptor solution, applied extraction voltage, thickness of FLM and extraction time. Positively charged basic drugs (nortriptyline, haloperidol and loperamide) and their solutions in water, urine and blood serum served as model samples. It was shown that FLMs may offer fast, efficient and selective pretreatment of crude biological samples providing that basic operational parameters of μ-EME are set properly. At optimised conditions, basic drugs in 1.5μL of a biological sample were transferred across 1.5μL of FLM (ENB) into 1.5μL of acceptor solution in about 5min at an extraction voltage of 100V. Repeatability values of μ-EMEs and CE-UV analyses of the three basic drugs were better than 7.7% for peak areas, recoveries ranged between 19 and 52% and linear relationship was obtained for analytical signal vs. concentration in 1-50mgL(-1) range (r(2) better than 0.996). Limits of detection, defined as 3×S/N, were below 1mgL(-1) for all examined matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Investigating the Relationship Between Soil Water Mobility and Stable Isotope Composition with Implications for the Ecohydrologic Separation Hypothesis

    NASA Astrophysics Data System (ADS)

    Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.

    2017-12-01

    The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.

  3. An on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection system applying two antioxidant methods for activity evaluation of the edible flowers from Prunus mume.

    PubMed

    Zhang, Xiaoxia; Lin, Zongtao; Fang, Jinggui; Liu, Meixian; Niu, Yanyan; Chen, Shizhong; Wang, Hong

    2015-10-02

    An on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection (HPLC-DAD-ESI-IT-TOF-MS-TACD) system was created for identification and evaluation of antioxidants in Prunus (P.) mume flowers. Applying this system, the HPLC fingerprint, ultraviolet (UV) spectra, mass fragmentations, active profiles against 1,1-diphenylpicryl-2-hydrazyl radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) of each complex sample were obtained simultaneously after one injection. Synchronous structure identification and activities screening of complex samples were thus accomplished. In this study, 78 compounds were identified from P. mume flowers by their chromatographic behaviors, UV spectra and MS data with the assistance of standard compounds and literature reports. The DPPH and FRAP activity of 24 samples (23 different P. mume varieties and 1 related herbal medicine) were then quantified by their detailed activity profiles from the on-line system, and by the total activity of each sample extract from off-line 96-well plate method. As a result, 21 and 32 compounds in the on-line system showed anti-oxidative effects against DPPH and FRAP, respectively. The established on-line system is efficient, sensitive and reliable to tell the DPPH and FRAP antioxidant activities of individual compound in complex samples, and therefore would be a useful and promising technique for antioxidant screening from different food and medicinal matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR

    EPA Science Inventory

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample ...

  5. Stabilization of biothreat diagnostic samples through vitrification matrices.

    PubMed

    Minogue, Timothy Devin; Kalina, Warren Vincent; Coyne, Susan Rajnik

    2014-06-01

    Diagnostics for biothreat agents require sample shipment to reference labs for diagnosis of disease; however high/fluctuating temperatures during sample transport negatively affect sample quality and results. Vitrification additives preserve sample integrity for molecular-based assay diagnostics in the absence of refrigeration by imparting whole molecule stability to a plethora of environmental insults. Therefore, we have evaluated commercially available vitrification matrices' (Biomatrica's CloneStable® and RNAStable®) ability to stabilize samples of Yersinia pestis and Venezuelan Equine Encephalitis Virus. When heated to 95°C in RNAStable®, Y. pestis had a 13-fold improvement in detection via real-time PCR compared to heated samples in buffer. VEEV, in RNAStable® at 55°C, had a ~10-fold improved detection versus heated samples in buffer. CloneStable® also preserved Y. pestis antigens for 7days after exposure to cycling temperatures. Overall, RNAStable® and CloneStable® respectively offered superior stabilization to nucleic acids and proteins in response to temperature fluctuations. Copyright © 2014. Published by Elsevier B.V.

  6. Complex quantum enveloping algebras as twisted tensor products

    NASA Astrophysics Data System (ADS)

    Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno

    1994-12-01

    We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.

  7. On the Assessment of Psychometric Adequacy in Correlation Matrices.

    ERIC Educational Resources Information Center

    Dziuban, Charles D.; Shirkey, Edwin C.

    Three techniques for assessing the adequacy of correlation matrices for factor analysis were applied to four examples from the literature. The methods compared were: (1) inspection of the off diagonal elements of the anti-image covariance matrix S(to the 2nd) R(to the -1) and S(to the 2nd); (2) the Measure of Sampling Adequacy (M.S.A.), and (3)…

  8. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL -1 ) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantum Matching Theory (with new complexity-theoretic, combinatorial and topical insights on the nature of the quantum entanglement)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurvits, L.

    2002-01-01

    Classical matching theory can be defined in terms of matrices with nonnegative entries. The notion of Positive operator, central in Quantum Theory, is a natural generalization of matrices with non-negative entries. Based on this point of view, we introduce a definition of perfect Quantum (operator) matching. We show that the new notion inherits many 'classical' properties, but not all of them. This new notion goes somewhere beyound matroids. For separable bipartite quantum states this new notion coinsides with the full rank property of the intersection of two corresponding geometric matroids. In the classical situation, permanents are naturally associated with perfectsmore » matchings. We introduce an analog of permanents for positive operators, called Quantum Permanent and show how this generalization of the permanent is related to the Quantum Entanglement. Besides many other things, Quantum Permanents provide new rational inequalities necessary for the separability of bipartite quantum states. Using Quantum Permanents, we give deterministic poly-time algorithm to solve Hidden Matroids Intersection Problem and indicate some 'classical' complexity difficulties associated with the Quantum Entanglement. Finally, we prove that the weak membership problem for the convex set of separable bipartite density matrices is NP-HARD.« less

  10. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.

    PubMed

    Di Girolamo, Francesco; Righetti, Pier Giorgio; Soste, Martin; Feng, Yuehan; Picotti, Paola

    2013-08-26

    Systems biology studies require the capability to quantify with high precision proteins spanning a broad range of abundances across multiple samples. However, the broad range of protein expression in cells often precludes the detection of low-abundance proteins. Different sample processing techniques can be applied to increase proteome coverage. Among these, combinatorial (hexa)peptide ligand libraries (CPLLs) bound to solid matrices have been used to specifically capture and detect low-abundance proteins in complex samples. To assess whether CPLL capture can be applied in systems biology studies involving the precise quantitation of proteins across a multitude of samples, we evaluated its performance across the whole range of protein abundances in Saccharomyces cerevisiae. We used selected reaction monitoring assays for a set of target proteins covering a broad abundance range to quantitatively evaluate the precision of the approach and its capability to detect low-abundance proteins. Replicated CPLL-isolates showed an average variability of ~10% in the amount of the isolated proteins. The high reproducibility of the technique was not dependent on the abundance of the protein or the amount of beads used for the capture. However, the protein-to-bead ratio affected the enrichment of specific proteins. We did not observe a normalization effect of CPLL beads on protein abundances. However, CPLLs enriched for and depleted specific sets of proteins and thus changed the abundances of proteins from a whole proteome extract. This allowed the identification of ~400 proteins otherwise undetected in an untreated sample, under the experimental conditions used. CPLL capture is thus a useful tool to increase protein identifications in proteomic experiments, but it should be coupled to the analysis of untreated samples, to maximize proteome coverage. Our data also confirms that CPLL capture is reproducible and can be confidently used in quantitative proteomic experiments. Combinatorial hexapeptide ligand libraries (CPLLs) bound to solid matrices have been proposed to specifically capture and detect low-abundance proteins in complex samples. To assess whether the CPLL capture can be confidently applied in systems biology studies involving the precise quantitation of proteins across a broad range of abundances and a multitude of samples, we evaluated its reproducibility and performance features. Using selected reaction monitoring assays for proteins covering the whole range of abundances we show that the technique is reproducible and compatible with quantitative proteomic studies. However, the protein-to-bead ratio affects the enrichment of specific proteins and CPLLs depleted specific sets of proteins from a whole proteome extract. Our results suggest that CPLL-based analyses should be coupled to the analysis of untreated samples, to maximize proteome coverage. Overall, our data confirms the applicability of CPLLs in systems biology research and guides the correct use of this technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Polyethyleneimine-iron phosphate nanocomposite as a promising adsorbent for the isolation of DNA.

    PubMed

    Hu, Lin-Lin; Hu, Bo; Shen, Li-Ming; Zhang, Dan-Dan; Chen, Xu-Wei; Wang, Jian-Hua

    2015-01-01

    A polyethyleneimine (PEI)-iron phosphate (FePO4) nanocomposite is prepared by immobilization of PEI onto the surface of FePO4 nanoparticles via electrostatic interaction. The obtained PEI-FePO4 nanocomposites are spherical with a size centered in ca. 100 nm. They provide a novel adsorbent for the solid-phase extraction of DNA from complex sample matrices. At pH 4, 50 μg mL(-1) of DNA (salmon sperm DNA sodium salt) in 1.0 mL aqueous solution are quantitatively adsorbed (100%) by 2mg of the PEI-FePO4 nanocomposites, and meanwhile the coexisting albumin at a same concentration level is not retained, demonstrating the favorable selectivity of the nanocomposites to DNA against proteins. The adsorption behaviors of DNA onto the PEI-FePO4 nanocomposites fit Langmuir model, corresponding to an adsorption capacity of 61.88 mg g(-1). The adsorbed DNA could be readily recovered by using a 0.04 mol L(-1) Britton-Robinson (BR) buffer at pH 10, resulting in a recovery of 85%. The nanocomposites have been further used for the isolation of DNA from a series of real sample matrices, including synthetic λ-DNA sample, human whole blood and Escherichia coli cell lysate. The extraction efficiency and the purity of the recovered DNA are at least comparable to those achieved by using the reported sorbent materials or commercial kits. In addition, the DNAs isolated from human whole blood and E. coli cell lysate are of high quality, which have been further demonstrated by using them as templates for successful PCR amplifications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  13. Simultaneous quantification of Aroclor mixtures in soil samples by gas chromatography/mass spectrometry with solid phase microextraction using partial least-squares regression.

    PubMed

    Zhang, Mengliang; Harrington, Peter de B

    2015-01-01

    Multivariate partial least-squares (PLS) method was applied to the quantification of two complex polychlorinated biphenyls (PCBs) commercial mixtures, Aroclor 1254 and 1260, in a soil matrix. PCBs in soil samples were extracted by headspace solid phase microextraction (SPME) and determined by gas chromatography/mass spectrometry (GC/MS). Decachlorinated biphenyl (deca-CB) was used as internal standard. After the baseline correction was applied, four data representations including extracted ion chromatograms (EIC) for Aroclor 1254, EIC for Aroclor 1260, EIC for both Aroclors and two-way data sets were constructed for PLS-1 and PLS-2 calibrations and evaluated with respect to quantitative prediction accuracy. The PLS model was optimized with respect to the number of latent variables using cross validation of the calibration data set. The validation of the method was performed with certified soil samples and real field soil samples and the predicted concentrations for both Aroclors using EIC data sets agreed with the certified values. The linear range of the method was from 10μgkg(-1) to 1000μgkg(-1) for both Aroclor 1254 and 1260 in soil matrices and the detection limit was 4μgkg(-1) for Aroclor 1254 and 6μgkg(-1) for Aroclor 1260. This holistic approach for the determination of mixtures of complex samples has broad application to environmental forensics and modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. TECHNIQUES WITH POTENTIAL FOR HANDLING ENVIRONMENTAL SAMPLES IN CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    An assessment of the methods for handling environmental samples prior to capillary electrophoresis (CE) is presented for both aqueous and solid matrices. Sample handling in environmental analyses is the subject of ongoing research at the Environmental Protection Agency's National...

  15. Analytical methods for the determination of personal care products in human samples: an overview.

    PubMed

    Jiménez-Díaz, I; Zafra-Gómez, A; Ballesteros, O; Navalón, A

    2014-11-01

    Personal care products (PCPs) are organic chemicals widely used in everyday human life. Nowadays, preservatives, UV-filters, antimicrobials and musk fragrances are widely used PCPs. Different studies have shown that some of these compounds can cause adverse health effects, such as genotoxicity, which could even lead to mutagenic or carcinogenic effects, or estrogenicity because of their endocrine disruption activity. Due to the absence of official monitoring protocols, there is an increasing demand of analytical methods that allow the determination of those compounds in human samples in order to obtain more information regarding their behavior and fate in the human body. The complexity of the biological matrices and the low concentration levels of these compounds make necessary the use of advanced sample treatment procedures that afford both, sample clean-up, to remove potentially interfering matrix components, as well as the concentration of analytes. In the present work, a review of the more recent analytical methods published in the scientific literature for the determination of PCPs in human fluids and tissue samples, is presented. The work focused on sample preparation and the analytical techniques employed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Achieving second order advantage with multi-way partial least squares and residual bi-linearization with total synchronous fluorescence data of monohydroxy-polycyclic aromatic hydrocarbons in urine samples.

    PubMed

    Calimag-Williams, Korina; Knobel, Gaston; Goicoechea, H C; Campiglia, A D

    2014-02-06

    An attractive approach to handle matrix interference in samples of unknown composition is to generate second- or higher-order data formats and process them with appropriate chemometric algorithms. Several strategies exist to generate high-order data in fluorescence spectroscopy, including wavelength time matrices, excitation-emission matrices and time-resolved excitation-emission matrices. This article tackles a different aspect of generating high-order fluorescence data as it focuses on total synchronous fluorescence spectroscopy. This approach refers to recording synchronous fluorescence spectra at various wavelength offsets. Analogous to the concept of an excitation-emission data format, total synchronous data arrays fit into the category of second-order data. The main difference between them is the non-bilinear behavior of synchronous fluorescence data. Synchronous spectral profiles change with the wavelength offset used for sample excitation. The work presented here reports the first application of total synchronous fluorescence spectroscopy to the analysis of monohydroxy-polycyclic aromatic hydrocarbons in urine samples of unknown composition. Matrix interference is appropriately handled by processing the data either with unfolded-partial least squares and multi-way partial least squares, both followed by residual bi-linearization. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Nanofiber-bonded cloth materials based on poly-3-hydroxybutyrate with antibacterial properties for medical purposes

    NASA Astrophysics Data System (ADS)

    Tyubaeva, P. M.; Olkhov, A. A.; Karpova, S. G.; Iordansky, A. L.; Popov, A. A.

    2017-12-01

    Different transdermal systems based on solid polymer matrices or gels containing functional substances with antiseptic (antibacterial) properties have application to the therapy of many infectious diseases and cancer. Today the most promising type of matrices with antiseptic characteristics are the nano- and microfiber nonwoven materials. Fibers on the biopolymer (poly(3-hydroxybutyrate)) basis were obtained using the electrospinning method. In the present work, the effects of iron (III) complex with tetraphenylporphyrin and its influence on bactericidal and antibacterial properties of the ultrathin PHB fibers were investigated.

  18. Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes

    NASA Astrophysics Data System (ADS)

    Choong, Ferdinand X.; Bäck, Marcus; Steiner, Svava E.; Melican, Keira; Nilsson, K. Peter R.; Edlund, Ulrica; Richter-Dahlfors, Agneta

    2016-10-01

    Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies.

  19. Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes

    PubMed Central

    Choong, Ferdinand X.; Bäck, Marcus; Steiner, Svava E.; Melican, Keira; Nilsson, K. Peter R.; Edlund, Ulrica; Richter-Dahlfors, Agneta

    2016-01-01

    Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies. PMID:27759105

  20. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  1. ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.

    PubMed

    Baars, Oliver; Morel, François M M; Perlman, David H

    2014-11-18

    Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).

  2. Information Search and Decision Making: The Effects of Age and Complexity on Strategy Use

    PubMed Central

    Queen, Tara L.; Hess, Thomas M.; Ennis, Gilda E.; Dowd, Keith; Grühn, Daniel

    2012-01-01

    The impact of task complexity on information search strategy and decision quality was examined in a sample of 135 young, middle-aged, and older adults. We were particularly interested in the competing roles of fluid cognitive ability and domain knowledge and experience, with the former being a negative influence and the latter being a positive influence on older adults’ performance. Participants utilized two decision matrices, which varied in complexity, regarding a consumer purchase. Using process tracing software and an algorithm developed to assess decision strategy, we recorded search behavior, strategy selection, and final decision. Contrary to expectations, older adults were not more likely than the younger age groups to engage in information-minimizing search behaviors in response to increases in task complexity. Similarly, adults of all ages used comparable decision strategies and adapted their strategies to the demands of the task. We also examined decision outcomes in relation to participants’ preferences. Overall, it seems that older adults utilize simpler sets of information primarily reflecting the most valued attributes in making their choice. The results of this study suggest that older adults are adaptive in their approach to decision making and this ability may benefit from accrued knowledge and experience. PMID:22663157

  3. Evaluation of trace analyte identification in complex matrices by low-resolution gas chromatography--Mass spectrometry through signal simulation.

    PubMed

    Bettencourt da Silva, Ricardo J N

    2016-04-01

    The identification of trace levels of compounds in complex matrices by conventional low-resolution gas chromatography hyphenated with mass spectrometry is based in the comparison of retention times and abundance ratios of characteristic mass spectrum fragments of analyte peaks from calibrators with sample peaks. Statistically sound criteria for the comparison of these parameters were developed based on the normal distribution of retention times and the simulation of possible non-normal distribution of correlated abundances ratios. The confidence level used to set the statistical maximum and minimum limits of parameters defines the true positive rates of identifications. The false positive rate of identification was estimated from worst-case signal noise models. The estimated true and false positive identifications rate from one retention time and two correlated ratios of three fragments abundances were combined using simple Bayes' statistics to estimate the probability of compound identification being correct designated examination uncertainty. Models of the variation of examination uncertainty with analyte quantity allowed the estimation of the Limit of Examination as the lowest quantity that produced "Extremely strong" evidences of compound presence. User friendly MS-Excel files are made available to allow the easy application of developed approach in routine and research laboratories. The developed approach was successfully applied to the identification of chlorpyrifos-methyl and malathion in QuEChERS method extracts of vegetables with high water content for which the estimated Limit of Examination is 0.14 mg kg(-1) and 0.23 mg kg(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A novel four-dimensional analytical approach for analysis of complex samples.

    PubMed

    Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J

    2016-05-01

    A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation.

  5. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China

    PubMed Central

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-01-01

    The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283

  6. Retention of aroma compounds: an interlaboratory study on the effect of the composition of food matrices on thermodynamic parameters in comparison with water.

    PubMed

    Kopjar, Mirela; Andriot, Isabelle; Saint-Eve, Anne; Souchon, Isabelle; Guichard, Elisabeth

    2010-06-01

    Partition coefficients give an indication of the retention of aroma compounds by the food matrix. Data in the literature are obtained by various methods, under various conditions and expressed in various units, and it is thus difficult to compare the results. The aim of the present study was first to obtain gas/water and gas/matrix partition coefficients of selected aroma compounds, at different temperatures, in order to calculate thermodynamic parameters and second to compare the retention of these aroma compounds in different food matrices. Yogurts containing lipids and proteins induced a higher retention of aroma compounds than model gel matrices. The observed effects strongly depend on hydrophobicity of aroma compounds showing a retention for ethyl hexanoate and a salting out effect for ethyl acetate. A small but noticeable decrease in enthalpy of affinity is observed for ethyl butyrate and ethyl hexanoate between water and food matrices, suggesting that the energy needed for the volatilization is lower in matrices than in water. The composition and complexity of a food matrix influence gas/matrix partition coefficients or aroma compounds in function of their hydrophobicity and to a lower extent enthalpy of vaporization. Copyright (c) 2010 Society of Chemical Industry.

  7. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Behavior of sulfur mustard in sand, concrete, and asphalt matrices: Evaporation, degradation, and decontamination.

    PubMed

    Jung, Hyunsook; Choi, Seungki

    2017-10-15

    The evaporation, degradation, and decontamination of sulfur mustard on environmental matrices including sand, concrete, and asphalt are described. A specially designed wind tunnel and thermal desorber in combination with gas chromatograph (GC) produced profiles of vapor concentration obtained from samples of the chemical agent deposited as a drop on the surfaces of the matrices. The matrices were exposed to the chemical agent at room temperature, and the degradation reactions were monitored and characterized. A vapor emission test was also performed after a decontamination process. The results showed that on sand, the drop of agent spread laterally while evaporating. On concrete, the drop of the agent was absorbed immediately into the matrix while spreading and evaporating. However, the asphalt surface conserved the agent and slowly released parts of the agent over an extended period of time. The degradation reactions of the agent followed pseudo first order behavior on the matrices. Trace amounts of the residual agent present at the surface were also released as vapor after decontamination, posing a threat to the exposed individual and environment.

  9. Determination of phenol compounds in surface water matrices by bar adsorptive microextraction-high performance liquid chromatography-diode array detection.

    PubMed

    Neng, Nuno R; Nogueira, José M F

    2014-07-03

    Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of trace levels of five phenol compounds (3-nitrophenol, 4-nitrophenol, bisphenol-A, 4-n-octylphenol and 4-n-nonylphenol) in surface water matrices. By using a polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phase, high selectivity and efficiency is achieved even against polydimethylsiloxane through stir bar sorptive extraction. Assays performed by BAµE(PS-DVB)-LD/HPLC-DAD on 25 mL water samples spiked at the 10.0 µg/L levels yielded recoveries over 88.0%±5.7% for all five analytes, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), detection limits of 0.25 µg/L and linear dynamic ranges (1.0-25.0 μg/L) with determination coefficient higher than 0.9904. By using the standard addition method, the application of the present method to surface water matrices allowed very good performances at the trace level. The proposed methodology proved to be a suitable alternative to monitor phenol compounds in surface water matrices, showing to be easy to implement, reliable, sensitive and requiring a low sample volume.

  10. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  11. A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization

    DOE PAGES

    Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...

    2016-06-30

    In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less

  12. Occurrence and quantification of Shiga toxin-producing Escherichia coli from food matrices

    PubMed Central

    Sethulekshmi, C.; Latha, C.; Anu, C. J.

    2018-01-01

    Aim: The objective of the study was to detect Shiga toxin-producing Escherichia coli (STEC) and develop a quantitative polymerase chain reaction (qPCR) assay to quantify the bacterial DNA present in different food matrices. Materials and Methods: A total of 758 samples were collected during a period from January 2015 to December 2016 from Kozhikode, Thrissur, and Alappuzha districts of Kerala. The samples consisted of raw milk (135), pasteurized milk (100), beef (132), buffalo meat (130), chevon (104), beef kheema (115), and beef sausage (42). All the samples collected were subjected to isolation and identification of STEC by conventional culture technique. Confirmation of virulence genes was carried out using PCR. For the quantification of STEC in different food matrices, a qPCR was standardized against stx1 gene of STEC by the construction of standard curve using SYBR green chemistry. Results: The overall occurrence of STEC in raw milk (n=135), beef (n=132), buffalo meat (n=130), chevon (n=104), and beef kheema (n=115) samples collected from Kozhikode, Thrissur, and Alappuzha districts of Kerala was 19.26%, 41.6%, 16.92%, 28.85%, and 41.74%, respectively. PCR revealed the presence of stx 1 and stx 2 genes in 88.46 and 83.64 and 30.77 and 40.00% of STEC isolates from raw milk and beef samples, respectively, while 100% of the STEC isolates from buffalo beef and beef kheema samples carried stx 1 gene. Real-time qPCR assay was used to quantify the bacterial cells present in different food matrices. The standard curve was developed, and the slopes, intercept, and R2 of linear regression curves were −3.10, 34.24, and 0.99, respectively. Conclusion: The considerably high occurrence of STEC in the study confirms the importance of foods of animal origin as a vehicle of infection to humans. In the present study, on comparing the overall occurrence of STEC, the highest percentage of occurrence was reported in beef kheema samples. The study shows the need for rigid food safety measures to combat the potential pathogenic effects of harmful bacteria throughout the production chain from production to consumption. PMID:29657388

  13. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    NASA Technical Reports Server (NTRS)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  14. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1993-01-01

    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  15. Rotational 3D printing of damage-tolerant composites with programmable mechanics

    PubMed Central

    Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.

    2018-01-01

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206

  16. A FORTRAN program for the analysis of linear continuous and sample-data systems

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1976-01-01

    A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.

  17. Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry.

    PubMed

    Porta, Tiffany; Grivet, Chantal; Knochenmuss, Richard; Varesio, Emmanuel; Hopfgartner, Gérard

    2011-02-01

    Analysis of low molecular weight compounds (LMWC) in complex matrices by vacuum matrix-assisted laser desorption/ionization (MALDI) often suffers from matrix interferences, which can severely degrade limits of quantitation. It is, therefore, useful to have available a range of suitable matrices, which exhibit complementary regions of interference. Two newly synthesized α-cyanocinnamic acid derivatives are reported here; (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) and (2E)-3-(anthracen-9-yl)-2-cyanoprop-2enoic acid (AnCCA). Along with the commonly used α-cyano-4-hydroxycinnamic acid (CHCA), and the recently developed 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrices, these constitute a chemically similar series of matrices covering a range of molecular weights, and with correspondingly differing ranges of spectral interference. Their performance was compared by measuring the signal-to-noise ratios (S/N) of 47 analytes, mostly pharmaceuticals, with the different matrices using the selected reaction monitoring (SRM) mode on a triple quadrupole instrument equipped with a vacuum MALDI source. AnCCA, NpCCA and Cl-CCA were found to offer better signal-to-noise ratios in SRM mode than CHCA, but Cl-CCA yielded the best results for 60% of the compounds tested. To better understand the relative performance of this matrix series, the proton affinities (PAs) were measured using the kinetic method. Their relative values were: AnCCA > CHCA > NpCCA > Cl-CCA. This ordering is consistent with the performance data. The synthesis of the new matrices is straightforward and they provide (1) tunability of matrix background interfering ions and (2) enhanced analyte response for certain classes of compounds. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Comparison of oral toxicological properties of botulinum neurotoxin serotypes A and B.

    PubMed

    Cheng, Luisa W; Henderson, Thomas D

    2011-07-01

    Botulinum neurotoxins (BoNTs) are among the most potent biological toxins for humans. Of the seven known serotypes (A-G) of BoNT, serotypes A, B and E cause most of the foodborne intoxications in humans. BoNTs in nature are associated with non-toxic accessory proteins known as neurotoxin-associated proteins (NAPs), forming large complexes that have been shown to play important roles in oral toxicity. Using mouse intraperitoneal and oral models of botulism, we determined the dose response to both BoNT/B holotoxin and complex toxins, and compared the toxicities of BoNT/B and BoNT/A complexes. Although serotype A and B complexes have similar NAP composition, BoNT/B formed larger-sized complexes, and was approximately 90 times more lethal in mouse oral intoxications than BoNT/A complexes. When normalized by mean lethal dose, mice orally treated with high doses of BoNT/B complex showed a delayed time-to-death when compared with mice treated with BoNT/A complex. Furthermore, we determined the effect of various food matrices on oral toxicity of BoNT/A and BoNT/B complexes. BoNT/B complexes showed lower oral bioavailability in liquid egg matrices when compared to BoNT/A complexes. In summary, our studies revealed several factors that can either enhance or reduce the toxicity and oral bioavailability of BoNTs. Dissecting the complexities of the different BoNT serotypes and their roles in foodborne botulism will lead to a better understanding of toxin biology and aid future food risk assessments. Published by Elsevier Ltd.

  20. Shannon entropy in the research on stationary regimes and the evolution of complexity

    NASA Astrophysics Data System (ADS)

    Eskov, V. M.; Eskov, V. V.; Vochmina, Yu. V.; Gorbunov, D. V.; Ilyashenko, L. K.

    2017-05-01

    The questions of the identification of complex biological systems (complexity) as special self-organizing systems or systems of the third type first defined by W. Weaver in 1948 continue to be of interest. No reports on the evaluation of entropy for systems of the third type were found among the publications currently available to the authors. The present study addresses the parameters of muscle biopotentials recorded using surface interference electromyography and presents the results of calculation of the Shannon entropy, autocorrelation functions, and statistical distribution functions for electromyograms of subjects in different physiological states (rest and tension of muscles). The results do not allow for statistically reliable discrimination between the functional states of muscles. However, the data obtained by calculating electromyogram quasiatttractor parameters and matrices of paired comparisons of electromyogram samples (calculation of the number k of "coinciding" pairs among the electromyogram samples) provide an integral characteristic that allows the identification of substantial differences between the state of rest and the different states of functional activity. Modifications and implementation of new methods in combination with the novel methods of the theory of chaos and self-organization are obviously essential. The stochastic approach paradigm is not applicable to systems of the third type due to continuous and chaotic changes of the parameters of the state vector x( t) of an organism or the contrasting constancy of these parameters (in the case of entropy).

  1. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril.

    PubMed

    Ding, Jun; Xiao, Hua-Ming; Liu, Simin; Wang, Chang; Liu, Xin; Feng, Yu-Qi

    2018-10-05

    Although several methods have realized the analysis of low molecular weight (LMW) compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by overcoming the problem of interference with MS signals in the low mass region derived from conventional organic matrices, this emerging field still requires strategies to address the issue of analyzing complex samples containing LMW components in addition to the LMW compounds of interest, and solve the problem of lack of universality. The present study proposes an integrated strategy that combines chemical labeling with the supramolecular chemistry of cucurbit [n]uril (CB [n]) for the MALDI MS analysis of LMW compounds in complex samples. In this strategy, the target LMW compounds are first labeled by introducing a series of bifunctional reagents that selectively react with the target analytes and also form stable inclusion complexes with CB [n]. Then, the labeled products act as guest molecules that readily and selectively form stable inclusion complexes with CB [n]. This strategy relocates the MS signals of the LMW compounds of interest from the low mass region suffering high interference to the high mass region where interference with low mass components is absent. Experimental results demonstrate that a wide range of LMW compounds, including carboxylic acids, aldehydes, amines, thiol, and cis-diols, can be successfully detected using the proposed strategy, and the limits of detection were in the range of 0.01-1.76 nmol/mL. In addition, the high selectivity of the labeling reagents for the target analytes in conjunction with the high selectivity of the binding between the labeled products and CB [n] ensures an absence of signal interference with the non-targeted LMW components of complex samples. Finally, the feasibility of the proposed strategy for complex sample analysis is demonstrated by the accurate and rapid quantitative analysis of aldehydes in saliva and herbal medicines. As such, this work not only provides an alternative method for the detection of various LMW compounds using MALDI MS, but also can be applied to the selective and high-throughput analysis of LMW analytes in complex samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Stored program concept for analog computers

    NASA Technical Reports Server (NTRS)

    Hannauer, G., III; Patmore, J. R.

    1971-01-01

    Optimization of three-stage matrices, modularization, and black boxes design techniques provides for automatically interconnecting computing component inputs and outputs in general purpose analog computer. Design also produces relatively inexpensive and less complex automatic patching system.

  3. Using the Advanced Progressive Matrices (Set I) to Assess Fluid Ability in a Short Time Frame: An Item Response Theory-Based Analysis

    ERIC Educational Resources Information Center

    Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Primi, Caterina

    2012-01-01

    This article is aimed at evaluating the possibility that Set I of the Advanced Progressive Matrices (APM-Set I) can be employed to assess fluid ability in a short time frame. The APM-Set I was administered to a sample of 1,389 primary and secondary school students. Confirmatory factor analysis attested to the unidimensionality of the scale. Item…

  4. A microfluidic device for dry sample preservation in remote settings.

    PubMed

    Begolo, Stefano; Shen, Feng; Ismagilov, Rustem F

    2013-11-21

    This paper describes a microfluidic device for dry preservation of biological specimens at room temperature that incorporates chemical stabilization matrices. Long-term stabilization of samples is crucial for remote medical analysis, biosurveillance, and archiving, but the current paradigm for transporting remotely obtained samples relies on the costly "cold chain" to preserve analytes within biospecimens. We propose an alternative approach that involves the use of microfluidics to preserve samples in the dry state with stabilization matrices, developed by others, that are based on self-preservation chemistries found in nature. We describe a SlipChip-based device that allows minimally trained users to preserve samples with the three simple steps of placing a sample at an inlet, closing a lid, and slipping one layer of the device. The device fills automatically, and a pre-loaded desiccant dries the samples. Later, specimens can be rehydrated and recovered for analysis in a laboratory. This device is portable, compact, and self-contained, so it can be transported and operated by untrained users even in limited-resource settings. Features such as dead-end and sequential filling, combined with a "pumping lid" mechanism, enable precise quantification of the original sample's volume while avoiding overfilling. In addition, we demonstrated that the device can be integrated with a plasma filtration module, and we validated device operations and capabilities by testing the stability of purified RNA solutions. These features and the modularity of this platform (which facilitates integration and simplifies operation) would be applicable to other microfluidic devices beyond this application. We envision that as the field of stabilization matrices develops, microfluidic devices will be useful for cost-effectively facilitating remote analysis and biosurveillance while also opening new opportunities for diagnostics, drug development, and other medical fields.

  5. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.

    PubMed

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  6. Quantitative fingerprinting by headspace--two-dimensional comprehensive gas chromatography-mass spectrometry of solid matrices: some challenging aspects of the exhaustive assessment of food volatiles.

    PubMed

    Nicolotti, Luca; Cordero, Chiara; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Rubiolo, Patrizia; Bicchi, Carlo

    2013-10-10

    The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a "comprehensive" analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC×GC-MS) and data processing using advanced fingerprinting approaches. Experiments were carried out on roasted hazelnuts and on Gianduja pastes (sugar, vegetable oil, hazelnuts, cocoa, nonfat dried milk, vanilla flavorings) and demonstrated that the information potential of each analysis can better be exploited if suitable quantitation methods are applied. Quantitation approaches through Multiple Headspace Extraction and Standard Addition were compared in terms of performance parameters (linearity, precision, accuracy, Limit of Detection and Limit of Quantitation) under headspace linearity conditions. The results on 19 key analytes, potent odorants, and technological markers, and more than 300 fingerprint components, were used for further processing to obtain information concerning the effect of the matrix on volatile release, and to produce an informative chemical blueprint for use in sensomics and flavoromics. The importance of quantitation approaches in headspace analysis of solid matrices of complex composition, and the advantages of MHE, are also critically discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A review of available analytical technologies for qualitative and quantitative determination of nitramines.

    PubMed

    Lindahl, Sofia; Gundersen, Cathrine Brecke; Lundanes, Elsa

    2014-08-01

    This review aims to summarize the available analytical methods in the open literature for the determination of some aliphatic and cyclic nitramines. Nitramines covered in this review are the ones that can be formed from the use of amines in post-combustion CO2 capture (PCC) plants and end up in the environment. Since the literature is quite scarce regarding the determination of nitramines in aqueous and soil samples, methods for determination of nitramines in other matrices have also been included. Since the nitramines are found in complex matrices and/or in very low concentration, an extraction step is often necessary before their determination. Liquid-liquid extraction (LLE) using dichloromethane and solid phase extraction (SPE) with an activated carbon based material have been the two most common extraction methods. Gas chromatography (GC) or reversed phase liquid chromatography (RPLC) has been used often combined with mass spectrometry (MS) in the final determination step. Presently there is no comprehensive method available that can be used for determination of all nitramines included in this review. The lowest concentration limit of quantification (cLOQ) is in the ng L(-1) range, however, most methods appear to have a cLOQ in the μg L(-1) range, if the cLOQ has been given.

  8. A Versatile Nonlinear Method for Predictive Modeling

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  9. Laser excited atomic fluorescence spectrometry as a powerful tool for analytical applications and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gornushkin, Igor B.

    1997-12-01

    Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.

  10. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fitmore » the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.« less

  11. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids

    PubMed Central

    Rocchitta, Gaia; Spanu, Angela; Babudieri, Sergio; Latte, Gavinella; Madeddu, Giordano; Galleri, Grazia; Nuvoli, Susanna; Bagella, Paola; Demartis, Maria Ilaria; Fiore, Vito; Manetti, Roberto; Serra, Pier Andrea

    2016-01-01

    Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented. PMID:27249001

  12. Development of a computationally-designed polymeric adsorbent specific for mycotoxin patulin.

    PubMed

    Piletska, Elena V; Pink, Demi; Karim, Kal; Piletsky, Sergey A

    2017-12-04

    Patulin is a toxic compound which is found predominantly in apples affected by mould rot. Since apples and apple-containing products are a popular food for the elderly, children and babies, the monitoring of the toxin is crucial. This paper describes a development of a computationally-designed polymeric adsorbent for the solid-phase extraction of patulin, which provides an effective clean-up of the food samples and allows the detection and accurate quantification of patulin levels present in apple juice using conventional chromatography methods. The developed bespoke polymer demonstrates a quantitative binding towards the patulin present in undiluted apple juice. The polymer is inexpensive and easy to mass-produce. The contributing factors to the function of the adsorbent is a combination of acidic and basic functional monomers producing a zwitterionic complex in the solution that formed stronger binding complexes with the patulin molecule. The protocols described in this paper provide a blueprint for the development of polymeric adsorbents for other toxins or different food matrices.

  13. A Multicenter Study To Evaluate the Performance of High-Throughput Sequencing for Virus Detection

    PubMed Central

    Ng, Siemon H. S.; Vandeputte, Olivier; Aljanahi, Aisha; Deyati, Avisek; Cassart, Jean-Pol; Charlebois, Robert L.; Taliaferro, Lanyn P.

    2017-01-01

    ABSTRACT The capability of high-throughput sequencing (HTS) for detection of known and unknown viruses makes it a powerful tool for broad microbial investigations, such as evaluation of novel cell substrates that may be used for the development of new biological products. However, like any new assay, regulatory applications of HTS need method standardization. Therefore, our three laboratories initiated a study to evaluate performance of HTS for potential detection of viral adventitious agents by spiking model viruses in different cellular matrices to mimic putative materials for manufacturing of biologics. Four model viruses were selected based upon different physical and biochemical properties and commercial availability: human respiratory syncytial virus (RSV), Epstein-Barr virus (EBV), feline leukemia virus (FeLV), and human reovirus (REO). Additionally, porcine circovirus (PCV) was tested by one laboratory. Independent samples were prepared for HTS by spiking intact viruses or extracted viral nucleic acids, singly or mixed, into different HeLa cell matrices (resuspended whole cells, cell lysate, or total cellular RNA). Data were obtained using different sequencing platforms (Roche 454, Illumina HiSeq1500 or HiSeq2500). Bioinformatic analyses were performed independently by each laboratory using available tools, pipelines, and databases. The results showed that comparable virus detection was obtained in the three laboratories regardless of sample processing, library preparation, sequencing platform, and bioinformatic analysis: between 0.1 and 3 viral genome copies per cell were detected for all of the model viruses used. This study highlights the potential for using HTS for sensitive detection of adventitious viruses in complex biological samples containing cellular background. IMPORTANCE Recent high-throughput sequencing (HTS) investigations have resulted in unexpected discoveries of known and novel viruses in a variety of sample types, including research materials, clinical materials, and biological products. Therefore, HTS can be a powerful tool for supplementing current methods for demonstrating the absence of adventitious or unwanted viruses in biological products, particularly when using a new cell line. However, HTS is a complex technology with different platforms, which needs standardization for evaluation of biologics. This collaborative study was undertaken to investigate detection of different virus types using two different HTS platforms. The results of the independently performed studies demonstrated a similar sensitivity of virus detection, regardless of the different sample preparation and processing procedures and bioinformatic analyses done in the three laboratories. Comparable HTS detection of different virus types supports future development of reference virus materials for standardization and validation of different HTS platforms. PMID:28932815

  14. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    PubMed

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation requirements and the simplicity of the bioassay open the possibility of in-situ water toxicity assessment with a fast and low-cost protocol. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rapid and Efficient Filtration-Based Procedure for Separation and Safe Analysis of CBRN Mixed Samples

    PubMed Central

    Bentahir, Mostafa; Laduron, Frederic; Irenge, Leonid; Ambroise, Jérôme; Gala, Jean-Luc

    2014-01-01

    Separating CBRN mixed samples that contain both chemical and biological warfare agents (CB mixed sample) in liquid and solid matrices remains a very challenging issue. Parameters were set up to assess the performance of a simple filtration-based method first optimized on separate C- and B-agents, and then assessed on a model of CB mixed sample. In this model, MS2 bacteriophage, Autographa californica nuclear polyhedrosis baculovirus (AcNPV), Bacillus atrophaeus and Bacillus subtilis spores were used as biological agent simulants whereas ethyl methylphosphonic acid (EMPA) and pinacolyl methylphophonic acid (PMPA) were used as VX and soman (GD) nerve agent surrogates, respectively. Nanoseparation centrifugal devices with various pore size cut-off (30 kD up to 0.45 µm) and three RNA extraction methods (Invisorb, EZ1 and Nuclisens) were compared. RNA (MS2) and DNA (AcNPV) quantification was carried out by means of specific and sensitive quantitative real-time PCRs (qPCR). Liquid chromatography coupled to time-of-flight mass spectrometry (LC/TOFMS) methods was used for quantifying EMPA and PMPA. Culture methods and qPCR demonstrated that membranes with a 30 kD cut-off retain more than 99.99% of biological agents (MS2, AcNPV, Bacillus Atrophaeus and Bacillus subtilis spores) tested separately. A rapid and reliable separation of CB mixed sample models (MS2/PEG-400 and MS2/EMPA/PMPA) contained in simple liquid or complex matrices such as sand and soil was also successfully achieved on a 30 kD filter with more than 99.99% retention of MS2 on the filter membrane, and up to 99% of PEG-400, EMPA and PMPA recovery in the filtrate. The whole separation process turnaround-time (TAT) was less than 10 minutes. The filtration method appears to be rapid, versatile and extremely efficient. The separation method developed in this work constitutes therefore a useful model for further evaluating and comparing additional separation alternative procedures for a safe handling and preparation of CB mixed samples. PMID:24505375

  16. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    PubMed

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  17. Bioprosthetic tissue matrices in complex abdominal wall reconstruction.

    PubMed

    Broyles, Justin M; Abt, Nicholas B; Sacks, Justin M; Butler, Charles E

    2013-12-01

    Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author's analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies.

  18. Bioprosthetic Tissue Matrices in Complex Abdominal Wall Reconstruction

    PubMed Central

    Broyles, Justin M.; Abt, Nicholas B.; Sacks, Justin M.

    2013-01-01

    Background: Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. Methods: We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author’s analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. Results: The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Conclusions: Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies. PMID:25289285

  19. Yang Baxter and anisotropic sigma and lambda models, cyclic RG and exact S-matrices

    NASA Astrophysics Data System (ADS)

    Appadu, Calan; Hollowood, Timothy J.; Price, Dafydd; Thompson, Daniel C.

    2017-09-01

    Integrable deformation of SU(2) sigma and lambda models are considered at the classical and quantum levels. These are the Yang-Baxter and XXZ-type anisotropic deformations. The XXZ type deformations are UV safe in one regime, while in another regime, like the Yang-Baxter deformations, they exhibit cyclic RG behaviour. The associ-ated affine quantum group symmetry, realized classically at the Poisson bracket level, has q a complex phase in the UV safe regime and q real in the cyclic RG regime, where q is an RG invariant. Based on the symmetries and RG flow we propose exact factorizable S-matrices to describe the scattering of states in the lambda models, from which the sigma models follow by taking a limit and non-abelian T-duality. In the cyclic RG regimes, the S-matrices are periodic functions of rapidity, at large rapidity, and in the Yang-Baxter case violate parity.

  20. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle.

    PubMed

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-02-26

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions.

  1. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    PubMed Central

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-01-01

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634

  2. Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete.

    PubMed

    Mizrahi, Dana M; Goldvaser, Michael; Columbus, Ishay

    2011-04-15

    The long-term fate of the blister agent sulfur mustard (HD, bis(2-chloroethyl)sulfide) was determined in a variety of commercial and natural matrices. HD was found to be extremely stable in dry matrices for over a year. The addition of 5% water to the matrices induced slow degradation of HD, which lasted several months. The major degradation product in sands and asphalt was found to be a sulfonium salt, S[CH(2)CH(2)S(+)(CH(2)CH(2)OH)(2)](2) (H-2TG). Red loam soil, which has not been examined before, exhibited strong interaction with HD, both in dry form and in the presence of water. Humid red loam soil gave rise to unique oxidative degradation products. On humid concrete HD degraded to a complex mixture of products, including vinyls. This may be attributed to the basic sites incorporated in concrete.

  3. Development of an Ultrasonication-Assisted Extraction Based HPLC With a Fluorescence Method for Sensitive Determination of Aflatoxins in Highly Acidic Hibiscus sabdariffa

    PubMed Central

    Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun

    2018-01-01

    The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B1, B2, G1, G2 were extracted from samples by using methanol/water (70:30, v/v) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity (R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15–0.65 and 0.53–2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2–3.6%), and accuracy (recovery rates of 86.0–102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B1 (AFB1) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc. PMID:29681848

  4. Development of an Ultrasonication-Assisted Extraction Based HPLC With a Fluorescence Method for Sensitive Determination of Aflatoxins in Highly Acidic Hibiscus sabdariffa.

    PubMed

    Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun

    2018-01-01

    The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B 1 , B 2 , G 1 , G 2 were extracted from samples by using methanol/water (70:30, v/v ) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity ( R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15-0.65 and 0.53-2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2-3.6%), and accuracy (recovery rates of 86.0-102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B 1 (AFB 1 ) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc.

  5. Pseudo-Random Sequence Modifications for Ion Mobility Orthogonal Time of Flight Mass Spectrometry

    PubMed Central

    Clowers, Brian H.; Belov, Mikhail E.; Prior, David C.; Danielson, William F.; Ibrahim, Yehia; Smith, Richard D.

    2008-01-01

    Due to the inherently low duty cycle of ion mobility spectrometry (IMS) experiments that sample from continuous ion sources, a range of experimental advances have been developed to maximize ion utilization efficiency. The use of ion trapping mechanisms prior to the ion mobility drift tube has demonstrated significant gains over discrete sampling from continuous sources; however, these technologies have traditionally relied upon a signal averaging to attain analytically relevant signal-to-noise ratios (SNR). Multiplexed (MP) techniques based upon the Hadamard transform offer an alternative experimental approach by which ion utilization efficiency can be elevated to ∼ 50 %. Recently, our research group demonstrated a unique multiplexed ion mobility time-of-flight (MP-IMS-TOF) approach that incorporates ion trapping and can extend ion utilization efficiency beyond 50 %. However, the spectral reconstruction of the multiplexed signal using this experiment approach requires the use of sample-specific weighing designs. Though general weighing designs have been shown to significantly enhance ion utilization efficiency using this MP technique, such weighing designs cannot be applied to all samples. By modifying both the ion funnel trap and the pseudo random sequence (PRS) used for the MP experiment we have eliminated the need for complex weighing matrices. For both simple and complex mixtures SNR enhancements of up to 13 were routinely observed as compared to the SA-IMS-TOF experiment. In addition, this new class of PRS provides a two fold enhancement in ion throughput compared to the traditional HT-IMS experiment. PMID:18311942

  6. Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship

    PubMed Central

    Acar, Evrim; Plopper, George E.; Yener, Bülent

    2012-01-01

    The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315

  7. Apennine Front revisited - Diversity of Apollo 15 highland rock types

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Marvin, Ursula B.; Vetter, Scott K.; Shervais, John W.

    1988-01-01

    The Apollo 15 landing site is geologically the most complex of the Apollo sites, situated at a mare-highland interface within the rings of two of the last major basin-forming impacts. Few of the Apollo 15 samples are ancient highland rocks derived from the early differentiation of the moon, or impact melts from major basin impacts. Most of the samples are regolith breccias containing abundant clasts of younger volcanic mare and KREEP basalts. The early geologic evolution of the region can be understood only by examining the small fragments of highland rocks found in regolith breccias and soils. Geochemical and petrologic studies of clasts and matrices of three impact melt breccias and four regolith breccias are presented. Twelve igneous and metamorphic rocks show extreme diversity and include a new type of ferroan norite. Twenty-five samples of highland impact melt are divided into groups based on composition. These impact melts form nearly a continuum over more than an order of magnitude in REE concentrations. This continuum may result from both major basin impacts and younger local events. Highland rocks from the Apennine Front include most of the highland rock types found at all of the other sites. An extreme diversity of highland rocks is a fundamental characteristic of the Apennine Front and is a natural result of its complex geologic evolution.

  8. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    PubMed

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. TU-AB-BRA-04: Quantitative Radiomics: Sensitivity of PET Textural Features to Image Acquisition and Reconstruction Parameters Implies the Need for Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyflot, MJ; Yang, F; Byrd, D

    Purpose: Despite increased use of heterogeneity metrics for PET imaging, standards for metrics such as textural features have yet to be developed. We evaluated the quantitative variability caused by image acquisition and reconstruction parameters on PET textural features. Methods: PET images of the NEMA IQ phantom were simulated with realistic image acquisition noise. 35 features based on intensity histograms (IH), co-occurrence matrices (COM), neighborhood-difference matrices (NDM), and zone-size matrices (ZSM) were evaluated within lesions (13, 17, 22, 28, 33 mm diameter). Variability in metrics across 50 independent images was evaluated as percent difference from mean for three phantom girths (850,more » 1030, 1200 mm) and two OSEM reconstructions (2 iterations, 28 subsets, 5 mm FWHM filtration vs 6 iterations, 28 subsets, 8.6 mm FWHM filtration). Also, patient sample size to detect a clinical effect of 30% with Bonferroni-corrected α=0.001 and 95% power was estimated. Results: As a class, NDM features demonstrated greatest sensitivity in means (5–50% difference for medium girth and reconstruction comparisons and 10–100% for large girth comparisons). Some IH features (standard deviation, energy, entropy) had variability below 10% for all sensitivity studies, while others (kurtosis, skewness) had variability above 30%. COM and ZSM features had complex sensitivities; correlation, energy, entropy (COM) and zone percentage, short-zone emphasis, zone-size non-uniformity (ZSM) had variability less than 5% while other metrics had differences up to 30%. Trends were similar for sample size estimation; for example, coarseness, contrast, and strength required 12, 38, and 52 patients to detect a 30% effect for the small girth case but 38, 88, and 128 patients in the large girth case. Conclusion: The sensitivity of PET textural features to image acquisition and reconstruction parameters is large and feature-dependent. Standards are needed to ensure that prospective trials which incorporate textural features are properly designed to detect clinical endpoints. Supported by NIH grants R01 CA169072, U01 CA148131, NCI Contract (SAIC-Frederick) 24XS036-004, and a research contract from GE Healthcare.« less

  10. Insolubilization process increases enzyme stability

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Lyn, J.

    1971-01-01

    Enzymes complexed with polymeric matrices contain properties suggesting application to enzyme-controlled reactions. Stability of insolubilized enzyme derivatives is markedly greater than that of soluble enzymes and physical form of insolubilized enzymes is useful in column and batch processes.

  11. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  12. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    PubMed

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  13. Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles.

    PubMed

    Magro, Massimiliano; Campos, Rene; Baratella, Davide; Ferreira, Maria Izabela; Bonaiuto, Emanuela; Corraducci, Vittorino; Uliana, Maíra Rodrigues; Lima, Giuseppina Pace Pereira; Santagata, Silvia; Sambo, Paolo; Vianello, Fabio

    2015-01-28

    Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.

  14. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  15. Asymptotic approximations to posterior distributions via conditional moment equations

    USGS Publications Warehouse

    Yee, J.L.; Johnson, W.O.; Samaniego, F.J.

    2002-01-01

    We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.

  16. Analysis of methylglyoxal in water and biological matrices by capillary zone electrophoresis with diode array detection.

    PubMed

    do Rosário, Pedro Miguel Alvaro; Cordeiro, Carlos A Alves; Freire, Ana Ponces; Nogueira, José M Florêncio

    2005-05-01

    We describe a new method for the determination of methylglyoxal in water and biological matrices, using o-phenylenediamine as derivatizing agent and solid-phase extraction followed by capillary zone electrophoresis with diode array detection. 25 mM sodium phosphate running buffers at pH 2.2, 30 kV, and 25 degrees C allowed the best instrumental conditions for the optimum separation of methylglyoxal in a suitable analytical time (< 10 min), using an uncoated fused-silica capillary of 75 microm inner diameter and an effective length of 45.1 cm with an extended light path and the wavelength set to 200 nm. Under optimized instrumental conditions, good reproducibility of the migration time (< 1.1%), precision (< 5%), an excellent linear dynamic range from 0.1 to 3.6 mg/L (r(2) = 0.9997), and low limits of detection (7.2 microg/L) were obtained for methylglyoxal measurements, using the internal standard methodology. Assays on laboratory-spiked tap and ground water samples allowed a remarkable accuracy, presenting yields of 95.0 +/- 4.3 and 94.0 +/- 1.1%, respectively, and good performance to determine methylglyoxal in beer and yeast cells suspensions matrices was also obtained at trace level. The present methodology is a cost-effective alternative for routine quality control analysis, showing to be reliable, sensitive, and with a low sample volume requirement to monitor methylglyoxal in water and biological matrices.

  17. In vivo drug metabolite identification in preclinical ADME studies by means of UPLC/TWIMS/high resolution-QTOF MS(E) and control comparison: cost and benefit of vehicle-dosed control samples.

    PubMed

    Fiebig, Lukas; Laux, Ralf; Binder, Rudolf; Ebner, Thomas

    2016-10-01

    1. Liquid chromatography (LC)-high resolution mass spectrometry (HRMS) techniques proved to be well suited for the identification of predicted and unexpected drug metabolites in complex biological matrices. 2. To efficiently discriminate between drug-related and endogenous matrix compounds, however, sophisticated postacquisition data mining tools, such as control comparison techniques are needed. For preclinical absorption, distribution, metabolism and excretion (ADME) studies that usually lack a placebo-dosed control group, the question arises how high-quality control data can be yielded using only a minimum number of control animals. 3. In the present study, the combination of LC-traveling wave ion mobility separation (TWIMS)-HRMS(E) and multivariate data analysis was used to study the polymer patterns of the frequently used formulation constituents polyethylene glycol 400 and polysorbate 80 in rat plasma and urine after oral and intravenous administration, respectively. 4. Complex peak patterns of both constituents were identified underlining the general importance of a vehicle-dosed control group in ADME studies for control comparison. Furthermore, the detailed analysis of administration route, blood sampling time and gender influences on both vehicle peak pattern as well as endogenous matrix background revealed that high-quality control data is obtained when (i) control animals receive an intravenous dose of the vehicle, (ii) the blood sampling time point is the same for analyte and control sample and (iii) analyte and control samples of the same gender are compared.

  18. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.

    PubMed

    Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang

    2015-07-07

    In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.

  19. A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins

    NASA Astrophysics Data System (ADS)

    Wu, Shu; Qian, Linxi; Huang, Lin; Sun, Xuming; Su, Haiyang; Gurav, Deepanjali D.; Jiang, Mawei; Cai, Wei; Qian, Kun

    2018-07-01

    Nutriology relies on advanced analytical tools to study the molecular compositions of food and provide key information on sample quality/safety. Small nutrients detection is challenging due to the high diversity and broad dynamic range of molecules in food samples, and a further issue is to track low abundance toxins. Herein, we developed a novel plasmonic matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxins in complex biological emulsion samples. Silver nanoshells (SiO2@Ag) with optimized structures were used as matrices and achieved direct analysis of 6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, which is superior to the conventional biochemical method currently in use. The developed approach contributes to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real-case bio-analysis.[Figure not available: see fulltext.

  20. Advances in stir bar sorptive extraction for the determination of acidic pharmaceuticals in environmental water matrices Comparison between polyurethane and polydimethylsiloxane polymeric phases.

    PubMed

    Silva, Ana Rita M; Portugal, Fátima C M; Nogueira, J M F

    2008-10-31

    Stir bar sorptive extraction with polyurethane (PU) and polydimethylsiloxane (PDMS) polymeric phases followed by high-performance liquid chromatography with diode array detection [SBSE(PU or PDMS)/HPLC-DAD] was studied for the determination of six acidic pharmaceuticals [o-acetylsalicylic acid (ACA), ibuprofen (IBU), diclofenac sodium (DIC), naproxen (NAP), mefenamic acid (MEF) and gemfibrozil (GEM)], selected as non-steroidal acidic anti-inflammatory drugs and lipid regulators model compounds in environmental water matrices. The main parameters affecting the efficiency of the proposed methodology are fully discussed. Assays performed on 25 mL of water samples spiked at the 10 microg L(-1) level under optimized experimental conditions, yielded recoveries ranging from 45.3+/-9.0% (ACA) to 90.6+/-7.2% (IBU) by SBSE(PU) and 9.8+/-1.6% (NAP) to 73.4+/-5.0% (GEM) by SBSE(PDMS), where the former polymeric phase presented a better affinity to extract these target analytes from water matrices at the trace level. The methodology showed also excellent linear dynamic ranges for the six acidic pharmaceuticals studied, with correlation coefficients higher than 0.9976, limits of detection and quantification between 0.40-1.7 microg L(-1) and 1.5-5.8 microg L(-1), respectively, and suitable precision (RSD <15%). Moreover, the developed methodology was applied for the determination of these target analytes in several environmental matrices, including river, sea and wastewater samples, having achieved good performance and moderate matrix effects. In short, the PU foams demonstrated to be an excellent alternative for the enrichment of the more polar metabolites from water matrices by SBSE, overcoming the limitations of the conventional PDMS phase.

  1. Analysis of the Raven CPM Subtest Scores for a Sample of Gifted Children.

    ERIC Educational Resources Information Center

    Kluever, Raymond C.; Green, Kathy E.

    The inter-subject/intra-subject subtest patterns (profiles) of the same sample of gifted children were examined based on factors found in a previous study of the Raven Coloured Progressive Matrices Test (CPM) that investigated structural properties with specific application to a sample of gifted children. The sample consisted of 166 children (78…

  2. Fabrication of chemically cross-linked porous gelatin matrices.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  3. Analysis of Trace Quaternary Ammonium Compounds (QACs) in Vegetables Using Ultrasonic-Assisted Extraction and Gas Chromatography-Mass Spectrometry.

    PubMed

    Xiang, Lei; Wang, Xiong-Ke; Li, Yan-Wen; Huang, Xian-Pei; Wu, Xiao-Lian; Zhao, Hai-Ming; Li, Hui; Cai, Quan-Ying; Mo, Ce-Hui

    2015-08-05

    A reliable, sensitive, and cost-effective method was developed for determining three quaternary ammonium compounds (QACs) including dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, and didodecyldimethylammonium chloride in various vegetables using ultrasonic-assisted extraction and gas chromatography-mass spectrometry. The variety and acidity of extraction solvents, extraction times, and cleanup efficiency of sorbents were estimated to obtain an optimized procedure for extraction of the QACs in nine vegetable matrices. Excellent linearities (R(2) > 0.992) were obtained for the analytes in the nine matrices. The limits of detection and quantitation were 0.7-6.0 and 2.3-20.0 μg/kg (dry weight, dw) in various matrices, respectively. The recoveries in the nine matrices ranged from 70.5% to 108.0% with relative standard deviations below 18.0%. The developed method was applied to determine the QACs in 27 vegetable samples collected from Guangzhou in southern China, showing very high detection frequency with a concentration of 23-180 μg/kg (dw).

  4. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  5. Electronomicroscopic evaluation of the microlesional aspects in the pulp dentinal complex after repeated whitening therapy

    NASA Astrophysics Data System (ADS)

    Bodea, Rodica; Jianu, Rodica; Marchese, Cristian; Vasile, Liliana

    2012-06-01

    The aim of this study was to examine cellular and matriceal dynamics within pulp tissue of the teeth with repeated bleaching. Material and method - The study was made on 25 patients aged between 15 and 45, to whom bleaching method of the premolars with indication of extraction in orthodontic purposes was applied. None of the subjects smoked and throughout the investigation no antibiotics had been used. We initiated an intensive oral hygiene program, and we removed the supragingival and subgingival deposits. Oral hygiene and the gingival health were evaluated before every session of bleaching. During each visit the dentition was cleaned professionally and if needed the subjects were reinstucted in proper oral hygiene. After 3 and 5 successive bleachings of the teeth, we removed the dental pulps and we extracted the premolars. The pulpal biopsies were fixed in buffed formaldehyde 10% for 48 hours, then paraffinized, sectioned at 3-5 μ and stained with topographic, H&E and trichrome stained. For the electonomicroscopic study we used the Lehner technique to process the biopsies (n=3) after the reinclusion of the pieces from the paraffine blocks in Epon, postfixated in buffered glutaraldehyde, micro sectioned at 0,5 μ, contrastated with Pb citrate (stained) and examination in transmission electronic microscopy with Philips microscope. Results - At cellular and matriceal level we observed a marked collagen fibrillogenesis in the presence of active fibroblasts, with well developed cellular organites and fibroclastic aspects which suggest matriceal active repair. The microvascular network presents an activated endothelium with turgescent endothelial cells, with intracitoplasmatic resorbtion vacuols, well developed Golgi Complex. Conclusion - We interpreed the cell - matriceal lesions in the context of the acute inflammatory process in the first lesional phase and chronic scleroatrophic process after successive bleaching.

  6. Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method.

    PubMed

    Kierkegaard, Amelie; Adolfsson-Erici, Margaretha; McLachlan, Michael S

    2010-11-15

    The three cyclic volatile methylsiloxanes (cVMS), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), are recently identified environmental contaminants. Methods for the trace analysis of these chemicals in environmental matrices are required. A purge and trap method to prepare highly purified sample extracts with a low risk of sample contamination is presented. Without prior homogenization, the sample is heated in water, and the cVMS are purged from the slurry and trapped on an Isolute ENV+ cartridge. They are subsequently eluted with n-hexane and analyzed with GC/MS. The method was tested for eight different matrices including ragworms, muscle tissue from lean and lipid-rich fish, cod liver, and seal blubber. Analyte recoveries were consistent within and between matrices, averaging 79%, 68%, and 56% for D4, D5, and D6, respectively. Good control of blank levels resulted in limits of quantification of 1.5, 0.6, and 0.6 ng/g wet weight. The repeatability was 12% (D5) and 15% (D6) at concentrations 9 and 2 times above the LOQ. The method was applied to analyze cVMS in fish from Swedish lakes, demonstrating that contamination in fish as a result of long-range atmospheric transport is low as compared to contamination from local sources.

  7. Chromatographic profiles of Phyllanthus aqueous extracts samples: a proposition of classification using chemometric models.

    PubMed

    Martins, Lucia Regina Rocha; Pereira-Filho, Edenir Rodrigues; Cass, Quezia Bezerra

    2011-04-01

    Taking in consideration the global analysis of complex samples, proposed by the metabolomic approach, the chromatographic fingerprint encompasses an attractive chemical characterization of herbal medicines. Thus, it can be used as a tool in quality control analysis of phytomedicines. The generated multivariate data are better evaluated by chemometric analyses, and they can be modeled by classification methods. "Stone breaker" is a popular Brazilian plant of Phyllanthus genus, used worldwide to treat renal calculus, hepatitis, and many other diseases. In this study, gradient elution at reversed-phase conditions with detection at ultraviolet region were used to obtain chemical profiles (fingerprints) of botanically identified samples of six Phyllanthus species. The obtained chromatograms, at 275 nm, were organized in data matrices, and the time shifts of peaks were adjusted using the Correlation Optimized Warping algorithm. Principal Component Analyses were performed to evaluate similarities among cultivated and uncultivated samples and the discrimination among the species and, after that, the samples were used to compose three classification models using Soft Independent Modeling of Class analogy, K-Nearest Neighbor, and Partial Least Squares for Discriminant Analysis. The ability of classification models were discussed after their successful application for authenticity evaluation of 25 commercial samples of "stone breaker."

  8. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  9. Hurwitz numbers and products of random matrices

    NASA Astrophysics Data System (ADS)

    Orlov, A. Yu.

    2017-09-01

    We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev-Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers HE,F, where E is the Euler characteristic of the base surface and F is the number of branch points. We show that in the case where the integrands contain the product of n > 2 matrices, the integral generates Hurwitz numbers with E ≤ 2 and F ≤ n+2. Both the numbers E and F depend both on n and on the order of the factors in the matrix product. The Euler characteristic E can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.

  10. Empirical Bayes method for reducing false discovery rates of correlation matrices with block diagonal structure.

    PubMed

    Pacini, Clare; Ajioka, James W; Micklem, Gos

    2017-04-12

    Correlation matrices are important in inferring relationships and networks between regulatory or signalling elements in biological systems. With currently available technology sample sizes for experiments are typically small, meaning that these correlations can be difficult to estimate. At a genome-wide scale estimation of correlation matrices can also be computationally demanding. We develop an empirical Bayes approach to improve covariance estimates for gene expression, where we assume the covariance matrix takes a block diagonal form. Our method shows lower false discovery rates than existing methods on simulated data. Applied to a real data set from Bacillus subtilis we demonstrate it's ability to detecting known regulatory units and interactions between them. We demonstrate that, compared to existing methods, our method is able to find significant covariances and also to control false discovery rates, even when the sample size is small (n=10). The method can be used to find potential regulatory networks, and it may also be used as a pre-processing step for methods that calculate, for example, partial correlations, so enabling the inference of the causal and hierarchical structure of the networks.

  11. Multielement extraction system for determining 19 trace elements in gold exploration samples

    USGS Publications Warehouse

    Clark, J. Robert; Viets, John G.; ,

    1990-01-01

    A multielement extraction system is being used successfully to provide essentially interference-free geochemical analyses to aid in gold exploration. The Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system separates Ag, As, Au, Bi, Cd, Cu, Ga, Hg, In, Mo, Pb, Pd, Pt, Sb, Se, Sn, Te, Tl, and Zn from interfering geological matrices. Quantitative extraction of these elements is accomplished over a broad range of acid normality making it possible to economically determine all 19 elements from a single digestion or leach solution. The resulting organic extracts are amenable to analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and flame atomic absorption spectroscopy (FAAS). For many years the principal shortcoming of ICP-AES was the complex spectral and stray-light interferences that were caused by the extreme variability of components such as Fe, Na, and Ca in common geological matrices. The MAGIC extraction allows determination of the extracted elements with enhanced sensitivity, from a virtually uniform matrix, by ICP-AES and FAAS. Because of its simultaneous multichannel capabilities, ICP-AES is the ideal instrumental technique for determining these 19 extracted elements. Ultratrace (sub-part-per-billion) determinations of Au and many of the other extracted elements can be made by graphite furnace atomic absorption spectroscopy (GFAAS), following back stripping of the extracts. The combination of the extraction followed by stripping of the organic phase eliminates 99.999% of potential interferences for Au. Gold determination by GFAAS from these extracts under the specified conditions yields a fourfold improvement in sensitivity over conventional GFAAS methods. This sensitivity enhancement and the interference-free matrix allow highly reliable determinations well into the parts-per-trillion range.

  12. Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS.

    PubMed

    Jensen, Pamela K; Wujcik, Chad E; McGuire, Michelle K; McGuire, Mark A

    2016-01-01

    Simple high-throughput procedures were developed for the direct analysis of glyphosate [N-(phosphonomethyl)glycine] and aminomethylphosphonic acid (AMPA) in human and bovine milk and human urine matrices. Samples were extracted with an acidified aqueous solution on a high-speed shaker. Stable isotope labeled internal standards were added with the extraction solvent to ensure accurate tracking and quantitation. An additional cleanup procedure using partitioning with methylene chloride was required for milk matrices to minimize the presence of matrix components that can impact the longevity of the analytical column. Both analytes were analyzed directly, without derivatization, by liquid chromatography tandem mass spectrometry using two separate precursor-to-product transitions that ensure and confirm the accuracy of the measured results. Method performance was evaluated during validation through a series of assessments that included linearity, accuracy, precision, selectivity, ionization effects and carryover. Limits of quantitation (LOQ) were determined to be 0.1 and 10 µg/L (ppb) for urine and milk, respectively, for both glyphosate and AMPA. Mean recoveries for all matrices were within 89-107% at three separate fortification levels including the LOQ. Precision for replicates was ≤ 7.4% relative standard deviation (RSD) for milk and ≤ 11.4% RSD for urine across all fortification levels. All human and bovine milk samples used for selectivity and ionization effects assessments were free of any detectable levels of glyphosate and AMPA. Some of the human urine samples contained trace levels of glyphosate and AMPA, which were background subtracted for accuracy assessments. Ionization effects testing showed no significant biases from the matrix. A successful independent external validation was conducted using the more complicated milk matrices to demonstrate method transferability.

  13. Student Solution Manual for Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics.

  14. Essential Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-02-01

    1. Matrices and vector spaces; 2. Vector calculus; 3. Line, surface and volume integrals; 4. Fourier series; 5. Integral transforms; 6. Higher-order ODEs; 7. Series solutions of ODEs; 8. Eigenfunction methods; 9. Special functions; 10. Partial differential equations; 11. Solution methods for PDEs; 12. Calculus of variations; 13. Integral equations; 14. Complex variables; 15. Applications of complex variables; 16. Probability; 17. Statistics; Appendices; Index.

  15. Effect of Moisture on the Thermoresponsive Properties of Binary Mixtures of Monoglycerides for Triggerable Drug Delivery Systems.

    PubMed

    Stonewall, Hannah D; Kessinger, Haley M; Mengesha, Abebe E

    2017-10-01

    The crystallization behavior and temperature-dependent phase transition of monoglycerides have been utilized to develop thermal-sensitive drug delivery systems. The presence of excess water has been reported to influence the phase transition. The present study investigates the effect of moisture on the thermal behavior of binary blends of monoglycerides. Various compositions (0-100 wt%) of glyceryl monooleate (GMO) and glyceryl monostearate (GMS) were prepared by fusion method, and exposed to varying relative humidity (RH) levels (0-100%). The moisture uptakes, sorption isotherm, and the thermal behavior of GMO-GMS samples were analyzed using differential scanning calorimeter (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The in vitro nifedipine (NF) release was studied at 37 and 42°C. Samples of GMO-GMS (25:75, 50:50, and 75:25 wt%) stored at 97%RH at 25°C for 3 weeks increased in weight by 14.0, 14.7, and 15.8%, respectively. Despite such high moisture uptake, the GMO-GMS matrices maintained crystalline structure. The melting point (T m ) and heat of fusion (ΔH f ) of the samples were reduced as the amount of moisture in the matrices increased. However, the heat of fusion calculated on dry basis remained constant at 139.4 ± 1.25, 102.7 ± 1.14, and 46.7 ± 1.16 J/g for GMO-GMS 25:75, 50:50, and 75:25 wt%, respectively. The comparison of the XRD measurements of the dry samples with those containing 30% water confirmed the preserved crystalline arrangement in the matrices. This study indicates that despite the high moisture uptakes, the GMO-GMS matrices retained their crystalline properties and provided temperature-dependent drug release indicating the potential application for thermoresponsive local drug delivery systems.

  16. Determination of the molecular weight of poly(ethylene glycol) in biological samples by reversed-phase LC-MS with in-source fragmentation.

    PubMed

    Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S

    2013-05-01

    PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.

  17. Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water.

    PubMed

    Casas, Vanessa; Llompart, Maria; García-Jares, Carmen; Cela, Rafael; Dagnac, Thierry

    2006-08-18

    A method based on solid-phase microextraction (SPME) and gas chromatography with micro-electron capture detection (GC-microECD) has been optimized for the analysis of pyrethroids in water samples. The influence of parameters such as temperature, fibre coating, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mix-level factorial design, which allowed the study of main effects as well as two factor interactions. Finally, a method based on direct SPME at 50 degrees C, using polydimethylsiloxane fibre is proposed. The method showed good linearity (R2>0.995) and repeatability (RSD

  18. An easy, rapid and inexpensive method to monitor tributyltin (TBT) toxicity in the laboratory.

    PubMed

    Cruz, Andreia; Moreira, Rafael; Mendo, Sónia

    2014-05-01

    Tributyltin (TBT) contamination remains a major problem worldwide. Many laboratories are committed to the development of remediation methodologies that could help reduce the negative impact of this compound in the environment. Furthermore, it is important to have at hand simple methodologies for evaluating TBT toxicity in the laboratory, besides the use of complex and costly analytical instrumentation. With that purpose, a method was adapted that is based on the inhibition of growth of an indicator strain, Micrococcus luteus ATCC 9341, under TBT. Different types of matrices, of TBT concentrations and sample treatments were tested. The results herein reported show that the bioassay method can be applied for both aqueous and soil samples and also for a high range of TBT concentrations (at least up to 500 μmol/L). Besides being cheap and easy to perform, it can be performed in any laboratory. Additionally, one possible application of the method to monitor TBT degradation is presented as an example.

  19. Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing.

    PubMed

    Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy

    2016-02-01

    Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Factor Covariance Analysis in Subgroups.

    ERIC Educational Resources Information Center

    Pennell, Roger

    The problem considered is that of an investigator sampling two or more correlation matrices and desiring to fit a model where a factor pattern matrix is assumed to be identical across samples and we need to estimate only the factor covariance matrix and the unique variance for each sample. A flexible, least squares solution is worked out and…

  2. Information search and decision making: effects of age and complexity on strategy use.

    PubMed

    Queen, Tara L; Hess, Thomas M; Ennis, Gilda E; Dowd, Keith; Grühn, Daniel

    2012-12-01

    The impact of task complexity on information search strategy and decision quality was examined in a sample of 135 young, middle-aged, and older adults. We were particularly interested in the competing roles of fluid cognitive ability and domain knowledge and experience, with the former being a negative influence and the latter being a positive influence on older adults' performance. Participants utilized 2 decision matrices, which varied in complexity, regarding a consumer purchase. Using process tracing software and an algorithm developed to assess decision strategy, we recorded search behavior, strategy selection, and final decision. Contrary to expectations, older adults were not more likely than the younger age groups to engage in information-minimizing search behaviors in response to increases in task complexity. Similarly, adults of all ages used comparable decision strategies and adapted their strategies to the demands of the task. We also examined decision outcomes in relation to participants' preferences. Overall, it seems that older adults utilize simpler sets of information primarily reflecting the most valued attributes in making their choice. The results of this study suggest that older adults are adaptive in their approach to decision making and that this ability may benefit from accrued knowledge and experience. 2013 APA, all rights reserved

  3. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  4. Chemometrics Methods for Specificity, Authenticity and Traceability Analysis of Olive Oils: Principles, Classifications and Applications.

    PubMed

    Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil

    2016-11-17

    Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.

  5. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.

    PubMed

    Pesavento, Maria; Alberti, Giancarla; Biesuz, Raffaela

    2009-01-12

    Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species. The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination. Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.

  6. Aptamer entrapment in microfluidic channel using one-step sol-gel process, in view of the integration of a new selective extraction phase for lab-on-a-chip.

    PubMed

    Perréard, Camille; d'Orlyé, Fanny; Griveau, Sophie; Liu, Baohong; Bedioui, Fethi; Varenne, Anne

    2017-10-01

    There is a great demand for integrating sample treatment into μTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process. The effective gel attachment onto microchannel walls and aptamer incorporation in the polymerized gel were evaluated using fluorescence microscopy. A good gel stability and aptamer incorporation inside the microchannel was demonstrated upon rinsing and over storage time. The ability of gel-encapsulated aptamers to interact with its specific target (either sulforhodamine B as model fluorescent target, or diclofenac, a pain killer drug) was assessed too. The binding capacity of entrapped aptamers was quantified (in the micromolar range) and the selectivity of the interaction was evidenced. Preservation of aptamers binding affinity to target molecules was therefore demonstrated. Dissociation constant of the aptamer-target complex and interaction selectivity were evaluated similar to those in bulk solution. This opens the way to new selective on-chip SPE techniques for sample pretreatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterizing Concentrations and Size Distributions of Metal-Containing Nanoparticles in Waste Water

    EPA Science Inventory

    Nanomaterials containing metals are finding increasing use in consumer, industrial, and medical products, and they are subsequently being released into the environment. Methods for detecting, quantifying, and characterizing these materials in complex matrices are critical for the...

  8. Selecting Surrogates for an Alkylphenol Ethoxylate Analytical Method in Sewage and Soil Matrices

    EPA Science Inventory

    Alkylphenol ethoxylates (APEs) are nonionic surfactants commonly used in industrial detergents. These products contain complex mixtures of branched and linear chains. APEs and their degradation products, alkylphenols, are highly toxic to aquatic organisms, potentially estrogeni...

  9. Environmental forensic research for emerging contaminants in complex environmental matrices

    EPA Science Inventory

    The United States Environmental Protection Agency has established criteria to address many of the significant traditional pollutants demonstrated to have adverse affects on environmental quality. However, new chemicals are being created almost daily, and these new chemicals, as ...

  10. Determination of mycotoxins in different food commodities by ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Beltrán, Eduardo; Ibáñez, María; Sancho, Juan Vicente; Hernández, Félix

    2009-06-01

    A rapid multianalyte-multiclass method with little sample manipulation has been developed for the simultaneous determination of eleven mycotoxins in different food commodities by using ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC/MS/MS). Toxins were extracted from the samples with acetonitrile/water (80:20, v/v) 0.1% HCOOH and, after a two-fold dilution with water, directly injected into the system. Thanks to the fast high-resolution separation of UHPLC, the eleven mycotoxins were separated by gradient elution in only 4 min. The method has been validated in three food matrices (maize kernels, dry pasta (wheat), and eight-multicereal babyfood (wheat, maize, rice, oat, barley, rye, sorghum, millet)) at four different concentration levels. Satisfactory recoveries were obtained (70-110%) and precision (expressed as relative standard deviation) was typically below 15% with very few exceptions. Quantification of samples was carried out with matrix-matched standards calibration. The lowest concentration successfully validated in sample was as low as 0.5 microg/kg for aflatoxins and ochratoxin A in babyfood, and 20 microg/kg for the rest of the selected mycotoxins in all matrices tested. Deoxynivalenol could be only validated at 200 microg/kg, due the poor sensitivity for this mycotoxin analysis. With only two exceptions (HT-2 and deoxynivalenol), the limits of detection (LODs), estimated for a signal-to-noise ratio of 3 from the chromatograms of samples spiked at the lowest level validated, varied between 0.1 and 1 microg/kg in the three food matrices tested. The method was applied to the analysis of different kinds of samples. Positive findings were confirmed by acquiring two transitions (Q quantification, q confirmation) and evaluating the Q/q ratio. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Efficient quantum circuits for dense circulant and circulant like operators

    PubMed Central

    Zhou, S. S.

    2017-01-01

    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed. PMID:28572988

  12. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter.

    PubMed

    Smith, Shaun; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul

    2016-01-01

    Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter and faeces under various environmental conditions has implications for farm litter management, hygiene, and disinfection practices.

  13. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    PubMed

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. DYGABCD: A program for calculating linear A, B, C, and D matrices from a nonlinear dynamic engine simulation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.

    1978-01-01

    A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.

  15. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.

    PubMed

    Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe

    2015-08-01

    The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Multi-targeted interference-free determination of ten β-blockers in human urine and plasma samples by alternating trilinear decomposition algorithm-assisted liquid chromatography-mass spectrometry in full scan mode: comparison with multiple reaction monitoring.

    PubMed

    Gu, Hui-Wen; Wu, Hai-Long; Yin, Xiao-Li; Li, Yong; Liu, Ya-Juan; Xia, Hui; Zhang, Shu-Rong; Jin, Yi-Feng; Sun, Xiao-Dong; Yu, Ru-Qin; Yang, Peng-Yuan; Lu, Hao-Jie

    2014-10-27

    β-blockers are the first-line therapeutic agents for treating cardiovascular diseases and also a class of prohibited substances in athletic competitions. In this work, a smart strategy that combines three-way liquid chromatography-mass spectrometry (LC-MS) data with second-order calibration method based on alternating trilinear decomposition (ATLD) algorithm was developed for simultaneous determination of ten β-blockers in human urine and plasma samples. This flexible strategy proved to be a useful tool to solve the problems of overlapped peaks and uncalibrated interferences encountered in quantitative LC-MS, and made the multi-targeted interference-free qualitative and quantitative analysis of β-blockers in complex matrices possible. The limits of detection were in the range of 2.0×10(-5)-6.2×10(-3) μg mL(-1), and the average recoveries were between 90 and 110% with standard deviations and average relative prediction errors less than 10%, indicating that the strategy could provide satisfactory prediction results for ten β-blockers in human urine and plasma samples only using liquid chromatography hyphenated single-quadrupole mass spectrometer in full scan mode. To further confirm the feasibility and reliability of the proposed method, the same batch samples were analyzed by multiple reaction monitoring (MRM) method. T-test demonstrated that there are no significant differences between the prediction results of the two methods. Considering the advantages of fast, low-cost, high sensitivity, and no need of complicated chromatographic and tandem mass spectrometric conditions optimization, the proposed strategy is expected to be extended as an attractive alternative method to quantify analyte(s) of interest in complex systems such as cells, biological fluids, food, environment, pharmaceuticals and other complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Membrane insertion for the detection of lipopolysaccharides: Exploring the dynamics of amphiphile-in-lipid assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromberg, Loreen R.; Hengartner, Nicolas W.; Swingle, Kirstie L.

    Shiga toxin-producing Escherichia coli is an important cause of foodborne illness, with cases attributable to beef, fresh produce and other sources. Many serotypes of the pathogen cause disease, and differentiating one serotype from another requires specific identification of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic structure of LPS poses a challenge when using classical detection methods, which do not take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or chemical treatment of samples and relies on bioactivity assays for the conserved lipid A portion of the molecule. Our goal was to develop assaysmore » to facilitate the direct and discriminative detection of the entire LPS molecule and its O antigen in complex matrices using minimal sample processing. To perform serogroup identification of LPS, we used a method called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS. The membrane insertion technique allows for the hydrophobic association of LPS with a lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from E. coli O157. To validate assay performance, we evaluated the biophysical interactions of LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and fluorescently doped lipids. Our results indicate that membrane insertion allows for the qualitative and reliable identification of amphiphilic LPS in complex samples like beef homogenates. In addition, we also demonstrated that LPS-induced hole formation does not occur under the conditions of the membrane insertion assays. Together, these findings describe for the first time the serogroup-specific detection of amphiphilic LPS in complex samples using a membrane insertion assay, and highlight the importance of LPS molecular conformations in detection architectures.« less

  18. Membrane insertion for the detection of lipopolysaccharides: Exploring the dynamics of amphiphile-in-lipid assays

    DOE PAGES

    Stromberg, Loreen R.; Hengartner, Nicolas W.; Swingle, Kirstie L.; ...

    2016-05-26

    Shiga toxin-producing Escherichia coli is an important cause of foodborne illness, with cases attributable to beef, fresh produce and other sources. Many serotypes of the pathogen cause disease, and differentiating one serotype from another requires specific identification of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic structure of LPS poses a challenge when using classical detection methods, which do not take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or chemical treatment of samples and relies on bioactivity assays for the conserved lipid A portion of the molecule. Our goal was to develop assaysmore » to facilitate the direct and discriminative detection of the entire LPS molecule and its O antigen in complex matrices using minimal sample processing. To perform serogroup identification of LPS, we used a method called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS. The membrane insertion technique allows for the hydrophobic association of LPS with a lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from E. coli O157. To validate assay performance, we evaluated the biophysical interactions of LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and fluorescently doped lipids. Our results indicate that membrane insertion allows for the qualitative and reliable identification of amphiphilic LPS in complex samples like beef homogenates. In addition, we also demonstrated that LPS-induced hole formation does not occur under the conditions of the membrane insertion assays. Together, these findings describe for the first time the serogroup-specific detection of amphiphilic LPS in complex samples using a membrane insertion assay, and highlight the importance of LPS molecular conformations in detection architectures.« less

  19. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents.

  20. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  1. The Effects of Sample Matrices on Immunoassays to Detect Microcystin-LR in Water

    EPA Science Inventory

    Abstract: Immunoassays are widely used biochemical techniques to detect microcystins in environmental samples. The use of immunoassays for the detection of microcystins is vulnerable to matrix components and other interferents. This study is an evaluation of the effects of interf...

  2. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.

    PubMed

    Rhoades, Elizabeth R; Geisel, Rachel E; Butcher, Barbara A; McDonough, Sean; Russell, David G

    2005-05-01

    The chronic inflammatory response to Mycobacterium generates complex granulomatous lesions that balance containment with destruction of infected tissues. To study the contributing factors from host and pathogen, we developed a model wherein defined mycobacterial components and leukocytes are delivered in a gel, eliciting a localized response that can be retrieved and analysed. We validated the model by comparing responses to the cell wall lipids from Mycobacterium bovis bacillus Calmette-Guerin (BCG) to reported activities in other models. BCG lipid-coated beads and bone marrow-derived macrophages (input macrophages) were injected intraperitoneally into BALB/c mice. Input macrophages and recruited peritoneal exudate cells took up fluorescently tagged BCG lipids, and matrix-associated macrophages and neutrophils produced tumor necrosis factor, interleukin-1alpha, and interleukin-6. Leukocyte numbers and cytokine levels were greater in BCG lipid-bearing matrices than matrices containing non-coated or phosphatidylglycerol-coated beads. Leukocytes arrived in successive waves of neutrophils, macrophages and eosinophils, followed by NK and T cells (CD4(+), CD8(+), or gammadelta) at 7 days and B cells within 12 days. BCG lipids also predisposed matrices for adherence and vascularization, enhancing cellular recruitment. We submit that the matrix model presents pertinent features of the murine granulomatous response that will prove to be an adaptable method for study of this complex response.

  3. Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices

    NASA Astrophysics Data System (ADS)

    Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg

    2015-05-01

    In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.

  4. Stable Binding of Alternative Protein-enriched Food Matrices with Concentrated Cranberry Bioflavonoids for Functional Food Applications

    PubMed Central

    Grace, Mary H.; Guzman, Ivette; Roopchand, Diana E.; Moskal, Kristin; Cheng, Diana M.; Pogrebnyak, Natasha; Raskin, Ilya; Howell, Amy; Lila, Mary Ann

    2013-01-01

    Defatted soy flour (DSF), soy protein isolate (SPI), hemp protein isolate (HPI), medium roast peanut flour (MPF) and pea protein isolate (PPI) stably bind and concentrate cranberry (CB) polyphenols, creating protein/polyphenol-enriched matrices. Proanthocyanidins (PAC) in the enriched matrices ranged from 20.75 mg/g (CB-HPI) to 10.68 mg/g (CB-SPI). Anthocyanins (ANC) ranged from 3.19 mg/g (CB-DSF) to 1.68 mg/g (CB-SPI), while total phenolics (TP) ranged from 37.61 mg/g (CB-HPI) to 21.29 mg/g (CB-SPI). LC-MS indicated that the enriched matrices contained all identifiable ANC, PAC and flavonols present in CB juice. Complexation with SPI stabilized and preserved the integrity of the CB polyphenolic components for at least 15 weeks at 37 °C. PAC isolated from enriched matrices demonstrated comparable anti-adhesion bioactivity to PAC isolated directly from CB juice (MIC 0.4 to 0.16 mg/mL), indicating their potential utility for maintenance of urinary tract health. Approximately 1.0 g of polyphenol-enriched matrix delivered the same amount of PAC available in one cup (300 mL) of commercial CB juice cocktail; which has been shown clinically to be the prophylactic dose for reducing recurring urinary tract infections. CB-SPI inhibited gram- positive and gram-negative bacterial growth. Nutritional and sensory analyses indicated that the targeted CB-matrix combinations have high potential for incorporation in functional food formulations. PMID:23786629

  5. Cork-based activated carbons as supported adsorbent materials for trace level analysis of ibuprofen and clofibric acid in environmental and biological matrices.

    PubMed

    Neng, N R; Mestre, A S; Carvalho, A P; Nogueira, J M F

    2011-09-16

    In this contribution, powdered activated carbons (ACs) from cork waste were supported for bar adsorptive micro-extraction (BAμE), as novel adsorbent phases for the analysis of polar compounds. By combining this approach with liquid desorption followed by high performance liquid chromatography with diode array detection (BAμE(AC)-LD/HPLC-DAD), good analytical performance was achieved using clofibric acid (CLOF) and ibuprofen (IBU) model compounds in environmental and biological matrices. Assays performed on 30 mL water samples spiked at the 25.0 μg L(-1) level yielded recoveries around 80% for CLOF and 95% for IBU, under optimized experimental conditions. The ACs textural and surface chemistry properties were correlated with the results obtained. The analytical performance showed good precision (<15%), suitable detection limits (0.24 and 0.78 μg L(-1) for CLOF and IBU, respectively) and good linear dynamic ranges (r(2)>0.9922) from 1.0 to 600.0 μg L(-1). By using the standard addition methodology, the application of the present approach to environmental water and urine matrices allowed remarkable performance at the trace level. The proposed methodology proved to be a viable alternative for acidic pharmaceuticals analysis, showing to be easy to implement, reliable, sensitive and requiring low sample volume to monitor these priority compounds in environmental and biological matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. An integrated automatic system to evaluate U and Th dynamic lixiviation from solid matrices, and to extract/pre-concentrate leached analytes previous ICP-MS detection.

    PubMed

    Ceballos, Melisa Rodas; García-Tenorio, Rafael; Estela, José Manuel; Cerdà, Víctor; Ferrer, Laura

    2017-12-01

    Leached fractions of U and Th from different environmental solid matrices were evaluated by an automatic system enabling the on-line lixiviation and extraction/pre-concentration of these two elements previous ICP-MS detection. UTEVA resin was used as selective extraction material. Ten leached fraction, using artificial rainwater (pH 5.4) as leaching agent, and a residual fraction were analyzed for each sample, allowing the study of behavior of U and Th in dynamic lixiviation conditions. Multivariate techniques have been employed for the efficient optimization of the independent variables that affect the lixiviation process. The system reached LODs of 0.1 and 0.7ngkg -1 of U and Th, respectively. The method was satisfactorily validated for three solid matrices, by the analysis of a soil reference material (IAEA-375), a certified sediment reference material (BCR- 320R) and a phosphogypsum reference material (MatControl CSN-CIEMAT 2008). Besides, environmental samples were analyzed, showing a similar behavior, i.e. the content of radionuclides decreases with the successive extractions. In all cases, the accumulative leached fraction of U and Th for different solid matrices studied (soil, sediment and phosphogypsum) were extremely low, up to 0.05% and 0.005% of U and Th, respectively. However, a great variability was observed in terms of mass concentration released, e.g. between 44 and 13,967ngUkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    PubMed

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Technological optimization of manufacture of probiotic whey cheese matrices.

    PubMed

    Madureira, Ana R; Brandão, Teresa; Gomes, Ana M; Pintado, Manuela E; Malcata, F Xavier

    2011-03-01

    In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture.

  9. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  10. Enantioselectivity of anteiso-fatty acids in hitherto uninspected sample matrices.

    PubMed

    Eibler, Dorothee; Seyfried, Carolin; Vetter, Walter

    2017-09-01

    Anteiso-fatty acids (aFAs) are chiral molecules due to a methyl substituent on the antepenultimate carbon of the otherwise straight acyl chain. 12-Methyltetradecanoic acid (a15:0) and 14-methylhexadecanoic acid (a17:0) are the predominant aFAs in nature but their individual contributions e.g. to food lipids are usually low. Enantioselective data has been collected in fish, bovine milk/cheese, and Brussels sprouts. In this study, we determined the enantioselectivity of a15:0 and a17:0 in shea butter, moose and camel milk, two soil samples and mold (collected from contaminated cheese). For this purpose, sample lipids were extracted and containing fatty acids were converted into methyl esters. Methyl esters of aFAs were selectively enriched by hydrogenation, urea complexation and/or RP-HPLC-fractionation. Enantioselective gas chromatography with mass spectrometry operated in the selected ion monitoring mode using a chiral stationary phase consisting of 66% tert.-butyldimethylsilylated β-cyclodextrin in OV-1701. While a15:0 and a17:0 in moose milk were (S)-enantiopure, all other determined samples contained up to 10% (R)-aFAs. The highest proportions of (R)-enantiomers were detected in the soil samples (ee=80%). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of metallo-organic and particulate wear metals in lubricating oils associated with hybrid ceramic bearings by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, Robin Ann

    It is possible to increase both the performance and operating environment of jet engines by using hybrid ceramic bearings. Our laboratory is concerned with investigating lubricating fluids for wear metals associated with silicon nitride ball bearings and steel raceways. Silicon nitride is characterized by low weight, low thermal expansion, high strength, and corrosion resistance. These attributes result in longer engine lifetimes than when metallic ball bearings are used. Before the routine use of ceramic ball bearings can be realized, the wear mechanisms of the materials should be thoroughly understood. One important variable in determining wear degradation is the concentration of metal present in the lubricating oils used with the bearings. A complete method for analyzing used lubricating oils for wear metal content must accurately determine all metal forms present. Oil samples pose problems for routine analysis due to complex organic matrices. Nebulizing these types of samples into an Inductively Coupled Plasma - Mass Spectrometer introduces many problems including clogging of the sample cone with carbon and increasing interferences. In addition, other techniques such as Atomic Absorption Spectrometry and Atomic Emission Spectrometry are particle size dependent. They are unable to analyze particles greater than 10 mum in size. This dissertation describes a method of analyzing lubricating oils for both metallo-organic and particulate species by ICP-MS. Microwave digestion of the oil samples eliminates the need for elaborate sample introduction schemes as well as the use of a modified carrier gas. Al, Cr, Fe, Mg, Mo, Ni, Ti, and Y have been determined in both aqueous and organic media. Metallo-organic solutions of these metals were successfully digested, nebulized into the ICP, and the singly charged ions measured by mass spectrometry. Metal particulates in oil matrices have also been quantitatively determined by the above method. Linear analytical curves were obtained for these elements from the detection limits (˜1 ppb) to greater than 1 ppm. Used lubricating oil samples were also analyzed by microwave digestion ICP-MS. Oil samples were collected from a Rolling Contact Fatigue tester. Two bearing systems were evaluated: M50 steel balls on an M50 steel rod, and Sisb3Nsb4 balls on an M50 steel rod. Improved operating conditions were obtained when the Sisb3Nsb4 balls were used, which corresponds to longer engine lifetimes.

  12. Comparing methods of determining Legionella spp. in complex water matrices.

    PubMed

    Díaz-Flores, Álvaro; Montero, Juan Carlos; Castro, Francisco Javier; Alejandres, Eva María; Bayón, Carmen; Solís, Inmaculada; Fernández-Lafuente, Roberto; Rodríguez, Guillermo

    2015-04-29

    Legionella testing conducted at environmental laboratories plays an essential role in assessing the risk of disease transmission associated with water systems. However, drawbacks of culture-based methodology used for Legionella enumeration can have great impact on the results and interpretation which together can lead to underestimation of the actual risk. Up to 20% of the samples analysed by these laboratories produced inconclusive results, making effective risk management impossible. Overgrowth of competing microbiota was reported as an important factor for culture failure. For quantitative polymerase chain reaction (qPCR), the interpretation of the results from the environmental samples still remains a challenge. Inhibitors may cause up to 10% of inconclusive results. This study compared a quantitative method based on immunomagnetic separation (IMS method) with culture and qPCR, as a new approach to routine monitoring of Legionella. First, pilot studies evaluated the recovery and detectability of Legionella spp using an IMS method, in the presence of microbiota and biocides. The IMS method results were not affected by microbiota while culture counts were significantly reduced (1.4 log) or negative in the same samples. Damage by biocides of viable Legionella was detected by the IMS method. Secondly, a total of 65 water samples were assayed by all three techniques (culture, qPCR and the IMS method). Of these, 27 (41.5%) were recorded as positive by at least one test. Legionella spp was detected by culture in 7 (25.9%) of the 27 samples. Eighteen (66.7%) of the 27 samples were positive by the IMS method, thirteen of them reporting counts below 10(3) colony forming units per liter (CFU l(-1)), six presented interfering microbiota and three presented PCR inhibition. Of the 65 water samples, 24 presented interfering microbiota by culture and 8 presented partial or complete inhibition of the PCR reaction. So the rate of inconclusive results of culture and PCR was 36.9 and 12.3%, respectively, without any inconclusive results reported for the IMS method. The IMS method generally improved the recovery and detectability of Legionella in environmental matrices, suggesting the possibility to use IMS method as valuable indicator of risk. Thus, this method may significantly improve our knowledge about the exposure risk to these bacteria, allowing us to implement evidence-based monitoring and disinfection strategies.

  13. GC/HRSIR as a Complementary Technique to GC/ECNIMS

    EPA Science Inventory

    Gas chromatography/electron capture negative ion mass spectrometry (GC/ECNIMS) is a highly selective and sensitive technique for the analysis of appropriate analytes in complex matrices. Its major drawback is often the lack of fragmentation indicative of structure that can be use...

  14. Cognitive Sex Differences in Reasoning Tasks: Evidence from Brazilian Samples of Educational Settings

    ERIC Educational Resources Information Center

    Flores-Mendoza, Carmen; Widaman, Keith F.; Rindermann, Heiner; Primi, Ricardo; Mansur-Alves, Marcela; Pena, Carla Couto

    2013-01-01

    Sex differences on the Attention Test (AC), the Raven's Standard Progressive Matrices (SPM), and the Brazilian Cognitive Battery (BPR5), were investigated using four large samples (total N=6780), residing in the states of Minas Gerais and Sao Paulo. The majority of samples used, which were obtained from educational settings, could be considered a…

  15. Treatment of Nuclear Data Covariance Information in Sample Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, Laura Painton; Adams, Brian M.; Wieselquist, William

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  16. Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry.

    PubMed

    Hernández, Félix; Bijlsma, Lubertus; Sancho, Juan V; Díaz, Ramon; Ibáñez, María

    2011-01-17

    This work illustrates the potential of hybrid quadrupole-time-of-flight mass spectrometry (QTOF MS) coupled to ultrahigh pressure liquid chromatography (UHPLC) to investigate the presence of drugs of abuse in wastewater. After solid-phase extraction with Oasis MCX cartridges, seventy-six illicit drugs, prescription drugs with potential for abuse, and metabolites were investigated in the samples by TOF MS using electrospray interface under positive ionization mode, with MS data acquired over an m/z range of 50-1000Da. For 11 compounds, reference standards were available, and experimental data (e.g., retention time and fragmentation data) could be obtained, facilitating a more confident identification. The use of a QTOF instrument enabled the simultaneous application of two acquisition functions with different collision energies: a low energy (LE) function, where none or poor fragmentation took place, and a high energy (HE) function, where fragmentation in the collision cell was promoted. This approach, known as MS(E), enabled the simultaneous acquisition of full-spectrum accurate mass data of both protonated molecules and fragment ions in a single injection, providing relevant information that facilitates the rapid detection and reliable identification of these emerging contaminants in the sample matrices analyzed. In addition, isomeric compounds, like the opiates, morphine and norcodeine, could be discriminated by their specific fragments observed in HE TOF MS spectra, without the need of reference standards. UHPLC-QTOF MS was proven to be a powerful and efficient technique for rapid wide-scope screening and identification of many relevant drugs in complex matrices, such as influent and effluent urban wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. The compositional mosaic of Fusarium species and their mycotoxins in unprocessed cereals, food and feed products in Belgium.

    PubMed

    Vanheule, Adriaan; Audenaert, Kris; De Boevre, Marthe; Landschoot, Sofie; Bekaert, Boris; Munaut, Françoise; Eeckhout, Mia; Höfte, Monica; De Saeger, Sarah; Haesaert, Geert

    2014-07-02

    Global food safety depends on continuous monitoring of food contaminants such as mycotoxins in cereals and cereal-derived products. Here, we combine this type of investigation with quantitative occurrence data on Fusarium infestation of these products in extensive correlation studies. Finally, this contributes to a thorough understanding of the presence, origin and physiology of Fusarium Head Blight (FHB) related mycotoxins and the correlations within their ranks. Two hundred and thirty-seven samples were analyzed from diverse cereal matrices, representing the most important stages of the cereal food and feed chain in Belgium. Food, feed and non-processed field samples were investigated, with a strong emphasis on whole-grain food products. Two approaches were pursued to estimate the full scope of FHB and its repercussions: UPLC-MS/MS was applied to detect twelve different mycotoxins, and Q-PCR was used to measure the presence of ten Fusarium species. We found that different matrices have different characteristic contamination profiles, and extensive correlation studies identified certain mycotoxins for future assessment (e.g. moniliformin produced by the Fusarium avenaceum/Fusarium tricinctum species group). The investigated harvest year of 2012 yielded many non-processed field materials containing elevated levels of deoxynivalenol (DON), while even in a so-called DON-year less prevalent toxins such as T-2 and HT-2 might be considered problematic due to their consistent co-occurrence with related mycotoxins. Our data illustrate complex interactions between the many Fusarium species that are responsible for FHB and their mycotoxins. Correlation studies demonstrate that consistent co-occurrence of mycotoxins is not to be neglected, and pinpoint issues for future surveillance and legislation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.

    Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. Themore » degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.« less

  19. Applicability of direct total reflection X-ray fluorescence analysis for selenium determination in solutions related to environmental and geochemical studies

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Floor, G. H.; Hidalgo, M.; Kregsamer, P.; Roman-Ross, G.; Streli, C.; Queralt, I.

    2010-12-01

    A significant amount of environmental studies related to selenium determination in different environmental compartments have been published in the last years due to the narrow range between the Se nutritious requirement as essential element and toxic effects upon exposure. However, the direct analysis of complex liquid samples like natural waters and extraction solutions presents significant problems related to the low Se concentrations and the complicated matrix of this type of samples. The goal of the present research was to study the applicability of direct TXRF analysis of different type of solutions commonly used in environmental and geochemical studies, confirm the absence or presence of matrix effects and evaluate the limits of detection and accuracy for Se determination in the different matrices. Good analytical results were obtained for the direct analysis of ground and rain water samples with limits of detection for Se two orders of magnitude lower than the permissible Se concentration in drinking waters ([Se] = 10 μg/L) according to the WHO. However, the Se detection limits for more complex liquid samples such as thermal waters and extraction solutions were in the μg/L range due to the presence of high contents of other elements present in the matrix (i.e., Br, Fe, Zn) or the high background of the TXRF spectrum that hamper the Se determination at trace levels. Our results give insight into the possibilities and drawbacks of direct TXRF analysis and to a certain extent the potential applications in the environmental and geochemical field.

  20. A core-shell column approach to a comprehensive high-performance liquid chromatography phenolic analysis of Vitis vinifera L. and interspecific hybrid grape juices, wines, and other matrices following either solid phase extraction or direct injection.

    PubMed

    Manns, David C; Mansfield, Anna Katharine

    2012-08-17

    Four high-throughput reverse-phase chromatographic protocols utilizing two different core-shell column chemistries have been developed to analyze the phenolic profiles of complex matrices, specifically targeting juices and wines produced from interspecific hybrid grape cultivars. Following pre-fractionation via solid-phase extraction or direct injection, individual protocols were designed to resolve, identify and quantify specific chemical classes of compounds including non-anthocyanin monomeric phenolics, condensed tannins following acid hydrolysis, and anthocyanins. Detection levels ranging from 1.2 ppb to 27.5 ppb, analyte %RSDs ranging from 0.04 to 0.38, and linear ranges of quantitation approaching five orders of magnitude were achieved using conventional HPLC instrumentation. Using C(18) column chemistry, the non-anthocyanin monomeric protocol effectively separated a set of 16 relevant phenolic compounds comprised flavan-3-ols, hydroxycinnamic acids, and flavonols in under 14 min. The same column was used to develop a 15-min protocol for hydrolyzed condensed tannin analysis. Two anthocyanin protocols are presented, one utilizing the same C(18) column, best suited for anthocyanidin and monoglucoside analysis, the other utilizing a pentafluorophenyl chemistry optimized to effectively separate complex mixtures of coexisting mono- and diglucoside anthocyanins. These protocols and column chemistries have been used initially to explore a wide variety of complex phenolic matrices, including red and white juices and wines produced from Vitis vinifera and interspecific hybrid grape cultivars, juices, teas, and plant extracts. Each protocol displayed robust matrix responses as written, yet are flexible enough to be easily modified to suit specifically tailored analytical requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices--influence of agitation rate and dissolution medium composition.

    PubMed

    Kavanagh, Nicole; Corrigan, Owen I

    2004-07-26

    The effect of dissolution medium variables, such as medium composition, ionic strength and agitation rate, on the swelling and erosion of Hypromellose (hydroxypropylmethylcellulose, HPMC) matrices of different molecular weights was examined. Swelling and erosion of HPMC polymers was determined by measuring the wet and subsequent dry weights of matrices. It was possible to describe the rate of dissolution medium uptake in terms of a square root relationship and the erosion of the polymer in terms of the cube root law. The extent of swelling increased with increasing molecular weight, and decreased with increasing agitation rate. The erosion rate was seen to increase with decrease in polymer molecular weight, with a decrease in ionic strength and with increasing agitation rate. The sensitivity of polymer erosion to the degree of agitation may influence the ability of these polymers to give reproducible, agitation-independent release, compared to more rigid non-eroding matrix materials, in the complex hydrodynamic environment of the gastrointestinal tract.

  2. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  3. An efficient solver for large structured eigenvalue problems in relativistic quantum chemistry

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru

    2017-01-01

    We report an efficient program for computing the eigenvalues and symmetry-adapted eigenvectors of very large quaternionic (or Hermitian skew-Hamiltonian) matrices, using which structure-preserving diagonalisation of matrices of dimension N > 10, 000 is now routine on a single computer node. Such matrices appear frequently in relativistic quantum chemistry owing to the time-reversal symmetry. The implementation is based on a blocked version of the Paige-Van Loan algorithm, which allows us to use the Level 3 BLAS subroutines for most of the computations. Taking advantage of the symmetry, the program is faster by up to a factor of 2 than state-of-the-art implementations of complex Hermitian diagonalisation; diagonalising a 12, 800 × 12, 800 matrix took 42.8 (9.5) and 85.6 (12.6) minutes with 1 CPU core (16 CPU cores) using our symmetry-adapted solver and Intel Math Kernel Library's ZHEEV that is not structure-preserving, respectively. The source code is publicly available under the FreeBSD licence.

  4. Testing for nandrolone metabolites in urine samples of professional athletes and sedentary subjects by GC/MS/MS analysis.

    PubMed

    Gambelunghe, Cristiana; Sommavilla, Marco; Rossi, Ruggero

    2002-12-01

    The concentrations of nandrolone metabolites, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) were analysed in urine samples of professional athletes doing intense physical activity and sedentary subjects to verify if there was endogenous production of nandrolone and if there was any link between physical effort and the urinary metabolites of the steroid. We collected 18 urine samples from professional footballers age range 20-30 years, all from the same team, and 18 urine samples from males not doing any physical activity, age range 20-30 years. Neither group used nandrolone. Qualitative and quantitative analyses of urinary nandrolone metabolites were carried out by GC/MS followed by GC/MS/MS to confirm positive samples. This technique has been demonstrated to be an excellent analytical approach for the determination of anabolic steroids at very low detection limits in complex matrices such as urine. In five urine samples from professional footballers traces of 19-NA were detected. No trace of 19-NA was found in the group of sedentary subjects and no trace of 19-NE was found in any urine sample. The absence of nandrolone metabolites in sedentary subjects supports the hypothesis that the presence of 19-NA and 19-NE could be linked to physical effort even though the origin is not yet clear. Copyright 2002 John Wiley & Sons, Ltd.

  5. Determination of chromium (VI) in primary and secondary fertilizer and their respective precursors.

    PubMed

    Krüger, Oliver; Fiedler, Francesca; Adam, Christian; Vogel, Christian; Senz, Rainer

    2017-09-01

    Hexavalent chromium species (Cr(VI)) are often carcinogenic, of high acute toxicity, highly mobile, and thus pose a severe risk to health and environment. Fertilizers usually contain significant amounts of chromium. Therefore, a reliable analysis of chromium and the fraction of Cr(VI) are crucial for safe use of fertilizers. This problem is expected to increase in the future, since more and more recycled fertilizers emerge due to increasing fertilizer demand and respective supply risks. However, existing analytical methods have been developed for conventional fertilizers and have to be tested whether they are suitable for the new materials. Thus, we performed a wet-chemical extraction for Cr(VI) on several matrices as well as respective quality control experiments including spiking with Cr(III) and Cr(VI) compounds. We found the Cr(VI) amounts to be below 2 mg/kg except for a thermally post-treated sewage sludge ash (SSA) that showed 12.3 mg/kg. The presence of organic matter e.g. in sludge or precipitated struvite caused a reduction of spiked Cr(VI) and thus no satisfying recovery for quality control. Cr(VI) reduction was also observed for SSA, presumably due to the presence of Fe(II) compounds. Even though the tested procedure can be hampered in some recycled fertilizer matrices, it might be adapted to be applicable also for these complex samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Screening of a Combinatorial Library of Organic Polymers for the Solid-Phase Extraction of Patulin from Apple Juice

    PubMed Central

    Giovannoli, Cristina; Spano, Giulia; Di Nardo, Fabio; Anfossi, Laura; Baggiani, Claudio

    2017-01-01

    Patulin is a water-soluble mycotoxin produced by several species of fungi. Governmental bodies have placed it under scrutiny for its potential negative health effects, and maximum residue limits are fixed in specific food matrices to protect consumers’ health. Confirmatory analysis of patulin in complex food matrices can be a difficult task, and sample clean-up treatments are frequently necessary before instrumental analyses. With the aim of simplifying the clean-up step, we prepared a 256-member combinatorial polymeric library based on 16 functional monomers, four cross-linkers and four different porogenic solvents. The library was screened for the binding towards patulin in different media (acetonitrile and citrate buffer at pH 3.2), with the goal of identifying polymer formulations with good binding properties towards the target compound. As a proof of concept, a methacrylic acid-co-pentaerithrytole tetraacrylate polymer prepared in chloroform was successfully used as a solid-phase extraction material for the clean-up and extraction of patulin from apple juice. Clean chromatographic patterns and acceptable recoveries were obtained for juice spiked with patulin at concentration levels of 25 (64 ± 12%), 50 (83 ± 5.6%) and 100 μg L−1 (76 ± 4.5%). The within-day and between-day reproducibility evaluated at a concentration level of 25 μg L−1 were 5.6 and 7.6%, respectively. PMID:28531103

  7. IDENTIFICATION OF DIMETHYLTHIOARSINIC ACID BY ICP-MS AND IC-ESI-MS/MS IN RICE SAMPLES

    EPA Science Inventory

    Recently, sulfur analogs of well known arsenicals have been identified in biological and dietary matrices. In this presentation, the detection and identification of dimethylthioarsinic acid (DMTA) will be reported in rice samples after an enzymatic extraction. The enzymatic ext...

  8. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  9. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues.

    PubMed

    Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M Laird

    2016-09-01

    Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85-115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze-thaw and for up to three months. © The Author(s) 2016.

  10. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues

    PubMed Central

    Zhang, Ti; Cai, Shuang; Forrest, Wai Chee; Mohr, Eva; Yang, Qiuhong; Forrest, M. Laird

    2016-01-01

    Cisplatin, a platinum chemotherapeutic, is one of the most commonly used chemotherapeutic agents for many solid tumors. In this work, we developed and validated an inductively coupled plasma mass spectrometry (ICP-MS) method for quantitative determination of platinum levels in rat urine, plasma, and tissue matrices including liver, brain, lungs, kidney, muscle, heart, spleen, bladder, and lymph nodes. The tissues were processed using a microwave accelerated reaction system (MARS) system prior to analysis on an Agilent 7500 ICP-MS. According to the Food and Drug Administration guidance for industry, bioanalytical validation parameters of the method, such as selectivity, accuracy, precision, recovery, and stability were evaluated in rat biological samples. Our data suggested that the method was selective for platinum without interferences caused by other presenting elements, and the lower limit of quantification was 0.5 ppb. The accuracy and precision of the method were within 15% variation and the recoveries of platinum for all tissue matrices examined were determined to be 85–115% of the theoretical values. The stability of the platinum-containing solutions, including calibration standards, stock solutions, and processed samples in rat biological matrices was investigated. Results indicated that the samples were stable after three cycles of freeze–thaw and for up to three months. PMID:27527103

  11. Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization.

    PubMed

    Neng, N R; Cordeiro, C A A; Freire, A P; Nogueira, J M F

    2007-10-26

    Stir bar sorptive extraction with in-situ derivatization using 2,3-diaminonaphthalene (DAN) followed by liquid desorption and high performance liquid chromatography with diode array detection (SBSE(DAN)in-situ-LD-HPLC-DAD) was developed for the determination of glyoxal (Gly) and methylglyoxal (MGly) in environmental and biological matrices. DAN proved very good specificity as in-situ derivatising agent for Gly and MGly in aqueous media, allowing the formation of adducts with remarkable sensitivity, selectivity and the absence of photodegradation. Assays performed on spiked (1.0 microg L(-1)) water samples, under convenient experimental conditions, yielded recoveries of 96.2+/-7.9% for Gly and 96.1+/-6.4% for MGly. The analytical performance showed good accuracy, suitable precision (<12.0%), low detection limits (15 ng L(-1) for Gly and 25 ng L(-1) for MGly adducts) and excellent linear dynamic ranges (r2>0.99) from 0.1 to 120.0 microg L(-1). By using the standard addition method, the application of the present method to tap and swimming-pool water, beer, yeast cells suspension and urine samples allowed very good performance at the trace level. The proposed methodology proved to be a feasible alternative for routine quality control analysis, showing to be easy to implement, reliable, sensitive and with a low sample volume requirement to monitor Gly and MGly in environmental and biological matrices.

  12. Spectrophotometric versus NIR-MIR assessments of cowpea pods for discriminating the impact of freezing.

    PubMed

    Machado, Nelson; Domínguez-Perles, Raúl; Ramos, Ana; Rosa, Eduardo As; Barros, Ana Irna

    2017-10-01

    Freezing represents an important storage method for vegetal foodstuffs, such as cowpea pods, and thus the impact of this process on the chemical composition of these matrices arises as a prominent issue. In this sense, the phytochemical contents in frozen cowpea pods (i.e. at 6 and 9 months) have been compared with fresh cowpea pods material, with the samples being concomitantly assessed by Fourier-transform infrared spectroscopy (FTIR), both mid-infrared (MIR) and near infrared (NIR), aiming to evaluate the potential of these techniques as a rapid tool for the traceability of these matrices. A decrease in phytochemical contents during freezing was observed, allowing the classification of samples according to the freezing period based on such variations. Also, MIR and NIR allowed discrimination of samples: the use of the first derivative demonstrated a better performance for this purpose, whereas the use of the normalized spectra gave the best correlations between the spectra and specific contents. In both cases, NIR displayed the best performance. Freezing of cowpea pods leads to a decrease of phytochemical contents, which can be monitored by FTIR spectroscopy, both within the MIR and NIR ranges, whereas the use of this technique, in tandem with chemometrics, constitutes a suitable methodology for the traceability of these matrices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Neural complexity: A graph theoretic interpretation

    NASA Astrophysics Data System (ADS)

    Barnett, L.; Buckley, C. L.; Bullock, S.

    2011-04-01

    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end, Tononi [Proc. Natl. Acad. Sci. USA.PNASA60027-842410.1073/pnas.91.11.5033 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system’s dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns [Cereb. Cortex53OPAV1047-321110.1093/cercor/10.2.127 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.71.016114 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish a dependency of neural complexity on cyclic graph motifs.

  14. Determination of six sulfonamide antibiotics, two metabolites and trimethoprim in wastewater by isotope dilution liquid chromatography/tandem mass spectrometry.

    PubMed

    Le-Minh, Nhat; Stuetz, Richard M; Khan, Stuart J

    2012-01-30

    A highly sensitive method for the analysis of six sulfonamide antibiotics (sulfadiazine, sulfathiazole, sulfapyridine, sulfamerazine, sulfamethazine and sulfamethoxazole), two sulfonamide metabolites (N(4)-acetyl sulfamethazine and N(4)-acetyl sulfamethoxazole) and the commonly co-applied antibiotic trimethoprim was developed for the analysis of complex wastewater samples. The method involves solid phase extraction of filtered wastewater samples followed by liquid chromatography-tandem mass spectral detection. Method detection limits were shown to be matrix-dependent but ranged between 0.2 and 0.4 ng/mL for ultrapure water, 0.4 and 0.7 ng/mL for tap water, 1.4 and 5.9 ng/mL for a laboratory-scale membrane bioreactor (MBR) mixed liquor, 0.7 and 1.7 ng/mL for biologically treated effluent and 0.5 and 1.5 ng/g dry weight for MBR activated sludge. An investigation of analytical matrix effects was undertaken, demonstrating the significant and largely unpredictable nature of signal suppression observed for variably complex matrices compared to an ultrapure water matrix. The results demonstrate the importance of accounting for such matrix effects for accurate quantitation, as done in the presented method by isotope dilution. Comprehensive validation of calibration linearity, reproducibility, extraction recovery, limits of detection and quantification are also presented. Finally, wastewater samples from a variety of treatment stages in a full-scale wastewater treatment plant were analysed to illustrate the effectiveness of the method. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS.

    PubMed

    Wang, Qiang; Zhu, Lingyan; Chen, Meng; Ma, Xinxin; Wang, Xiaolei; Xia, Junchao

    2017-02-01

    Bisphenol analogues are a group of chemicals which are being widely applied in industrial and household products owing to regulations on bisphenol A (BPA) in many countries. In this study, an analytical method, including extraction from complex environmental matrices, clean-up using solid phase extraction (SPE) and following-up derivatization prior to gas chromatography coupled with mass spectrometry (GC-MS), was developed to analyze seven commonly used bisphenols in sediment. Five kinds of extraction solvents, four kinds of SPE cartridges, and four kinds of SPE eluting solvents were individually tested for their performances; and the conditions for derivatizing were also optimized. Finally, C 18 cartridge was determined as the SPE cartridge and methanol was selected as extracting and eluting solvent. Acetic anhydride (AA) was used as derivatizing agent and reaction took 20 min at room temperature. The method was used successfully to measure the seven bisphenol compounds in sediment samples from Taihu Lake, China. BPA, bisphenol F and bisphenol S were detected in all sediment samples, with concentrations in the range of 3.94-33.2; 0.503-3.28 and 0.323-27.3 ng g -1 dw. Other compounds were detected at low frequencies or not detected. We provided a convenient, reliable, and sensitive method to analyze bisphenol compounds in complex environmental samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Grass cell walls: A story of cross-linking

    USDA-ARS?s Scientific Manuscript database

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how the cell wall components are assembled into comple...

  17. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.

    PubMed

    Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir

    2011-01-01

    This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.

  18. Structure-performance relationships of phenyl cinnamic acid derivatives as MALDI-MS matrices for sulfatide detection.

    PubMed

    Tambe, Suparna; Blott, Henning; Fülöp, Annabelle; Spang, Nils; Flottmann, Dirk; Bräse, Stefan; Hopf, Carsten; Junker, Hans-Dieter

    2017-02-01

    A key aspect for the further development of matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (MS) is a better understanding of the working principles of MALDI matrices. To address this issue, a chemical compound library of 59 structurally related cinnamic acid derivatives was synthesized. Potential MALDI matrices were evaluated with sulfatides, a class of anionic lipids which are abundant in complex brain lipid mixtures. For each matrix relative mean S/N ratios of sulfatides were determined against 9-aminoacridine as a reference matrix using negative ion mass spectrometry with 355 and 337 nm laser systems. The comparison of matrix features with their corresponding relative mean S/N ratios for sulfatide detection identified correlations between matrix substitution patterns, their chemical functionality, and their MALDI-MS performance. Crystal structures of six selected matrices provided structural insight in hydrogen bond interactions in the solid state. Principal component analysis allowed the additional identification of correlation trends between structural and physical matrix properties like number of exchangeable protons at the head group, MW, logP, UV-Vis, and sulfatide detection sensitivity. Graphical abstract Design, synthesis and mass spectrometric evaluation of MALDI-MS matrix compound libraries allows the identification of matrix structure - MALDI-MS performance relationships using multivariate statistics as a tool.

  19. TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES

    PubMed Central

    Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn

    2017-01-01

    Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene “relationship” matrices that are of practical interest, such as the weighted adjacency matrices. PMID:29081874

  20. TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES.

    PubMed

    Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn

    2017-09-01

    Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene "relationship" matrices that are of practical interest, such as the weighted adjacency matrices.

Top