Sample records for complex scaled absorbing

  1. Metastable Autoionizing States of Molecules and Radicals in Highly Energetic Environment

    DTIC Science & Technology

    2016-03-22

    electronic states. The specific aims are to develop and calibrate complex-scaled equation-of-motion coupled cluster (cs-EOM- CC ) and CAP (complex...absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and CAP- augmented EOM-CCSD methods for excitation energies...motion coupled cluster (cs-EOM- CC ) and CAP (complex absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaiman, Shachar; Gilary, Ido; Moiseyev, Nimrod

    Analytical expressions for the resonances of the long-range potential (LRP), V(r)=a/r-b/r{sup 2}, as a function of the Hamiltonian parameters were derived by Doolen a long time ago [Int. J. Quant. Chem. 14, 523 (1979)]. Here we show that converged numerical results are obtained by applying the shifted complex scaling and the smooth-exterior scaling (SES) methods rather than the usual complex coordinate method (i.e., complex scaling). The narrow and broad shape-type resonances are shown to be localized inside or over the potential barrier and not inside the potential well. Therefore, the resonances for Doolen LRP's are not associated with the tunnelingmore » through the potential barrier as one might expect. The fact that the SES provides a universal reflection-free absorbing potential is, in particular, important in view of future applications. In particular, it is most convenient to calculate the molecular autoionizing resonances by adding one-electron complex absorbing potentials into the codes of the available quantum molecular electronic packages.« less

  3. Absorbing boundaries in numerical solutions of the time-dependent Schroedinger equation on a grid using exterior complex scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, F.; Ruiz, C.; Becker, A.

    We study the suppression of reflections in the numerical simulation of the time-dependent Schroedinger equation for strong-field problems on a grid using exterior complex scaling (ECS) as an absorbing boundary condition. It is shown that the ECS method can be applied in both the length and the velocity gauge as long as appropriate approximations are applied in the ECS transformation of the electron-field coupling. It is found that the ECS method improves the suppression of reflection as compared to the conventional masking function technique in typical simulations of atoms exposed to an intense laser pulse. Finally, we demonstrate the advantagemore » of the ECS technique to avoid unphysical artifacts in the evaluation of high harmonic spectra.« less

  4. Coupled-rearrangement-channels calculation of the three-body system under the absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Iwasaki, M.; Otani, R.; Ito, M.; Kamimura, M.

    2016-05-01

    We formulate the method of the absorbing boundary condition (ABC) in the coupled-rearrangement-channels variational method (CRCMV) for the three-body problem. In the present study, we handle the simple three-boson system, and the absorbing potential is introduced in the Jacobi coordinate in the individual rearrangement channels. The resonance parameters and the strength of the monopole breakup are compared with the complex scaling method (CSM). We have found that the CRCVM + ABC method nicely works in the threebody problem with the rearrangement channels.

  5. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems.

    PubMed

    Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John

    2015-08-15

    Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  7. Hybrid method (JM-ECS) combining the J-matrix and exterior complex scaling methods for scattering calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanroose, W.; Broeckhove, J.; Arickx, F.

    The paper proposes a hybrid method for calculating scattering processes. It combines the J-matrix method with exterior complex scaling and an absorbing boundary condition. The wave function is represented as a finite sum of oscillator eigenstates in the inner region, and it is discretized on a grid in the outer region. The method is validated for a one- and a two-dimensional model with partial wave equations and a calculation of p-shell nuclear scattering with semirealistic interactions.

  8. Coupled-rearrangement-channels calculation of the three-body system under the absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Iwasaki, M.; Otani, R.; Ito, M.; Kamimura, M.

    2016-06-01

    We formulate the absorbing boundary condition (ABC) in the coupled rearrangement-channels variational method (CRCVM) for the three-body problem. The absorbing potential is introduced in the system of the identical three-bosons, on which the boson symmetry is explicitly imposed by considering the rearrangement channels. The resonance parameters and the strength of the monopole breakup are calculated by the CRCVM + ABC method, and the results are compared with the complex scaling method (CSM). We have found that the results of the ABC method are consistent with the CSM results. The effect of the boson symmetry, which is often neglected in the calculation of the triple α reactions, is also discussed.

  9. Study on the millimeter-wave scale absorber based on the Salisbury screen

    NASA Astrophysics Data System (ADS)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  10. Modeling Composite Laminate Crushing for Crash Analysis

    NASA Technical Reports Server (NTRS)

    Fleming, David C.; Jones, Lisa (Technical Monitor)

    2002-01-01

    Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.

  11. Wide band design on the scaled absorbing material filled with flaky CIPs

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  12. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon carbide monolithic honeycomb, conducted at realistic conditions of incident radiative power per unit mass flow rate in order to validate its operation.

  13. A class of hybrid finite element methods for electromagnetics: A review

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  14. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, R.W.

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where itmore » can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.« less

  15. An optimized absorbing potential for ultrafast, strong-field problems

    NASA Astrophysics Data System (ADS)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  16. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  17. Reflection and Refraction of Light in Absorbing Media

    NASA Astrophysics Data System (ADS)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  18. Deployable System for Crash-Load Attenuation

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.

    2007-01-01

    An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.

  19. A Suzaku, NuSTAR and XMMNewton} view on variable absorption and relativistic reflection in NGC 4151

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A.; Dauser, T.; Garcia, J.; Keck, M.; Wilms, J.; Kadler, M.; Brenneman, L.; Zdziarski, A.

    2017-10-01

    We disentangle X-ray disk reflection from complex line-of-sight absorption in NGC 4151 using Suzaku, NuSTAR, and XMMNewton}. Extending upon Keck et al. (2015), we develop a physically-motivated baseline model using the latest lamp-post reflection code relxillCp_lp, which includes a Comptonization continuum. We identify two components at heights of 1.2 and 15.0 gravitational radii using a long-look simultaneous Suzaku/NuSTAR observation but argue for a vertically extended corona as opposed to distinct primary sources. We also find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (log ξ=2.8), and a highly-ionized ultra-fast outflow, all reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability on time-scales from days to years can be attributed to changes of both neutral absorbers, which are inversely correlated with the hard X-ray continuum flux. The observed evolution is either consistent with changes in the absorber structure (clumpy absorber in the outer BLR or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas, which may act as a warm mirror for the nuclear radiation.

  20. Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041

    NASA Technical Reports Server (NTRS)

    Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.

    2011-01-01

    Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.

  1. Application of the Extended Completeness Relation to the Absorbing Boundary Condition

    NASA Astrophysics Data System (ADS)

    Iwasaki, Masataka; Otani, Reiji; Ito, Makoto

    The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum are also analyzed according to the decomposition of the energy levels in the extended completeness relation.

  2. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  3. Large-scale broadband absorber based on metallic tungsten nanocone structure

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxing; Liang, Yuzhang; Huo, Pengcheng; Wang, Daopeng; Tan, Jun; Xu, Ting

    2017-12-01

    We report a broadband tungsten absorber based on a nanocone metallic resonant structure fabricated by self-assembly nanosphere lithography. In experimental demonstration, the fabricated absorber has more than 90% average absorption efficiency and shows superior angular tolerance in the entire visible and near-infrared spectral region. We envision that this large-scale nanostructured broadband optical absorber would find great potential in the applications of high performance optoelectronic platforms and solar-thermal energy harvesting systems.

  4. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  5. Scattering of particles in the presence of harmonic confinement perturbed by a complex absorbing potential

    NASA Astrophysics Data System (ADS)

    Maghari, A.; Kermani, M. M.

    2018-04-01

    A system of two interacting atoms confined in 1D harmonic trap and perturbed by an absorbing boundary potential is studied using the Lippmann-Schwinger formalism. The atom-atom interaction potential was considered as a nonlocal separable model. The perturbed absorbing boundary potential was also assumed in the form of Scarf II complex absorbing potential. The model is used for the study of 1D optical lattices that support the trapping of a pair atom within a unit cell. Moreover, it allows to describe the scattering particles in a tight smooth trapping surface and to analyze the bound and resonance states. The analytical expressions for wavefunctions and transition matrix as well as the absorption probabilities are calculated. A demonstration of how the complex absorbing potential affecting the bound states and resonances of particles confined in a harmonic trap is described.

  6. Use of Antibiotic-Impregnated Absorbable Beads and Tissue Coverage of Complex Wounds.

    PubMed

    White, Terris L; Culliford, Alfred T; Zomaya, Martin; Freed, Gary; Demas, Christopher P

    2016-11-01

    The treatment of complex wounds is commonplace for plastic surgeons. Standard management is debridement of infected and devitalized tissue and systemic antibiotic therapy. In cases where vital structures are exposed within the wound, coverage is obtained with the use of vascularized tissue using both muscle and fasciocutaneous flaps. The use of nondissolving polymethylmethacrylate and absorbable antibiotic-impregnated beads has been shown to deliver high concentrations of antibiotics with low systemic levels of the same antibiotic. We present a multicenter retrospective review of all cases that used absorbable antibiotic-impregnated beads for complex wound management from 2003 to 2013. A total of 104 cases were investigated, flap coverage was used in 97 cases (93.3%). Overall, 15 patients (14.4%) required reoperation with the highest groups involving orthopedic wounds and sternal wounds. The advantages of using absorbable antibiotic-impregnated beads in complex infected wounds have been demonstrated with minimal disadvantages. The utilization of these beads is expanding to a variety of complex infectious wounds requiring high concentrations of local antibiotics.

  7. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-06

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol.

  8. Characterization of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.

    1990-01-01

    Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.

  9. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    NASA Astrophysics Data System (ADS)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  10. DNA binding of supramolecular mixed-metal complexes

    NASA Astrophysics Data System (ADS)

    Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.

    2001-10-01

    The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.

  11. Subparsec-scale structure and evolution of Centaurus A (NGC5128).

    PubMed Central

    Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L

    1995-01-01

    We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet. PMID:11607599

  12. Subparsec-scale structure and evolution of Centaurus A (NGC5128).

    PubMed

    Jauncey, D L; Tingay, S J; Preston, R A; Reynolds, J E; Lovell, J E; McCulloch, P M; Tzioumis, A K; Costa, M E; Murphy, D W; Meier, D L; Jones, D L; Amy, S W; Biggs, J D; Blair, D G; Clay, R W; Edwards, P G; Ellingsen, S P; Ferris, R H; Gough, R G; Harbison, P; Jones, P A; King, E A; Kemball, A J; Migenes, V; Nicolson, G D; Sinclair, M W; Van Ommen, T; Wark, R M; White, G L

    1995-12-05

    We present a series of 8.4-GHz very-long-baseline radio interferometry images of the nucleus of Centaurus A (NGC5128) made with a Southern Hemisphere array, representing a 3.3-year monitoring effort. The nuclear radio jet is approximately 50 milliarcseconds in extent, or at the 3.5-megaparsec distance of NGC5128, approximately 1 parsec in length. Subluminal motion is seen and structural changes are observed on time scales shorter than 4 months. High-resolution observations at 4.8 and 8.4 GHz made in November 1992 reveal a complex morphology and allow us to unambiguously identify the self-absorbed core located at the southwestern end of the jet.

  13. IslandFAST: A Semi-numerical Tool for Simulating the Late Epoch of Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yidong; Chen, Xuelei; Yue, Bin

    2017-08-01

    We present the algorithm and main results of our semi-numerical simulation, islandFAST, which was developed from 21cmFAST and designed for the late stage of reionization. The islandFAST simulation predicts the evolution and size distribution of the large-scale underdense neutral regions (neutral islands), and we find that the late Epoch of Reionization proceeds very fast, showing a characteristic scale of the neutral islands at each redshift. Using islandFAST, we compare the impact of two types of absorption systems, i.e., the large-scale underdense neutral islands versus small-scale overdense absorbers, in regulating the reionization process. The neutral islands dominate the morphology of themore » ionization field, while the small-scale absorbers dominate the mean-free path of ionizing photons, and also delay and prolong the reionization process. With our semi-numerical simulation, the evolution of the ionizing background can be derived self-consistently given a model for the small absorbers. The hydrogen ionization rate of the ionizing background is reduced by an order of magnitude in the presence of dense absorbers.« less

  14. Extending Quantum Chemistry of Bound States to Electronic Resonances

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.

    2017-05-01

    Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

  15. Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Cai, Jun; Zhang, Deyuan

    2013-10-01

    A smart absorbing composite was prepared by mixing silicone rubber, multi-walled carbon nanotubes (MWCNTs) and flaky carbonyl iron particles (CIPs) in a two-roll mixer. The complex permittivity and permeability of composites with variable compression strain was measured by the transmission method and dc electric conductivity was measured by the standard four-point contact method, then the reflection loss (RL) could be calculated to evaluate the microwave absorbing ability. The results showed that the applied compression strain made the complex permittivity decrease but not obviously due to the broken original conductive network. The enforcement of the strain on the complex permeability was attributed to the orientation of flaky CIPs. With the compressing strain applied on the composites with thickness 1 mm or 1.5 mm, the RL value decreased (minimum -13.2 dB and -25.1 dB) and the absorbing band (RL<-10 dB) was widened (5.2-10.6 GHz and 4.0-8.4 GHz). While as the composite thickness decreased caused by the compression strain, the RL value still decreased (minimum -12.4 dB and -18.6 dB) and the absorbing band was also broadened (6.5-10.7 GHz and 4.4-10.0 GHz). Thus the smart absorbing property was effective on preparing absorbers with wide absorption band and high absorption ratio.

  16. Detection and characterization of uranium-humic complexes during 1D transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesher, Emily K.; Honeyman, Bruce D.; Ranville, James F.

    2013-05-01

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity andmore » residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.« less

  17. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. One-step volumetric additive manufacturing of complex polymer structures

    PubMed Central

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; Henriksson, Johannes; Weisgraber, Todd H.; Panas, Robert M.; Fang, Nicholas X.; Spadaccini, Christopher M.

    2017-01-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s. PMID:29230437

  19. One-step volumetric additive manufacturing of complex polymer structures.

    PubMed

    Shusteff, Maxim; Browar, Allison E M; Kelly, Brett E; Henriksson, Johannes; Weisgraber, Todd H; Panas, Robert M; Fang, Nicholas X; Spadaccini, Christopher M

    2017-12-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s.

  20. Dynamics of tax evasion through an epidemic-like model

    NASA Astrophysics Data System (ADS)

    Brum, Rafael M.; Crokidakis, Nuno

    In this work, we study a model of tax evasion. We considered a fixed population divided in three compartments, namely honest tax payers, tax evaders and a third class between the mentioned two, which we call susceptibles to become evaders. The transitions among those compartments are ruled by probabilities, similarly to a model of epidemic spreading. These probabilities model social interactions among the individuals, as well as the government’s fiscalization. We simulate the model on fully-connected graphs, as well as on scale-free and random complex networks. For the fully-connected and random graph cases, we observe that the emergence of tax evaders in the population is associated with an active-absorbing nonequilibrium phase transition, that is absent in scale-free networks.

  1. Design and Development of Variable-Load Energy Absorbers

    DTIC Science & Technology

    1981-06-16

    Three concepts were developed and/or tested: a wire - bending mechanism, a tube-constricting mechanism, and a hydraulic energy absorber. Preliminary full...scale working models of the wire - bending mechanism and the tube-constricting mechanisms were built and tested. The hydraulic energy absorber was

  2. Computation of scattering matrix elements of large and complex shaped absorbing particles with multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang

    2015-05-01

    Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.

  3. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  4. The magnetorheological fluid of carbonyl iron suspension blended with grafted MWCNT or graphene

    NASA Astrophysics Data System (ADS)

    Rwei, Syang-Peng; Ranganathan, Palraj; Chiang, Whe-Yi; Wang, Tza-Yi

    2017-12-01

    In this work, the magnetorheological (MR) fluids containing MWCNT/CI (carbonyl iron) complex and graphene/CI complex were prepared and have the better dispersity in silicone oil than CI powders alone. 1, 4-Aminobenzoic acid (PABA) was used as a grafting agent to modify CI powders to have NH2-end-group so that such nanoparticles can adsorb to acid-treated MWCNT or graphene via attraction of NH2 and COOH groups. The MWCNT/CI complex and graphene/CI complex have a structure of carbonyl iron nanoparticles adsorbed to MWCNT and graphene by self assembly, respectively. Because the carbonyl iron particles possessing magnetic permeability in nanometer scale adsorb to MWCNT or graphene which usually has a nanometer-scaled diameter and a micrometer-scaled length in this work, the dispersity of MWCNT/CI or graphene/CI complex in silicone oil is superior than the previous report [15] that the micrometer-scaled carbonyl iron microspheres were coated with multiwalled carbon nanotubes. Among CI (unmodified), MWCNT/CI and graphene/CI, graphene/CI has the best dispersity while MWCNT/CI still has the better dispersity than unmodified CI. At the temperature T = 300 K, the saturation magnetizations of CI, MWCNT/CI, graphene/CI are 208, 211 emu/g, and 204 emu/g, respectively, indicating that MWCNT/CI complex and graphene/CI complex still maintain the saturation magnetization as high as CI without being interfered by the blended MWCNT or graphene. A wide dynamic range of the yield stress adjusted through varying the electric current can be achieved by the MR fluids containing 69 wt% MWCNT/CI and graphene/CI which is useful in a shock absorber or damper. The result of the yield stress indicates the suspended MWCNT/CI particles are oriented more easily toward the direction perpendicular to the flow direction to block the flow stream lines.

  5. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE PAGES

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  6. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    PubMed

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  7. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  8. Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films.

    PubMed

    Li, Jinsong; Lu, Weibang; Suhr, Jonghwan; Chen, Hang; Xiao, John Q; Chou, Tsu-Wei

    2017-05-24

    Graphene has sparked extensive research interest for its excellent physical properties and its unique potential for application in absorption of electromagnetic waves. However, the processing of stable large-scale graphene and magnetic particles on a micrometer-thick conductive support is a formidable challenge for achieving high reflection loss and impedance matching between the absorber and free space. Herein, a novel and simple approach for the processing of a CNT film-Fe 3 O 4 -large scale graphene composite is studied. The Fe 3 O 4 particles with size in the range of 20-200 nm are uniformly aligned along the axial direction of the CNTs. The composite exhibits exceptionally high wave absorption capacity even at a very low thickness. Minimum reflection loss of -44.7 dB and absorbing bandwidth of 4.7 GHz at -10 dB are achieved in composites with one-layer graphene in six-layer CNT film-Fe 3 O 4 prepared from 0.04 M FeCl 3 . Microstructural and theoretical studies of the wave-absorbing mechanism reveal a unique Debye dipolar relaxation with an Eddy current effect in the absorbing bandwidth.

  9. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model

    NASA Astrophysics Data System (ADS)

    Villoing, Daphnée; Marcatili, Sara; Garcia, Marie-Paule; Bardiès, Manuel

    2017-03-01

    The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.

  10. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  11. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    PubMed

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  12. Implications of effluent organic matter and its hydrophilic fraction on zinc(II) complexation in rivers under strong urban pressure: aromaticity as an inaccurate indicator of DOM-metal binding.

    PubMed

    Louis, Yoann; Pernet-Coudrier, Benoît; Varrault, Gilles

    2014-08-15

    The zinc binding characteristics of dissolved organic matter (DOM) fractions from the Seine River Basin were studied after being separated and extracted according to their polarity: hydrophobic, transphilic, and hydrophilic. The applied experimental methodology was based on a determination of labile zinc species by means of differential pulse anodic stripping voltammetry (DPASV) at increasing concentrations of total zinc on a logarithmic scale and at fixed levels of: pH, ionic strength, and temperature. Fitting the DOM fractions with two discrete classes of ligands successfully allowed determining the conditional zinc binding constants (Ki) as well as total ligand density (LiT). The binding constants obtained for each DOM fraction were then compared and discussed with respect to the hydrophobic/hydrophilic nature and sample origin. Results highlighted a strong complexation of zinc to the effluent organic matter and especially the most hydrophilic fraction, which also displayed a very low specific UV absorbance. Although the biotic ligand model takes into account the quality of DOM through UV absorbance in the predictions of metal bioavailability and toxicity, this correction is not efficient for urban waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  14. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  15. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    PubMed

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH < 5.4, the absorbance values of mixtures of sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  16. Spectrophotometric study of the thorium-morin mixed-color system

    USGS Publications Warehouse

    Fletcher, M.H.; Milkey, R.G.

    1956-01-01

    A spectrophotometric study was made of the thoriummorin reaction to evaluate the suitability of morin as a reagent for the determination of trace amounts of thorium. At pH 2, the equilibrium constant for the reaction is 1 ?? 106, and a single complex having a thorium-morin ratio of 1 to 2 is formed. The complex shows maximum absorbance at a wave length of 410 m??, and its absorbance obeys Beer's law. The absorbance readings are highly reproducible, and the sensitivity is relatively high, an absorbance difference of 0.001 being equivalent to 0.007 ?? of ThO2 per sq. cm. The effects of acid, alcohol, and morin concentration, time, temperature, and age of the morin reagent as well as the behavior of morin with zirconium(IV), iron(III), aluminum(III), ytterbium(III), yttrium(III), uranium(VI), praseodymium(III), lead(II), lanthanum(III), and calcium(II) ions are discussed. A method is presented for the determination of thorium in pure solutions. Appropriate separations for the isolation of thorium may extend the usefulness of the method and permit the determination of trace amounts of thorium in complex materials.

  17. Point-particle method to compute diffusion-limited cellular uptake.

    PubMed

    Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  18. Flower-like BiOI microsphere/Ni@C nanocapsule hybrid composites and their efficient microwave absorbing activity

    NASA Astrophysics Data System (ADS)

    Liu, Xianguo; Yu, Jieyi; Cui, Caiyun; Sun, Yuping; Li, Xiaolong; Li, Zhenxing

    2018-07-01

    At present, microwave absorbers are prepared by dispersing absorbing nanomaterials in a binder, which can lead to the aggregation of nanomaterials in the binder and further affect the optimization of the absorption performances. Hybrid micro/nano-scale structures are beneficial for buffering agglomeration phenomena and the construction of multiple interfaces. Here, Ni@C nanocapsules are conjugated onto flower-like BiOI microspheres, forming micro/nano-scale hybrid composites. The multiple interfaces between BiOI microspheres and Ni@C nanocapsules can bring enhanced dielectric loss and increased attenuation constant, resulting in the enhancement of absorption capacity (the optimal reflection loss reaches  ‑61.35 dB), increased width of the effective absorption band (the maximum effective bandwidth, f Emax , is 5.86 GHz) and the reduction of absorption thickness (the thickness corresponding to f Emax is 1.7 mm). This study highlights a simple idea for the optimization of electromagnetic absorbing performance, which is of great significance in the development of microwave absorbers.

  19. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.

    2016-09-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  20. Composition for detecting uranyl

    DOEpatents

    Baylor, Lewis C.; Stephens, Susan M.

    1995-01-01

    A composition for detecting the presence and concentration of a substance such as uranyl, comprising an organohalide covalently bonded to an indicator for said substance. The composition has at least one active OH site for forming a complex with the substance to be detected. The composition is made by reacting equimolar amounts of the indicator and the organohalide in a polar organic solvent. The absorbance spectrum of the composition-uranyl complex is shifted with respect to the absorbance spectrum of the indicator-uranyl complex, to provide better spectral resolution for detecting uranyl.

  1. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    NASA Astrophysics Data System (ADS)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  2. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers.

    PubMed

    Siddique, Radwanul H; Donie, Yidenekachew J; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-10-01

    The wings of the black butterfly, Pachliopta aristolochiae , are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.

  3. Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers

    PubMed Central

    Siddique, Radwanul H.; Donie, Yidenekachew J.; Gomard, Guillaume; Yalamanchili, Sisir; Merdzhanova, Tsvetelina; Lemmer, Uli; Hölscher, Hendrik

    2017-01-01

    The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells. PMID:29057320

  4. Time scale variation of NV resonance line profiles of HD203064

    NASA Astrophysics Data System (ADS)

    Strantzalis, A.

    2012-01-01

    Hot emission star, such as Be and Oe, present many spectral lines with very complex and peculiar profiles. Therefore, we cannot find a classical distribution to fit theoretically those physical line profiles. So, many physical parameters of the regions, where spectral lines are created, are difficult to estimate. Here, in this poster paper we study the UV NV (λλ 1238.821, 1242.804 A) resonance lines of the Be star HD203064 at three different dates. We using the Gauss-Rotation model, that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs). Our purpose is to calculate the values of a group of physical parameters as the apparent rotational, radial, and random velocities of the thermal motions of the ions. Also the Full Width at Half Maximum (FWHM) and the column density, as well as the absorbed energy of the independent regions of matter, which produce the main and the satellite components of the studied spectral lines. In addition, we determine the time scale variations of the above physical parameters.

  5. Implementation of the infinite-range exterior complex scaling to the time-dependent complete-active-space self-consistent-field method

    NASA Astrophysics Data System (ADS)

    Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.

    2018-02-01

    We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.

  6. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  7. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.

    2017-01-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  8. Relaxed fault-tolerant hardware implementation of neural networks in the presence of multiple transient errors.

    PubMed

    Mahdiani, Hamid Reza; Fakhraie, Sied Mehdi; Lucas, Caro

    2012-08-01

    Reliability should be identified as the most important challenge in future nano-scale very large scale integration (VLSI) implementation technologies for the development of complex integrated systems. Normally, fault tolerance (FT) in a conventional system is achieved by increasing its redundancy, which also implies higher implementation costs and lower performance that sometimes makes it even infeasible. In contrast to custom approaches, a new class of applications is categorized in this paper, which is inherently capable of absorbing some degrees of vulnerability and providing FT based on their natural properties. Neural networks are good indicators of imprecision-tolerant applications. We have also proposed a new class of FT techniques called relaxed fault-tolerant (RFT) techniques which are developed for VLSI implementation of imprecision-tolerant applications. The main advantage of RFT techniques with respect to traditional FT solutions is that they exploit inherent FT of different applications to reduce their implementation costs while improving their performance. To show the applicability as well as the efficiency of the RFT method, the experimental results for implementation of a face-recognition computationally intensive neural network and its corresponding RFT realization are presented in this paper. The results demonstrate promising higher performance of artificial neural network VLSI solutions for complex applications in faulty nano-scale implementation environments.

  9. The role of different network modifying cations on the speciation of the Co2 + complex in silicates and implication in the investigation of historical glasses

    NASA Astrophysics Data System (ADS)

    Fornacelli, Cristina; Ceglia, Andrea; Bracci, Susanna; Vilarigues, Marcia

    2018-01-01

    In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co2 + ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na2O-CaO-SiO2) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530 nm region interact to determine the resulting absorbance spectrum.

  10. Realizing thin electromagnetic absorbers for wide incidence angles from commercially available planar circuit materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, Brian B; Whites, Kieth W; Radway, Matthew J

    2009-01-01

    In this study, recent work on engineering R-card surface resistivity with printed metallic patterns is extended to the design of thin electromagnetic absorbers. Thin electromagnetic absorbers for wide incidence angles and both polarizations have recently been computationally verified by Luukkonen et al.. These absorbers are analytically modeled high-impedance surfaces with capacitive arrays of square patches implemented with relatively high dielectric constant and high loss substrate. However, the advantages provided by the accurate analytical model are largely negated by the need to obtain high dielectric constant material with accurately engineered loss. Fig. I(c) illustrates full-wave computational results for an absorber withoutmore » vias engineered as proposed by Luukkonen et al.. Unique values for the dielectric loss are required for different center frequencies. Parameters for the capacitive grid are D=5.0 mm and w=O.l mm for a center frequency of 3.36 GHz. The relative permittivity and thickness is 9.20(1-j0.234) and 1=3.048 mm. Consider a center frequency of5.81 GHz and again 1=3.048 mm, the required parameters for the capacitive grid are D=2.0 mm and w=0.2 mm where the required relative permittivity is now 9.20(1-j0.371) Admittedly, engineered dielectrics are themselves a historically interesting and fruitful research area which benefits today from advances in monolithic fabrication using direct-write of dielectrics with nanometer scale inclusions. However, our objective in the present study is to realize the advantages of the absorber proposed by Luukkonen et al. without resort to engineered lossy dielectrics. Specifically we are restricted to commercially available planer circuit materials without use of in-house direct-write technology or materials engineering capability. The materials considered here are TMM 10 laminate with (35 {mu}lm copper cladding with a complex permittivity 9.20-j0.0022) and Ohmegaply resistor conductor material (maximum 250 {Omega}/sq.). A thin electromagnetic absorber for incidence angles greater than 30deg. but less than 60deg. and both polarizations is computationally demonstrated. This absorber utilizes high-permittivity, low-loss microwave substrate in conjunction with an engineered lossy sheet impedance. The lossy sheet impedance is easily engineered with simple analytical approximations and can be manufactured from commercially available laminate materials on microwave substrate.« less

  11. A new hybrid active/passive sound absorber with variable surface impedance

    NASA Astrophysics Data System (ADS)

    Betgen, Benjamin; Galland, Marie-Annick

    2011-07-01

    The context of the present paper is the wall treatment of flow ducts, notably aero-engine nacelle intakes and outlets. For this purpose, hybrid active/passive absorbers have been developed at the LMFA for about 15 years. A hybrid cell combines passive absorbent properties of a porous layer and active control at its rear face. Active control is mainly used to increase absorption at low frequencies by cancelling the imaginary part of the surface impedance presented by the absorber. However, the optimal impedance (i.e. the one that produces the highest noise reduction) of an absorber for flow duct applications is generally complex and frequency dependent. A new hybrid absorber intended to realise any of impedance has therefore been developed. The new cell uses one microphone on each side of a resistive cloth. Normal velocity can then be deduced by a simple pressure difference, which allows an estimation of the surface impedance of the absorber. In order to obtain an error signal related to a target impedance, the target impedance has to be reproduced in time domain. The design of a stable and causal filter is a difficult task, considering the kind of frequency response we seek. An alternative way of representing the impedance in time domain is therefore given. The new error signal is integrated into a feedback control structure. Fast convergence and good stability are observed for a wide range of target impedances. Typical optimal impedances with a positive increasing real part and a negative decreasing imaginary part have been successfully realised. Measurements in a grazing-incidence tube show that the new complex impedance absorber clearly outperforms the former active absorber.

  12. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  14. Fundamental formulae for wave-energy conversion.

    PubMed

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  15. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.

    PubMed

    Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  16. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme

    PubMed Central

    Rutowski, R.L; Macedonia, J.M; Morehouse, N; Taylor-Taft, L

    2005-01-01

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight. PMID:16191648

  17. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme.

    PubMed

    Rutowski, R L; Macedonia, J M; Morehouse, N; Taylor-Taft, L

    2005-11-07

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.

  18. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    PubMed

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  19. Ultralight Fe@C Nanocapsules/Sponge Composite with Reversibly Tunable Microwave Absorption Performances.

    PubMed

    Li, Yixing; Mao, Zhe; Liu, Rongge; Zhao, Xiaoning; Zhang, Yanhui; Qin, Gaowu; Zhang, Xuefeng

    2017-08-11

    Microwave absorbers are usually designed to solve electromagnetic interferences at a specific frequency, while the requirements may be dynamic during service life. Therefore, a recoverable tuning for microwave absorption properties in response to an external stimulus would be highly desirable. We herein present a micro/nano-scale hybrid absorber, in which high-performance Fe@C nanocapsule absorbents are integrated with a porous melamine sponge skeleton, exhibiting multiple merits of light weight, strong absorption and high elasticity. By mechanically compressing and decompressing the absorber, microwave absorption performances can be effectively shifted between 18 GHz and 26.5 GHz. The present study thus provides a new strategy for the design of a 'dynamic' microwave absorber.

  20. Ultralight Fe@C Nanocapsules/Sponge Composite with Reversibly Tunable Microwave Absorption Performances

    NASA Astrophysics Data System (ADS)

    Li, Yixing; Mao, Zhe; Liu, Rongge; Zhao, Xiaoning; Zhang, Yanhui; Qin, Gaowu; Zhang, Xuefeng

    2017-08-01

    Microwave absorbers are usually designed to solve electromagnetic interferences at a specific frequency, while the requirements may be dynamic during service life. Therefore, a recoverable tuning for microwave absorption properties in response to an external stimulus would be highly desirable. We herein present a micro/nano-scale hybrid absorber, in which high-performance Fe@C nanocapsule absorbents are integrated with a porous melamine sponge skeleton, exhibiting multiple merits of light weight, strong absorption and high elasticity. By mechanically compressing and decompressing the absorber, microwave absorption performances can be effectively shifted between 18 GHz and 26.5 GHz. The present study thus provides a new strategy for the design of a ‘dynamic’ microwave absorber.

  1. Optical Absorbance Enhancement in PbS QD/Cinnamate Ligand Complexes.

    PubMed

    Kroupa, Daniel M; Vörös, Márton; Brawand, Nicholas P; Bronstein, Noah; McNichols, Brett W; Castaneda, Chloe V; Nozik, Arthur J; Sellinger, Alan; Galli, Giulia; Beard, Matthew C

    2018-06-08

    We studied the optical absorption enhancement in colloidal suspensions of PbS quantum dots (QD) upon ligand exchange from oleate to a series of cinnamate ligands. By combining experiments and ab initio simulations, we elucidate physical parameters that govern the optical absorption enhancement. We find that, within the cinnamate/PbS QD system, the optical absorption enhancement scales linearly with the electronic gap of the ligand, indicating that the ligand/QD coupling occurs equally efficient between the QD and ligand HOMO and their respective LUMO levels. Disruption of the conjugation that connects the aromatic ring and its substituents to the QD core causes a reduction of the electronic coupling. Our results further support the notion that the ligand/QD complex should be considered as a distinct chemical system with emergent behavior rather than a QD core with ligands whose sole purpose is to passivate surface dangling bonds and prevent agglomeration.

  2. The two-parametric scaling and new temporal asymptotic of survival probability of diffusing particle in the medium with traps.

    PubMed

    Arkhincheev, V E

    2017-03-01

    The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.

  3. The two-parametric scaling and new temporal asymptotic of survival probability of diffusing particle in the medium with traps

    NASA Astrophysics Data System (ADS)

    Arkhincheev, V. E.

    2017-03-01

    The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways—by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.

  4. Active-to-absorbing-state phase transition in an evolving population with mutation.

    PubMed

    Sarkar, Niladri

    2015-10-01

    We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the AAPT that shows the significance of mutation and highlights the connection of this model with the well-known directed percolation universality class. Our model should be a useful starting point to study how mutation may affect extinction or survival of a species.

  5. The role of different network modifying cations on the speciation of the Co2+ complex in silicates and implication in the investigation of historical glasses.

    PubMed

    Fornacelli, Cristina; Ceglia, Andrea; Bracci, Susanna; Vilarigues, Marcia

    2018-01-05

    In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co 2+ ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na 2 O-CaO-SiO 2 ) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530nm region interact to determine the resulting absorbance spectrum. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EMmore » radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.« less

  7. Fundamental optical properties of linear and cyclic alkanes: VUV absorbance and index of refraction.

    PubMed

    Costner, Elizabeth A; Long, Brian K; Navar, Carlos; Jockusch, Steffen; Lei, Xuegong; Zimmerman, Paul; Campion, Alan; Turro, Nicholas J; Willson, C Grant

    2009-08-20

    VUV absorbance and index of refraction data for a series of linear and cyclic alkanes have been collected in order to understand the relationship between the electronic excitation wavelength (or absorbance edge), index of refraction, and molecular structure. The absorbance edge and index for a homologous series of both linear and cyclic alkanes increase with increasing carbon number. The optical properties of complex cycloalkanes do not vary predictably with increasing carbon number but instead depend on variations in the hydrocarbon structure in addition to hydrocarbon size. An understanding of the fundamental optical properties of this class of compounds is directly applicable to the identification of a high index and low-absorbance fluid for 193 nm immersion lithography.

  8. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used tomore » recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.« less

  9. More than a Little Red Schoolhouse.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The new fine arts complex at Memphis State University (Tennessee) has extensive south-facing windows and massive Trombe walls, composed of concrete blocks that absorb heat and release it slowly, that together provide about 20 percent of the building's heat. Part of the masonry was also designed to absorb sound. (Author/MLF)

  10. Time scale variations of the CIV resonance lines in HD 24534

    NASA Astrophysics Data System (ADS)

    Tsatsi, A.

    2012-01-01

    Many lines in the spectra of hot emission stars (Be and Oe) present peculiar and very complex profiles. As a result we can not find a classical theoretical distribution to fit these physical profiles; hence many physical parameters of the regions where these lines are created are difficult to be determined. In this paper, we adopt the Gauss-Rotation model (GR-model), that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs). The model is applied for CIV (λλ 1548.187, 1550.772 A) resonance lines in the spectra of HD 24534 (X Persei), taken by I.U.E. at three different periods. From this analysis we can calculate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, as well as the Full Width at Half Maximum (FWHM) and the absorbed energy of the independent regions of matter which produce the main and the satellite components of the studied spectral lines. Finally, we calculate the time scale variation of the above physical parameters.

  11. Open quantum maps from complex scaling of kicked scattering systems

    NASA Astrophysics Data System (ADS)

    Mertig, Normann; Shudo, Akira

    2018-04-01

    We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.

  12. Absorber Model: the Halo-like model for the Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; McQuinn, Matthew

    2018-04-01

    We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.

  13. Bench Scale Process for Low Cost CO 2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Buddle, Stanlee; Caraher, Joel

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO 2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2-capture absorbent for post-combustion capture of CO 2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO 2 with at least 95% CO 2 purity for less than $40/tonne of CO 2 captured. In the first budget period of the project,more » the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO 2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO 2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO 2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major unit operations in the process. The bench scale unit operations were assembled into a continuous system to support steady state system testing. In the third budget period of the project, continuous system testing was conducted, including closed-loop operation of the absorber and desober systems. Slurries of GAP-0/GAP-0 carbamate/water mixtures produced in the absorber were pumped successfully to the desorber unit, and regenerated solvent was returned to the absorber. A techno-economic analysis, EH&S risk assessment, and solvent manufacturability study were completed.« less

  14. Three-dimensional wideband electromagnetic modeling on massively parallel computers

    NASA Astrophysics Data System (ADS)

    Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.

    1996-01-01

    A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.

  15. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies

    PubMed Central

    Morehouse, Nathan I; Vukusic, Peter; Rutowski, Ron

    2006-01-01

    A small but growing literature indicates that many animal colours are produced by combinations of structural and pigmentary mechanisms. We investigated one such complex colour phenotype: the highly chromatic wing colours of pierid butterflies including oranges, yellows and patterns which appear white to the human eye, but strongly absorb the ultraviolet (UV) wavelengths visible to butterflies. Pierids produce these bright colours using wing scales that contain collections of minute granules. However, to date, no work has directly characterized the molecular composition or optical properties of these granules. We present results that indicate these granules contain pterin pigments. We also find that pterin granules increase light reflection from single wing scales, such that wing scales containing denser granule arrays reflect more light than those with less dense granule collections. As male wing scales contain more pterin granules than those of females, the sexual dichromatism found in many pierid species can be explained by differences in wing scale pterin deposition. Additionally, the colour pattern elements produced by these pterins are known to be important during mating interactions in a number of pierid species. Therefore, we discuss the potential relevance of our results within the framework of sexual selection and colour signal evolution. PMID:17164199

  16. The Case Against Charge Transfer Interactions in Dissolved Organic Matter Photophysics.

    PubMed

    McKay, Garrett; Korak, Julie A; Erickson, Paul R; Latch, Douglas E; McNeill, Kristopher; Rosario-Ortiz, Fernando L

    2018-01-16

    The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Dissolved organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to changes in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were largely unaffected by these changes, indicating that the distribution of absorbing and emitting species was unchanged. Overall, these results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for dissolved organic matter photophysics.

  17. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    NASA Astrophysics Data System (ADS)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  18. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  19. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  20. A New Perspective on Changing Arctic Marine Ecosystems: Panarchy Adaptive Cycles in Pan-Arctic Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Wiese, F. K.; Huntington, H. P.; Carmack, E.; Wassmann, P. F. J.; Leu, E. S.; Gradinger, R.

    2016-02-01

    Changes in the physical/biological interactions in the Arctic are occurring across a variety of spatial and temporal scales and may be mitigated or strengthened based on varying rates of evolutionary adaptation. A novel way to view these interactions and their social relevance is through the systems theory perspective of "Panarchy" proposed by Gunderson and Holling. Panarchy is an interdisciplinary approach in which structures, scales and linkages of complex-adaptive systems, including those of nature (e.g. ocean), humans (e.g. economics), and combined social-ecological systems (e.g. institutions that govern natural resource use), are mapped across multiple space and time scales in continual and interactive adaptive cycles of growth, accumulation, restructuring and renewal. In complex-adaptive systems the dynamics at a given scale are generally dominated by a small number of key internal variables that are forced by one or more external variables. The stability of such a system is characterized by its resilience, i.e. its capacity to absorb disturbance and re-organize while undergoing change, so as to retain essentially similar function, structure, identity and feedbacks. It is in the capacity of a system to cope with pressures and adversities such as exploitation, warming, governance restrictions, competition, etc. that resilience embraces human and natural systems as complex entities continually adapting through cycles of change. In this paper we explore processes at four linked spatial domains in the Arctic Ocean and link it to ecosystem resilience and re-organization characteristics. From this we derive a series of hypotheses concerning the biological responses to future physical changes and suggest ways how Panarchy theory can be applied to observational strategies to help detect early signs of environmental shifts affecting marine system services and functions. We close by discussing possible implications of the Panarchy framework for policy and governance.

  1. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  2. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  3. Mechanism of Ferric Oxalate Photolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangiante, David. M.; Schaller, Richard D.; Zarzycki, Piotr

    Iron(III) oxalate, Fe 3+(C 2O 4) 3 3–, is a photoactive metal organic complex found in natural systems and used to quantify photon flux as a result of its high absorbance and reaction quantum yield. It also serves as a model complex to understand metal carboxylate complex photolysis because the mechanism of photolysis and eventual production of CO 2 is not well understood for any system. Here, we employed pump/probe mid-infrared transient absorption spectroscopy to study the photolysis reaction of the iron(III) oxalate ion in D 2O and H 2O up to 3 ns following photoexcitation. We find that intramolecularmore » electron transfer from oxalate to iron occurs on a sub-picosecond time scale, creating iron(II) complexed by one oxidized and two spectator oxalate ligands. Within 40 ps following electron transfer, the oxidized oxalate molecule dissociates to form free solvated CO 2(aq) and a species inferred to be CO 2 •– based on the appearance of a new vibrational absorption band and ab initio simulation. Our work provides direct spectroscopic evidence for the first mechanistic steps in the photolysis reaction and presents a technique to analyze other environmentally relevant metal carboxylate photolysis reactions.« less

  4. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems.

    PubMed

    Ye, Ran; Harte, Federico

    2014-03-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions.

  5. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems

    PubMed Central

    Ye, Ran; Harte, Federico

    2013-01-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions. PMID:24159250

  6. Mechanism of Ferric Oxalate Photolysis

    DOE PAGES

    Mangiante, David. M.; Schaller, Richard D.; Zarzycki, Piotr; ...

    2017-06-08

    Iron(III) oxalate, Fe 3+(C 2O 4) 3 3–, is a photoactive metal organic complex found in natural systems and used to quantify photon flux as a result of its high absorbance and reaction quantum yield. It also serves as a model complex to understand metal carboxylate complex photolysis because the mechanism of photolysis and eventual production of CO 2 is not well understood for any system. Here, we employed pump/probe mid-infrared transient absorption spectroscopy to study the photolysis reaction of the iron(III) oxalate ion in D 2O and H 2O up to 3 ns following photoexcitation. We find that intramolecularmore » electron transfer from oxalate to iron occurs on a sub-picosecond time scale, creating iron(II) complexed by one oxidized and two spectator oxalate ligands. Within 40 ps following electron transfer, the oxidized oxalate molecule dissociates to form free solvated CO 2(aq) and a species inferred to be CO 2 •– based on the appearance of a new vibrational absorption band and ab initio simulation. Our work provides direct spectroscopic evidence for the first mechanistic steps in the photolysis reaction and presents a technique to analyze other environmentally relevant metal carboxylate photolysis reactions.« less

  7. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    PubMed

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  8. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs

    PubMed Central

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Objective(s): Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge)/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran. PMID:27904870

  9. Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Woods, Jorden

    1992-01-01

    The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.

  10. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  11. Meso-scopic Densification in Brittle Granular Materials

    NASA Astrophysics Data System (ADS)

    Neal, William; Appleby-Thomas, Gareth; Collins, Gareth

    2013-06-01

    Particulate materials are ideally suited to shock absorbing applications due to the large amounts of energy required to deform their inherently complex meso-structure. Significant effort is being made to improve macro-scale material models to represent these atypical materials. On the long road towards achieving this capability, an important milestone would be to understand how particle densification mechanisms are affected by loading rate. In brittle particulate materials, the majority of densification is caused by particle fracture. Macro-scale quasi-static and dynamic compaction curves have been measured that show good qualitative agreement. There are, however, some differences that appear to be dependent on the loading rate that require further investigation. This study aims to investigate the difference in grain-fracture behavior between the quasi-static and shock loading response of brittle glass microsphere beds using a combination of quasi-static and dynamic loading techniques. Results from pressure-density measurements, sample recovery, and meso-scale hydrocode models (iSALE, an in-house simulation package) are discussed to explain the differences in particle densification mechanisms between the two loading rate regimes. Gratefully funded by AWE.plc.

  12. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taborda, A; Benabdallah, N; Desbree, A

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres ofmore » unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S-values of Auger-electron emitting 99m-Tc radionuclide will be presented and discussed.« less

  13. A tunable sound-absorbing metamaterial based on coiled-up space

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhao, Honggang; Yang, Haibin; Zhong, Jie; Zhao, Dan; Lu, Zhongliang; Wen, Jihong

    2018-05-01

    This paper presents a theoretical, numerical, and experimental investigation of a deep-subwavelength absorber based on the concept of coiled-up space. By adjusting a partition panel in the cavity to form an unequal-section channel, it is found that the resonance frequency of the absorber is easily tuned and near-total absorption is acquired under a fixed deep-subwavelength thickness. The absorption mechanism induced by nearly critical coupling is revealed by graphically analyzing the reflection coefficient in the complex plane. In contrast to conventional techniques, near-total absorption can be adjusted over a wider frequency range. To further enhance the absorption, we demonstrate a broadband absorber with a relative bandwidth up to 33.3%.

  14. One-year clinical outcomes of patients treated with everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a propensity score comparison of patients enrolled in the ABSORB EXTEND and SPIRIT trials.

    PubMed

    de Ribamar Costa, José; Abizaid, Alexandre; Bartorelli, Antonio L; Whitbourn, Robert; Jepson, Nigel; Perin, Marco; Steinwender, Clemens; Stuteville, Marrianne; Ediebah, Divine; Sudhir, Krishnankutty; Serruys, Patrick W

    2016-11-20

    We sought to compare the outcomes of low/moderate complexity patients treated with the Absorb BVS from the ABSORB EXTEND trial with patients treated with the XIENCE everolimus-eluting stent (EES), using propensity score (PS) matching of pooled data from the SPIRIT trials (SPIRIT II, SPIRIT III, SPIRIT IV) and the XIENCE V USA trial. ABSORB EXTEND was a prospective, single-arm, open-label clinical study in which 812 patients were enrolled at 56 sites. This study allowed the treatment of lesions ≤28 mm in length and with a reference vessel diameter of 2.0-3.8 mm (as assessed by online QCA). The propensity score was obtained by fitting a logistic regression model with the cohort indicator as the binary outcome and other variables as the predictor variables. At one-year clinical follow-up, there was no statistical difference between groups with regard to MACE (5.0% vs. 4.8%, p=0.83), target lesion failure (5.0% vs. 4.7%, p=0.74), ischaemia-driven target vessel revascularisation (2.3% vs. 3.0%, p=0.38) and device thrombosis (1.0% vs. 0.3%, p=0.11). Myocardial infarction was higher with Absorb (3.3% vs. 1.5%, p=0.02), at the expense of periprocedural CK-MB elevation. Independent predictors of MACE among patients receiving Absorb BVS were treatment of multivessel disease, insulin-dependent diabetes and performance of post-dilation. At one-year follow-up, propensity score-matched analysis demonstrated that the clinical safety and effectiveness of Absorb are comparable to those of XIENCE EES among non-complex patients treated with PCI.

  15. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    PubMed

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  16. A three-dimensional spatial mapping approach to quantify fine-scale heterogeneity among leaves within canopies1

    PubMed Central

    Wingfield, Jenna L.; Ruane, Lauren G.; Patterson, Joshua D.

    2017-01-01

    Premise of the study: The three-dimensional structure of tree canopies creates environmental heterogeneity, which can differentially influence the chemistry, morphology, physiology, and/or phenology of leaves. Previous studies that subdivide canopy leaves into broad categories (i.e., “upper/lower”) fail to capture the differences in microenvironments experienced by leaves throughout the three-dimensional space of a canopy. Methods: We use a three-dimensional spatial mapping approach based on spherical polar coordinates to examine the fine-scale spatial distributions of photosynthetically active radiation (PAR) and the concentration of ultraviolet (UV)-absorbing compounds (A300) among leaves within the canopies of black mangroves (Avicennia germinans). Results: Linear regressions revealed that interior leaves received less PAR and produced fewer UV-absorbing compounds than leaves on the exterior of the canopy. By allocating more UV-absorbing compounds to the leaves on the exterior of the canopy, black mangroves may be maximizing UV-protection while minimizing biosynthesis of UV-absorbing compounds. Discussion: Three-dimensional spatial mapping provides an inexpensive and portable method to detect fine-scale differences in environmental and biological traits within canopies. We used it to understand the relationship between PAR and A300, but the same approach can also be used to identify traits associated with the spatial distribution of herbivores, pollinators, and pathogens. PMID:29188145

  17. INORGANIC AND ORGANIC ONIUM SALTS

    DTIC Science & Technology

    The nitrosonium NO ion absorbs in the infrared between 1/2400 and 1/ 2150 cm. Salts of complex fluoro-acids absorb at higher frequencies than salts...halide adducts generally contain nitrosonium ions . Hexaphenylditin does not undergo marked heterolytic dissociation in nitromethane solution...influencing the covalent-ionic equilibrium are discussed. Infrared spectrum nitrosonium ion ; ionic character in lattice and position nitrosonium ion absorption

  18. Peculiarities of light absorption by spherical microcapsules

    NASA Astrophysics Data System (ADS)

    Geints, Yurii E.; Panina, Ekaterina K.; Zemlyanov, Alexander A.

    2018-04-01

    Optical radiation absorption in the poly-layer spherical microparticles simulating the inorganic/organic polyshell absorbing microcapsules is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength. When laser radiation is scattered by a dimer constituted by two identical absorbing microcapsules the absorbed power density can be maximized by the choosing of proper dimer spatial configuration. In the case of strongly absorbing particles, the absorption maximum corresponds to a shift of the capsules to a distance of about their diameter, and in the case of weakly absorbing particles the absorption is maximal when particles are in geometrical shades of each other.

  19. The climate impacts of absorbing aerosols on and within the Arctic

    NASA Astrophysics Data System (ADS)

    Rasch, P.; Wang, H.; Ma, P.; Fast, J. D.; Wang, M.; Easter, R. C.; Liu, X.; Qian, Y.; Flanner, M. G.; Ghan, S.; Singh, B.

    2011-12-01

    Absorbing aerosols are receiving increasing attention as forcing agents in the climate system. By scattering and absorbing light they can reduce planetary albedo, particularly over bright surfaces (clouds, snow and ice). They also act as cloud condensation and/or ice nuclei, influencing the brightness, lifetime and precipitation properties of clouds. Atmospheric stability and primary circulation features respond to the changing vertical and horizontal patterns of heating, cooling, and surface fluxes produced by the aerosols, clouds and surface properties. These changes in meteorology have further impacts on aerosols and clouds producing a complex interplay between transport, forcings, and feedbacks involving absorbing aerosols and climate. The complexity of the processes and the interactions between them make it very challenging to represent aerosols realistically in large scale (global and regional) climate models. Simulations of important features of aerosols still contain easily identifiable biases. I will describe our efforts to identify the processes responsible for some of those biases and the deficiencies in model formulations that impede progress in treating aerosols and understanding their role in polar climate. I plan to summarize some studies performed with the NCAR CESM (global) and WRF-Chem (regional) Community models that examine the simulation sensitivity to treatments of physics, chemistry, and meteorology. Some of these simulations were allowed to evolve freely; others were strongly constrained to agree with observed meteorological fields. We have also altered the formulation of a number of the processes in the model to improve fidelity in the aerosol distributions. The parameterizations used in our global model have also been transferred to the regional model, allowing comparisons to be made between the simpler formulations used in the global model with more elaborate and costly formulations available in the regional model. The regional model can be run at higher resolution in order to explore the resolution dependence of the parameterizations and make comparisons to field experiments more straightforward. Aerosols sources have also been tagged by sector and geographic region to help in attribution and interpretation. The many variations mentioned here help in understanding how aerosols reach the arctic and how they produce changes in radiative forcing and Arctic climate. I will provide a brief overview of these studies, with more detail available in presentations submitted to this session and elsewhere.

  20. 21 CFR 880.2740 - Surgical sponge scale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so that...

  1. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations

    NASA Astrophysics Data System (ADS)

    Ravindran, J.; Kannapiran, E.; Manikandan, B.; Francis, K.; Arora, Shruti; Karunya, E.; Kumar, Amit; Singh, S. K.; Jose, Jiya

    2013-12-01

    Reef-building corals encompass various strategies to defend against harmful ultraviolet (UV) radiation. Coral mucus contains UV-absorbing compounds and has rich prokaryotic diversity associated with it. In this study, we isolated and characterized the UV-absorbing bacteria from the mucus of the corals Porites lutea and Acropora hyacinthus during the pre-summer and summer seasons. A total of 17 UV-absorbing bacteria were isolated and sequenced. The UV-absorbing bacteria showed UV absorption at wavelengths ranging from λ max = 333 nm to λ min = 208 nm. Analysis of the DNA sequences revealed that the majority of the UV-absorbing bacteria belonged to the family Firmicutes and the remaining belonged to the family Proteobacteria (class Gammaproteobacteria). Comparison of the sequences with the curated database yielded four distinct bacterial groups belonging to the genus Bacillus, Staphylococcus, Salinicoccus and Vibrio. The absorption peaks for the UV-absorbing bacteria shifted to the UV-A range (320-400 nm) when they were incubated at higher temperatures. Deciphering the complex relationship between corals and their associated bacteria will help us to understand their adaptive strategies to various stresses.

  2. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure, quite some of them remain apparently intact. The pigmented photosynthetic antenna complexes thus constitute a suitable model system for studying in detail the stability of integral membrane proteins.

  3. The behavior of commensurate-incommensurate transitions using the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghui; Lu, Yanli; Chen, Zheng

    2018-02-01

    We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.

  4. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  5. Counting Carbs? Understanding Glycemic Index and Glycemic Load

    MedlinePlus

    ... seems to support the concept that the more complex carbohydrates will lead to better blood sugar control than ... everybody, not only diabetics, to eat the more complex carbohydrates because they will be more gradually absorbed, and ...

  6. Modelling of TES X-ray Microcalorimeters with a Novel Absorber Design

    NASA Technical Reports Server (NTRS)

    Iyomoto, Naoko; Bandler, Simon; Brefosky, Regis; Brown, Ari; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Lindeman, Mark; hide

    2007-01-01

    Our development of a novel x-ray absorber design that has enabled the incorporation of high-conductivity electroplated gold into our absorbers has yielded devices that not only have achieved breakthrough performance at 6 keV, but also are extraordinarily well modelled. We have determined device parameters that reproduce complex impedance curves and noise spectra throughout transition. Observed pulse heights, decay time and baseline energy resolution were in good agreement with simulated results using the same parameters. In the presentation, we will show these results in detail and we will also show highlights of the characterization of our gold/bismuth-absorber devices. We will discuss possible improvement of our current devices and expected performance of future devices using the modelling results.

  7. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation

    PubMed Central

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-01-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices. PMID:27152335

  8. CaCu3Ti4O12 particles and MWCNT-filled microwave absorber with improved microwave absorption by FSS incorporation

    NASA Astrophysics Data System (ADS)

    Qing, Yuchang; Yang, Zhaoning; Wen, Qinlong; Luo, Fa

    2016-07-01

    Multi-walled carbon nanotube (MWCNTs)- and CaCu3Ti4O12 (CCTO) particle-filled epoxy microwave absorbing coatings were prepared, and their electromagnetic properties and reflection loss (RL) were investigated in the frequency range 8.2-12.4 GHz. The microstructures of these coatings exhibit a uniform dispersion of MWCNTs and CCTO particles in the matrix. The value and frequency dependency of complex permittivity of such coatings enhanced with increasing MWCNT content. Frequency-selective surface was used to improve their microwave absorption (both the operating bandwidth and minimum RL) without increasing the absorber thickness. Such absorber showed high microwave absorbing performance, and the bandwidth of the RL below -8 dB (more than 84.1 % absorption) can be obtained in the whole X-band with a thickness of 1.5 mm.

  9. Quantum resonant activation.

    PubMed

    Magazzù, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν^{*} which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  10. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

    DOE PAGES

    Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.

    2016-06-11

    Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem intomore » three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions. As a result, we identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.« less

  11. Quantum resonant activation

    NASA Astrophysics Data System (ADS)

    Magazzó, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν* which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  12. Time scale variations of the physical parameters of the Si IV resonance lines in the case of the Be star HD 50138

    NASA Astrophysics Data System (ADS)

    Stathopoulos, D.

    2012-01-01

    As it is well known many lines in the spectra of hot emission stars (Be and Oe) present peculiar and very complex profiles. As a result, we cannot find a classical theoretical distribution in order to fit these profiles. Because of this, we are not able to calculate the physical parameters of the regions were these lines are created. In this paper, using the Gauss-Rotation model (GR-model Danezis et al), that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs), we study the UV Si IV (λλ 1393.755, 1402.77 A) resonance lines of the Be star HD 50138 in three different periods. From this analysis we can calculate the values of a group of physical parameters. The parameters are the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, as well as the Full Width at Half Maximum (FWHM) an the absorbed energy of the independent regions of matter which produce the main and the satellite components of the studied spectral line. Finally we calculate the time scale variations of the above physical parameters.

  13. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  14. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between the flux tube and the absorber when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities in drift encounters were computed for all regimes of particle energies and absorber sizes.

  15. MSAT boom joint testing and load absorber design

    NASA Technical Reports Server (NTRS)

    Klinker, D. H.; Shuey, K.; St.clair, D. R.

    1994-01-01

    Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.

  16. A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2011-01-01

    Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.

  17. Energy Absorbing Seat System for an Agricultural Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    A task was initiated to improve the energy absorption capability of an existing aircraft seat through cost-effective retrofitting, while keeping seat-weight increase to a minimum. This task was undertaken as an extension of NASA ongoing safety research and commitment to general aviation customer needs. Only vertical crash scenarios have been considered in this task which required the energy absorbing system to protect the seat occupant in a range of crash speeds up to 31 ft/sec. It was anticipated that, the forward and/or side crash accelerations could be attenuated with the aid of airbags, the technology of which is currently available in automobiles and military helicopters. Steps which were followed include, preliminary crush load determination, conceptual design of cost effective energy absorbers, fabrication and testing (static and dynamic) of energy absorbers, system analysis, design and fabrication of dummy seat/rail assembly, dynamic testing of dummy seat/rail assembly, and finally, testing of actual modified seat system with a dummy occupant. A total of ten full scale tests have been performed including three of the actual aircraft seat. Results from full-scale tests indicated that occupant loads were attenuated successfully to survivable levels.

  18. ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins.

    PubMed

    Lucas-Abellán, C; Mercader-Ros, M T; Zafrilla, M P; Fortea, M I; Gabaldón, J A; Núñez-Delicado, E

    2008-03-26

    The effect of the complexation of resveratrol with hydroxypropyl-beta-cyclodextrins (HP-beta-CDs) on the antioxidant capacity of the polyphenol is studied for the first time by means of the oxygen radical absorbance capacity (ORAC) method, using fluorescein (FL) as the fluorescent probe. The method is validated through its linearity, precision, and accuracy for measuring the ORAC of resveratrol in the absence or presence of cyclodextrins (CDs). The complexation of resveratrol in CDs increased the net area under the FL decay curve (net AUC) of resveratrol up to its saturation level, at which the polyphenol showed almost double the antioxidant activity it shows in the absence of CDs. The complexation constant ( K c) between resveratrol and HP-beta-CDs was calculated by linear regression of the phase solubility diagram ( K c = 18048 M (-1)). The antioxidant activity of resveratrol was dependent on the complexed resveratrol because CDs acts as a controlled dosage reservoir that protects resveratrol against rapid oxidation by free radicals. In this way, its antioxidant activity is prolonged and only reaches its maximum when all the resveratrol is complexed.

  19. Broadband Measurement of Aerosol Extinction in the Visible Range

    NASA Astrophysics Data System (ADS)

    He, Quanfu; Bluvshtein, Nir; Segev, Lior; Flores, Michel; Rudich, Yinon; Washenfelder, Rebecca; Brown, Steven

    2017-04-01

    Atmospheric aerosols influence the Earth's radiative budget directly by scattering and absorbing incoming solar radiation. Aerosol direct forcing remains one of the largest uncertainties in quantifying the role that aerosols play in the Earth's radiative budget. The optical properties of aerosols vary as a function of wavelength, but few measurements reported the wavelength dependence of aerosol extinction cross section and complex refractive indices, particularly in the blue and visible spectral range. There is also currently a large gap in our knowledge of how the optical properties evolve as a function of atmospheric aging in the visible spectrum. In this study, we constructed a new and novel laboratory instrument to measure aerosol extinction as a function of wavelength, using cavity enhanced spectroscopy with a white light source. This broadband cavity enhanced spectroscopy (BBCES) covers the 395-700 nm spectral region using a broadband light source and a grating spectrometer with charge-coupled device detector (CCD). We evaluated this BBCES by measuring extinction cross section for aerosols that are pure scattering, slightly absorbing and strongly absorbing atomized from standard materials. We also retrieved the refractive indices from the measured extinction cross sections. Secondary organic aerosols from biogenic and anthropogenic precursors were "aged" to differential time scales (1 to 10 days) in an Oxidation Flow Reactor (OFR) under the combined influence of OH, O3 and UV light. The new BBCES was used to online measure the extinction cross sections of the SOA. This talk will provide a comprehensive understanding of aerosol optical properties alerting during aging process in the 395 - 700 nm spectrum.

  20. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency reduced from 73% to 54% when operating temperature increased from ambient to 80 °C by employing a MWCNT nanofluid receiver, the efficiency decreased from 85% to 68% with same operating temperature range by employing black chrome-coated copper tube receiver. This difference can mainly be explained by the reflection optical loss off and higher thermal emission heat loss the front surface of the glass tube, yielding a 90% of transmittance to the MWCNT fluid and a 0.9 emissivity of glass pipe. Overall, an experimental investigation of the performance of a low profile solar collector with a direct volumetric absorber and conventional surface absorber is presented. In order to bring nanotechnology into industrial and commercial heating applications,

  1. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing, E-mail: liy@ecu.edu

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  2. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  3. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  4. Modeling of thermomechanical changes of extreme-ultraviolet mask and their dependence on absorber variation

    NASA Astrophysics Data System (ADS)

    Ban, Chung-Hyun; Park, Eun-Sang; Park, Jae-Hun; Oh, Hye-Keun

    2018-06-01

    Thermal and structural deformation of extreme-ultraviolet lithography (EUVL) masks during the exposure process may become important issues as these masks are subject to rigorous image placement and flatness requirements. The reflective masks used for EUVL absorb energy during exposure, and the temperature of the masks rises as a result. This can cause thermomechanical deformation that can reduce the pattern quality. The use of very thick low-thermal-expansion substrate materials (LTEMs) may reduce energy absorption, but they do not completely eliminate mask deformation. Therefore, it is necessary to predict and optimize the effects of energy transferred from the extreme-ultraviolet (EUV) light source and the resultant patterns of structured EUV masks with complex multilayers. Our study shows that heat accumulates in the masks as exposure progresses. It has been found that a higher absorber ratio (pattern density) applied to the patterning of EUV masks exacerbates the problem, especially in masks with more complex patterns.

  5. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up.

    PubMed

    Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh

    2017-04-15

    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    NASA Astrophysics Data System (ADS)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  7. An extinction scale-expansion unit for the Beckman DK2 spectrophotometer

    PubMed Central

    Dixon, M.

    1967-01-01

    The paper describes a simple but accurate unit for the Beckman DK2 recording spectrophotometer, whereby any 0·1 section of the extinction (`absorbance') scale may be expanded tenfold, while preserving complete linearity in extinction. PMID:6048800

  8. Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hammond, Paula

    2015-03-01

    Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.

  9. Thermal structure and heat balance of the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.

    1989-01-01

    Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.

  10. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  11. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  12. Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii.

    PubMed

    Collins, Aaron M; Xin, Yueyong; Blankenship, Robert E

    2009-08-01

    The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-gamma-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Q(y) transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.

  13. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterizedmore » by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this analysis have just recently been applied to the processing of nanocrystal based CZTSSe absorbers -- with notable success. We expect the notable fundamental understanding of device limitations and absorber sintering achieved under this project will lead to significant improvements in device performance for CZTSSe devices in the near future for devices fabricated from a variety of processing techniques« less

  14. Absorption property of C@CIPs composites by the mechanical milling process

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang

    2017-09-01

    The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.

  15. Absorbers in the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  16. Lanthanum hexaboride for solar energy applications.

    PubMed

    Sani, Elisa; Mercatelli, Luca; Meucci, Marco; Zoli, Luca; Sciti, Diletta

    2017-04-06

    We investigate the optical properties of LaB 6 - based materials, as possible candidates for solid absorbers in Concentrating Solar Power (CSP) systems. Bulk LaB 6 materials were thermally consolidated by hot pressing starting from commercial powders. To assess the solar absorbance and spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the ultraviolet to the mid-infrared, considering different compositions, porosities and surface roughnesses. Thermal emittance at around 1100 K has been measured. Experimental results showed that LaB 6 can have a solar absorbance comparable to that of the most advanced solar absorber material in actual plants such as Silicon Carbide, with a higher spectral selectivity. Moreover, LaB 6 has also the appealing characteristics to be a thermionic material, so that it could act at the same time both as direct high-temperature solar absorber and as electron source, significantly reducing system complexity in future concentrating solar thermionic systems and bringing a real innovation in this field.

  17. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Zhang, Deyuan; Cai, Jun; Yuan, Liming; Zhang, Wenqiang

    2013-02-01

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1-18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum -11.85 dB at 1.5 mm and -15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band.

  18. An Extended Multi-Zone Model for the MCG-6-30-15 Warm Absorber

    NASA Technical Reports Server (NTRS)

    Morales, R.; Fabian, A. C.; Reynolds, C. S.

    2000-01-01

    The variable warm absorber seen with ASCA in the X-ray spectrum of MCG 6-30-15 shows complex time behaviour in which the optical depth of O VIII anticorrelates with the flux whereas that of O VII is unchanging. The explanation in terms of a two zone absorber has since been challenged by BeppoSAX observations. These present a more complicated behaviour for the O VII edge. The explanation we offer for both ASCA and BeppoSAX observations requires a very simple photoionization model together with the presence of a third, intermediate, zone and a period of very low luminosity. In practice warm absorbers are likely to be extended, multi-zone regions of which only part causes directly observable absorption edges at any given time depending on the value of the luminosity.

  19. Laser Beam Melting of Alumina: Effect of Absorber Additions

    NASA Astrophysics Data System (ADS)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  20. Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Cai, Xiaohui; Liu, Yang; Ren, Zhiming

    2018-06-01

    Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.

  1. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray

    2015-10-01

    Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.

  2. Black carbon absorption at the global scale is affected by particle-scale diversity in composition.

    PubMed

    Fierce, Laura; Bond, Tami C; Bauer, Susanne E; Mena, Francisco; Riemer, Nicole

    2016-09-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (Eabs) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find Eabs=1-1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  3. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    NASA Technical Reports Server (NTRS)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  4. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  5. Visual and Experiential Learning Opportunities through Geospatial Data

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Bulletins, S.

    2007-12-01

    Global observation data from satellites are essential for both research and education about Earth's climate because they help convey the temporal and spatial scales inherent to the subject, which are beyond most people's experience. Experts in the development of visualizations using spatial data distinguish the process of learning through data exploration from the process of learning by absorbing a story told from beginning to end. The former requires the viewer to absorb complex spatial and temporal dynamics inherent to visualized data and therefore is a process best undertaken by those familiar with the data and processes represented. The latter requires that the viewer understand the intended presentation of concepts, so story telling can be employed to educate viewers with varying backgrounds and familiarity with a given subject. Three examples of climate science education, drawn from the current science program Science Bulletins (American Museum of Natural History, New York, USA), demonstrate the power of visualized global earth observations for climate science education. The first example seeks to explain the potential for sea level rise on a global basis. A short feature film includes the visualized, projected effects of sea level rise at local to global scales; this visualization complements laboratory and field observations of glacier retreat and paleoclimatic reconstructions based on fossilized coral reef analysis, each of which is also depicted in the film. The narrative structure keeps learners focused on discrete scientific concepts. The second example utilizes half-hourly cloud observations to demonstrate weather and climate patterns to audiences on a global basis. Here, the scientific messages are qualitatively simpler, but the viewer must deduce his own complex visual understanding of the visualized data. Finally, we present plans for distributing climate science education products via mediated public events whereby participants learn from climate and geovisualization experts working collaboratively. This last example provides an opportunity for deep exploration of patterns and processes in a live setting and makes full use of complementary talents, including computer science, internet-enabled data sharing, remote sensing image processing, and meteorology. These innovative examples from informal educators serve as powerful pedagogical models to consider for the classroom of the future.

  6. Hydro-scaling of DT implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Spears, Brian; Clark, Dan

    2017-10-01

    Recent implosion experiments on the National Ignition Facility (NIF) exceed 50 kJ in fusion yield and exhibit yield amplifications of >2.5-3x due to alpha-particle self-heating of the hot-spot. Two methods to increase the yield are (i) to improve the implosion quality, or stagnation pressure, at fixed target scale (by increasing implosion velocity, reducing 3D effects, etc.), and (ii) to hydrodynamically scale the capsule and absorbed energy. In the latter case the stagnation pressure remains constant, but the yield-in the absence of alpha-heating-increases as Y S 4 . 5 , where the capsule radius is increased by S, and the absorbed energy by S3 . With alpha-heating the increase with scale is considerably stronger. We present projections in the performance of current DT experiments, and the extrapolations to ignition, based on applying hydro-scaling theory and accounting for the effect of alpha-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Method of quantitating dsDNA

    DOEpatents

    Stark, Peter C.; Kuske, Cheryl R.; Mullen, Kenneth I.

    2002-01-01

    A method for quantitating dsDNA in an aqueous sample solution containing an unknown amount of dsDNA. A first aqueous test solution containing a known amount of a fluorescent dye-dsDNA complex and at least one fluorescence-attenutating contaminant is prepared. The fluorescence intensity of the test solution is measured. The first test solution is diluted by a known amount to provide a second test solution having a known concentration of dsDNA. The fluorescence intensity of the second test solution is measured. Additional diluted test solutions are similarly prepared until a sufficiently dilute test solution having a known amount of dsDNA is prepared that has a fluorescence intensity that is not attenuated upon further dilution. The value of the maximum absorbance of this solution between 200-900 nanometers (nm), referred to herein as the threshold absorbance, is measured. A sample solution having an unknown amount of dsDNA and an absorbance identical to that of the sufficiently dilute test solution at the same chosen wavelength is prepared. Dye is then added to the sample solution to form the fluorescent dye-dsDNA-complex, after which the fluorescence intensity of the sample solution is measured and the quantity of dsDNA in the sample solution is determined. Once the threshold absorbance of a sample solution obtained from a particular environment has been determined, any similarly prepared sample solution taken from a similar environment and having the same value for the threshold absorbance can be quantified for dsDNA by adding a large excess of dye to the sample solution and measuring its fluorescence intensity.

  8. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    NASA Astrophysics Data System (ADS)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  9. Gelation kinetics and characterization of enzymatically enhanced fish scale gelatin-pectin coacervate.

    PubMed

    Huang, Tao; Tu, Zong-Cai; Shangguan, Xinchen; Wang, Hui; Zhang, Nanhai; Zhang, Lu; Sha, Xiaomei

    2018-02-01

    Protein-polysaccharide complex coacervations have been considered extensively for the development of functional foods. The main problem of the complex coacervates is that they are highly unstable under different conditions and that cross-linking is necessary to stabilize them. In this study, the effects of pectin at different concentrations on the gel and structural properties of fish scale gelatin (FSG)-high methoxyl citrus pectin (HMP) coacervate enhanced by microbial transglutaminase (MTGase) were studied. The gelation rates and gel strength of the MTGase-enhanced FSG-HMP coacervate gels decreased with increasing HMP concentration. However, the enhanced coacervate gels exhibited better thermal behavior and mechanical properties compared with the original gels. Also, TG-P 8 exhibited the highest melting point (27.15 ± 0.12 °C), gelation point (15.65 ± 0.01 °C) and stress (15.36 ± 0.48 kPa) as HMP was 8 g kg -1 . Particle size distribution, fluorescence emission and UV absorbance spectra indicated that MTGase and HMP could make FSG form large aggregates. Moreover, confocal laser scanning microscopy of treated coacervate gels showed a continuous protein phase at low HMP concentrations. FSG and HMP could form soluble coacervate, and MTGase could improve the thermal and mechanical properties of coacervate gels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Method of preparing pure fluorine gas

    DOEpatents

    Asprey, Larned B.

    1976-01-01

    A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.

  11. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: I. WATERSHED-SCALE MODEL DEVELOPMENT

    EPA Science Inventory

    To simulate stream temperatures on a watershed scale, shading dynamics of topography and riparian vegetation must be computed for estimating the amount of solar radiation that is actually absorbed by water for each stream reach. A series of computational procedures identifying th...

  12. Nondimensional scaling of magnetorheological rotary shear mode devices using the Mason number

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Sherman, Stephen; Hu, Wei; Wereley, Norman M.

    2015-04-01

    Magnetorheological fluids (MRFs) exhibit rapidly adjustable viscosity in the presence of a magnetic field, and are increasingly used in adaptive shock absorbers for high speed impacts, corresponding to high fluid shear rates. However, the MRF properties are typically measured at very low (γ ˙<1000 s-1) shear rates due to limited commercial rheometer capabilities. A custom high shear rate (γ ˙>10,000 s-1) Searle cell magnetorheometer, along with a full scale rotary-vane magnetorheological energy absorber (γ ˙>25,000 s-1) are employed to analyze MRF property scaling across shear rates using a nondimensional Mason number to generate an MRF master curve. Incorporating a Reynolds temperature correction factor, data from both experiments is shown to collapse to a single master curve, supporting the use of Mason number to correlate low- and high-shear rate characterization data.

  13. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  14. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  15. Coherent perfect absorber and laser modes in purely imaginary metamaterials

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Cao, Yanyan; Cummer, Steven A.; Xu, Yadong; Chen, Huanyang

    2017-10-01

    Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mechanism for realizing both coherent perfect absorber (CPA) and laser modes. Moreover, the general conditions for obtaining CPA and laser modes, including obtaining them simultaneously, are revealed by analyzing the wave scattering properties of a slab made of purely imaginary metamaterials (PIMs). Specifically, in a PIM slab with a subunity effective refractive index, the CPA mode can be simplified as a perfect absorption mode and the incident wave from one side could be perfectly absorbed.

  16. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  17. Fluorimetric quantitation of citalopram and escitalopram in plasma: developing an express method to monitor compliance in clinical trials.

    PubMed

    Serebruany, Victor; Malinin, Alex; Dragan, Vadim; Atar, Dan; van Zyl, Louis; Dragan, Anatoly

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs) in general, and citalopram/escitalopram in particular, are widely used to treat clinical depression. However, SSRI bioavailability and non-compliance represent major issues, especially in the clinical trials setting. In this context, frequent drug-level measurements for compliance monitoring would be a desirable tool to improve clinical outcomes with SSRIs. However, the liquid chromatography techniques available are expensive, requiring excessive sample preparation, and suffer from high complexity. We sought to develop a rapid method for the measurement of citalopram/escitalopram levels in human plasma by fluorimetry. A total of 34 frozen human plasma samples were thawed at room temperature and repeatedly centrifuged in cellulose to remove aggregates, proteins and solids. Fluorescence spectra were measured in the range 270-450 nm with excitation at 240 nm on a FluoroMax 3 spectrofluorimeter. Control samples contained known concentrations of SSRIs. SSRI absorbance spectra were recorded in the range 230-320 nm. The shape of the spectra and the absorbance of citalopram and escitalopram were very similar, with UV maximum absorbance at 239 nm. The maximum extinction coefficient was epsilon239=15,930 M-1 cm-1 for citalopram and epsilon239=13,630 M-1 cm-1 for escitalopram. The fluorescence spectra of SSRIs are unique and are characterized by the presence of two well-defined conjugated spectra with maxima at 300 and 382 nm. Fluorimetry is very suitable for assessment of plasma SSRI levels. This inexpensive and efficient technique can objectively and reliably quantify drug levels in biological fluids, thereby directly determining the level of patient adherence to the prescribed drug regimen. This method will be useful in a broad spectrum of applications, from compliance/bioavailability assessments in animal and human experiments to utilization in large-scale clinical trials.

  18. High-resolution X-Ray Spectroscopy of the Seyfert 1 Galaxy Mrk 1040. Revealing the Failed Nuclear Wind with Chandra

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.

    2017-03-01

    High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013-2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm-2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s-1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.

  19. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE PAGES

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    2018-04-05

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  20. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  1. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  2. Time scale variation of MgII resonance lines of HD 41335 in UV region

    NASA Astrophysics Data System (ADS)

    Nikolaou, I.

    2012-01-01

    It is known that hot emission stars (Be and Oe) present peculiar and very complex spectral line profiles. Due to these perplexed lines that appear, it is difficult to actually fit a classical distribution to those physical profiles. Therefore many physical parameters of the regions, where these lines are created, can not be determined. In this paper, we study the Ultraviolet (UV) MgII (?? 2795.523, 2802.698 A) resonance lines of the HD 41335 star, at three different periods. Considering that these profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs), we use the Gauss-Rotation model (GR-model). From this analysis we can estimate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, as well as the Full Width at Half Maximum (FWHM), the column density and the absorbed energy of the independent regions of matter, which produce the main and the satellite components of the studied spectral lines. Eventually, we calculate the time scale variations of the above physical parameters.

  3. Programmable thermal emissivity structures based on bioinspired self-shape materials

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  4. Programmable thermal emissivity structures based on bioinspired self-shape materials

    PubMed Central

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-01-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable – and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (εEff_H/εEff_L) equal to 28. PMID:26635316

  5. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    PubMed

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  6. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology of internally mixed light absorbing carbon aerosols must be explicitly considered in climate radiation balance.

  7. Reactivating dynamics for the susceptible-infected-susceptible model: a simple method to simulate the absorbing phase

    NASA Astrophysics Data System (ADS)

    Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.

    2018-04-01

    We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.

  8. A prospective randomised trial comparing mesh types and fixation in totally extraperitoneal inguinal hernia repairs.

    PubMed

    Cristaudo, Adam; Nayak, Arun; Martin, Sarah; Adib, Reza; Martin, Ian

    2015-05-01

    The totally extraperitoneal (TEP) approach for surgical repair of inguinal hernias has emerged as a popular technique. We conducted a prospective randomised trial to compare patient comfort scores using different mesh types and fixation using this technique. Over a 14 month period, 146 patients underwent 232 TEP inguinal hernia repairs. We compared the comfort scores of patients who underwent these procedures using different types of mesh and fixation. A non-absorbable 15 × 10 cm anatomical mesh fixed with absorbable tacks (Control group) was compared with either a non-absorbable 15 × 10 cm folding slit mesh with absorbable tacks (Group 2), a partially-absorbable 15 × 10 cm mesh with absorbable tacks (Group 3) or a non-absorbable 15 × 10 cm anatomical mesh fixed with 2 ml fibrin sealant (Group 4). Outcomes were compared at 1, 2, 4 and 12 weeks using the Carolina Comfort Scale (CCS) scores. At 1, 2, 4 and 12 weeks, the median global CCS scores were low for all treatment groups. Statistically significant differences were seen only for median CCS scores and subscores with the use of partially-absorbable mesh with absorbable tacks (Group 3) at weeks 2 and 4. However, these were no longer significant at week 12. In this study, the TEP inguinal hernia repair with minimal fixation results in low CCS scores. There were no statistical differences in CCS scores when comparing types of mesh, configuration of the mesh or fixation methods. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  9. Tunable acoustic absorbers with periodical micro-perforations having varying pore shapes

    NASA Astrophysics Data System (ADS)

    Ren, Shuwei; Liu, Xuewei; Gong, Junqing; Tang, Yufan; Xin, Fengxian; Huang, Lixi; Lu, Tian Jian

    2017-11-01

    Circular pores with sub-millimeter diameters have been widely used to construct micro-perforated panels (MPPs), the acoustical performance of which can be predicted well using the Maa theory (MAA D.-Y., J. Acoust. Soc. Am., 104 (1998) 2861). We present a tunable MPP absorber with periodically arranged cylindrical pores, with their cross-sectional shapes systematically altered around the circle while maintaining their cross-sectional areas unchanged. Numerical analyses based on the viscous-thermal coupled acoustical equations are utilized to investigate the tunable acoustic performance of the proposed absorbers and to reveal the underlying physical mechanisms. We demonstrate that pore morphology significantly affects the sound absorbption of MPPs by modifying the velocity field (and hence viscous dissipation) in the pores. Pore shapes featured as meso-scale circular pores accompanied with micro-scale bulges along the boundaries can lead to perfect sound absorption at relatively low frequencies. This work not only enriches the classical Maa theory on MPPs having circular perforations, but it also opens a new avenue for designing subwavelength acoustic metamaterials of superior sound absorption in target frequency ranges.

  10. Comparison of artificial absorbing boundaries for acoustic wave equation modelling

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing

    2017-12-01

    Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.

  11. Lyα-emitting galaxies as a probe of reionization: large-scale bubble morphology and small-scale absorbers

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Dijkstra, Mark; Ciardi, Benedetta; Graziani, Luca

    2016-12-01

    The visibility of Lyα-emitting galaxies during the Epoch of Reionization is controlled by both diffuse H I patches in large-scale bubble morphology and small-scale absorbers. To investigate their impacts on Lyα transfer, we apply a novel combination of analytic modelling and cosmological hydrodynamical, radiative transfer simulations to three reionization models: (I) the `bubble' model, where only diffuse H I outside ionized bubbles is present; (II) the `web' model, where H I exists only in overdense self-shielded gas; and (III) the hybrid `web-bubble' model. The three models can explain the observed Lyα luminosity function equally well, but with very different H I fractions. This confirms a degeneracy between the ionization topology of the intergalactic medium (IGM) and the H I fraction inferred from Lyα surveys. We highlight the importance of the clustering of small-scale absorbers around galaxies. A combined analysis of the Lyα luminosity function and the Lyα fraction can break this degeneracy and provide constraints on the reionization history and its topology. Constraints can be improved by analysing the full MUV-dependent redshift evolution of the Lyα fraction of Lyman break galaxies. We find that the IGM-transmission probability distribution function is unimodal for bubble models and bimodal in web models. Comparing our models to observations, we infer that the neutral fraction at z ˜ 7 is likely to be of the order of tens of per cent when interpreted with bubble or web-bubble models, with a conservative lower limit ˜1 per cent when interpreted with web models.

  12. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  13. Enzymology below 200 K: The kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase

    PubMed Central

    Heyes, Derren J.; Ruban, Alexander V.; Wilks, Helen M.; Hunter, C. Neil

    2002-01-01

    The chlorophyll biosynthesis enzyme protochlorophyllide reductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (Pchlide) into chlorophyllide in the presence of NADPH. As POR is light-dependent, catalysis can be initiated by illumination of the enzyme-substrate complex at low temperatures, making it an attractive model for studying aspects of biological proton and hydride transfers. The early stages in the photoreduction, involving Pchlide binding and an initial photochemical reaction, have been studied in vitro by using low-temperature fluorescence and absorbance measurements. Formation of the ternary POR-NADPH-Pchlide complex produces red shifts in the fluorescence and absorbance maxima of Pchlide, allowing the dissociation constant for Pchlide binding to be measured. We demonstrate that the product of an initial photochemical reaction, which can occur below 200 K, is a nonfluorescent intermediate with a broad absorbance band at 696 nm (A696) that is suggested to represent an ion radical complex. The temperature dependence of the rate of A696 formation has allowed the activation energy for the photochemical step to be calculated and has shown that POR catalysis can proceed at much lower temperatures than previously thought. Calculations of differences in free energy between various reaction intermediates have been calculated; these, together with the quantum efficiency for Pchlide conversion, suggest a quantitative model for the thermodynamics of the light-driven step of Pchlide reduction. PMID:12177453

  14. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.

    PubMed

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca

    2014-02-01

    The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show a sufficiently high mechanical power (at least approx 0.5 per cent of the bolometric luminosity) to provide a significant contribution to active galactic nuclei (AGN) feedback and thus to the evolution of the host galaxy. In this regard, we find possible evidence for the interaction of the AGN wind with the surrounding environment on large scales.

  16. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show a sufficiently high mechanical power (at least ˜0.5 per cent of the bolometric luminosity) to provide a significant contribution to active galactic nuclei (AGN) feedback and thus to the evolution of the host galaxy. In this regard, we find possible evidence for the interaction of the AGN wind with the surrounding environment on large scales.

  17. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  18. Acoustic behavior of a fibrous bulk material. [Kevlar 29 sound absorber

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1979-01-01

    A semiempirical model is presented describing the acoustic behavior of Kevlar 29, a bulk absorbing material. The model is based on an approximate solution to the one-dimensional equations representing conservation of fluctuating mass, momentum and energy. By treating the material as a momentum sink, theoretical expressions of the material complex propagation constants and characteristic impedance were derived in terms of a single constant. Evaluating the constant at a single frequency for a particular specimen, excellent agreement between prediction and measurement was achieved for a large range of sound frequencies and material porosities and thicknesses. Results show that Kevlar 29 absorbs sound efficiently even at low frequencies. This is explained in terms of a frequency dependent material phase speed.

  19. Photoprotection in plants: a new light on photosystem II damage.

    PubMed

    Takahashi, Shunichi; Badger, Murray R

    2011-01-01

    Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Spectrophotometric determination of traces of boron in high purity silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, D.C.; Sarkar, A.K.; Singh, N.

    1989-07-01

    A reddish brown complex is formed between boron and curcumin in concentrated sulfuric acid and glacial acetic acid mixture (1:1). The colored complex is highly selective and stable for about 3 hours and has the maximum absorbance at 545 nm. The sensitivity of the method is extremely high and the detection limit is 3 parts per billion based on 0.004 absorbance value. The interference of some of the important cations and anions relevant to silicon were studied and it is found that 100 fold excess of most of these cations and anions do not interfere in the determination of boron.more » The method is successfully employed for the determination of boron in silicon used in semiconductor devices. The results have been verified by standard addition method.« less

  1. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  2. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-01-17

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  3. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  4. A proposal of a perfect graphene absorber with enhanced design and fabrication tolerance.

    PubMed

    Lee, Sangjun; Tran, Thang Q; Heo, Hyungjun; Kim, Myunghwan; Kim, Sangin

    2017-07-06

    We propose a novel device structure for the perfect absorption of a one-sided lightwavve illumination, which consists of a high-contrast grating (HCG) and an evanescently coupled slab with an absorbing medium (graphene). The operation principle and design process of the proposed structure are analyzed using the coupled mode theory (CMT), which is confirmed by the rigorous coupled wave analysis (RCWA). According to the CMT analysis, in the design of the proposed perfect absorber, the HCG, functioning as a broadband reflector, and the lossy slab structure can be optimized separately. In addition, we have more design parameters than conditions to satisfy; that is, we have more than enough degrees of freedom in the device design. This significantly relieves the complexity of the perfect absorber design. Moreover, in the proposed perfect absorber, most of the incident wave is confined in the slab region with strong field enhancement, so that the absorption performance is very tolerant to the variation of the design parameters near the optimal values for the perfect absorption. It has been demonstrated numerically that absorption spectrum tuning over a wider wavelength range of ~300 nm is possible, keeping significantly high maximum absorption (>95%). It is also shown that the proposed perfect absorber outperforms the previously proposed scheme in all aspects.

  5. Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties

    PubMed Central

    Qi, Xiaosi; Qin, Chuan; Zhong, Wei; Au, Chaktong; Ye, Xiaojuan; Du, Youwei

    2010-01-01

    The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. PMID:28883324

  6. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  7. Coincidences between O VI and O VII Lines: Insights from High-resolution Simulations of the Warm-hot Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2012-07-01

    With high-resolution (0.46 h -1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ~40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 106 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm2 = (12.5-13, 13-14, > 14) have T < 105 K. Cross correlations between galaxies and strong [N(O VI) > 1014 cm-2] O VI absorbers on ~100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  8. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  9. Spectral investigations on binding of DNA-CTMA complex with tetrameric copper phthalocyanines

    NASA Astrophysics Data System (ADS)

    Venkat, Narayanan; Haley, Joy E.; Swiger, Rachel; Zhu, Lei; Wei, Xiaoliang; Ouchen, Fahima; Grote, James G.

    2013-10-01

    The binding of DNA-CTMA (Deoxyribonucleic acid-cetyltrimethylammonium) complex with two tetrameric Copper Phthalocyanine (CuPc) systems, substituted with carboxylic acid (CuPc-COOH) and derivatized further as an imidazolium salt (CuPc-COOR), was investigated in dimethylsulfoxide (DMSO) solutions using UV/Visible Spectroscopy. Absorbance changes at 685 nm (Q band of the CuPc) were monitored as a function of DNA-CTMA added to the dye solution and stock concentrations of DNA-CTMA in DMSO were varied to facilitate observation of the full binding process. Our findings indicated that while binding with DNA-CTMA was more well-defined in the case of CuPc-COOH, the binding profile of the CuPc-COOR showed initial growth followed by decay in its Q-band absorbance which was indicative of a more complex binding mechanism involving the dye and DNA-CTMA. Preliminary findings from photophysical studies involving the CuPc tetramers and DNA-CTMA are also discussed in this paper.

  10. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  11. Tracking the complex absorption in NGC 2110 with two Suzaku observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2014-05-10

    We present spectral analysis of two Suzaku observations of the Seyfert 2 galaxy, NGC 2110. This source has been known to show complex, variable absorption which we study in depth by analyzing these two observations set 7 yr apart and by comparing them to previously analyzed observations with the XMM-Newton and Chandra observatories. We find that there is a relatively stable, full-covering absorber with a column density of ∼3× 10{sup 22} cm{sup –2}, with an additional patchy absorber that is likely variable in both column density and covering fraction over timescales of years, consistent with clouds in a patchy torusmore » or in the broad line region. We model a soft emission line complex, likely arising from ionized plasma and consistent with previous studies. We find no evidence for reflection from an accretion disk in this source with contribution from neither relativistically broadened Fe Kα line emission, nor from a Compton reflection hump.« less

  12. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.

  13. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to δ2H and δ18O measurement errors (Δδ2H and Δδ18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for Δδ2H and Δδ18O. The method was tested on 14 instruments and Δδ18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while Δδ2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, Δδ2H and Δδ18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while Δδ2H and Δδ18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.

  14. Overview of Malabsorption

    MedlinePlus

    ... cause. Normally, foods are digested and nutrients (proteins, carbohydrates, fats, vitamins, and minerals) are absorbed into the ... the pancreas. However, some of these tests are complex, time-consuming, and invasive. In one test, a ...

  15. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  16. Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power.

    PubMed

    Gürel, K; Wittwer, V J; Hoffmann, M; Saraceno, C J; Hakobyan, S; Resan, B; Rohrbacher, A; Weingarten, K; Schilt, S; Südmeyer, T

    2015-11-16

    We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

  17. The Evolving Polarized Jet of Black Hole Candidate Swift J1745-26

    NASA Technical Reports Server (NTRS)

    Curran, P. A.; Coriat, M.; Miller-Jones, J. C. A.; Armstrong, R. P.; Edwards, P. G.; Sivakoff, G. R.; Woudt, P.; Altamirano, D.; Belloni, T. M.; Corbel, S.; hide

    2013-01-01

    Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display "failed outbursts", in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio-X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (is approx. equal to 50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta - the first time such a discrete ejection has been observed in a failed outburst - and may imply a complex magnetic field geometry.

  18. Automated Hybridization of X-ray Absorber Elements-A Path to Large Format Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Kelley, R.; Allen, C.; Kilbourne, C.; Costen, N.; Miller, T.

    2007-01-01

    In the design of microcalorimeters, it is often desirable to produce the X-ray absorber separately from the detector element. In this case, the attachment of the absorber to the detector element with the required thermal and mechanical characteristics is a major challenge. In such arrays, the attachment has been done by hand. This process is not easily extended to the large format arrays required for future X- ray astronomy missions such as the New x-ray Telescope or NeXT. In this paper we present an automated process for attaching absorber tiles to the surface of a large-scale X-ray detector array. The absorbers are attached with stycast epoxy to a thermally isolating polymer structure made of SU-8. SU-8 is a negative epoxy based photo resist produced by Microchem. We describe the fabrication of the X-ray absorbers and their suspension on a handle die in an adhesive matrix. We describe the production process for the polymer isolators on the detector elements. We have developed a new process for the alignment, and simultaneous bonding of the absorber tiles to an entire detector array. This process uses equipment and techniques used in the flip-chip bonding industry and approaches developed in the fabrication of the XRS-2 instrument. XRS-2 was an X-ray spectrometer that was launched on the Suzaku telescope in July 10, 2005. We describe the process and show examples of sample arrays produced by this process. Arrays with up to 300 elements have been bonded. The present tests have used dummy absorbers made of Si. In future work, we will demonstrate bonding of HgTe absorbers.

  19. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  20. Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape

    NASA Astrophysics Data System (ADS)

    Argolo, C.; Barros, P.; Tomé, T.; Arashiro, E.; Gleria, Iram; Lyra, M. L.

    2016-08-01

    We investigate a stochastic lattice model describing a predator-prey system in a fractal scale-free landscape, mimicked by the fractal Sierpinski carpet. We determine the threshold of species coexistence, that is, the critical phase boundary related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. We show that the predators must live longer in order to persist in a fractal habitat. We further performed a finite-size scaling analysis in the vicinity of the absorbing-state phase transition to compute a set of stationary and dynamical critical exponents. Our results indicate that the transition belongs to the directed percolation universality class exhibited by the usual contact process model on the same fractal landscape.

  1. Hydropower and sustainability: resilience and vulnerability in China's powersheds.

    PubMed

    McNally, Amy; Magee, Darrin; Wolf, Aaron T

    2009-07-01

    Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water resource control at the local and international scales. Some measures that improved economic development through the market economy and a combination of dam construction and institutional reform may indeed improve hydro-political resilience at a single scale. However, if China does address large-scale hydropower construction's potential to create multi-scale geopolitical tensions, they may be vulnerable to conflict - though not necessarily violent - in domestic and international political arenas. We conclude with a look toward a resilient basin institution for the Nu/Salween River, the site of a proposed large-scale hydropower development effort in China and Myanmar.

  2. Thermostability of photosystem I trimers and monomers from the cyanobacterium Thermosynechococcus elongatus

    NASA Astrophysics Data System (ADS)

    Shubin, Vladimir V.; Terekhova, Irina V.; Bolychevtseva, Yulia V.; El-Mohsnawy, Eithar; Rögner, Matthias; Mäntele, Werner; Kopczak, Marta J.; Džafić, Enela

    2017-05-01

    The performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermostability of photosystem I (PSI) complexes Terasaki et al. (2007), Iwuchukwu et al. (2010), Kothe et al. (2013) . To assess the thermostability of PSI complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus heating induced perturbations on the level of secondary structure of the proteins were studied. Changes were monitored by Fourier transform infrared (FT-IR) spectra in the mid-IR region upon slow heating (1 °C per minute) of samples in D2O phosphate buffer (pD 7.4) from 20 °C to 100 °C. These spectra showed distinct changes in the Amide I region of PSI complexes as a function of the rising temperature. Absorbance at the Amide I maximum of PSI monomers (centered around 1653 cm- 1), gradually dropped in two temperature intervals, i.e. 60-75 and 80-90 °C. In contrast, absorbance at the Amide I maximum of PSI trimers (around 1656 cm- 1) dropped only in one temperature interval 80-95 °C. The thermal profile of the spectral shift of α-helices bands in the region 1656-1642 cm- 1 confirms the same two temperature intervals for PSI monomers and only one interval for trimers. Apparently, the observed absorbance changes at the Amide I maximum during heating of PSI monomers and trimers are caused by deformation and unfolding of α-helices. The absence of absorbance changes in the interval of 20-65 °C in PSI trimers is probably caused by a greater stability of protein secondary structure as compared to that in monomers. Upon heating above 80 °C a large part of α-helices both in trimers and monomers converts to unordered and aggregated structures. Spectral changes of PSI trimers and monomers heated up to 100 °C are irreversible due to protein denaturation and non-specific aggregation of complexes leading to new absorption bands at 1618-1620 cm- 1. We propose that monomers shield the denaturation sensitive sides at the monomer/monomer interface within a trimer, making the oligomeric structure more stable against thermal stress.

  3. Evaluating sensitivity of complex electrical methods for monitoring CO2 intrusion into a shallow groundwater system and associated geochemical transformations

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Wu, Y.; Hubbard, S. S.; Birkholzer, J. T.; Daley, T. M.; Pugh, J. D.; Peterson, J.; Trautz, R. C.

    2011-12-01

    A risk factor of CO2 storage in deep geological formations includes its potential to leak into shallow formations and impact groundwater geochemistry and quality. In particular, CO2 decreases groundwater pH, which can potentially mobilize naturally occurring trace metals and ions commonly absorbed to or contained in sediments. Here, geophysical studies (primarily complex electrical method) are being carried out at both laboratory and field scales to evaluate the sensitivity of geophysical methods for monitoring dissolved CO2 distribution and geochemical transformations that may impact water quality. Our research is performed in association with a field test that is exploring the effects of dissolved CO2 intrusion on groundwater geochemistry. Laboratory experiments using site sediments (silica sand and some fraction of clay minerals) and groundwater were initially conducted under field relevant CO2 partial pressures (pCO2). A significant pH drop was observed with inline sensors with concurrent changes in fluid conductivity caused by CO2 dissolution. Electrical resistivity and electrical phase responses correlated well with the CO2 dissolution process at various pCO2. Specifically, resistivity decreased initially at low pCO2 condition resulting from CO2 dissolution followed by a slight rebound because of the transition of bicarbonate into non-dissociated carbonic acid at lower pH slightly reducing the total concentration of dissociated species. Continuous electrical phase decreases were also observed, which are interpreted to be driven by the decrease of surface charge density (due to the decrease of pH, which approaches the PZC of the sediments). In general, laboratory experiments revealed the sensitivity of electrical signals to CO2 intrusion into groundwater formations and can be used to guide field data interpretation. Cross well complex electrical data are currently being collected periodically throughout a field experiment involving the controlled release of dissolved CO2 into groundwater. The objective of the geophysical cross well monitoring effort is to evaluate the sensitivity of complex electrical methods to dissolved CO2 at the field scale. Here, we report on the ability to translate laboratory-based petrophysical information from lab to field scales, and on the potential of field complex electrical methods for remotely monitoring CO2-induced geochemical transformations.

  4. Micro-mechanical properties of the tendon-to-bone attachment.

    PubMed

    Deymier, Alix C; An, Yiran; Boyle, John J; Schwartz, Andrea G; Birman, Victor; Genin, Guy M; Thomopoulos, Stavros; Barber, Asa H

    2017-07-01

    The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. Copyright © 2017. Published by Elsevier Ltd.

  5. The Case Against Charge Transfer Interactions in Dissolved Organic Matter Optical Properties

    NASA Astrophysics Data System (ADS)

    McKay, G.; Korak, J.; Erickson, P. R.; Latch, D. E.; McNeill, K.; Rosario-Ortiz, F.

    2017-12-01

    The optical properties of dissolved organic matter influence chemical and biological processes in all aquatic ecosystems. Organic matter optical properties have been used by scientists and engineers for decades for remote sensing, in situ monitoring, and characterizing laboratory samples to track dissolved organic carbon concentration and character. However, there is still a lack of understanding of the origin of organic matter optical properties, which could conflict with other empirical fluorescence interpretation methods (e.g. PARAFAC). Organic matter optical properties have been attributed to a charge-transfer model in which donor-acceptor complexes play a primary role. This model was evaluated by measuring the absorbance and fluorescence response of organic matter isolates to perturbations in solvent temperature, viscosity, and polarity, which affect the position and intensity of spectra for known donor-acceptor complexes of organic molecules. Absorbance and fluorescence spectral shape were unaffected by these perturbations, indicating that the distribution of absorbing and emitting species was unchanged. These results call into question the wide applicability of the charge-transfer model for explaining organic matter optical properties and suggest that future research should explore other models for organic matter photophysics.

  6. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; hide

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  7. Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, D.; Asai, M.; Brink, P.L.

    There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature,more » focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.« less

  8. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications.

    PubMed

    Grant, James; Kenney, Mitchell; Shah, Yash D; Escorcia-Carranza, Ivonne; Cumming, David R S

    2018-04-16

    We experimentally demonstrate a CMOS compatible medium wave infrared metal-insulator-metal (MIM) metamaterial absorber structure where for a single dielectric spacer thickness at least 93% absorption is attained for 10 separate bands centred at 3.08, 3.30, 3.53, 3.78, 4.14, 4.40, 4.72, 4.94, 5.33, 5.60 μm. Previous hyperspectral MIM metamaterial absorber designs required that the thickness of the dielectric spacer layer be adjusted in order to attain selective unity absorption across the band of interest thereby increasing complexity and cost. We show that the absorption characteristics of the hyperspectral metamaterial structures are polarization insensitive and invariant for oblique incident angles up to 25° making them suitable for practical implementation in an imaging system. Finally, we also reveal that under TM illumination and at certain oblique incident angles there is an extremely narrowband Fano resonance (Q > 50) between the MIM absorber mode and the surface plasmon polariton mode that could have applications in hazardous/toxic gas identification and biosensing.

  9. Current practices of Asia-Pacific cardiologists in the utilization of bioresorbable scaffolds.

    PubMed

    Chanana, B B; Chandra, Praveen; Cheng, Jack Jun; Dick, Ron; Gwon, Hyeon-Cheol; Hiremath, M S; Huan, Do Quang; Jeamanukoolkit, Anuruck; Jiang, Tiemin; Kwok, On-Hing; Lim, Michael C L; Low, Adrian F; Mathew, Rony; Mathew, Samuel K; McClean, Dougal; Nakamura, Sunao; Nguyen, Michael; Qiao, Shubin; Santoso, Teguh; Saxena, Sudheer; Schultz, Carl; Sengottuvelu, G; Seth, Ashok; Simonton, Charles A; Soo, Chee Siong; Sudhir, Krishnankutty; Tsai, Cheng-Ting; Wasan, Udayachalerm; Whelan, Alan; Wong, Chris; Yap, Yee Guan

    2016-11-01

    Although Absorb Bioresorbable Vascular Scaffolds (A-BVS) are routinely used in the Asia-Pacific, there is little information on patient selection or deployment technique here. This document investigates the experiences of leading interventional cardiologists from the Asia-Pacific region with a focus on patient characteristics, deployment techniques and management. A detailed questionnaire was distributed to 28 highly-experienced interventional cardiologists ('Authors') from 13 Asia-Pacific countries. The results were discussed at a meeting on patient selection, technical consideration, deployment practices and patient management. Potential patient benefits of Absorb compared to metallic DES, the learning curve for patient selection and preparation, device deployment, and subsequent patient management approaches are presented. Current practices are derived from guidelines optimized for European patients. Differences in approach exist in the Asia-Pacific context, including limited access to imaging and frequency of occurrence of complex lesions. Nevertheless, the use of the Absorb BVS ('Absorb') in certain Asia-Pacific countries has flourished and practices here are continuing to mature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    NASA Astrophysics Data System (ADS)

    Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen

    2010-11-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  11. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  12. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    PubMed

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  13. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  14. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  15. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay

    PubMed Central

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu1+-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu1+-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration. PMID:21625379

  16. Breathing gas perfluorocarbon measurements using an absorber filled with zeolites.

    PubMed

    Proquitté, H; Rüdiger, M; Wauer, R R; Schmalisch, G

    2003-11-01

    Perfluorocarbon (PFC) has been widely used in the treatment of respiratory diseases; however, PFC content of the breathing gases remains unknown. Therefore, we developed an absorber using PFC selective zeolites for PFC measurement in gases and investigated its accuracy. To generate a breathing gas with different PFC contents a heated flask was rinsed with a constant air flow of 4 litre x min(-1) and 1, 5, 10, and 20 ml of PFC were infused over 20 min using an infusor. The absorber was placed on an electronic scale and the total PFC volume was calculated from the weight gain. Steady-state increase in weight was achieved 3.5 min after stopping the infusion. The calculated PFC volume was slightly underestimated but the measuring error did not exceed -1% for PFC less than 1 ml. The measurement error decreased with increasing PFC volume. This zeolite absorber is an accurate method to quantitatively determine PFC in breathing gases and can be used as a reference method to validate other PFC sensors.

  17. VizieR Online Data Catalog: Experimental spectrum of methanol (CH3OH) (McMillan+,

    NASA Astrophysics Data System (ADS)

    McMillan, J. P.; Fortman, S. M.; Neese, C. F.; de, Lucia F. C.

    2017-05-01

    In this paper we describe the spectrum of methanol between 214.6 and 265.4 GHz. In this region we observed 589 lines with scaled absorbance cross-sections greater than 0.0037 nm2. For comparison there are 386 lines in a composite catalog above this scaled absorbance cross-section. The spectrometer uses ax24 frequency multiplied probe, a heterodyne receiver, and a temperature controlled 6 m long cell (Fortman et al. 2010ApJ...725.1682F, 2011ApJ...737...20F). Four hundred eighty-six spectral scans were recorded as the temperature was ramped over a period of 305 minutes from 240 K to 389 K. The spectrum was recorded at 24.4140625 kHz intervals, with an integration time of ~18 us/bin. The temperatures were determined spectroscopically and are used as a part of the file name. The decontaminated absorbance spectra data are contained in 486 flat text files in this tarball. Each spectrum file contains 2.08 million data bins, starting at 214.6 GHz and incrementing in steps of 24.4140625 kHz. The frequency (in MHz) is provided in "tablefre.dat" and calibration data are provided in "tablecal.dat" (4 data files).

  18. Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigham, S; Yu, DZ; Chugh, D

    2014-02-01

    The slow diffusion of an absorbate molecule into an absorbent often makes the absorption process a rate-limiting step in many applications. In cases involving an absorbate with a high heat of phase change, such as water absorption into a LiBr (lithium bromide) solution, the absorption rate is further slowed due to significant heating of the absorbent. Recently, it has been demonstrated that constraining a LiBr solution film by a hydrophobic porous structure enables manipulation of the solution flow thermohydraulic characteristics. Here, it is shown that mass transport mode in a constrained laminar solution flow can be changed from diffusive tomore » advective. This change in mode is accomplished through stretching and folding the laminar streamlines within the solution film via the implementation of micro-scale features on the flow channel surface. The process induces vortices within the solution film, which continuously bring concentrated solution from the bottom and middle of the solution channel to its interface with the vapor phase, thus leading to a significant enhancement in the absorption rate. The detailed physics of the involved transport processes is elucidated using the LBM (Lattice Boltzmann Method). Published by Elsevier Ltd.« less

  19. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.

    PubMed

    Wilts, Bodo D; Vey, Aidan J M; Briscoe, Adriana D; Stavenga, Doekele G

    2017-11-21

    Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.

  20. The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.

    2015-01-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.

  1. Radiative Transfer of Solar Light in Dense Complex Media : Theoretical and Experimental Achievements by the Planetary Community

    NASA Astrophysics Data System (ADS)

    Doute, S.; Schmitt, B.

    2004-05-01

    Visible and near infrared imaging spectroscopy is one of the key techniques to detect, map and characterize mineral and volatile species existing at the surface of the planets. Indeed the chemical composition, granularity, texture, physical state, etc, of the materials determine the existence and morphology of the absorption bands. However the development of quantitative methods to analyze reflectance spectra requires mastering of a very challenging physics: the reflection of solar light by densely packed, absorbent and highly scattering materials that usually present a fantastic structural complexity at different spatial scales. Volume scattering of photons depends on many parameters like the intrinsic optical properties, the shapes, sizes and the packing density of the mineral or icy grains forming the natural media. Their discontinuous and stochastic nature plays a great role especially for reflection and shading by the top few grains of the surface. Over several decades, the planetary community has developed increasingly sophisticated tools to handle this problem of radiative transfer in dense complex media in order to fulfill its needs. Analytical functions with a small number of non physical adjusting parameters were first proposed to reproduce the photometry of the planets and satellites. Then reflectance models were built by implementing methods of radiative transfer in continuously absorbent and scattering medium. A number of very restricting hypothesis forms the basis of these methods, e.g. low particles density, scattering treated in the far field approximation. A majority of these assumptions does not stand when treating planetary regoliths or volatile deposits. In addition, the classical methods completely bypass effects due to the constructive interference of scattered waves for backscattering or specular geometries (e.g. the opposition effect). Different, sometimes competing, approaches have been proposed to overcome some of these limitations. In particular Monte Carlo ray tracing simulations have been recently carried out to investigate properties of particulate media that are traditionally ignored or crudely treated: packing density, micro-roughness, etc. The efforts of the community to address the later problems are not only theoretical but also experimental with the development of several dedicated goniometers.

  2. Perturbation theory for fractional Brownian motion in presence of absorbing boundaries.

    PubMed

    Wiese, Kay Jörg; Majumdar, Satya N; Rosso, Alberto

    2011-06-01

    Fractional Brownian motion is a Gaussian process x(t) with zero mean and two-time correlations (x(t(1))x(t(2)))=D(t(1)(2H)+t(2)(2H)-|t(1)-t(2)|(2H)), where H, with 0

  3. Lens-Aided Multi-Angle Spectroscopy (LAMAS) Reveals Small-Scale Outflow Structure in Quasars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2006-06-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. Here we advance a novel third hypothesis: some spectral differences are due to small line-of-sight differences through quasar disk wind outflows. In particular, we propose that variable spectral differences seen only in component A of the widest separation lens SDSS J1004+4112 are due to differential absorption along the sight lines. The absorber properties required by this hypothesis are akin to known broad absorption line (BAL) outflows but must have a broader, smoother velocity profile. We interpret the observed C IV emission-line variability as further evidence for spatial fine structure transverse to the line of sight. Since outflows are likely to be rotating, such absorber fine structure can consistently explain some of the UV and X-ray variability seen in AGNs. The implications are many: (1) Spectroscopic differences in other lensed objects may be due to this ``lens-aided multi-angle spectroscopy'' (LAMAS). (2) Outflows have fine structure on size scales of arcseconds, as seen from the nucleus. (3) Assuming either broad absorption line region sizes proposed in recent wind models, or typically assumed continuum emission region sizes, LAMAS and/or variability provide broadly consistent absorber size scale estimates of ~1015 cm. (4) Very broad smooth absorption may be ubiquitous in quasar spectra, even when no obvious troughs are seen.

  4. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  5. Characterization of potassium dichromate solutions for spectrophotometercalibration

    NASA Astrophysics Data System (ADS)

    Conceição, F. C.; Silva, E. M.; Gomes, J. F. S.; Borges, P. P.

    2018-03-01

    Spectrophotometric analysis in the ultraviolet (UV) region is used in the determination of several quantitative and qualitative parameters. For ensuring reliability of the analyses performed on the spectrophotometers, verification / calibration of the equipment must be performed periodically using certified reference materials (CRMs). This work presents the characterization stage needed for producing this CRM. The property value characterized was the absorbance for the wavelengths in the UV spectral regions. This CRM will contribute to guarantee the accuracy and linearity of the absorbance scale to the spectrophotometers, through which analytical measurement results will be provided with metrological traceability.

  6. Fundamentals of Geophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shengwei; Yu Jiaguo

    Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi{sub 2}WO{sub 6} assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process ismore » discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)« less

  8. Revealing H I gas in emission and absorption on pc to kpc scales in a galaxy at z ˜ 0.017

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Srianand, R.; Farnes, J. S.; Pidopryhora, Y.; Vivek, M.; Paragi, Z.; Noterdaeme, P.; Oosterloo, T.; Petitjean, P.

    2018-05-01

    We present a detailed study of the quasar-galaxy pair: J1243+4043-UGC 07904. The sight line of the background quasar ( zq = 1.5266) passes through a region of the galaxy (zg = 0.0169) at an impact parameter of 6.9 kpc with high metallicity (0.5 Z⊙) and negligible dust extinction. We detect H I 21-cm absorption from the foreground galaxy at arcsecond and milliarcsecond scales. For typical cold neutral medium (CNM) temperatures in the Milky Way, this 21-cm absorber can be classified as a damped Lyα absorber (DLA). We infer the harmonic mean spin temperature of the gas to be ˜400 K and for a simple two-phase medium we estimate the CNM fraction to be fCNM = 0.27. This is remarkably consistent with the CNM fraction observed in the Galaxy and less than that of high-redshift DLAs. The quasar exhibits a core-jet morphology on milliarcsecond scales, corresponding to an overall extent of ˜9 pc at zg. We show that the size of CNM absorbing clouds associated with the foreground galaxy is >5 pc and they may be part of cold gas structures that extend beyond ˜35 pc. Interestingly, the rotation measure of quasar J1243+4043 is higher than any other source in samples of quasars with high-z DLAs. However, we do not find any detectable differences in rotation measures and polarization fraction of sight lines with or without high-z (z ≥ 2) DLAs or low-z (z ≤ 0.3) 21-cm absorbers. Finally, the foreground galaxy UGC 07904 is also part of a galaxy group. We serendipitously detect H I 21-cm emission from four members of the group, and an ˜80 kpc long H I bridge connecting two of the other members. The latter, together with the properties of the group members, suggests that the group is a highly interactive environment.

  9. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.

    PubMed

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-03

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.

  10. Evidence for a Circum-Nuclear and Ionised Absorber in the X-ray Obscured Broad Line Radio Galaxy 3C 445

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Sambruna, R. M.; Gofford, J.

    2012-01-01

    Here we present the results of a Suzaku observation of the Broad Line Radio Galaxy 3C 445. We confirm the results obtained with the previous X-ray observations which unveiled the presence of several soft X-ray emission lines and an overall X-ray emission which strongly resembles a typical Seyfert 2 despite of the optical classification as an unobscured AGN. The broad band spectrum allowed us to measure for the first time the amount of reflection (R approximately 0.9) which together with the relatively strong neutral Fe Ka emission line (EW approximately 100 eV) strongly supports a scenario where a Compton-thick mirror is present. The primary X ray continuum is strongly obscured by an absorber with a column density of NH = 2 - 3 x 10(exp 23) per square centimeter. Two possible scenarios are proposed for the absorber: a neutral partial covering or a mildly ionised absorber with an ionisation parameter log xi approximately 1.0 erg centimeter per second. A comparison with the past and more recent X-ray observations of 3C 445 performed with XMM-Newton and Chandra is presented, which provided tentative evidence that the ionised and outflowing absorber varied. We argue that the absorber is probably associated with an equatorial diskwind located within the parsec scale molecular torus.

  11. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco; Cappi, M.; Reeves, J.; Nemmen, R.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-04-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60%, consistent with previous studies. The fraction of sources with UFOs is >34%, >67% of which also show WAs. The large dynamic range obtained when considering all the absorbers together allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. The absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. This strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The observed parameters and correlations are consistent with both radiation pressure through Compton scattering and MHD processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, have a sufficiently high mechanical power to significantly contribute to the AGN feedback.

  12. 3D-Printing ‘Smarter’ Energy Absorbing Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, Eric

    2014-08-29

    Foams are, by nature, disordered materials studded with air pockets of varying sizes. Lack of control over the material’s architecture at the micrometer or nanometer scale can make it difficult to adjust the foam’s basic properties. But Eric Duoss and a team of Livermore researchers are using additive manufacturing to develop “smarter” silicone cushions. By architecting the structure at the micro scale, they are able to control macro-scale properties previously unachievable with foam materials.

  13. Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review.

    PubMed

    Gientka, Iwona; Błażejak, Stanisław; Stasiak-Różańska, Lidia; Chlebowska-Śmigiel, Anna

    2015-01-01

    xopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates for. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates formin. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates forming EPS.

  14. Report: complexation of β-sitosterol with tris (dibenzylideneacetone) dipalladium and its anti-microbial activity.

    PubMed

    Mahmood, Talat; Bibi, Yasmeen; Zafar, Raana; Wahab, Aneela; Mahmood, Iffat; Arshad, Nuzhat; Sherwani, Sikandar Khan

    2015-03-01

    β-sitosterol is a naturally occurring plant sterol (phytosterol) present in many fruits and vegetables. Scientific research has proven that β-sitosterol is helpful in maintaining the proper functioning of our body. Previously we described the complexation of β-sitosterol with trace metals (Mahmood et al., 2013). Trace metals after the formation of complex unable to absorb in the body and hence eliminated out from the body thus reducing metal toxicity (Marsha, 1996). The present article describes the complexation of μ-sitosterol with Palladium (Pd) metal. Palladium is a toxic metal and due to polluted and hazardous environment traces of this metal can be transferred into the body, which is harmful for human health. Our aim is to make Pd-sterol complex so that this toxic metal (Pd) does not absorb in the body and hence excreted out from the body in the complex form. In order to form this complex μ-sitosterol (Ib) is reacted with Tris (dibenzylideneacetone) dipalladium or [Pd(2) (DBA)(3)] (Ia) in 2:1 ratio in an inert atmosphere and dimethylformamid (DMF) added as a solvent. The resulting complex [Pd(2) (DBA)(3).(β-sitosterol) (Ic) was identified by various spectroscopic techniques such as IR, Mass and (1)H-NMR. This new organo metallic complex (Ic) also showed significant antibacterial and antifungal activity. The present work revealed that Pd-sterol complex does not only reduce metal toxicity but also helpful in minimizing bacterial and fungal infections present in the body. Our research also concluded that we must take plenty of fruits and vegetables in our diet so that natural plant sterol such as β-sitosterol can enhance our defense mechanism and maintain other functions of our body.

  15. Wideband characterization of the complex wave number and characteristic impedance of sound absorbers.

    PubMed

    Salissou, Yacoubou; Panneton, Raymond

    2010-11-01

    Several methods for measuring the complex wave number and the characteristic impedance of sound absorbers have been proposed in the literature. These methods can be classified into single frequency and wideband methods. In this paper, the main existing methods are revisited and discussed. An alternative method which is not well known or discussed in the literature while exhibiting great potential is also discussed. This method is essentially an improvement of the wideband method described by Iwase et al., rewritten so that the setup is more ISO 10534-2 standard-compliant. Glass wool, melamine foam and acoustical/thermal insulator wool are used to compare the main existing wideband non-iterative methods with this alternative method. It is found that, in the middle and high frequency ranges the alternative method yields results that are comparable in accuracy to the classical two-cavity method and the four-microphone transfer-matrix method. However, in the low frequency range, the alternative method appears to be more accurate than the other methods, especially when measuring the complex wave number.

  16. Measurement of Scattering and Absorption Cross Sections of Dyed Microspheres

    PubMed Central

    Gaigalas, Adolfas K; Choquette, Steven; Zhang, Yu-Zhong

    2013-01-01

    Measurements of absorbance and fluorescence emission were carried out on aqueous suspensions of polystyrene (PS) microspheres with a diameter of 2.5 µm using a spectrophotometer with an integrating sphere detector. The apparatus and the principles of measurements were described in our earlier publications. Microspheres with and without green BODIPY@ dye were measured. Placing the suspension inside an integrating sphere (IS) detector of the spectrophotometer yielded (after a correction for fluorescence emission) the absorbance (called A in the text) due to absorption by BODIPY@ dye inside the microsphere. An estimate of the absorbance due to scattering alone was obtained by subtracting the corrected BODIPY@ dye absorbance (A) from the measured absorbance of a suspension placed outside the IS detector (called A1 in the text). The absorption of the BODIPY@ dye inside the microsphere was analyzed using an imaginary index of refraction parameterized with three Gaussian-Lorentz functions. The Kramer-Kronig relation was used to estimate the contribution of the BODIPY@ dye to the real part of the microsphere index of refraction. The complex index of refraction, obtained from the analysis of A, was used to analyze the absorbance due to scattering ((A1- A) in the text). In practice, the analysis of the scattering absorbance, A1-A, and the absorbance, A, was carried out in an iterative manner. It was assumed that A depended primarily on the imaginary part of the microsphere index of refraction with the other parameters playing a secondary role. Therefore A was first analyzed using values of the other parameters obtained from a fit to the absorbance due to scattering, A1-A, with the imaginary part neglected. The imaginary part obtained from the analysis of A was then used to reanalyze A1-A, and obtain better estimates of the other parameters. After a few iterations, consistent estimates were obtained of the scattering and absorption cross sections in the wavelength region 300 nm to 800 nm. PMID:26401422

  17. Sir John Pople, Gaussian Code, and Complex Chemical Reactions

    Science.gov Websites

    tool that describes the dance of molecules in chemical reactions ... . Dr. Pople was among the first to colors of light they will absorb or emit, and the pace of chemical reactions. The work culminated in a dropdown arrow Site Map A-Z Index Menu Synopsis Sir John Pople, Gaussian Code, and Complex Chemical

  18. An unsupported metal hydroxide for the design of molecular μ-oxo bridged heterobimetallic complexes.

    PubMed

    Falzone, A J; Nguyen, J; Weare, W W; Sommer, R D; Boyle, P D

    2014-02-28

    A terminal and unsupported chromium(III) hydroxide is reported. The terminal hydroxide is used to synthesize the first example of a heterobimetallic Ti-O-Cr compound containing an unsupported μ-oxo bridge. The heterobimetallic complex exhibits a new absorbance at 288 nm (4.32 eV), which is assigned to a metal-to-metal charge transfer (MMCT) transition.

  19. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  20. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  1. Amylose inclusion complexation of ferulic acid via lipophilization

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid is an interesting phytochemical that exhibits antioxidant, anti-inflammatory, antimicrobial, UV-absorber, and anticarcinogenic activities. These properties make it of interest in food formulations, cosmetics, polymer, and pharmaceutical applications. However, delivery of ferulic acid in...

  2. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar tensor calculations to contribute to the identification of the molecule.

  3. Neural network consistent empirical physical formula construction for density functional theory based nonlinear vibrational absorbance and intensity of 6-choloronicotinic acid molecule.

    PubMed

    Yildiz, Nihat; Karabacak, Mehmet; Kurt, Mustafa; Akkoyun, Serkan

    2012-05-01

    Being directly related to the electric charge distributions in a molecule, the vibrational spectra intensities are both experimentally and theoretically important physical quantities. However, these intensities are inherently highly nonlinear and of complex pattern. Therefore, in particular for unknown detailed spatial molecular structures, it is difficult to make ab initio intensity calculations to compare with new experimental data. In this respect, we very recently initiated entirely novel layered feedforward neural network (LFNN) approach to construct empirical physical formulas (EPFs) for density functional theory (DFT) vibrational spectra of some molecules. In this paper, as a new and far improved contribution to our novel molecular vibrational spectra LFNN-EPF approach, we constructed LFFN-EPFs for absorbances and intensities of 6-choloronicotinic acid (6-CNA) molecule. The 6-CNA data, borrowed from our previous study, was entirely different and much larger than the vibrational intensity data of our formerly used LFNN-EPF molecules. In line with our another previous work which theoretically proved the LFNN relevance to EPFs, although the 6-CNA DFT absorbance and intensity were inherently highly nonlinear and sharply fluctuating in character, still the optimally constructed train set LFFN-EPFs very successfully fitted the absorbances and intensities. Moreover, test set (i.e. yet-to-be measured experimental data) LFNN-EPFs consistently and successfully predicted the absorbance and intensity data. This simply means that the physical law embedded in the 6-CNA vibrational data was successfully extracted by the LFNN-EPFs. In conclusion, these vibrational LFNN-EPFs are of explicit form. Therefore, by various suitable operations of mathematical analysis, they can be used to estimate the electronic charge distributions of the unknown molecule of the significant complexity. Additionally, these estimations can be combined with those of theoretical DFT atomic polar tensor calculations to contribute to the identification of the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Carotenoids and Photosynthesis.

    PubMed

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  5. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    PubMed

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  6. Photoactive energetic materials

    DOEpatents

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  7. Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuev, Dmitry; Jagau, Thomas-C.; Krylov, Anna I.

    2014-07-14

    A production-level implementation of equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing potential (CAP) is presented. The new method enables the treatment of metastable states within the EOM-CC formalism in a similar manner as bound states. The numeric performance of the method and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-electron basis set are investigated. A protocol for studying molecular shape resonances based on the use of standard basis sets and a universal criterion for choosing the CAP parameters are presented. Our resultsmore » for a variety of π{sup *} shape resonances of small to medium-size molecules demonstrate that CAP-augmented EOM-CCSD is competitive relative to other theoretical approaches for the treatment of resonances and is often able to reproduce experimental results.« less

  8. Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.

    PubMed

    Ishii, H; Kohata, K

    1991-05-01

    Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.

  9. Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl

    NASA Astrophysics Data System (ADS)

    He, Jun; Deng, Lianwen; Liu, Sheng; Yan, Shuoqing; Luo, Heng; Li, Yuhan; He, Longhui; Huang, Shengxiang

    2017-12-01

    The magnetic insulator Fe3O4-modified flaky Fe85Si9.5Al5.5 (FeSiAl) powders with significantly enhanced electromagnetic wave absorption properties in the frequency range of 2-8 GHz were prepared by chemical co-precipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have confirmed the formation of nanoparticles Fe3O4 precipitated on the flake-shaped FeSiAl. The electromagnetic measurements of the modified flakes presents a nearly invariable complex permeability and decreased complex permittivity in the 2-8 GHz, as well as improved impedance matching performance. More importantly, an excellent microwave absorbing performance with the bandwidth (RL <-10 dB) of 5.36 GHz is achieved in modified sample with the thickness of 1.5 mm, which is a promising microwave absorbing material in 2-8 GHz.

  10. A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems.

    PubMed

    Yoon, Sang-Hee; Park, Sungmin

    2011-03-01

    A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.

  11. RN work engagement in generational cohorts: the view from rural US hospitals.

    PubMed

    Sullivan Havens, Donna; Warshawsky, Nora E; Vasey, Joseph

    2013-10-01

    To describe staff nurse work engagement, identify predictors by generational cohort, present implications for nurse managers and suggest future research. A global nurse shortage looms. While an adequate supply of nurses is needed to ensure access to care, access to quality care may be enhanced by an adequate supply of highly engaged nurses-those who are dedicated, energized, and absorbed. Nurses have long reported the presence of energy depleting practice environments. Nurses practicing in professional practice environments may be more engaged. A non-experimental survey design was executed. Direct care Registered Nurses (n = 747) working in five rural acute care hospitals completed questionnaires to assess work engagement (Utrecht Work Engagement Scale-9), decisional involvement (Decisional Involvement Scale), relational coordination (Relational Coordination Survey) and the nursing practice environment (Practice Environment Scale of the Nursing Work Index). Descriptive, correlational and regression analyses examined work engagement and predictors by generational cohort. With the exception of the absorption component, no statistically significant differences in engagement emerged across generational cohorts. Predictors of engagement differed by cohort, however across all cohorts, professional nursing practice environments predicted nurse work engagement. Professional nursing practice environments are significantly associated with nurse work engagement. Enhancing nurse work engagement is a complex challenge. Generational cohorts may respond to different strategies to enhance engagement. © 2013 John Wiley & Sons Ltd.

  12. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offsetmore » of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.« less

  13. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow absorbers and peaks at υ ≈ 1500 km s-1. This peak velocity is lower than the value of 2000 km s-1 found in statistical analysis of C iv absorbers.

  14. Preparation of nanosize polyaniline and its utilization for microwave absorber.

    PubMed

    Abbas, S M; Dixit, A K; Chatterjee, R; Goel, T C

    2007-06-01

    Polyaniline powder in nanosize has been synthesized by chemical oxidative route. XRD, FTIR, and TEM were used to characterize the polyaniline powder. Crytallite size was estimated from XRD profile and also ascertained by TEM in the range of 15 to 20 nm. The composite absorbers have been prepared by mixing different ratios of polyaniline into procured polyurethane (PU) binder. The complex permittivity (epsilon' - jepsilon") and complex permeability (mu' - jmu") were measured in X-band (8.2-12.4 GHz) using Agilent network analyzer (model PNA E8364B) and its software module 85071 (version 'E'). Measured values of these parameters were used to determine the reflection loss at different frequencies and sample thicknesses, based on a model of a single layered plane wave absorber backed by a perfect conductor. An optimized polyaniline/PU ratio of 3:1 has given a minimum reflection loss of -30 dB (99.9% power absorption) at the central frequency 10 GHz and the bandwidth (full width at half minimum) of 4.2 GHz over whole X-band (8.2 to 12.4 GHz) in a sample thickness of 3.0 mm. The prepared composites can be fruitfully utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).

  15. Fractal scaling laws of black carbon aerosol and their influence on spectral radiative properties

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Chakrabarty, R. K.; Heinson, W.

    2016-12-01

    Current estimates of the direct radiative forcing for Black Carbon (BC) aerosol span over a poorly constrained range between 0.2 and 1 W.m-2. To improve this large uncertainty, tighter constraints need to be placed on BC's key wavelength-dependent optical properties, namely, the absorption (MAC) and scattering (MSC) cross sections per unit mass and hemispherical upscatter fraction (β; a dimensionless scattering directionality parameter). These parameters are very sensitive to changes in particle morphology and complex refractive index nindex. Their interplay determines the magnitude of net positive or negative radiative forcing efficiencies. The current approach among climate modelers for estimating MAC and MSC values of BC is from their optical cross-sections calculated assuming spherical particle morphology with homogeneous, constant-valued refractive index in the visible solar spectrum. The β values are typically assumed to be a constant across this spectrum. This approach, while being computationally inexpensive and convenient, ignores the inherent fractal morphology of BC and its scaling behaviors, and resulting optical properties. In this talk, I will present recent results from my laboratory on determination of the fractal scaling laws of BC aggregate packing density and its complex refractive index for size spanning across three orders of magnitude, and their effects on spectral (Visible-infrared wavelength) scaling of MAC, MSC, and β values. Our experiments synergistically combined novel BC generation techniques, aggregation models, contact-free multi-wavelength optical measurements, and electron microscopy analysis. The scale dependence of nindex on aggregate size followed power-law exponents of -1.4 and -0.5 for sub- and super-micron size aggregates, respectively. The spherical Rayleigh-optics approximation limits, used by climate models for spectral extrapolation of BC optical cross-sections and deconvolution of multi-species mixing ratios, are redefined using the concept of phase shift parameter. I will highlight the importance of size-dependent β values and its role in offsetting the strong light absorbing nature of BC. Finally, the errors introduced in forcing efficiency calculations of BC by assuming spherical homogeneous morphology will be evaluated.

  16. Chandra High Resolution Spectroscopy of the Circumnuclear Matter in the Broad Line Radio Galaxy, 3C 445

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.

    2010-01-01

    We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).

  17. Inherent and Apparent Scattering Properties of Coated or Uncoated Spheres Embedded in an Absorbing Host Medium

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Wiscombe, W. J.; Mishchenko, M. I.; Platnick, S.; Huang, H.-L.; Baum, B. A.; Hu, Y. X.; Winkler, D,; Tsay, S.-C.; hide

    2001-01-01

    The conventional Lorenz-Mie formalism is extended to the scattering process associated with a coated sphere embedded in an absorbing medium. It is shown that apparent and inherent scattering cross sections of a scattering particle, which are identical in the case of transparent host medium, are different if the host medium is absorptive. Here the inherent single-scattering properties are derived from the near-field information whereas the corresponding apparent counterparts are derived from the far-field asymptotic form of the scattered wave with scaling of host absorption that is assumed to be in an exponential form. The formality extinction and scattering efficiencies defined in the same manner as in the conventional sense can be unbounded. For a nonabsorptive particle embedded in an absorbing medium, the effect of host absorption on the phase matrix elements associated with polarization is significant. This effect, however, is largely reduced for strongly absorptive particles such as soot. For soot particles coated with water, the impurity can substantially reduce the single-scattering albedo of the particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is shown that the phase matrix elements -P(sub 12)/P(sub 11) and P(sub 33)/P(sub 11) are unique if the shell is thin, as compared with the case for thick shell. Furthermore, the radiative transfer equation regarding a multidisperse particle system in an absorbing medium is discussed. It is illustrated that the conventional computation algorithms can be applied to solve the multiple scattering process if the scaled apparent single-scattering properties are applied.

  18. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  19. Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers

    PubMed Central

    Kuznetsov, Sergei A.; Paulish, Andrey G.; Navarro-Cía, Miguel; Arzhannikov, Andrey V.

    2016-01-01

    Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyro-sensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultra-thin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetre-wave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands. PMID:26879250

  20. Crash simulation of UNS electric vehicle under frontal front impact

    NASA Astrophysics Data System (ADS)

    Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.

    2016-03-01

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  1. Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials.

    PubMed

    Zeiger, Claudia; Rodrigues da Silva, Isabelle C; Mail, Matthias; Kavalenka, Maryna N; Barthlott, Wilhelm; Hölscher, Hendrik

    2016-08-16

    The cleanup of accidental oil spills in water is an enormous challenge; conventional oil sorbents absorb large amounts of water in addition to oil and other cleanup methods can cause secondary pollution. In contrast, fresh leaves of the aquatic ferns Salvinia are superhydrophobic and superoleophilic, and can selectively absorb oil while repelling water. These selective wetting properties are optimal for natural oil absorbent applications and bioinspired oil sorbent materials. In this paper we quantify the oil absorption capacity of four Salvinia species with different surface structures, water lettuce (Pistia stratiotes) and Lotus leaves (Nelumbo nucifera), and compare their absorption capacity to artificial oil sorbents. Interestingly, the oil absorption capacities of Salvinia molesta and Pistia stratiotes leaves are comparable to artificial oil sorbents. Therefore, these pantropical invasive plants, often considered pests, qualify as environmentally friendly materials for oil spill cleanup. Furthermore, we investigated the influence of oil density and viscosity on the oil absorption, and examine how the presence and morphology of trichomes affect the amount of oil absorbed by their surfaces. Specifically, the influence of hair length and shape is analyzed by comparing different hair types ranging from single trichomes of Salvinia cucullata to complex eggbeater-shaped trichomes of Salvinia molesta to establish a basis for improving artificial bioinspired oil absorbents.

  2. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  3. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  4. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser.more » The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.« less

  6. Soil organic carbon dynamics as affected by topography in southern California hillslopes systems

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.

    2015-12-01

    Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion - in the context of a changing climate. For these reasons, our findings are relevant to make better predictions on future SOC dynamics in areas with evolving and complex three-dimensional landscapes.

  7. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less

  8. Overlapping bio-absorbable scaffolds: Aim for D2D technique?

    PubMed

    Khan, Asaad A; Dangas, George D

    2018-06-01

    The results of overlapping metallic stents have been concerning but this practice is often unavoidable in the setting of long or tortuous lesions, diameter discrepancy of proximal and distal vessel, and for residual dissections. Theoretically, bio-absorbable scaffolds may carry an advantage over metallic stents due to the progressive resorption of the scaffold theoretically rendering the overlap a non-issue; this has not been clinically evident. Since stent/scaffold overlap cannot be entirely avoided, improved stent delivery/deployment and scaffold design modification may reduce complications in this complex patient subset. © 2018 Wiley Periodicals, Inc.

  9. Development of a real-time reflectance and transmittance monitoring system for the manufacturing of metaldielectric light absorbers

    NASA Astrophysics Data System (ADS)

    Badoil, Bruno; Cathelinaud, Michel; Lemarchand, Fabien; Lemarquis, Frédéric; Lequime, Michel

    2017-11-01

    Metal-dielectric light absorbers are of great interest for suppressing stray light in optical systems. Such coatings can give an absorption level greater than 99.9% over a broad spectral range provided that the complex refractive index of metallic films is accurately known. For this purpose we developed a new real-time monitoring system that allows to measure in situ both reflectance and transmittance of the coating during manufacturing in the deposition chamber. This paper describes the system design and its characteristics and gives some preliminary results concerning metallic thin film characterizations.

  10. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PMmore » fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.« less

  11. Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros

    NASA Astrophysics Data System (ADS)

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido

    2013-05-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  12. Snake velvet black: hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros.

    PubMed

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido

    2013-01-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  13. Stimulus Scale Seen as Issue: K-12 Funding Boost Could Shift Federal-State Balance of Power

    ERIC Educational Resources Information Center

    Klein, Alyson

    2009-01-01

    The sheer scale of the new education aid envisioned under the economic-stimulus package now pending in Congress is forcing educators and state officials to consider how they would absorb that funding and how it could transform--or distort--school programs at the local level. Officials from governors' mansions on down are generally pleased at the…

  14. 2011 Resilience and Law Panel Session

    EPA Science Inventory

    Resilience is the capacity of a complex system of people and nature to absorb perturbations without collapsing. It provides a conceptual framework for the integration of natural resource management with ecological responses. Achieving the goal of sustainability is complicated b...

  15. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... agent, re-absorbable amino acid, chemical intermediate, and a metal complexing agent. Glycine is... and Chiyuen International Trading Ltd., a manufacturer in the PRC of amino acetic acid (i.e., glycine...

  16. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  17. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    PubMed

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Limitation of Optical Enhancement in Ultra-thin Solar Cells Imposed by Contact Selectivity.

    PubMed

    Islam, Raisul; Saraswat, Krishna

    2018-06-11

    Ultra-thin crystalline silicon (c-Si) solar cell suffers both from poor light absorption and minority carrier recombination at the contacts resulting in low contact selectivity. Yet most of the research focuses on improving the light absorption by introducing novel light trapping technique. Our work shows that for ultra-thin absorber, the benefit of optical enhancement is limited by low contact selectivity. Using simulation we observe that performance enhancement from light trapping starts to saturate as the absorber scales down because of the increase in probability of the photo-generated carriers to recombine at the metal contact. Therefore, improving the carrier selectivity of the contacts, which reduces the recombination at contacts, is important to improve the performance of the solar cell beyond what is possible by enhancing light absorption only. The impact of improving contact selectivity increases as the absorber thickness scales below 20 micrometer (μm). Light trapping provides better light management and improving contact selectivity provides better photo-generated carrier management. When better light management increases the number of photo-generated carriers, better carrier management is a useful optimization knob to achieve the efficiency close to the thermodynamic limit. Our work explores a design trade-off in detail which is often overlooked by the research community.

  19. Canopy structural complexity predicts forest canopy light absorption at continental scales

    NASA Astrophysics Data System (ADS)

    Atkins, J. W.; Fahey, R. T.; Hardiman, B. S.; Gough, C. M.

    2017-12-01

    Understanding how the physical structure of forest canopies influence light acquisition is a long-standing area of inquiry fundamental to advancing understanding of many areas of the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure employed in earth system models are often limited to leaf area index (LAI)—a measure of the quantity of leaves in the canopy. However, more novel multi-dimensional measures of canopy structural complexity (CSC) that describe the arrangement of vegetation are now possible because of technological advances, and may improve modeled estimates of canopy light absorption. During 2016 and 2017, we surveyed forests at sites from across the eastern, southern, and midwestern United States using portable canopy LiDAR (PCL). This survey included 14 National Ecological Observation Network (NEON), Long-Term Ecological Research Network (LTER,) Ameriflux, and University affiliated sites. Our findings show that a composite model including CSC parameters and LAI explains 96.8% of the variance in light acquisition, measured as the fraction of photosynthetically absorbed radiation (fPAR) at the continental scale, and improvement of 12% over an LAI only model. Under high light sky conditions, measures of CSC are more strongly coupled with light acquisition than under low light, possibly because light scattering partially decouples CSC from canopy light absorption under low, predominately diffuse light conditions. We conclude that scalable estimates of CSC metrics may improve continent-wide estimates of canopy light absorption and, therefore, carbon uptake, with implications for remote sensing and earth system modeling.

  20. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    PubMed Central

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-01

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451

  1. [Study of new blended chemical absorbents to absorb CO2].

    PubMed

    Wang, Jin-Lian; Fang, Meng-Xiang; Yan, Shui-Ping; Luo, Zhong-Yang; Cen, Ke-Fa

    2007-11-01

    Three kinds of blended absorbents were investigated on bench-scale experimental bench according to absorption rate and regeneration grade to select a reasonable additive concentration. The results show that, among methyldiethanolamine (MDEA) and piperazine (PZ) mixtures, comparing MDEA : PZ = 1 : 0.4 (m : m) with MDEA : PZ = 1 : 0.2 (m : m), the absorption rate is increased by about 70% at 0.2 mol x mol(-1). When regeneration lasting for 40 min, regeneration grade of blended absorbents with PZ concentration of 0.2, 0.4, and 0.8 is decreased to 83.06%, 77.77% and 76.67% respectively while 91.04% for PZ concentration of 0. MDEA : PZ = 1 : 0.4(m : m) is a suitable ratio for MDEA/PZ mixtures as absorption and regeneration properties of the blended absorbents are all improved. The aqueous blends with 10% primary amines and 2% tertiary amines could keep high CO2 absorption rate, and lower regeneration energy consumption. Adding 2% 2-Amino-2-methyl-1-propanol (AMP) to 10% diethanolamine (DEA), the blended amine solvents have an advantage in absorption and regeneration properties over other DEA/AMP mixtures. Blended solvents, which consist of a mixture of primary amines with a small amount of tertiary amines, have the highest absorption rate among the three. And mixed absorbents of secondary amines and a small amount of sterically hindered amines have the best regeneration property. To combine absorption and regeneration properties, blends with medium activator addition to tertiary amines are competitive.

  2. Adaptive-passive vibration control systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Pfeiffer, T.; Vrbata, J.; Melz, T.

    2015-04-01

    Tuned vibration absorbers have become common for passive vibration reduction in many industrial applications. Lightly damped absorbers (also called neutralizers) can be used to suppress narrowband disturbances by tuning them to the excitation frequency. If the resonance is adapted in-operation, the performance of those devices can be significantly enhanced, or inertial mass can be decreased. However, the integration of actuators, sensors and control electronics into the system raises new design challenges. In this work, the development of adaptive-passive systems for vibration reduction at an industrial scale is presented. As an example, vibration reduction of a ship engine was studied in a full scale test. Simulations were used to study the feasibility and evaluate the system concept at an early stage. Several ways to adjust the resonance of the neutralizer were evaluated, including piezoelectric actuation and common mechatronic drives. Prototypes were implemented and tested. Since vibration absorbers suffer from high dynamic loads, reliability tests were used to assess the long-term behavior under operational conditions and to improve the components. It was proved that the adaptive systems are capable to withstand the mechanical loads in an industrial application. Also a control strategy had to be implemented in order to track the excitation frequency. The most mature concepts were integrated into the full scale test. An imbalance exciter was used to simulate the engine vibrations at a realistic level experimentally. The neutralizers were tested at varying excitation frequencies to evaluate the tracking capabilities of the control system. It was proved that a significant vibration reduction is possible.

  3. EUV lithography reticles fabricated without the use of a patterned absorber

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2006-05-23

    Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.

  4. Method for fabricating reticles for EUV lithography without the use of a patterned absorber

    DOEpatents

    Stearns, Daniel G [Los Altos, CA; Sweeney, Donald W [San Ramon, CA; Mirkarimi, Paul B [Sunol, CA

    2003-10-21

    Absorber material used in conventional EUVL reticles is eliminated by introducing a direct modulation in the complex-valued reflectance of the multilayer. A spatially localized energy source such as a focused electron or ion beam directly writes a reticle pattern onto the reflective multilayer coating. Interdiffusion is activated within the film by an energy source that causes the multilayer period to contract in the exposed regions. The contraction is accurately determined by the energy dose. A controllable variation in the phase and amplitude of the reflected field in the reticle plane is produced by the spatial modulation of the multilayer period. This method for patterning an EUVL reticle has the advantages of (1) avoiding the process steps associated with depositing and patterning an absorber layer and (2) providing control of the phase and amplitude of the reflected field with high spatial resolution.

  5. Kinetic study on UV-absorber photodegradation under different conditions

    NASA Astrophysics Data System (ADS)

    Bubev, Emil; Georgiev, Anton; Machkova, Maria

    2016-09-01

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV-vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  6. Impedance Measurement of a Gamma-Ray TES Calorimeter with a Bulk Sn Absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akamatsu, H.; Ishisaki, Y.; Hoshino, A.

    2009-12-16

    We performed complex impedance measurements with a Ti/Au-based gamma-ray TES calorimeter with a bulk Sn absorber. Excellent energy resolution of 38.4{+-}0.9eV at 60 keV was observed. The impedance of the calorimeter can be well explained by a two-body thermal model. We investigated the behavior of the parameters of the calorimeter during the superconducting-to-normal transition. We confirmed that C and G{sub a} are in good agreement with the predicted values. We performed a noise analysis and found several excess noise components, as well as internal thermal fluctuation noise (ITFN) term due to the thermal conductance between the Sn absorber and themore » Ti/Au TES. Dominanting the noise is an excess noise having a similar frequency dependence to the phonon noise and the ITFN noise.« less

  7. Twelve-Month Outcomes With a Bioresorbable Everolimus-Eluting Scaffold: Results of the ESHC-BVS Registry at Two Australian Centers.

    PubMed

    Robaei, Daniel; Back, Liam; Ooi, Sze-Yuan; Pitney, Mark; Jepson, Nigel

    2016-08-01

    The Absorb bioresorbable vascular scaffold (BVS; Abbott Vascular) is a relatively new type of coronary stent designed to provide temporary vessel scaffolding following percutaneous coronary intervention. International use of the device has grown despite a relative paucity of clinical data regarding the performance of the device and the optimal strategy for its use. We report 12-month clinical data on the Absorb BVS from a real-world registry in order to contribute to the overall understanding of the BVS device. Absorb BVS implantation was attempted in 152 lesions in 100 patients at two Sydney hospitals, as part of the prospective ESHC-BVS registry. Patients selected harbored a range of complex lesions as encountered in real-world practice. Type-C lesions made up 37% of all lesions treated, with 64% of these being long lesions (>20 mm). Device success was achieved in 98.8% of cases. Predilation was performed in all scaffolds and postdilation was performed in 95% of scaffolds to a mean of 19.6 ± 4.6 atm. Twelve-month follow-up data were available for 99% of patients. At 12 months, the cumulative incidence of target-lesion revascularization was 4%, while the incidence of myocardial infarction was 2% and the incidence of scaffold thrombosis was 1%. There were no deaths in the follow-up period. In a cohort including complex lesions encountered in real-world practice, the Absorb BVS was associated with low rates of target-lesion revascularization, myocardial infarction, and scaffold thrombosis at 12 months when used with a strategy of meticulous lesion preparation, routine postdilation, and 12 months of dual-antiplatelet therapy.

  8. Finite-size scaling for discontinuous nonequilibrium phase transitions

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcelo M.; da Luz, M. G. E.; Fiore, Carlos E.

    2018-06-01

    A finite-size scaling theory, originally developed only for transitions to absorbing states [Phys. Rev. E 92, 062126 (2015), 10.1103/PhysRevE.92.062126], is extended to distinct sorts of discontinuous nonequilibrium phase transitions. Expressions for quantities such as response functions, reduced cumulants, and equal area probability distributions are derived from phenomenological arguments. Irrespective of system details, all these quantities scale with the volume, establishing the dependence on size. The approach generality is illustrated through the analysis of different models. The present results are a relevant step in trying to unify the scaling behavior description of nonequilibrium transition processes.

  9. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    PubMed

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  10. Association of phycoerythrin and phycocyanin: in vitro formation of a functional energy transferring phycobilisome complex of Porphyridium sordidum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipschultz, C.A.; Gantt, E.

    1981-01-01

    Functional in vitro association and dissociation of a phycobiliprotein complex, isolated from phycobilisomes of the red alga Porphyridium sordidum, were studied. The complex contained large bangiophyceaen phycoerythrin and cyanophytan phycocyanin in an equimolar ratio and had absorption maxima at 625, 567, and 550 nm and a shoulder at 495 nm. Emission at 655 nm (with excitation at 545 nm) from phycocyanin indicated functional coupling. The complex was stable over a wide buffer concentration range, and, notably, it was maximally stable in low phosphate, <0.01 M, unlike the phycobilisomes, which dissociate at this concentration. Its molecular weight was estimated to bemore » ca. 510 000, and by electron microscopy it was seen to consist of two units of similar size. The complex in 0.1 M phosphate was separated on a sucrose gradient into a homogeneous phycoerythrin band and a spectrally heterogeneous phycocyanin band. In vitro association of phycoerythrin and phycocyanin resulted in a complex with the same absorbance, emission, sedimentation, and molar pigment ratio as those of the native complex. The spectrally heterogeneous phycocyanin fractions from the dissociation gradient varied in the degree of association with phycoerythrin. Phycocyanin fractions absorbing from 622 to 633 nm exhibited high associability (>70%), whereas those with maxima at 617-620 nm had low associability (<30%). The presence of a 30 000 molecular weight polypeptide accompanied high associability, where it was ca. 2-fold more prominent. It is suggested that this polypeptide is involved in complex formation and could serve either in the stabilization of the conformational state of cyanophytan phycocyanin or as a direct linker between phycobiliproteins.« less

  11. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.

    PubMed

    Yao, Yu; Shankar, Raji; Kats, Mikhail A; Song, Yi; Kong, Jing; Loncar, Marko; Capasso, Federico

    2014-11-12

    Dynamically reconfigurable metasurfaces open up unprecedented opportunities in applications such as high capacity communications, dynamic beam shaping, hyperspectral imaging, and adaptive optics. The realization of high performance metasurface-based devices remains a great challenge due to very limited tuning ranges and modulation depths. Here we show that a widely tunable metasurface composed of optical antennas on graphene can be incorporated into a subwavelength-thick optical cavity to create an electrically tunable perfect absorber. By switching the absorber in and out of the critical coupling condition via the gate voltage applied on graphene, a modulation depth of up to 100% can be achieved. In particular, we demonstrated ultrathin (thickness < λ0/10) high speed (up to 20 GHz) optical modulators over a broad wavelength range (5-7 μm). The operating wavelength can be scaled from the near-infrared to the terahertz by simply tailoring the metasurface and cavity dimensions.

  12. Self-organization of cosmic radiation pressure instability

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1991-01-01

    Under some circumstances the absorption of radiation momentum by an absorbing medium opens the possibility of a dynamical instability, sometimes called 'mock gravity'. Here, a simplified abstract model is studied in which the radiation source is assumed to remain spatially uniform, there is no reabsorption or reradiated light, and no forces other than radiative pressure act on the absorbing medium. It is shown that this model displays the unique feature of being not only unstable, but also self-organizing. The structure approaches a statistical dynamical steady state which is almost independent of initial conditions. In this saturated state the absorbers are concentrated in thin walls around empty bubbles; as the instability develops the big bubbles get bigger and the small ones get crushed and disappear. A linear analysis shows that to first order the thin walls are indeed stable structures. It is speculated that this instability may play a role in forming cosmic large-scale structure.

  13. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances.

    PubMed

    Ghedini, Giulia; Russell, Bayden D; Connell, Sean D

    2015-02-01

    Disturbance often results in small changes in community structure, but the probability of transitioning to contrasting states increases when multiple disturbances combine. Nevertheless, we have limited insights into the mechanisms that stabilise communities, particularly how perturbations can be absorbed without restructuring (i.e. resistance). Here, we expand the concept of compensatory dynamics to include countervailing mechanisms that absorb disturbances through trophic interactions. By definition, 'compensation' occurs if a specific disturbance stimulates a proportional countervailing response that eliminates its otherwise unchecked effect. We show that the compounding effects of disturbances from local to global scales (i.e. local canopy-loss, eutrophication, ocean acidification) increasingly promote the expansion of weedy species, but that this response is countered by a proportional increase in grazing. Finally, we explore the relatively unrecognised role of compensatory effects, which are likely to maintain the resistance of communities to disturbance more deeply than current thinking allows. © 2015 John Wiley & Sons Ltd/CNRS.

  14. An economical device for carbon supplement in large-scale micro-algae production.

    PubMed

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2008-10-01

    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.

  15. Enhanced rectal absorption and reduced local irritation of the anti-inflammatory drug ethyl 4-biphenylylacetate in rats by complexation with water-soluble beta-cyclodextrin derivatives and formulation as oleaginous suppository.

    PubMed

    Arima, H; Kondo, T; Irie, T; Uekama, K

    1992-11-01

    To improve the rectal delivery of ethyl 4-biphenylylacetate (EBA), a prodrug of the anti-inflammatory drug 4-biphenylylacetic acid (BPAA), the use of highly water-soluble 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CyD) was investigated and compared with the use of the parent beta-cyclodextrin (beta-CyD). Among the three beta-CyDs, HP-beta-CyD was best at improving the rectal bioavailability of EBA in rats after single and multiple administrations of oleaginous suppositories (Witepsol H-5) containing the complexes. To gain insight into the enhancing effect of beta-CyDs, the absorption behaviors of EBA (observed by monitoring BPAA as an active metabolite of EBA) and beta-CyDs themselves were examined in vitro, in situ, and in vivo. The in situ recirculation study revealed that the complexed form of EBA was less absorbable from the rectal lumen in the solution state, but this disadvantageous effect of beta-CyDs was compensated in part by the inhibition of the bioconversion of EBA to BPAA. When beta-CyDs were coadministered with EBA in vivo, however, rather high amounts of HP-beta-CyD (approximately 26% of dose) and DM-beta-CyD (approximately 21% of dose), compared with beta-CyD (approximately 5% of dose), were absorbed from the rat rectum. Thus, the enhancement of rectal absorption of EBA in vivo can be explained by the facts that the hydrophilic beta-CyDs increased the release rate of EBA from the vehicle and stabilized EBA in the rectal lumen and that the drug was partly absorbed in the form of the complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; hide

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.

  18. MASH TL-4 crash testing and evaluation of the RESTORE barrier.

    DOT National Transportation Integrated Search

    2015-11-01

    Three full-scale vehicle crash tests were conducted according to the MASH Test Level 4 (TL-4) safety performance criteria on a : restorable and reusable energy-absorbing roadside/median barrier, designated the RESTORE barrier. The system utilized for...

  19. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Darien, IL

    2007-06-12

    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  20. Combining model and satellite data to investigate the effect of light absorbing impurities on snow melt and discharge generation

    NASA Astrophysics Data System (ADS)

    Matt, F.; Burkhart, J. F.

    2017-12-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.

  1. Method for the manufacture of phase shifting masks for EUV lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  2. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  3. Effect of Substituents in Alcohol-Amine Complexes

    NASA Astrophysics Data System (ADS)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik

    2014-06-01

    A series of alcohol-amine complexes have been investigated to gain physical insight into the effect on the hydrogen bond strength as different substituents are attached. The series of complexes investigated are shown in the figure, where R_1 = CH_3, CH_3CH_2 or CF_3CH_2 and R_2 = H or CH_3. To estimate the hydrogen bond strength, redshifts of the OH-stretching transition frequency upon complexation were measured using gas phase Fourier Transform InfraRed (FTIR) spectroscopy. Equilibrium constants for the formation of the complexes were also determined, exploiting a combination of a calculated oscillator strength and the measured integrated absorbance of the fundamental OH-stretching and second overtone NH-stretching transitions.

  4. Crash simulation of UNS electric vehicle under frontal front impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. Themore » purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.« less

  5. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    NASA Astrophysics Data System (ADS)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  6. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  7. A novel CFS-PML boundary condition for transient electromagnetic simulation using a fictitious wave domain method

    NASA Astrophysics Data System (ADS)

    Hu, Yanpu; Egbert, Gary; Ji, Yanju; Fang, Guangyou

    2017-01-01

    In this study, we apply fictitious wave domain (FWD) methods, based on the correspondence principle for the wave and diffusion fields, to finite difference (FD) modeling of transient electromagnetic (TEM) diffusion problems for geophysical applications. A novel complex frequency shifted perfectly matched layer (PML) boundary condition is adapted to the FWD to truncate the computational domain, with the maximum electromagnetic wave propagation velocity in the FWD used to set the absorbing parameters for the boundary layers. Using domains of varying spatial extent we demonstrate that these boundary conditions offer significant improvements over simpler PML approaches, which can result in spurious reflections and large errors in the FWD solutions, especially for low frequencies and late times. In our development, resistive air layers are directly included in the FWD, allowing simulation of TEM responses in the presence of topography, as is commonly encountered in geophysical applications. We compare responses obtained by our new FD-FWD approach and with the spectral Lanczos decomposition method on 3-D resistivity models of varying complexity. The comparisons demonstrate that our absorbing boundary condition in FWD for the TEM diffusion problems works well even in complex high-contrast conductivity models.

  8. Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires.

    PubMed

    Szalkowski, Marcin; Janna Olmos, Julian David; Buczyńska, Dorota; Maćkowski, Sebastian; Kowalska, Dorota; Kargul, Joanna

    2017-07-27

    We demonstrate that controlled assembly of eukaryotic photosystem I with its associated light harvesting antenna complex (PSI-LHCI) on plasmonically active silver nanowires (AgNWs) substantially improves the optical functionality of such a novel biohybrid nanostructure. By comparing fluorescence intensities measured for PSI-LHCI complex randomly oriented on AgNWs and the results obtained for the PSI-LHCI/cytochrome c 553 (cyt c 553 ) bioconjugate with AgNWs we conclude that the specific binding of photosynthetic complexes with defined uniform orientation yields selective excitation of a pool of chlorophyll (Chl) molecules that are otherwise almost non-absorbing. This is remarkable, as this study shows for the first time that plasmonic excitations in metallic nanostructures can not only be used to enhance native absorption of photosynthetic pigments, but also - by employing cyt c 553 as the conjugation cofactor - to activate the specific Chl pools as the absorbing sites only when the uniform and well-defined orientation of PSI-LHCI with respect to plasmonic nanostructures is achieved. As absorption of PSI alone is comparatively low, our approach lends itself as an innovative approach to outperform the reported-to-date biohybrid devices with respect to solar energy conversion.

  9. Evaluation of the effect of hydroxypropyl-β-cyclodextrin on topical administration of milk thistle extract.

    PubMed

    Spada, Gianpiera; Gavini, Elisabetta; Cossu, Massimo; Rassu, Giovanna; Carta, Antonio; Giunchedi, Paolo

    2013-01-30

    Two water in oil emulsions composed by eudermic ingredients as glycerin, cocoa butter, almond oil and a variety of lipids, were enriched respectively with milk thistle dry extract (MT) or with a binary complex composed by MT and hydroxypropyl-β-cyclodextrin (HP) (1:4 w/w) correspondent to 1% (w/w) in sylimarine in order to obtain two different emulsions designed for the skin delivery and determine influence of hydroxypropyl-β-cyclodextrin on the extract delivery and permeation. Uv-vis spectrophotometric analyses demonstrated that phytocomplex formation influences the finding of MT after the complexation process and the in vitro antioxidant activity. Further in vitro and ex vivo experiments demonstrated that the penetration capability of MT from formulations is strictly influenced by the phytocomplex able to control MT permeation; moreover phytocomplex increases flavonoids stability during the in vitro tests. Additionally, in vivo studies showed that the penetration into the stratum corneum of the active ingredients is effectively achieved by the phytocomplex formation, in fact about 80% of MT is absorbed by the skin along 1h despite the 30% of MT not complexed absorbed during the same period. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Optimization of fiber-optic evanescent wave spectroscopy: a Monte Carlo approach.

    PubMed

    Mann, M P; Mark, S; Raichlin, Y; Katzir, A; Mordechai, S

    2009-09-01

    The absorbance of the evanescent waves of infrared radiation transmitted through an optical fiber depends on the geometry of the fiber in addition to the wavelength of the electromagnetic radiation. The signal can thus be enhanced by flattening the midsection of the fiber. While the dependence of the absorbance on the thickness of the midsection has already been studied and experimented upon, we demonstrate that similar results are obtained using Monte Carlo methods based simply on geometrical optics, given the dimensions of the fiber and the power distribution of the fired rays. The optimization can be extended to fibers with more complex geometries of the sensor.

  11. Finite element analysis of electromagnetic propagation in an absorbing wave guide

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1986-01-01

    Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.

  12. Preliminary dosimetric evaluation of (166)Ho-TTHMP for human based on biodistribution data in rats.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza; Tajik, Mojtaba; Ghannadi-Maragheh, Mohammad

    2014-12-01

    In this work, the absorbed dose to each organ of human for (166)Ho-TTHMP was evaluated based on biodistribution studies in rats by a RADAR method and was compared with (166)Ho-DOTMP as the only clinically used Ho-166 bone marrow ablative agent. The highest absorbed dose for this complex is observed in red marrow with 0.922mGy/MBq. The results show that (166)Ho-TTHMP has considerable characteristics compared to (166)Ho-DOTMP and can be a good candidate for bone marrow ablation in patients with multiple myeloma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Unveiling the X-ray/UV properties of disk winds in active galactic nuclei using broad and mini-broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-05-01

    We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.

  14. 3D-Printing ‘Smarter’ Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    Foams are, by nature, disordered materials studded with air pockets of varying sizes. Lack of control over the material’s architecture at the micrometer or nanometer scale can make it difficult to adjust the foam’s basic properties. But Eric Duoss and a team of Livermore researchers are using additive manufacturing to develop “smarter” silicone cushions. By architecting the structure at the micro scale, they are able to control macro-scale properties previously unachievable with foam materials.

  15. Fingerprinting Dissolved Organic Carbon (DOC) Sources with Specific UV Absorbance (SUVA) and Fluorescence

    NASA Astrophysics Data System (ADS)

    van Verseveld, W. J.; Lajtha, K.; McDonnell, J. J.

    2007-12-01

    DOC is an important water quality constituent because it is an important food source for stream biota, it plays a significant role in metal toxicity and transport, and protects aquatic organisms by absorbing visible and UV light. However, sources of stream DOC and changes in DOC quality at storm and seasonal scales remain poorly understood. We characterized DOC concentrations and SUVA (as an indicator of aromaticity) at the plot, hillslope and catchment scale during and between five storm events over the period Fall 2004 until Spring 2005, in WS10, H.J. Andrews, Oregon, USA. This study site has hillslopes that issue directly into the stream. This enabled us to compare a trenched hillslope response to the stream response without the influence of a riparian zone. The main result of this study was that SUVA in addition to DOC was needed to fingerprint sources of DOC. Stream water and lateral subsurface flow showed a clockwise DOC and SUVA hysteresis pattern. Both organic horizon water and transient groundwater were characterized by high DOC concentrations and SUVA values, while DOC concentrations and SUVA values in soil water decreased with depth in the soil profile. This indicates transient groundwater was an important contributor to high DOC concentrations and SUVA values during storm events. During the falling limb of the hydrograph deep soil water and seepage groundwater based on SUVA values contributed significantly to lateral subsurface flow and stream water. Preliminary results showed that fluorescence of stream water and lateral subsurface flow continuously measured with a fluorometer was significantly related to UV-absorbance during a December storm event. Finally, SUVA of lateral subsurface flow was lower than SUVA of stream water at the seasonal scale, indicating a difference in mixing of water sources at the hillslope and catchment scale. Overall, our results show that SUVA and fluorescence are useful tracers for fingerprinting DOC sources.

  16. Role of absorbing aerosols on hot extremes in India in a GCM

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.

    2017-12-01

    Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.

  17. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds.

    PubMed

    Hikal, Walid M; Harmon, H James

    2008-06-15

    The interaction of meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl) porphyrin (C1TPP) with 2,4,6-trinitrotoluene (TNT) has been explored by UV-vis and fluorescence spectroscopy. The influence of temperature on the interaction has also been studied. C1TPP binds to TNT at pH 7.0 at room temperature via 1.94 kcal/mole hydrogen bonds with absorbance loss at 412-413 nm and the appearance of a new peak at 422-424 nm. The hydrogen binding of TNT to C1TPP was confirmed by the dissolution of the complex upon the addition of urea. Increasing the temperature results in the appearance of a new absorbance peak at 540 nm and absorbance loss at 515 nm with activation energy of 29.7 kcal/mole in the range of the hydrophobic bond energy. This suggests the hydrophobic bonding of TNT with the pyrrole nitrogens in the porphyrin. Increasing the concentration of the TNT in the solution quenches the fluorescence of the porphyrin following the Stern-Volmer equation. The association constants calculated from absorbance and fluorescence are expectedly similar.

  18. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  19. Device Scale Modeling of Solvent Absorption using MFIX-TFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, Janine E.; Finn, Justin R.

    Recent climate change is largely attributed to greenhouse gases (e.g., carbon dioxide, methane) and fossil fuels account for a large majority of global CO 2 emissions. That said, fossil fuels will continue to play a significant role in the generation of power for the foreseeable future. The extent to which CO 2 is emitted needs to be reduced, however, carbon capture and sequestration are also necessary actions to tackle climate change. Different approaches exist for CO 2 capture including both post-combustion and pre-combustion technologies, oxy-fuel combustion and/or chemical looping combustion. The focus of this effort is on post-combustion solvent-absorption technology.more » To apply CO 2 technologies at commercial scale, the availability and maturity and the potential for scalability of that technology need to be considered. Solvent absorption is a proven technology but not at the scale needed by typical power plant. The scale up and down and design of laboratory and commercial packed bed reactors depends heavily on the specific knowledge of two-phase pressure drop, liquid holdup, the wetting efficiency and mass transfer efficiency as a function of operating conditions. Simple scaling rules often fail to provide proper design. Conventional reactor design modeling approaches will generally characterize complex non-ideal flow and mixing patterns using simplified and/or mechanistic flow assumptions. While there are varying levels of complexity used within these approaches, none of these models resolve the local velocity fields. Consequently, they are unable to account for important design factors such as flow maldistribution and channeling from a fundamental perspective. Ideally design would be aided by development of predictive models based on truer representation of the physical and chemical processes that occur at different scales. Computational fluid dynamic (CFD) models are based on multidimensional flow equations with first principle foundations. CFD models can include a more accurate physical description of flow processes and be modified to include more complex behavior. Wetting performance and spatial liquid distribution inside the absorber are recognized as weak areas of knowledge requiring further investigation. CFD tools offer a possible method to investigating such topics and gaining a better understanding of their influence on reactor performance. This report focuses first on describing a hydrodynamic model for countercurrent gas-liquid flow through a packed column and then on the chemistry, heat and mass transfer specific to CO 2 absorption using monoethanolamine (MEA). The indicated model is implemented in MFIX, a CFD open source software package. The user defined functions needed to build this model are described in detail along with the keywords for the corresponding input file. A test case is outlined along with a few results. The example serves to briefly illustrate the developed CFD tool and its potential capability to investigate solvent absorption.« less

  20. EVALUATION OF ANALYTICAL METHODS FOR DETERMINING PESTICIDES IN FOODS

    EPA Science Inventory

    Children can be exposed to pesticides by inhaling contaminated air, ingesting tainted food or non-dietary substances, or absorbing them through the skin from contaminated media. Earlier pilot-scale exposure studies suggest that dietary ingestion is an important pathway for chi...

  1. Accurate traveltime computation in complex anisotropic media with discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.

    2017-12-01

    Travel time computation is of major interest for a large range of geophysical applications, among which source localization and characterization, phase identification, data windowing and tomography, from decametric scale up to global Earth scale.Ray-tracing tools, being essentially 1D Lagrangian integration along a path, have been used for their efficiency but present some drawbacks, such as a rather difficult control of the medium sampling. Moreover, they do not provide answers in shadow zones. Eikonal solvers, based on an Eulerian approach, have attracted attention in seismology with the pioneering work of Vidale (1988), while such approach has been proposed earlier by Riznichenko (1946). They have been used now for first-arrival travel-time tomography at various scales (Podvin & Lecomte (1991). The framework for solving this non-linear partial differential equation is now well understood and various finite-difference approaches have been proposed, essentially for smooth media. We propose a novel finite element approach which builds a precise solution for strongly heterogeneous anisotropic medium (still in the limit of Eikonal validity). The discontinuous Galerkin method we have developed allows local refinement of the mesh and local high orders of interpolation inside elements. High precision of the travel times and its spatial derivatives is obtained through this formulation. This finite element method also honors boundary conditions, such as complex topographies and absorbing boundaries for mimicking an infinite medium. Applications from travel-time tomography, slope tomography are expected, but also for migration and take-off angles estimation, thanks to the accuracy obtained when computing first-arrival times.References:Podvin, P. and Lecomte, I., 1991. Finite difference computation of traveltimes in very contrasted velocity model: a massively parallel approach and its associated tools, Geophys. J. Int., 105, 271-284.Riznichenko, Y., 1946. Geometrical seismics of layered media, Trudy Inst. Theor. Geophysics, Vol II, Moscow (in Russian).Vidale, J., 1988. Finite-difference calculation of travel times, Bull. seism. Soc. Am., 78, 2062-2076.

  2. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  3. Equivalent Discrete-Time Channel Modeling for Molecular Communication With Emphasize on an Absorbing Receiver.

    PubMed

    Damrath, Martin; Korte, Sebastian; Hoeher, Peter Adam

    2017-01-01

    This paper introduces the equivalent discrete-time channel model (EDTCM) to the area of diffusion-based molecular communication (DBMC). Emphasis is on an absorbing receiver, which is based on the so-called first passage time concept. In the wireless communications community the EDTCM is well known. Therefore, it is anticipated that the EDTCM improves the accessibility of DBMC and supports the adaptation of classical wireless communication algorithms to the area of DBMC. Furthermore, the EDTCM has the capability to provide a remarkable reduction of computational complexity compared to random walk based DBMC simulators. Besides the exact EDTCM, three approximations thereof based on binomial, Gaussian, and Poisson approximation are proposed and analyzed in order to further reduce computational complexity. In addition, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is adapted to all four channel models. Numerical results show the performance of the exact EDTCM, illustrate the performance of the adapted BCJR algorithm, and demonstrate the accuracy of the approximations.

  4. Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan

    The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less

  5. Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis

    DOE PAGES

    Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan; ...

    2017-08-31

    The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less

  6. A new test method for the evaluation of total antioxidant activity of herbal products.

    PubMed

    Zaporozhets, Olga A; Krushynska, Olena A; Lipkovska, Natalia A; Barvinchenko, Valentina N

    2004-01-14

    A new test method for measuring the antioxidant power of herbal products, based on solid-phase spectrophotometry using tetrabenzo-[b,f,j,n][1,5,9,13]-tetraazacyclohexadecine-Cu(II) complex immobilized on silica gel, is proposed. The absorbance of the modified sorbent (lambda(max) = 712 nm) increases proportionally to the total antioxidant activity of the sample solution. The method represents an attractive alternative to the mostly used radical scavenging capacity assays, because they generally require complex long-lasting stages to be carried out. The proposed test method is simple ("drop and measure" procedure is applied), rapid (10 min/sample), requires only the monitoring of time and absorbance, and provides good statistical parameters (s(r)

  7. The roles of specific xanthophylls in photoprotection

    PubMed Central

    Niyogi, Krishna K.; Björkman, Olle; Grossman, Arthur R.

    1997-01-01

    Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the α- or β-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (α-carotene branch), zeaxanthin, and antheraxanthin (β-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), α-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage. PMID:9391170

  8. Spectrophotometric determination of uric acid and some redeterminations of its solubility

    USGS Publications Warehouse

    Norton, D.R.; Plunkett, M.A.; Richards, F.A.

    1954-01-01

    The present study was initiated in order to develop a rapid and accurate method for the determination of uric acid in fresh, brackish, and sea water. It was found that the spectrophotometric determination of uric acid based upon its reaction with arsenophosphotungstic acid reagent in the presence of cyanide ion meets this objective. The absorbancy of the blue complex was measured at 890 m??. Slight variations from Beer's law were generally found. The results show the effects of pH, reaction time, concentration of reagents, and temperature upon color development and precipitate formation. Disodium dihydrogen ethylenediamine tetraacetate (Versene) was used as a buffering and complexirig agent. The results are significant in that they give the absorption spectrum of the blue complex and the effects of variables upon its absorbancy. Studies were made with the method to determine the stability of reagents and standard solutions and to determine the rate of bacterial decomposition of uric acid. Measurements of the solubility of uric acid are reported.

  9. Heat transfer with very high free-stream turbulence and streamwise vortices

    NASA Technical Reports Server (NTRS)

    Moffat, Robert J.; Maciejewski, Paul; Eaton, John K.; Pauley, Wayne

    1986-01-01

    Results are presented for two experimental programs related to augmentation of heat transfer by complex flow characteristics. In one program, high free stream turbulence (up to 63 percent) was shown to increase the Stanton number by more than a factor of 5, compared with the normally expected value based on x-Reynolds number. These experiments are being conducted in a free-jet facility, near the margins of the jet. To a limited extent, the mean velocity, turbulence intensity, and integral length scale can be separately varied. The results show that scale is a very important factor in determining the augmentation. Detailed studies of the turbulence structure are being carried out using an orthogonal triple hot-wire anemometer equipped with a fourth wire for measuring temperature. The v' component of turbulence appears to be distributed differently from u' or w'. In the second program, the velocity distributions and boundary layer thicknesses associated with a pair of counter-rotating, streamwise vortices were measured. There is a region of considerably thinned boundary layer between the two vortices when they are of approximately the same strength. If one vortex is much stronger than the other, the weaker vortex may be lifted off the surface and absorbed into the stronger.

  10. Engineering of bacterial phytochromes for in vivo imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verkhusha, Vladislav; Shcherbakova, Daria M.; Kaberniuk, Andrii A.; Baloban, Mikhail

    2017-03-01

    Genetically encoded probes with absorbance and fluorescence spectra within a near-infrared tissue transparency window are preferable for deep-tissue imaging. On the basis of bacterial phytochromes we engineered several types of near-infrared absorbing probes for photoacoustic tomography and fluorescent probes for purely optical imaging. They can be used as protein and cell labels and as building blocks for biosensors. The probes enabled imaging of tumors and metastases, protein-protein interactions, RNA visualization, detection of apoptosis, cellular metabolites, signaling pathways and cell proliferation. The developed probes allow non-invasive visualization of biological processes across scales, from super-resolution microscopy to tissue and whole-body animal imaging.

  11. Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, M.; Amendt, P.A.; London, R.A.

    1997-03-04

    Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1more » {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.« less

  12. Experimental evidence for an absorbing phase transition underlying yielding of a soft glass

    NASA Astrophysics Data System (ADS)

    Nagamanasa, K. Hima; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2014-03-01

    A characteristic feature of solids ranging from foams to atomic crystals is the existence of a yield point, which marks the threshold stress beyond which a material undergoes plastic deformation. In hard materials, it is well-known that local yield events occur collectively in the form of intermittent avalanches. The avalanche size distributions exhibit power-law scaling indicating the presence of self-organized criticality. These observations led to predictions of a non-equilibrium phase transition at the yield point. By contrast, for soft solids like gels and dense suspensions, no such predictions exist. In the present work, by combining particle scale imaging with bulk rheology, we provide a direct evidence for a non-equilibrium phase transition governing yielding of an archetypal soft solid - a colloidal glass. The order parameter and the relaxation time exponents revealed that yielding is an absorbing phase transition that belongs to the conserved directed percolation universality class. We also identified a growing length scale associated with clusters of particles with high Debye-Waller factor. Our findings highlight the importance of correlations between local yield events and may well stimulate the development of a unified description of yielding of soft solids.

  13. Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region

    DOE PAGES

    Manoharan, Vani Starry; Kotamarthi, R.; Feng, Yan; ...

    2014-02-03

    Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October–November), suggesting the presence of absorbing aerosols sized 1–10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by largermore » particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Furthermore, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.« less

  14. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris.

    PubMed

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.

  15. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris

    PubMed Central

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest. PMID:26284241

  16. Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for Hydrogen Production. Final Report of Progress August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanko, James M.

    Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H 2 fuel from H 2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.

  17. Collision safety comparison of conventional and crash energy management passenger rail car designs

    DOT National Transportation Integrated Search

    2003-04-22

    In conjunction with full-scale equipment tests, collision dynamics models of passenger rail cars have been developed to investigate the benefits provided by incorporating energy-absorbing crush zones at the ends of the cars. In a collision, the major...

  18. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  19. Measuring neuronal avalanches in disordered systems with absorbing states

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  20. Chlorophyll Proteins of Photosystem I 1

    PubMed Central

    Mullet, John E.; Burke, John J.; Arntzen, Charles J.

    1980-01-01

    Data are presented which suggest the existence of a light-harvesting pigment-protein complex which is functionally and structurally associated with photosystem I (PSI) reaction centers. These observations are based on techniques which allow isolation of PSI using minimal concentrations of Triton X-100. Properties of density and self aggregation allowed purification of a “native” PSI complex. The isolated PSI particles appear as 106 Å spherical subunits when viewed by freeze fracture microscopy. When incorporated into phosphatidyl choline vesicles, the particles lose self-aggregation properties and disperse uniformly within the lipid membrane. The isolated PSI preparation contains 100 ± 10 chlorophylls/P700 (Chl a/b ratio greater than 18); this represents a recovery of 27% of the original chloroplast membrane Chl. These particles were enriched in Chl a forms absorbing at 701 to 710 nm. Chl fluorescence at room temperature exhibited a maximum at 690 nm with a pronounced shoulder at 710 nm. At 77 K, peak fluorescence emission was at 736 nm; in the presence of dithionite an additional fluorescence maximum at 695 nm was obtained at 77 K. This dual fluorescence emission peak for the PSI particles is evidence for at least two Chl populations within the PSI membrane subunit. The fluorescence emission observed at 695 nm was identified as arising from the core of PSI which contains 40 Chl/P700 (PSI-40). This core complex, derived from native PSI particles, was enriched in Chl a absorbing at 680 and 690 nm and fluorescing with maximal emission at 694 nm at 77 K. PSI particles consisting of the PSI core complex plus 20 to 25 Chl antennae (65 Chl/P700) could also be derived from native PSI complexes. These preparations were enriched in Chl a forms absorbing at 697 nm and exhibited a 77 K fluorescence emission maximum at 722 nm. A comparison of native PSI particles which contain 110 Chl/P700 (PSI-110) and PSI particles containing 65 Chl/P700 (PSI-65) provides evidence for the existence of a peripheral Chl-protein complex tightly associated in the native PSI complex. The native PSI subunits contain polypeptides of 22,500 to 24,500 daltons which are not found in the PSI-65 or PSI-40 subfractions. It is suggested that these polypeptides function to bind 40 to 45 Chl per structural complex, including the Chl which emits fluorescence at 736 nm. A model for the organization of Chl forms is presented in which the native PSI membrane subunit consists of a reaction center core complex plus two regions of associated light-harvesting antennae. The presence of energy “sinks” within the antennae is discussed. Images PMID:16661288

  1. Design, Fabrication and Testing of a Crushable Energy Absorber for a Passive Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Corliss, James M. (Technical Monitor)

    2002-01-01

    A conceptual study was performed to investigate the impact response of a crushable energy absorber for a passive Earth entry vehicle. The spherical energy-absorbing concept consisted of a foam-filled composite cellular structure capable of omni-directional impact-load attenuation as well as penetration resistance. Five composite cellular samples of hemispherical geometry were fabricated and tested dynamically with impact speeds varying from 30 to 42 meters per second. Theoretical crush load predictions were obtained with the aid of a generalized theory which accounts for the energy dissipated during the folding deformation of the cell-walls. Excellent correlation was obtained between theoretical predictions and experimental tests on characteristic cell-web intersections. Good correlation of theory with experiment was also found to exist for the more complex spherical cellular structures. All preliminary design requirements were met by the cellular structure concept, which exhibited a near-ideal sustained crush-load and approximately 90% crush stroke.

  2. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  3. Passive vibration control: a structure–immittance approach

    PubMed Central

    Zhang, Sara Ying; Neild, Simon A.

    2017-01-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure–immittance approach. Using this approach, a full set of possible series–parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively. PMID:28588407

  4. Passive vibration control: a structure-immittance approach.

    PubMed

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A

    2017-05-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.

  5. Passive vibration control: a structure-immittance approach

    NASA Astrophysics Data System (ADS)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A.

    2017-05-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.

  6. Influence of Housing Wall Compliance on Shock Absorbers in the Context of Vehicle Dynamics

    NASA Astrophysics Data System (ADS)

    Pulvirenti, G.; Faria, C.

    2017-10-01

    Shock absorbers play a key role in vehicle dynamics. Researchers have spent significant effort in order to understand phenomena associated with this component, but there are still several issues to address, in part because new technology development and design trends continually lead to new challenges, among which weight reduction is crucial. For shock absorbers, weight reduction is related to the use of new materials (e.g. composite) or new design paradigms (e.g. more complex geometry, wall thickness, etc.). All of them are directly linked to wall compliance values higher than the actual ones. The present article proposes a first analysis of the phenomena introduced by a high wall compliance, through a modelling approach and various simulations in order to understand the vehicle behaviour changes. It is shown that high values of wall compliance lead to increased hysteresis in the force-velocity curve. However, comfort, handling and ride performances are not significantly affected by this designing parameter.

  7. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    PubMed

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  8. Spatially Resolved Metal Gas Clouds

    NASA Astrophysics Data System (ADS)

    Péroux, C.; Rahmani, H.; Arrigoni Battaia, F.; Augustin, R.

    2018-05-01

    We now have mounting evidences that the circumgalactic medium (CGM) of galaxies is polluted with metals processed through stars. The fate of these metals is however still an open question and several findings indicate that they remain poorly mixed. A powerful tool to study the low-density gas of the CGM is offered by absorption lines in quasar spectra, although the information retrieved is limited to 1D along the sightline. We report the serendipitous discovery of two close-by bright zgal=1.148 extended galaxies with a fortuitous intervening zabs=1.067 foreground absorber. MUSE IFU observations spatially probes kpc-scales in absorption in the plane of the sky over a total area spanning ˜30 kpc-2. We identify two [O II] emitters at zabs down to 21 kpc with SFR˜2 M⊙/yr. We measure small fractional variations (<30%) in the equivalent widths of Fe II and Mg II cold gas absorbers on coherence scales of 8kpc but stronger variation on larger scales (25kpc). We compute the corresponding cloud gas mass <2 × 109M⊙. Our results indicate a good efficiency of the metal mixing on kpc-scales in the CGM of a typical z˜1 galaxy. This study show-cases new prospects for mapping the distribution and sizes of metal clouds observed in absorption against extended background sources with 3D spectroscopy.

  9. Fricke-gel dosimeter: overview of Xylenol Orange chemical behavior

    NASA Astrophysics Data System (ADS)

    Liosi, G. M.; Dondi, D.; Vander Griend, D. A.; Lazzaroni, S.; D'Agostino, G.; Mariani, M.

    2017-11-01

    The complexation between Xylenol Orange (XO) and Fe3+ ions plays a key role in Fricke-gel dosimeters for the determination of the absorbed dose via UV-vis analysis. In this study, the effect of XO and the acidity of the solution on the complexation mechanism was investigated. Moreover, starting from the results of complexation titration and Equilibrium Restricted Factor Analysis, four XO-Fe3+ complexes were identified to contribute to the absorption spectra. Based on the acquired knowledge, a new [Fe3+] vs dose calibration method is proposed. The preliminary results show a significant improvement of the sensitivity and dose threshold with respect to the commonly used Abs vs dose calibration method.

  10. Guidance for selecting the measurement conditions in the dye-binding method for determining serum protein: theoretical analysis based on the chemical equilibrium of protein error.

    PubMed

    Suzuki, Y

    2001-11-01

    A methodology for selecting the measurement conditions in the dye-binding method for determining serum protein has been studied by a theoretical calculation. This calculation was based on the fact that a protein error occurs because of a reaction between the side chains of a positively charged amino acid residue in a protein molecule and a dissociated dye anion. The calculated characteristics of this method are summarized as follows: (1) Although the reaction between the dye and the protein occurs up to about pH 12, a change in the color shade, called protein error, is observed only in a pH region restricted within narrow limits. (2) Although the apparent absorbance (the absorbance of the test solution measured against a reagent blank) is lower than the true absorbance indicated by the formed dye-protein complex, the apparent absorbance correlates with the true absorbance with a correlation coefficient of 1.0. (3) At a higher dye concentration, the calibration curve is more linear at a higher pH than at a lower pH. Most of these characteristics were similarly observed experimentally in the reactions of BPB, BCG and BCP with human and bovine albumins. It is concluded that in order to ensure the linearity of the calibration curve, the measurement should be performed at a higher dye concentration and sufficiently high pH where the detection sensitivity is satisfied.

  11. Design of scale model of plate-shaped absorber in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Ming; Xu, Yong-Gang; Gao, Wei; Dai, Fei; Wu, Qi-Lin

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61601299 and 11404213), the Shanghai Municipal Science and Technology Commission, China (Grant Nos. 17210730900 and 15ZR1439600), and the Defense Industrial Technology, China (Grant No. B2120132001).

  12. Small Sites in the Central Hueco Bolson: A Final Report on Project 90-11

    DTIC Science & Technology

    1998-01-01

    raw starch, being composed of polysaccharides , is incompletely digest- ed. However, with applications of heat and moisture over time, these...complex sugars break down into monosaccharides that are more readily absorbed by the body. The critical variable is the exposure of the starch to heat

  13. Near infrared spectroscopy and aquaphotomics analysis of serum from mares exposed to the fungal mycotoxin zearalenone

    USDA-ARS?s Scientific Manuscript database

    Aquaphotomics is a branch of near infrared spectroscopy (NIR) in which bond vibrations from organic molecules and water create unique spectral absorbance patterns to profile complex aqueous mixtures. Aquaphotomics has been shown to detect virus infected soybean plants from extracts, classify probiot...

  14. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    ERIC Educational Resources Information Center

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  15. Metal-air cell with performance enhancing additive

    DOEpatents

    Friesen, Cody A; Buttry, Daniel

    2015-11-10

    Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.

  16. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos

    2017-01-01

    We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.

  17. Microwave techniques for measuring complex permittivity and permeability of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillon, P.

    1995-08-01

    Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.

  18. Role of near ultraviolet wavelength measurements in the detection and retrieval of absorbing aerosols from space

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Fujito, Toshiyuki; Nakata, Makiko; Sano, Itaru

    2017-10-01

    Aerosol remote sensing by ultraviolet (UV) wavelength is established by a Total Ozone Mapping Spectrometer (TOMS) mounted on the long-life satellite Nimbus-7 and continues to make observations using Ozone monitoring instrument (OMI) located on the Aura satellite. For example, TOMS demonstrated that UV radiation (0.331 and 0.360 μm) could easily detect absorbing particles such as mineral dust or smoke aerosols. TOMS-AI (absorbing aerosol index) has been used to identify the absorbing aerosols from space. For an upcoming mission, JAXA/GCOM-C will have the polarization sensor SGLI boarded in December 2017. The SGLI has multi (19)-channels including near UV (0.380 μm) and violet (0.412 μm) wavelengths. This work intends to examine the role of near UV data in the detection of absorbing aerosols similar to TOMS-AI played. In practice, the measurements by GLI mounted on the short Japanese mission JAXA/ADEOS-2, whose data archive period was just 8 months from April to October in 2003, are available for simulation of SGLI data because ADEOS-2/GLI installed near UV and violet channels. First of all, the ratio of data at 0.412 μm to that at 0.380 μm is examined as an indicator to detect absorbing aerosols on a global scale during ADEOS-2 era. It is noted that our research group has developed an efficient algorithm for aerosol retrieval in hazy episodes (dense concentrations of atmospheric aerosols). It can be said that at least this work is an attempt to grasp the biomass burning plumes from the satellite.

  19. Intracardiac light catheter for rapid scanning transmural absorbance spectroscopy of perfused myocardium: measurement of myoglobin oxygenation and mitochondria redox state.

    PubMed

    Femnou, Armel N; Kuzmiak-Glancy, Sarah; Covian, Raul; Giles, Abigail V; Kay, Matthew W; Balaban, Robert S

    2017-12-01

    Absorbance spectroscopy of intrinsic cardiac chromophores provides nondestructive assessment of cytosolic oxygenation and mitochondria redox state. Isolated perfused heart spectroscopy is usually conducted by collecting reflected light from the heart surface, which represents a combination of surface scattering events and light that traversed portions of the myocardium. Reflectance spectroscopy with complex surface scattering effects in the beating heart leads to difficulty in quantitating chromophore absorbance. In this study, surface scattering was minimized and transmural path length optimized by placing a light source within the left ventricular chamber while monitoring transmurally transmitted light at the epicardial surface. The custom-designed intrachamber light catheter was a flexible coaxial cable (2.42-Fr) terminated with an encapsulated side-firing LED of 1.8 × 0.8 mm, altogether similar in size to a Millar pressure catheter. The LED catheter had minimal impact on aortic flow and heart rate in Langendorff perfusion and did not impact stability of the left ventricule of the working heart. Changes in transmural absorbance spectra were deconvoluted using a library of chromophore reference spectra to quantify the relative contribution of specific chromophores to the changes in measured absorbance. This broad-band spectral deconvolution approach eliminated errors that may result from simple dual-wavelength absorbance intensity. The myoglobin oxygenation level was only 82.2 ± 3.0%, whereas cytochrome c and cytochrome a + a 3 were 13.3 ± 1.4% and 12.6 ± 2.2% reduced, respectively, in the Langendorff-perfused heart. The intracardiac illumination strategy permits transmural optical absorbance spectroscopy in perfused hearts, which provides a noninvasive real-time monitor of cytosolic oxygenation and mitochondria redox state. NEW & NOTEWORTHY Here, a novel nondestructive real-time approach for monitoring intrinsic indicators of cardiac metabolism and oxygenation is described using a catheter-based transillumination of the left ventricular free wall together with complete spectral analysis of transmitted light. This approach is a significant improvement in the quality of cardiac optical absorbance spectroscopic metabolic analyses.

  20. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  1. Formation of light absorbing organo-nitrogen species from evaporation of droplets containing glyoxal and ammonium sulfate.

    PubMed

    Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D

    2013-11-19

    In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.

  2. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    NASA Astrophysics Data System (ADS)

    Cosentino, Helio M.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2016-07-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing.

  3. Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system

    NASA Astrophysics Data System (ADS)

    Weidinger, Simon A.; Knap, Michael

    2017-04-01

    We study the regimes of heating in the periodically driven O(N)-model, which is a well established model for interacting quantum many-body systems. By computing the absorbed energy with a non-equilibrium Keldysh Green’s function approach, we establish three dynamical regimes: at short times a single-particle dominated regime, at intermediate times a stable Floquet prethermal regime in which the system ceases to absorb, and at parametrically late times a thermalizing regime. Our simulations suggest that in the thermalizing regime the absorbed energy grows algebraically in time with an exponent that approaches the universal value of 1/2, and is thus significantly slower than linear Joule heating. Our results demonstrate the parametric stability of prethermal states in a many-body system driven at frequencies that are comparable to its microscopic scales. This paves the way for realizing exotic quantum phases, such as time crystals or interacting topological phases, in the prethermal regime of interacting Floquet systems.

  4. Excitation of high-radial-order Laguerre-Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    NASA Astrophysics Data System (ADS)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  5. Facile approach to fabricate BCN/Fe x (B/C/N) y nano-architectures with enhanced electromagnetic wave absorption.

    PubMed

    Zhang, Tao; Zhang, Jian; Luo, Heng; Deng, Lianwen; Zhou, Pengyu; Wen, Guangwu; Xia, Long; Zhong, Bo; Zhang, Haibin

    2018-06-08

    Carbon-based materials have excited extensive interest for their remarkable electrical properties and low density for application in electromagnetic (EM) wave absorbents. However, the processing of heteroatoms doping in carbon nanostructures is an insuperable challenge for attaining effective reflection loss and EM matching. Herein, a facile method for large-scale synthesis of boron and nitrogen doped carbon nanotubes decorated by ferrites particles is proposed. The BCN nanotubes (50-100 nm in diameter) imbedded with nanosized Fe x (B/C/N) y (10-20 nm) are successfully constructed by two steps of polymerization and carbonthermic reduction. The product exhibits an outstanding reflection loss (RL) performance, in that the minimum RL is -47.97 dB at 11.44 GHz with a broad bandwidth 11.2 GHz (from 3.76 to 14.9 GHz) below -10 dB indicating a competitive absorbent in stealth materials. Crystalline and theoretical studies of the absorption mechanism indicate a unique dielectric dispersion effect in the absorbing bandwidth.

  6. Facile approach to fabricate BCN/Fe x (B/C/N) y nano-architectures with enhanced electromagnetic wave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zhang, Jian; Luo, Heng; Deng, Lianwen; Zhou, Pengyu; Wen, Guangwu; Xia, Long; Zhong, Bo; Zhang, Haibin

    2018-06-01

    Carbon-based materials have excited extensive interest for their remarkable electrical properties and low density for application in electromagnetic (EM) wave absorbents. However, the processing of heteroatoms doping in carbon nanostructures is an insuperable challenge for attaining effective reflection loss and EM matching. Herein, a facile method for large-scale synthesis of boron and nitrogen doped carbon nanotubes decorated by ferrites particles is proposed. The BCN nanotubes (50–100 nm in diameter) imbedded with nanosized Fe x (B/C/N) y (10–20 nm) are successfully constructed by two steps of polymerization and carbonthermic reduction. The product exhibits an outstanding reflection loss (RL) performance, in that the minimum RL is ‑47.97 dB at 11.44 GHz with a broad bandwidth 11.2 GHz (from 3.76 to 14.9 GHz) below ‑10 dB indicating a competitive absorbent in stealth materials. Crystalline and theoretical studies of the absorption mechanism indicate a unique dielectric dispersion effect in the absorbing bandwidth.

  7. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  8. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  9. [Absorbable shanching satin rb-bFGF prepreg sheet and expansion hemostatic sponge together to cure epistaxis with blood disease].

    PubMed

    Liu, Hua; Gao, Zhanmei; Song, Yang; Lu, Mancun

    2014-01-01

    This study investigated the effects and Numerical Rating Pain Scale (NRS) of using absorbable shanching satin rb-bFGF prepreg sheet and expansion hemostatic sponge together nasal packing in the control of epistaxis with blood disease, and compared it with traditional vaseline gauze. Ninety-six blood disease patient with epistaxis were enrolled between January 2009 and February 2011, they were divided into two groups at random, and differently treated with absorbable shanching satin rb-bFGF prepreg sheet and the vaseline gauze nasal packing for haemostasis. Then haemostasis efficacy,the hemorrhage rate after nasal packing removed and host response, such as nasal pain and headache, which evaluated pain degrees against NRS, were all observed. There was no significant difference between the two groups of the haemostatic effect. But the hemorrhage rate of treatment group was obviously lower than that of the control group after paching,in addition, host responses, such as nasal pain and headache, remarkably better than the control group, the difference had statistical significance. It is indicate that absorbable shanching satin rb-bFGF prepreg sheet presents reliable hemostasis effect, good biocompatibility and compliance; the pain and headache caused by packing are superior to vaseline gauze. Moreover, this method avoids the direct touch of vaseline gauze with nasal mucosal wound, and reduce hemorrhage after packing. Absorbable shanching satin rb-bFGF prepreg sheet and expansion hemostatic sponge together is better to select the nasal packing material for blood disease patient with epistaxis.

  10. Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles.

    PubMed

    Du, Gaoshang; Wang, Lumei; Zhang, Dongwei; Ni, Xuan; Zhou, Xiaotong; Xu, Hanyi; Xu, Lurong; Wu, Shijian; Zhang, Tong; Wang, Wenhao

    2016-12-01

    This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89-500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. When Physics Meets Biology: Low and High-Velocity Penetration, Blunt Impact, and Blast Injuries to the Brain

    PubMed Central

    Young, Leanne; Rule, Gregory T.; Bocchieri, Robert T.; Walilko, Timothy J.; Burns, Jennie M.; Ling, Geoffrey

    2015-01-01

    The incidence of traumatic brain injuries (TBI) in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems. PMID:25999910

  12. Butterfly wing colours: scale beads make white pierid wings brighter.

    PubMed Central

    Stavenga, D. G.; Stowe, S.; Siebke, K.; Zeil, J.; Arikawa, K.

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the scales contain an absorbing pigment, reflectance is suppressed in the absorption wavelength range of the pigment. The reflectance of the white wing areas of P. rapae, where the scales are studded with beads, is considerably higher than that of the white wing areas of H. melpomene, which has scales lacking beads. The beads presumably cause the distinct matt-white colour of the wings of pierids and function to increase the reflectance amplitude. This will improve the visual discrimination between conspecific males and females. PMID:15306303

  13. Polyanionic carbohydrate doxorubicin–dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations

    PubMed Central

    Yousefpour, Parisa; Atyabi, Fatemeh; Farahani, Ebrahim Vashegani; Sakhtianchi, Ramin; Dinarvand, Rassoul

    2011-01-01

    This study deals with the preparation and investigation of a nanoscale delivery system for the anticancer drug doxorubicin (DOX) using its complexation with polyanionic carbohydrate dextran sulfate (DS). Dynamic light scattering, SEM, and zeta potential determination were used to characterize nanocomplexes. DOX-DS complexation was studied in the presence of ethanol as a hydrogen-bond disrupting agent, NaCl as an electrostatic shielding agent, and chitosan as a positively charged polymer. Thermodynamics of DOX-DS interaction was studied using isothermal titration calorimetry (ITC). A dialysis method was applied to investigate the release profile of DOX from DOX-DS nanocomplexes. Spherical and smooth-surfaced DOX-DS nanocomplexes (250–500 nm) with negative zeta potential were formed at a DS/DOX (w/w) ratio of 0.4–0.6, with over 90% drug encapsulation efficiency. DOX when complexed with DS showed lower fluorescence emission and 480 nm absorbance plus a 15 nm bathometric shift in its visible absorbance spectrum. Electrostatic hydrogen bonding and π-π stacking interactions are the main contributing interactions in DOX-DS complexation. Thermal analysis of DOX-DS complexation by ITC revealed that each DOX molecule binds with 3 DS glycosyl monomers. Drug release profile of nanocomplexes showed a fast DOX release followed by a slow sustained release, leading to release of 32% of entrapped DOX within 15 days. DOX-DS nanocomplexes may serve as a drug delivery system with efficient drug encapsulation and also may be taken into consideration in designing DOX controlled-release systems. PMID:21796249

  14. Sedimentation Velocity Analysis of Large Oligomeric Chromatin Complexes Using Interference Detection.

    PubMed

    Rogge, Ryan A; Hansen, Jeffrey C

    2015-01-01

    Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.

  15. Spectrophotometric determination of cobalt in horse urine using 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline as chromogenic reagent

    NASA Astrophysics Data System (ADS)

    Septia Rinda, Arfidyaninggar; Uraisin, Kanchana; Sabarudin, Akhmad; Nacapricha, Duangjai; Wilairat, Prapin

    2018-01-01

    Cobalt has been reported for being abused as an illegal doping agent due to its ability as an erythropoiesis-stimulating agent for enhancing performance in racehorses. Since 2015, cobalt is listed as a prohibited substance by the International Federation of Horseracing Authorities (IFHA) with a urinary threshold of 0.1 μg cobalt per mL urine. To prevent the misuse of cobalt in racehorse, a simple method for detection of cobalt is desirable. In this work, the detection of cobalt is based on the spectrometric detection of the complex formation between cobalt(II) and 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline at pH 4. The absorbance of the complex is monitored at 602 nm. The metal:ligand ratio of the complex is 1:2. The calibration graph was linear in the range of 0 - 2.5 μM {Absorbance = (0.0825 ± 0.0013)[Co2+] + (0.0406 ± 0.0003), r2 = 0.999} and the detection limit (3 SD of intercept)/slope) was 0.044 μM. The proposed method has been successfully applied to horse urine samples with the recoveries in the range 91 - 98%.

  16. Bismuth generator method

    DOEpatents

    Bray, Lane Allan; DesChane, Jaquetta R.

    1998-01-01

    A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.

  17. Bismuth generator method

    DOEpatents

    Bray, L.A.; DesChane, J.R.

    1998-05-05

    A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.

  18. Uranium: A Dentist's perspective

    PubMed Central

    Toor, R. S. S.; Brar, G. S.

    2012-01-01

    Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959

  19. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  20. The visible extinction peaks of Ag nanohelixes: A periodic effective dipole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.-Y.; Zhao, Y.-P.

    2011-02-21

    Using the discrete dipole approximation method, two visible extinction peaks are found for Ag nanohelixes. Both of them redshift periodically in an approximate half pitch with the helix height and redshift linearly with the helix diameter and pitch height. At the two absorbance peaks, an integer number of E-field maxima occur along the helix. These field maxima could be treated as results of collective electron oscillations by periodic effective dipoles within a half pitch along the helix. The wavelengths of the absorbance peaks are found to scale with the effective dipole length, which is consistent with the periodic structure ofmore » the helix.« less

  1. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Bolch, Wesley E.; Lee, Choonsik

    2013-10-15

    Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82,more » Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from various PET radiotracers used in clinical and research settings. The mass scaling method for positron-emitters can be used to derive patient-specific S-values from data of reference phantoms.« less

  2. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.

  3. Microwave absorption property of the diatomite coated by Fe-CoNiP films

    NASA Astrophysics Data System (ADS)

    Yan, Zhenqiang; Cai, Jun; Xu, Yonggang; Zhang, Deyuan

    2015-08-01

    A bio-absorbent of Fe-CoNiP coated on the diatomite was fabricated by way of electroless plating of CoNiP and subsequent chemical vapor deposition of Fe. The surface morphology and composition of the above-mentioned diatomite particles at different stage were characterized with the scanning electron microscopy and the energy spectrum analysis respectively, and the results showed that the diatomite was successfully coated with CoNoP and Fe (carbony iron). The complex permittivity and permeability of composites filled with the bio-absorbent and paraffin was measured in frequency range of 2-18 GHz, and then the microwave reflection loss (RL) and the shielding effectiveness (SE) were calculated. The results showed that the permittivity and the permeability were both enlarged as Fe films were coated onto the CoNiP-coated diatomite, which was attributed to the excellent electromagnetic property of carbonyl irons. The composites made with the Fe-CoNiP diatomite had a better absorbing property (minimum RL -11.0 dB) as well as the shielding property (maximum SE 5.6 dB) at thickness 2 mm. It indicated the absorption property was mainly due to the attenuation on the microwave, and the Fe-CoNiP diatomite could be an effective absorbent with low-density.

  4. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  5. 46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... produce primary irritation due to repeated or prolonged contact with the skin. High concentrations are... Direct skin contact with benzene may cause erythema. Repeated or prolonged contact may result in drying, scaling dermatitis or development of secondary skin infections. In addition, benzene is absorbed through...

  6. The HI Environment of Nearby Lyman-alpha Absorbers

    NASA Technical Reports Server (NTRS)

    VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael

    1996-01-01

    We present the results of a VLA and WSRT search for H I emission from the vicinity of seven nearby clouds, which were observed in Ly-alpha absorption with HST toward Mrk 335, Mrk 501, and PKS 2155-304. Around the absorbers, we searched a volume of 4O' x 40' x 1000 km/s; for one of the absorbers we probed a velocity range of only 600 km/s. The H I mass sensitivity (5 sigma) very close to the lines of sight varies from 5 x 10(exp 6) solar mass at best to 5 x 10(exp 8) solar mass at worst. We detected H I emission in the vicinity of four out of seven absorbers. The closest galaxy we find to the absorbers is a small dwarf galaxy at a projected distance of 68 h(exp -1) kpc from the sight line toward Mrk 335. This optically uncataloged galaxy has the same velocity (V = 1970 km/s) as one of the absorbers, is fainter than the SMC, and has an H I mass of only 4 x 10(exp 7) solar mass. We found a somewhat more luminous galaxy at exactly the velocity (V = 5100 km/s) of one of the absorbers toward PKS 2155-304 at a projected distance of 230 h(exp -1) kpc from the sight line. Two other, stronger absorbers toward PKS 2155-304 at V approx. 17,000 km/s appear to be associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600 h(exp -1) kpc. These results support the conclusions emerging from optical searches that most nearby Ly-alpha forest clouds trace the large-scale structures outlined by the optically luminous galaxies, although this is still based on small-number statistics. We do not find any evidence from the H I distribution or kinematics that there is a physical association between an absorber and its closest galaxy. While the absorbing clouds are at the systemic velocity of the galaxies, the H I extent of the galaxies is fairly typical, and at least an order of magnitude smaller than the projected distance to the sight line at which the absorbers are seen. On the other hand, we also do not find evidence against such a connection. In total, we detected H I emission from five galaxies, of which two were previously uncataloged and one did not have a known redshift. No H I emission was detected from the vicinity of the two absorbers, which are located in a void and a region of very low galaxy density; but the limits are somewhat less stringent than for the other sight lines. These results are similar to what has been found in optically unbiased H I surveys. Thus, presence of Ly-alpha absorbers does not significantly alter the H I detection rate in their environment.

  7. A comprehensive study of the cool gas content of massive dark matter halos

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-Rene

    2011-09-01

    This thesis is based on the results of an on-going investigation of the cool, T ˜ 104 K, gas present in massive dark matter halos traced by luminous red galaxies (LRGs) at z ˜ 0.5. It consists of three parts. The first part (Chapter 2) presents a series of measurements of the large-scale clustering of MgII lambdalambda 2796,2803 absorbers with respect to a population of LRGs. From the cross-correlation measurements between the absorbers and the galaxies, the mean bias of the dark matter halos in which the absorbers reside is derived. One finds a 1-sigma anti-correlation between mean halo bias and absorber strength W r(2796) that translates into a 1-sigma anti-correlation between mean galaxy mass and Wr(2796). The results indicate that a significant fraction of the MgII absorber population of W r(2796) = 1-1.5A are found in group-size dark matter halos of log Mh < 13.4, whereas absorbers of Wr(2796) > 1.5A are primarily seen in halos of log Mh < 12.7. In the second part of this thesis, a series of constraints on the covering fraction of cool gas are derived in Chapter 3. The results of an on-going spectroscopic follow-up of close LRG-Mg II absorber pairs are presented in Chapter 4. This spectroscopic sample consists of 70 photometrically selected LRGs at physical projected separations rho <˜ 400 kpc/h from a QSO sightline. The moderate-resolution spectra confirm a physical association between the cool gas revealed by the presence of MgII absorption features and the LRG halo in 15 cases. From a pair sample with no prior knowledge of the presence/absence of MgII absorbers, a covering fraction kappa = 0.13+0.05-0.06 is found for Wr(2796) > 0.3A and rho < 400 kpc/h. The third part of this thesis addresses the results of a stellar population synthesis analysis done on stacked spectra of MgII absorbing and non-absorbing LRG subsamples. The main finding of this analysis is that LRGs with or without associated MgII absorbers share similar star formation histories and are best described by old stellar population models (>˜ 1 Gyr). Younger stellar populations (<˜1 Gyr) fail to reproduce their spectra. The primarily old stellar populations in the LRGs indicate that recent starburst driven outflows are unlikely to explain the observed MgII absorbers at large distances from the LRGs. Finally, high-resolution spectra of seven MgII absorbers found in the vicinity of LRGs and associated deep, R-band images of the QSO-LRG fields are presented in Appendix A. These new data are crucial to study the kinematics of the gas and constrain its physical origin.

  8. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  9. SU-E-T-516: Investigation of a Novel Radiochromic Radiation Reporting System Utilizing the Reduction of Ferric Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H; Alqathami, M; Wang, J

    Purpose To introduce and characterize a new “reverse-Fricke” radiation reporting system utilizing the reduction of ferric ions (Fe{sup 3+}) to ferrous ions (Fe{sup 2+}). Methods Two formulations of the radiochromic reporting system, referred to as A and B, were prepared for investigation. Formulation-A consisted of 14 mM 1,10-phenanthroline, 42 mM ethanol, and 57 mM ammonium ferric oxalate in water. Formulation-B consisted of 27 mM 1,10-phenanthroline, 42 mM ethanol, and 28 mM ammonium ferric oxalate in water. Solutions were prepared immediately prior to irradiation with a Cobalt-60 unit with radiation doses of 0, 1, 5, 10, 15, 20, and 25 Gy.more » The change in optical density over the visible range of 450–650 nm was measured using a spectrophotometer immediately after irradiation. The effective atomic numbers of the formulations were calculated using Mayneord’s formula. Results Ionizing radiation energy absorbed in the solutions causes the reduction of ferric ions (Fe{sup 3+}) into ferrous ions (Fe{sup 2+}), which then forms a 1:3 red colored complex with 1,10-phenanthroline ([(C{sub 1} {sub 2}H{sub 8}N{sup 2}){sub 3}Fe]{sup 2+}) that can be measured spectrophotometrically. The absorbance spectra of the resulting complex displayed a peak maximum at 512 nm with a greater change in absorbance for Formulation-B after receiving comparable radiation doses. The change in absorbance relative to dose exhibited a linear response up to 25 Gy for both Formulation-A (R{sup 2} = 0.98) and Formulation-B (R{sup 2} = 0.97). The novel formulations were also nearly water equivalent (Zeff = 7.42) with effective atomic numbers of 7.65 and 7.52 and mass densities within 0.2% of water. Conclusion Both formulations displayed visible Fe{sup 2+} complex formation with 1,10-phenanthroline after irradiation using a Cobalt-60 source. The higher sensitivity measured for Formulation-B is attributed to the increase in 1,10-phenanthroline concentration and the increase in the 1,10-phenanthroline to ammonium ferric oxalate ratio. Further investigation of this radiation reporting system in a 3D matrix material is encouraged. NSF GRFP Grant Award #LH-102SPS.« less

  10. Absorbent products for incontinence: 'treatment effects' and impact on quality of life.

    PubMed

    Getliffe, Kathryn; Fader, Mandy; Cottenden, Alan; Jamieson, Katharine; Green, Nicholas

    2007-10-01

    This study aimed to determine how the use and characteristics of absorbent products for incontinence impact on women's quality of life, and to examine the concept of 'treatment effects' in the context of pad use. Key pad performance characteristics were identified from the literature and focus group work. Semi-structured interviews with 99 women with light incontinence were used to investigate the impact of pad use on women's quality of life, including both positive and negative 'treatment effects', and to rank pad characteristics by their importance. Achieving effective and discrete containment of urine was the dominant factor impacting on women's lives. Sub-themes embraced physical effects, psychological impact and social functioning. The five pad characteristics ranked most important for day time use were: 'to hold urine, to contain smell, to stay in place, discreteness, and comfort when wet. For night use discreteness was replaced by to keep skin dry'. High levels of reported anxiety were associated with perceived risk of poor pad performance, lack of discreteness and need for complex regimes for pad management. Insufficient attention has been paid to the balance between the beneficial and negative treatment effects of absorbent pads to date. Existing continence-related quality of life measures are not designed for conditions where change in symptoms is not an outcome measure. The study findings provide the basis for developing a more sensitive, patient-oriented, quality of life measure for pad-users which can aid product selection, new product development and inform future evaluative comparisons between products/products and treatments. This paper illustrates the complex influence on quality of life caused by using absorbent pads to contain incontinence. It raises awareness of the importance of careful selection of the most appropriate pad for each individual to minimize unfavourable side effects, and the need for a new quality of life measure designed for pad-users.

  11. Experiments and Dynamic Finite Element Analysis of a Wire-Rope Rockfall Protective Fence

    NASA Astrophysics Data System (ADS)

    Tran, Phuc Van; Maegawa, Koji; Fukada, Saiji

    2013-09-01

    The imperative need to protect structures in mountainous areas against rockfall has led to the development of various protection methods. This study introduces a new type of rockfall protection fence made of posts, wire ropes, wire netting and energy absorbers. The performance of this rock fence was verified in both experiments and dynamic finite element analysis. In collision tests, a reinforced-concrete block rolled down a natural slope and struck the rock fence at the end of the slope. A specialized system of measuring instruments was employed to accurately measure the acceleration of the block without cable connection. In particular, the performance of two energy absorbers, which contribute also to preventing wire ropes from breaking, was investigated to determine the best energy absorber. In numerical simulation, a commercial finite element code having explicit dynamic capabilities was employed to create models of the two full-scale tests. To facilitate simulation, certain simplifying assumptions for mechanical data of each individual component of the rock fence and geometrical data of the model were adopted. Good agreement between numerical simulation and experimental data validated the numerical simulation. Furthermore, the results of numerical simulation helped highlight limitations of the testing method. The results of numerical simulation thus provide a deeper understanding of the structural behavior of individual components of the rock fence during rockfall impact. More importantly, numerical simulations can be used not only as supplements to or substitutes for full-scale tests but also in parametric study and design.

  12. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  13. Controlled reflectance surfaces with film-coupled colloidal nanoantennas

    PubMed Central

    Moreau, Antoine; Ciraci, Cristian; Mock, Jack J.; Hill, Ryan T.; Wang, Qiang; Wiley, Benjamin J.; Chilkoti, Ashutosh; Smith, David R.

    2013-01-01

    Efficient and tunable absorption is essential for a variety of applications, such as the design of controlled emissivity surfaces for thermophotovoltaic devices1; tailoring of the infrared spectrum for controlled thermal dissipation2; and detector elements for imaging3. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design4. To date, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures2,5–9, making them inherently difficult to produce over large areas and hence reducing their applicability. We demonstrate here an extraordinarily simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale thick polymer spacer layer on a gold film –making no effort to control the spatial arrangement of the cubes on the film– and show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry. Each nanocube is the optical analog of the well-known grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect10. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches like e-beam lithography otherwise required to manipulate matter at the nanometer scale. PMID:23222613

  14. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-01

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4‧-(N,N-diethylamino)styryl]-N-methyl pyridinium (2‧) cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044 cm/GW at 710 nm.

  15. Electrochemical, spectroscopic, and photophysical properties of structurally diverse polyazine-bridged Ru(II),Pt(II) and Os(II),Ru(II),Pt(II) supramolecular motifs.

    PubMed

    Knoll, Jessica D; Arachchige, Shamindri M; Wang, Guangbin; Rangan, Krishnan; Miao, Ran; Higgins, Samantha L H; Okyere, Benjamin; Zhao, Meihua; Croasdale, Paul; Magruder, Katherine; Sinclair, Brian; Wall, Candace; Brewer, Karen J

    2011-09-19

    Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.

  16. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example.

  17. Up Goes the Water

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    Water is very important to plants. Plants need water to produce food and grow. Plants make their own food through a complex, sunlight-powered process called photosynthesis. Simply put, in photosynthesis, water absorbed by a plant's roots and carbon dioxide taken from the air by a plant's leaves combine to make the plant's food. This article…

  18. Mechanisms of digestion and absorption of dietary vitamin A.

    PubMed

    Harrison, Earl H

    2005-01-01

    Mechanisms involved in the digestion and absorption of dietary vitamin A require the participation of several proteins. Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase, and intestinal brush border enzyme, phospholipase B. Unesterified retinol taken up by the enterocyte is complexed with cellular retinol-binding protein type 2 and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). The retinyl esters are then incorporated into chylomicrons, intestinal lipoproteins containing other dietary lipids, such as triglycerides, phospholipids, and free and esterified cholesterol, and apolipoprotein B. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph. Although under normal dietary conditions much of the dietary vitamin A is absorbed via the chylomicron/lymphatic route, it is also clear that under some circumstances there is substantial absorption of unesterified retinol via the portal route. Evidence supports the idea that the cellular uptake and efflux of unesterified retinol by enterocytes is mediated by lipid transporters, but the exact number, identity, and role of these proteins is not known and is an active area of research.

  19. Andromeda’s Parachute: A Bright Quadruply Lensed Quasar at z = 2.377

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; O’Meara, John M.; Cooksey, Kathy L.; Matuszewski, Mateusz; Rizzi, Luca; Doppmann, Greg; Kwok, Shui; Martin, D. Christopher; Moore, Anna M.; Morrissey, Patrick; Neill, James D.

    2018-06-01

    We present Keck Cosmic Web Imager spectroscopy of the four putative images of the lensed quasar candidate J014710+463040 recently discovered by Berghea et al. The data verify the source as a quadruply lensed, broad absorption-line quasar having {z}{{S}}=2.377 +/- 0.007. We detect intervening absorption in the Fe II λλ2586, 2600, Mg II λλ2796, 2803, and/or C IV λλ1548, 1550 transitions in eight foreground systems, three of which have redshifts consistent with the photometric-redshift estimate reported for the lensing galaxy (z L ≈ 0.57). The source images probe these absorbers over transverse physical scales of ≈0.3–22 kpc, permitting assessment of the variation in metal-line equivalent width {W}{{r}} as a function of sight-line separation. We measure differences in {W}{{r},2796} of <40% across most of the sight-line pairs subtending 8–22 kpc, suggestive of a high degree of spatial coherence for the Mg II-absorbing material. {W}{{r},2600} varies by >50% over the same scales across the majority of sight-line pairs, while C IV absorption exhibits a wide range in {W}{{r},1548} differences of ≈5%–80% within transverse distances of ≲3 kpc. These spatial variations are consistent with those measured in intervening absorbers detected toward lensed quasars drawn from the literature, in which {W}{{r},2796} and {W}{{r},1548} vary by ≤20% in 35 ± 7% and 47 ± 6% of sight lines separated by <10 kpc, respectively. J014710+463040 is one of only a handful of z > 2 quadruply lensed systems for which all four source images are very bright (r = 15.4–17.7 mag) and are easily separated in ground-based seeing conditions. As such, it is an ideal candidate for higher-resolution spectroscopy probing the spatial variation in the kinematic structure and physical state of intervening absorbers.

  20. Singlet-triplet fission of carotenoid excitation in light-harvesting LH2 complexes of purple phototrophic bacteria.

    PubMed

    Klenina, I B; Makhneva, Z K; Moskalenko, A A; Gudkov, N D; Bolshakov, M A; Pavlova, E A; Proskuryakov, I I

    2014-03-01

    The current generally accepted structure of light-harvesting LH2 complexes from purple phototrophic bacteria conflicts with the observation of singlet-triplet carotenoid excitation fission in these complexes. In LH2 complexes from the purple bacterium Allochromatium minutissimum, a drop in the efficiency of carotenoid triplet generation is demonstrated, which correlates with the extent of selective photooxidation of bacteriochlorophylls absorbing at ~850 nm. We conclude that singlet-triplet fission of carotenoid excitation proceeds with participation of these excitonically coupled bacteriochlorophylls. In the framework of the proposed mechanism, the contradiction between LH2 structure and photophysical properties of carotenoids is eliminated. The possibility of singlet-triplet excitation fission involving a third mediator molecule was not considered earlier.

  1. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    PubMed

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  2. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.

    PubMed

    Woller, Jakob G; Hannestad, Jonas K; Albinsson, Bo

    2013-02-20

    Mimicking green plants' and bacteria's extraordinary ability to absorb a vast number of photons and harness their energy is a longstanding goal in artificial photosynthesis. Resonance energy transfer among donor dyes has been shown to play a crucial role on the overall transfer of energy in the natural systems. Here, we present artificial, self-assembled, light-harvesting complexes consisting of DNA scaffolds, intercalated YO-PRO-1 (YO) donor dyes and a porphyrin acceptor anchored to a lipid bilayer, conceptually mimicking the natural light-harvesting systems. A model system consisting of 39-mer duplex DNA in a linear wire configuration with the porphyrin attached in the middle of the wire is primarily investigated. Utilizing intercalated donor fluorophores to sensitize the excitation of the porphyrin acceptor, we obtain an effective absorption coefficient 12 times larger than for direct excitation of the porphyrin. On the basis of steady-state and time-resolved emission measurements and Markov chain simulations, we show that YO-to-YO resonance energy transfer substantially contributes to the overall flow of energy to the porphyrin. This increase is explained through energy migration along the wire allowing the excited state energy to transfer to positions closer to the porphyrin. The versatility of DNA as a structural material is demonstrated through the construction of a more complex, hexagonal, light-harvesting scaffold yielding further increase in the effective absorption coefficient. Our results show that, by using DNA as a scaffold, we are able to arrange chromophores on a nanometer scale and in this way facilitate the assembly of efficient light-harvesting systems.

  3. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    PubMed Central

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  4. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  5. Relationship between mechanical-property and energy-absorption trends for composite tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    U.S. Army helicopters are designed to dissipate prescribed levels of crash impact kinetic energy without compromising the integrity of the fuselage. Because of the complexity of the energy-absorption process it is imperative for designers of energy-absorbing structures to develop an in-depth understanding of how and why composite structures absorb energy. A description of the crushing modes and mechanisms of energy absorption for composite tubes and beams is presented. Three primary crushing modes of composite structures including transverse shearing, lamina bending, and local buckling are described. The experimental data presented show that fiber and matrix mechanical properties and laminate stiffness and strength mechanical properties cannot reliably predict the energy-absorption response of composite tubes.

  6. Energy, Electron Transfer and Photocatalytic Reactions of Visible Light Absorbing Transition Metal Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmehl, Russell H.

    2016-03-02

    This is the final technical report for a project carried out at Tulane University of New Orleans that describes the development of light induced (solar) reactions geared toward decomposing water into its component elements : hydrogen and oxygen. Much of the work involved optimizing systems for absorbing visible light and undergoing light promoted reactions to generate very strong reducing agents that are capable of reacting with water to produce hydrogen. Additional portions of the research were collaborative efforts to put the strong reducing agents to work in reaction with hydrogen generation catalysts prepared elsewhere. Time resolved laser spectroscopic methods weremore » used to evaluate the light induced reactions and characterize very reactive intermediate substances formed during the reactions.« less

  7. A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals.

    PubMed

    López-Alarcón, C; Lissi, E

    2006-09-01

    Oxygen radicals absorbance capacities (ORAC) indexes are frequently employed to characterize the radical trapping capacity of pure compounds and their complex mixtures. A drawback of ORAC values obtained using phycoerythrin, fluorescein (FL) or c-phycocyanin as targets, makes it possible to conclude that for very reactive compounds they are much more related to stoichiometric factors than to the reactivity of the tested compound. In the present paper, we propose a simple methodology, based on the bleaching of Pyrogallol Red (PGR) absorbance that provides ORAC indexes that are almost exclusively determined by the reactivity of the tested compounds. This difference is due to the high reactivity of PGR and the high concentrations of this compound employed in the experiments.

  8. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    NASA Astrophysics Data System (ADS)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  9. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Absorption of Iron from Ferritin Is Independent of Heme Iron and Ferrous Salts in Women and Rat Intestinal Segments123

    PubMed Central

    Chen, Huijun; Miranda, Constanza; Janser, Heinz; Elsenhans, Bernd; Núñez, Marco T.; Pizarro, Fernando; Schümann, Klaus

    2012-01-01

    Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC 59Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency. PMID:22259191

  11. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase.

    PubMed

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-04-03

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (lambda(max) approximately 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its alpha-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters.

  12. Disease epidemics: Lessons for resilience in an increasingly connected world

    USGS Publications Warehouse

    Allen, Craig R.; DeWitte, S.N.; Kurth, M.H.; Linkov, I.

    2016-01-01

    In public health, the term resilience often refers to the personality traits that individuals possess which help them endure and recover from stressors. However, resilience as a system characteristic, especially in regards to complex social-ecological systems, can be informative for public health at scales larger than the individual. Acute shocks to systems occur against a background of existing conditions, which are crucial determinants of the eventual public health outcomes of those shocks, and in the context of complex dependencies among and between ecological and societal elements. Many components of a system's baseline condition are chronic public health concerns themselves and diminish the capacity of the system to perform in the face of acute shocks. The emerging field of resilience management is concerned with holistically assessing and improving a system's ability to prepare for and absorb disruption, and then recover and adapt across physical, information, environmental and social domains. Integrating resilience considerations into current risk- and evidence-based approaches to disease control and prevention1 can move public health efforts toward more proactive and comprehensive solutions for protecting and improving the health of communities. Here, we look to the case of the Black Death as an illustrative case of a dramatic transformation in human history, an acute shock to a system that was underlain by chronic social maladies, to derive lessons about resilience management for public health in contemporary systems.

  13. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  14. Impact and fracture analysis of fish scales from Arapaima gigas.

    PubMed

    Torres, F G; Malásquez, M; Troncoso, O P

    2015-06-01

    Fish scales from the Amazonian fish Arapaima gigas have been characterised to study their impact and fracture behaviour at three different environmental conditions. Scales were cut in two different directions to analyse the influence of the orientation of collagen layers. The energy absorbed during impact tests was measured for each sample and SEM images were taken after each test in order to analyse the failure mechanisms. The results showed that scales tested at cryogenic temperatures display fragile behaviour, while scales tested at room temperature did not fracture. Different failure mechanisms have been identified, analysed and compared with the failure modes that occur in bone. The impact energy obtained for fish scales was two to three times higher than the values reported for bone in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales

    PubMed Central

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling. PMID:24098853

  16. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the changes in doping in sputtered cubic Cu2SnS3 thin films using combinatorial experiments and first-principles theory. High S chemical potential during deposition decreases the enthalpy of formation of Cu vacancies, which are the dominant acceptor defect in Cu2SnS3. Unexpectedly, under Cu-rich conditions, alloying with an isostructural (cubic) metallic Cu3SnS4 phase occurs, causing high levels of p-type doping. Both of these effects lead to undesirably high electrical conductivity, thus Cu2SnS 3 films must be grown both S- and Cu-poor in order to achieve moderate hole concentrations. To understand the effects of structural disorder on the transport properties in Cu2SnS3 we develop synthetic techniques to control this disorder, and observe improvements in the majority carrier (hole) transport. However, when the minority carrier (electron) transport was investigated, minimal differences were observed between the ordered and disordered Cu 2SnS3. By combining these results with first-principles and Monte Carlo theoretical calculations, we are able to conclude that even ostensibly "ordered" Cu2SnS3 displays minority carrier transport properties corresponding to the disordered structure. The presence of extended planar defects in all samples, observed in TEM imaging, suggests that disorder is present even when it is not detectable using traditional structural characterization methods. Lastly, we attempt to integrate our Cu2SnS3 films into photovoltaic devices, which requires translating our growth techniques to conductive substrates. We survey a wide range of possible conductive substrates, but are not able to find a suitable back contact for Cu2SnS 3 device integration, due to issues such as secondary phase formation and delamination. From a survey of successful Cu2SnS3 device literature, we are able to conclude that the issue may lie with our binary sputtering method in which the ternary compound formation and the film growth occur simultaneously. At the conclusion of this study, we eliminated Cu2SnS as an absorber candidate for future development. However, the two main issues we encountered (eliminating structural disorder and difficulty growing on conductive back contacts) may both be related to our binary sputtering technique. We expect that interest in Cu2SnS3-based photovoltaics will continue to grow, and that further scientific understanding may shed light on our particular difficulties. In the future, the RD methodology has the potential to greatly accelerate the discovery and development of non-traditional thin film absorbers, and may enable high impact material breakthroughs.

  17. Production Systems and Rural Development in Canada.

    ERIC Educational Resources Information Center

    Sinclair, Peter R.

    The paper examines the social structure of Canada's agricultural production. It argues that "the official development strategy is typical of state involvement in maturing capitalist economies and that, in so far as these policies are successful, they bring to an end small scale production of primary products by absorbing rural people into an…

  18. Two-car impact test of crash energy management passenger rail cars : analysis of occupant protection measurements

    DOT National Transportation Integrated Search

    2004-11-13

    As a part of ongoing passenger rail equipment safety research, a full-scale impact test of two cars with energy absorbing end structures was carried out on February 26, 2004. In this test, two coupled cars impacted a rigid barrier at 29 mph. Similar ...

  19. The Slimeball: The Development of Broad-Scale Maritime Non-Lethal Weaponry

    DTIC Science & Technology

    2009-04-01

    commercial applications from waste management to horticulture to baby diapers. By some estimates, it can absorb one thousand times its volume in water...www.nytimes.com/2008/10/31/world/africa/31pirates.html?pagewanted=1&_r=1. Goolsby, Tommy D. “Aqueous Foam as a Less-Than-Lethal Technology for Prison

  20. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    NASA Astrophysics Data System (ADS)

    Amado Filho, G. M.; Andrade, L. R.; Farina, M.; Malm, O.

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702±318 μg Hg g -1 was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding.

  1. Chiral quantum supercrystals with total dissymmetry of optical response

    NASA Astrophysics Data System (ADS)

    Baimuratov, Anvar S.; Gun'Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-03-01

    Since chiral nanoparticles are much smaller than the optical wavelength, their enantiomers show little difference in the interaction with circularly polarized light. This scale mismatch makes the enhancement of enantioselectivity in optical excitation of nanoobjects a fundamental challenge in modern nanophotonics. Here we demonstrate that a strong dissymmetry of optical response from achiral nanoobjects can be achieved through their arrangement into chiral superstructures with the length scale comparable to the optical wavelength. This concept is illustrated by the example of the simple helix supercrystal made of semiconductor quantum dots. We show that this supercrystal almost fully absorbs light with one circular polarization and does not absorb the other. The giant circular dichroism of the supercrystal comes from the formation of chiral bright excitons, which are the optically active collective excitations of the entire supercrystal. Owing to the recent advances in assembly and self-organization of nanocrystals in large superparticle structures, the proposed principle of enantioselectivity enhancement has great potential of benefiting various chiral and analytical methods, which are used in biophysics, chemistry, and pharmaceutical science.

  2. Analysis of periodically patterned metallic nanostructures for infrared absorber

    NASA Astrophysics Data System (ADS)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  3. New Rh 2 (II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittemore, Tyler J.; Sayre, Hannah J.; Xue, Congcong

    In this work, the new heteroleptic paddlewheel complexes cis-[Rh 2(μ-form) 2(μ-np) 2][BF 4] 2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh 2(μ-form) 2(μ-npCOO) 2 (npCOO – = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λ max = 300 nm, ε = 20 300 M –1 cm –1) and visible regions (λ max = 640 nm ε = 3500 M –1 cm –1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were usedmore » to characterize the identity and dynamics of the excited states, where singlet and triplet Rh 2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO – complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E( 3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Finally, based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ~800 nm.« less

  4. New Rh 2 (II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity

    DOE PAGES

    Whittemore, Tyler J.; Sayre, Hannah J.; Xue, Congcong; ...

    2017-10-04

    In this work, the new heteroleptic paddlewheel complexes cis-[Rh 2(μ-form) 2(μ-np) 2][BF 4] 2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh 2(μ-form) 2(μ-npCOO) 2 (npCOO – = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λ max = 300 nm, ε = 20 300 M –1 cm –1) and visible regions (λ max = 640 nm ε = 3500 M –1 cm –1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were usedmore » to characterize the identity and dynamics of the excited states, where singlet and triplet Rh 2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO – complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E( 3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Finally, based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ~800 nm.« less

  5. A nanophotonic solar thermophotovoltaic device.

    PubMed

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  6. NASA Tech Briefs, January 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Optoelectronic Tool Adds Scale Marks to Photographic Images; Compact Interconnection Networks Based on Quantum Dots; Laterally Coupled Quantum-Dot Distributed-Feedback Lasers; Bit-Serial Adder Based on Quantum Dots; Stabilized Fiber-Optic Distribution of Reference Frequency; Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System; Ladar System Identifies Obstacles Partly Hidden by Grass; Survivable Failure Data Recorders for Spacecraft; Fiber-Optic Ammonia Sensors; Silicon Membrane Mirrors with Electrostatic Shape Actuators; Nanoscale Hot-Wire Probes for Boundary-Layer Flows; Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing; Efficient Coupling of Lasers to Telescopes with Obscuration; Aligning Three Off-Axis Mirrors with Help of a DOE; Calibrating Laser Gas Measurements by Use of Natural CO2; Laser Ranging Simulation Program; Micro-Ball-Lens Optical Switch Driven by SMA Actuator; Evaluation of Charge Storage and Decay in Spacecraft Insulators; Alkaline Capacitors Based on Nitride Nanoparticles; Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells; Software for a GPS-Reflection Remote-Sensing System; Software for Building Models of 3D Objects via the Internet; "Virtual Cockpit Window" for a Windowless Aerospacecraft; CLARAty Functional-Layer Software; Java Library for Input and Output of Image Data and Metadata; Software for Estimating Costs of Testing Rocket Engines; Energy-Absorbing, Lightweight Wheels; Viscoelastic Vibration Dampers for Turbomachine Blades; Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions; Pneumatically Actuated Miniature Peristaltic Vacuum Pumps; Miniature Gas-Turbine Power Generator; Pressure-Sensor Assembly Technique; Wafer-Level Membrane-Transfer Process for Fabricating MEMS; A Reactive-Ion Etch for Patterning Piezoelectric Thin Film; Wavelet-Based Real-Time Diagnosis of Complex Systems; Quantum Search in Hilbert Space; Analytic Method for Computing Instrument Pointing Jitter; and Semiselective Optoelectronic Sensors for Monitoring Microbes.

  7. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  8. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    PubMed

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  9. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  10. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smooth particle hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Daily, Michael D.; Baker, Nathan A.

    2015-12-01

    We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to an acetylcholinesterase monomer. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) boundary condition, is considered on the reactive boundaries. This new boundary condition treatment allows for the analysis of enzymes with "imperfect" reaction rates. Rates for inhibitor binding to mAChE are calculated atmore » various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.« less

  11. Electrodeposition of organic-inorganic tri-halide perovskites solar cell

    NASA Astrophysics Data System (ADS)

    Charles, U. A.; Ibrahim, M. A.; Teridi, M. A. M.

    2018-02-01

    Perovskite (CH3NH3PbI3) semiconductor materials are promising high-performance light energy absorber for solar cell application. However, the power conversion efficiency of perovskite solar cell is severely affected by the surface quality of the deposited thin film. Spin coating is a low-cost and widely used deposition technique for perovskite solar cell. Notably, film deposited by spin coating evolves surface hydroxide and defeats from uncontrolled precipitation and inter-diffusion reaction. Alternatively, vapor deposition (VD) method produces uniform thin film but requires precise control of complex thermodynamic parameters which makes the technique unsuitable for large scale production. Most deposition techniques for perovskite require tedious surface optimization to improve the surface quality of deposits. Optimization of perovskite surface is necessary to significantly improve device structure and electrical output. In this review, electrodeposition of perovskite solar cell is demonstrated as a scalable and reproducible technique to fabricate uniform and smooth thin film surface that circumvents the need for high vacuum environment. Electrodeposition is achieved at low temperatures, supports precise control and optimization of deposits for efficient charge transfer.

  12. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  13. Quasiparticle energies and lifetimes in a metallic chain model of a tunnel junction.

    PubMed

    Szepieniec, Mark; Yeriskin, Irene; Greer, J C

    2013-04-14

    As electronics devices scale to sub-10 nm lengths, the distinction between "device" and "electrodes" becomes blurred. Here, we study a simple model of a molecular tunnel junction, consisting of an atomic gold chain partitioned into left and right electrodes, and a central "molecule." Using a complex absorbing potential, we are able to reproduce the single-particle energy levels of the device region including a description of the effects of the semi-infinite electrodes. We then use the method of configuration interaction to explore the effect of correlations on the system's quasiparticle peaks. We find that when excitations on the leads are excluded, the device's highest occupied molecular orbital and lowest unoccupied molecular orbital quasiparticle states when including correlation are bracketed by their respective values in the Hartree-Fock (Koopmans) and ΔSCF approximations. In contrast, when excitations on the leads are included, the bracketing property no longer holds, and both the positions and the lifetimes of the quasiparticle levels change considerably, indicating that the combined effect of coupling and correlation is to alter the quasiparticle spectrum significantly relative to an isolated molecule.

  14. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    NASA Astrophysics Data System (ADS)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  15. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  16. Preparation of nitrogen and sulfur co-doped ordered mesoporous carbon for enhanced microwave absorption performance

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoyan; Xue, Xingkun; Ma, Hailong; Guo, Shouwu; Cheng, Laifei

    2017-09-01

    Ordered mesoporous carbon nanomaterials (OMCs) co-doped with homogeneous nitrogen and sulfur heteroatoms were prepared by nanocasting with the pyrrole oligomer catalyzed by sulfuric acid as a precursor and ordered mesoporous silica SBA-15 as a hard-template. By multi-technique approach utilization, it was demonstrated that the N and S co-doped OMCs possessed high ordered mesoporous structures, large surface areas and homogeneous distribution of heteroatoms. As a microwave absorber, the as-prepared materials exhibited a minimum reflection loss (RL) of -32.5 dB at the thickness of 2.5 mm and an absorption bandwidth of 3.2 GHz (RL < -10 dB) in X-band (8.2-12.4 GHz). The good microwave absorption performance was mainly originated from the high electrical conductivity induced by the high surface activity and special structures. And microwave energy can be effectively attenuated through multiple reflections and absorptions in complex conductive network. The design strategy in this work would contribute to the production of a lightweight absorber, presenting a strong absorbency and a wide bandwidth in microwave frequency.

  17. Design of a polarization-independent, wide-angle, broadband visible absorber

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.

  18. Cell biology of aluminum toxicity and tolerance in higher plants.

    PubMed

    Matsumoto, H

    2000-01-01

    Aluminum is the major element in the soil and exists as a stable complex with oxygen and silicate in neutral and weakly acidic soil. When the soil pH is lower than 4.5-5.0, Al is solubilized in the soil water and absorbed by plant roots. Absorbed Al inhibits root elongation severely, and the elongation of roots exposed to Al3+ as low as mumol level is inhibited within an hour(s). Thus much research has been conducted to understand the mechanism of Al toxicity and tolerance. Al is located specifically at the root apex. Al-sensitive plants absorb more Al than do Al-tolerant plants, and thus the exclusion mechanism of Al is the major idea for Al tolerance. The understanding of Al stress in plants is important for stable food production in future. Al is a complicated ion in its chemical form and biological function. In this chapter, mechanisms of Al toxicity and tolerance proposed during the past few decades as well as future topics are described from physiological and molecular points of view.

  19. Platinum(II) acetate complexes in hydrogenation of unsaturated compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenblyum, A.S.; Goranskaya, T.P.; Mund, S.L.

    1979-12-20

    In order to further elucidate the effect of the ligand environment in the complexes of group VIII metals on the activity of H/sub 2/, the catalytic properties of Pt(II) compounds with oxygen-containing acido ligands was studied. The platinum(II) acetate complexes with aniline and triphenylphosphine were synthesized. IR spectral studies indicated that platinum(II) acetate formed complexes with either of the other compounds singly or together. Dimethylformamide(DMF) solutions of platinum acetate and its complexes with aniline and/or triphenylphosphine all absorb H/sub 2/ in the temperature range of 20 to 90/sup 0/C and at a H/sub 2/ pressure of 1 atm. After themore » absorption of H/sub 2/, the DMF solutions of (aniline)(triphenylphosphine)platinum(II)diacetate complex were found to catalyze the hydrogenaton of O/sub 2/ and 1,3-pentadiene.« less

  20. Drive Scaling of hohlraums heated with 2ω light

    NASA Astrophysics Data System (ADS)

    Oades, Kevin; Foster, John; Slark, Gary; Stevenson, Mark; Kauffman, Robert; Suter, Larry; Hinkel, Denise; Miller, Mike; Schneider, Marilyn; Springer, Paul

    2002-11-01

    We report on experiments using a single beam from the AWE?s HELEN laser to study scaling of hohlraum drive with hohlraum scale size. The hohlruams were heated with 400 J in a 1 ns square pulse with and without a phaseplate. The drive was measured using a PCD and an FRD. Scattered light was measured using a full aperture backscatter system. Drive is consistent with hohlraum scaling and LASNEX modeling using the absorbed laser energy. Bremsstrahlung from fast electrons and M-shell x-ray production were also measured. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  1. Synthesis and characterization of natural red dye from Caesalpinia sappan linn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulyanto, Subur, E-mail: subur.mulyanto@poltekba.ac.id; Department of Mechanical Engineering, State Polytechnic of Balikpapan, Jl. Soekarno-Hatta Km.8 Balikpapan; Suyitno,, E-mail: suyitno@uns.ac.id

    The study reports the synthesis and characterization of natural red dye. The dyes were extracted from woods of Caesalpiniasappanlinn at varied temperatures of 70, 80, 90, and 100°C for three hours. The dry wood chips and water at a ratio of 6:1 were immersed in the reactor of 150 liters. The absorbance spectra of the natural red dyes were measured by ultra-violet-visible spectroscopy. Meanwhile, Fourier transform infrared spectroscopy was used to investigate the functional groups of the natural red dyes. In addition, the basic production cost was calculated and the fastness property towards cotton fabrics was investigated according to themore » Indonesia national standard of 105-C06:2010, 105-B01:2010, and 0288-2008. The results showed that the functional groups found the extracted red dyes indicated the complex bond of brazilein with peak absorbance at a wavelength of 538-540 nm. The extraction temperature also changed the functional group of brazilein. From the color, the absorbance peak, the functional groups, and the main production cost, the best parameter to synthesize the natural red dyes from Caesalpiniasappanlinn was at a temperature of 80°C for two hours. Moreover, the natural red dyes has the fastness to wash resistance, light resistance, and scrub resistance by 4-5, 4, and 3-4, respectively. However, further studies for synthesis the natural red dyes by using a continuous reactor are required to identify the naturally complex compounds in brazilein for improving the fastness properties and for reducing the cost.« less

  2. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active.

    PubMed

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-10

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4'-(N,N-diethylamino)styryl]-N-methyl pyridinium (2') cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044cm/GW at 710nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  4. Inferring the relative resilience of alternative states

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Rojo, Carmen; Alvarez-Cobelas, Miguel; Rodrigo, Maria A.; Sanchez-Carrillo, Salvador

    2013-01-01

    Ecological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or “temporal scales” in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.

  5. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    NASA Technical Reports Server (NTRS)

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to couple to the detector equally. A stepped impedance resonator was used that allows the incident power absorbed in the detecting membrane area to be uniformly distributed in the detector's transmission line at the RF readout frequency. This maximizes the sensitivity of the detector. The signal is read out via a frequency multiplexing technique that requires a minimum number of interface transmission lines for readout. This reduces the packaging complexity and coupling to the device's thermal environment.

  6. A pre-classification strategy based on UPLC-Triple-TOF/MS for metabolic screening and identification of Radix glehniae in rats.

    PubMed

    Wang, Shuang; Qi, Pengcheng; Zhou, Na; Zhao, Minmin; Ding, Weijing; Li, Song; Liu, Minyan; Wang, Qiao; Jin, Shumin

    2016-10-01

    Traditional Chinese Medicines (TCMs) have gained increasing popularity in modern society. However, the profiles of TCMs in vivo are still unclear owing to their complexity and low level in vivo. In this study, UPLC-Triple-TOF techniques were employed for data acquiring, and a novel pre-classification strategy was developed to rapidly and systematically screen and identify the absorbed constituents and metabolites of TCMs in vivo using Radix glehniae as the research object. In this strategy, pre-classification for absorbed constituents was first performed according to the similarity of their structures. Then representative constituents were elected from every class and analyzed separately to screen non-target absorbed constituents and metabolites in biosamples. This pre-classification strategy is basing on target (known) constituents to screen non-target (unknown) constituents from the massive data acquired by mass spectrometry. Finally, the screened candidate compounds were interpreted and identified based on a predicted metabolic pathway, well - studied fragmentation rules, a predicted metabolic pathway, polarity and retention time of the compounds, and some related literature. With this method, a total of 111 absorbed constituents and metabolites of Radix glehniae in rats' urine, plasma, and bile samples were screened and identified or tentatively characterized successfully. This strategy provides an idea for the screening and identification of the metabolites of other TCMs.

  7. [Research progress and direction of atmospheric brown carbon].

    PubMed

    Yan, Cai-Qing; Zheng, Mei; Zhang, Yuan-Hang

    2014-11-01

    Organic aerosol is one of the most important components of atmospheric aerosols. In recent years, organic aerosol has been found and proved to be light absorbing in UV-Visible region. Light absorbing organic carbon (also named as brown carbon) has been one of the forefronts in the field of atmospheric research. Its light absorption contributions to radiative forcing, regional air quality, and global climate change have drawn much attention. Regional air pollution is complex in China. Frequent visibility decline and severe regional haze episodes occurred since January 2013. Previous studies showed high amount of estimated columnar light-absorbing organic carbon in China, and according to current research findings, major sources of fine particulate matter in China (e. g. biomass burning and fossil fuel combustion) were also recognized as the main sources for brown carbon. Considering the high abundance of brown carbon in atmosphere, there is a great need to reconsider and reevaluate contributions of organic aerosol to light absorption, especially its role in haze formation and radiative forcing. However, up to now, basic researches on light absorbing organic carbon are still limited in China. This study aimed to elucidate the need for basic research on brown carbon, summarize previous studies and research progress from different aspects such as sources, composition, measurement, mass concentration distribution, optical property, radiative forcing of brown carbon, point out the existing problems and deficiencies, and put forward suggestions for future study.

  8. Speciation and Determination of Low Concentration of Iron in Beer Samples by Cloud Point Extraction

    ERIC Educational Resources Information Center

    Khalafi, Lida; Doolittle, Pamela; Wright, John

    2018-01-01

    A laboratory experiment is described in which students determine the concentration and speciation of iron in beer samples using cloud point extraction and absorbance spectroscopy. The basis of determination is the complexation between iron and 2-(5-bromo-2- pyridylazo)-5-diethylaminophenol (5-Br-PADAP) as a colorimetric reagent in an aqueous…

  9. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    ERIC Educational Resources Information Center

    Sjoberg, Daniel

    2008-01-01

    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  10. MythBusters, Musicians, and MP3 Players: A Middle School Sound Study

    ERIC Educational Resources Information Center

    Putney, Ann

    2011-01-01

    Create your own speakers for an MP3 player while exploring the science of sound. Review of science notebooks, students' intriguing cabinet designs, and listening to students talk with a musician about the physics of an instrument show that complex concepts are being absorbed and extended with each new iteration. Science that matters to students…

  11. Statistical Physics of Adaptation

    DTIC Science & Technology

    2016-08-23

    Statistical Physics of Adaptation Nikolay Perunov, Robert A. Marsland, and Jeremy L. England Department of Physics , Physics of Living Systems Group...Subject Areas: Biological Physics , Complex Systems, Statistical Physics I. INTRODUCTION It has long been understood that nonequilibrium driving can...equilibrium may appear to have been specially selected for physical properties connected to their ability to absorb work from the particular driving environment

  12. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  13. Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment

    ERIC Educational Resources Information Center

    Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

    2008-01-01

    An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

  14. Atomic-Scale Structure of the Tin DX Center and Other Related Defects in Aluminum Gallium Arsenide Semiconductors Using Moessbauer Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Greco, Luigi Alessandro

    The DX center in III-V alloys has limited the use of these materials for electronic devices since the defect acts as an electron trap. To be able to control or eliminate the DX center, its atomic scale structure should be understood. Mossbauer spectroscopy has proven to be a valuable technique in probing the atomic-scale structure of certain atomic species. The dopant studied here is ^{119}Sn. The thermal diffusion of Sn in Al_ {rm x}Ga_{rm 1-x }As using different temperatures, times, sample geometries and As_4 overpressures in evacuated and sealed fused silica ampoules was studied by x-ray diffraction (XRD), secondary ion mass spectroscopy and electrochemical capacitance versus voltage measurements. The AlGaAs surfaces decomposed into various Sn, Si, Ga and As oxides when an As_4 overpressure was introduced during annealing. However, annealing under ambient As_4 and furnace cooling eliminated surface decomposition although the Sn diffusion depth was less than that for a 0.5 atm As_4 overpressure. SiO_{rm x} and Si_{rm x }N_{rm y} RF-sputtered thin film capping layers deposited on AlGaAs were studied by XRD and Auger electron spectroscopy. For the annealed SiO_{rm x} films the AlGaAs surface was preserved, independent of the cooling technique used. Mossbauer spectroscopy was conducted on ^{rm 119m} Sn-implanted Al_ {rm x } Ga_{rm 1-x} As (x = 0.22 and 0.25) used for the source experiments and ^{119}Sn-doped Al _{rm x}Ga _{rm 1-x}As (x = 0.15, N _{rm Sn} ~2 times 10 ^{18} cm^{ -3}) for the absorber experiment. The source samples were capped with 120 nm of SiO_ {rm x} to preserve the surface during the systematic study of annealing temperature versus site occupation and electrical activation via Mossbauer spectroscopy at 76 K and 4 K in the dark and in the light (to observe persistent photoconductivity (PPC) due to the DX center). For all of the annealing conditions used the x = 0.22 sample showed little evidence of PPC possibly due to compensating defects and/or radiation-induced capture. After annealing the x = 0.25 sample at 1000^circC for 2 hours under a Ga + Al overpressure, evidence of PPC was found via Hall measurements but no effect was seen by Mossbauer suggesting radiation-induced capture and/or non-nearest-neighbor lattice relaxation. The Ga + Al overpressure also served to decrease the loss of Sn through the SiO _{rm x} film, possibly through the removal of Ga and Al vacancies. The x = 0.15 absorber showed a persistent 15-18% change in the electrical resistance (10% change in n) between the light and dark. However, the observation of this effect was not apparent, even assuming negative-U (2 electron) behavior, in the Mossbauer measurements. This was also consistent with EXAFS results. These studies do not support the broken-bond model of Chadi and Chang, which is considered to be a widely accepted atomic-scale model of the DX center. A defect complex consisting of a substitutional Sn_{rm Ga(Al) }^+ site, and a (V_{ rm III}^-Al_{ rm As}^{-2}) complex, which localizes 3 electrons and may not be a nearest-neighbor to the donor, was chosen for the DX center in the x = 0.15 sample which supports EXAFS, recent positron annihilation and these Mossbauer studies.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingebretsen, O.C.; Borgen, J.; Farstad, M.

    A reversed-phase liquid-chromatographic procedure is presented for quantitation or uric acid in human serum, with absorbance measured at 292 nm. The mobile phase was sodium acetate (35 mmol/L, pH 5.0)/acetonitrile (9/1 by vol). Complete precipitation of serum proteins was obtained by mixing serum (50-500 microL) with an equal volume of acetonitrile, and the precipitate was removed by centrifugation. Aliquots (20 microL) of the supernate were injected directly into the liquid chromatograph, which was adjusted so that the absorbance reading of the uric acid peak was as high as possible. Routinely, a full-scale deflection of 1.28 absorbance units was used. Themore » within-run precision (CV) was 0.6% for a serum uric acid concentration of 227 mumol/L and day-to-day precision over a 15-day period was 0.8% for uric acid of 345 mumol/L. No interferences from related compounds were observed. Researchers compared results by this method with those by kinetic and equilibrium adaptations of uricase methods. The method reported is simple, and can be used in a fully automatic liquid-chromatographic system.« less

  16. Mechanism of Coomassie Brilliant Blue G-250 binding to cetyltrimethylammonium bromide: an interference with the Bradford assay.

    PubMed

    Aminian, Mahdi; Nabatchian, Fariba; Vaisi-Raygani, Asad; Torabi, Mojgan

    2013-03-15

    The Bradford protein assay is a popular method because of its rapidity, sensitivity, and relative specificity. This method is subject to some interference by nonprotein compounds. In this study, we describe the interference of cetyltrimethylammonium bromide (CTAB) with the Bradford assay. This interference is based on the interaction of Coomassie Brilliant Blue G-250 (CBB) with this cationic detergent. This study suggests that both electrostatic and hydrophobic interactions are involved in the interaction of CTAB and CBB. The anionic and neutral forms of CBB bind to CTAB by electrostatic attraction, which accelerates hydrophobic interactions of these CBB forms and the hydrophobic tail of CTAB. Consequently, the hydrophobic regions of the dominant free cationic form of CBB dye compete for the tail of CTAB with two other forms of the dye and gradually displace the primary hydrophobic interactions and rearrange the primary CBB-CTAB complex. This interaction of CTAB and CBB dye produces a primary 650-nm-absorbing complex that then gradually rearranges to a complex that shows an absorbance shoulder at 800-950 nm. This study conclusively shows a strong response of CBB to CTAB that causes a time-dependent and nearly additive interference with the Bradford assay. This study also may promote an application of CBB for CTAB quantification. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Enhancement of photoresponse property of perovskite solar cell by aluminium chloride (AlCl3)

    NASA Astrophysics Data System (ADS)

    Ghosh, S. S.; Sil, A.

    2018-05-01

    The fabrication of a three layer solar cell device is a new area of research. The formation of perovskite phase is evident from x-ray diffraction and its particle size is observed by microstructural analysis. A thin layer of gold coating over the device increases the surface conductivity. Direct contact between a SnCl2 or AlCl3 based perovskite with the gold coating increases the durability of the film but decreases the hole transport properties due to absence of an organic hole transport material. The absorbance spectroscopy analysis gives characteristic peaks showing the evidence of ITO, TiO2 (rutile) and Sn2+ complexes present in the Sn-perovskite film or Al3+ complexes present within the Al-perovskite cell. The desired absorbance near 550 nm due to Al3+ complexes causes a much higher flow of current on illumination and thus is also evidenced by the presence of comparatively high intensity PL spectra in the Al-perovskite system which occurred due to free exciton formation near band edge excitation. The fill factor of the devices is estimated as ∼0.83 and ∼0.65 for Sn-perovskite and Al-perovskite devices respectively. The PCE values of Sn-perovskite and Al-perovskite devices are calculated 0.39% and 0.96% respectively, which establish Al-perovskite film as a useful component for future solar cell device manufacturing.

  18. Binding investigation on the interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin by resonance light-scattering (RLS) technique and fluorescence spectroscopy.

    PubMed

    Li, Yuesheng; Zhang, Yue; Sun, Shaofa; Zhang, Aiqing; Liu, Yi

    2013-11-05

    The interaction between Methylene Blue (MB)/TiO2 nanocomposites and bovine serum albumin (BSA) was investigated by resonance light scattering (RLS), fluorescence, three-dimension spectra and UV-vis absorbance spectroscopy. Several factors which may influence the RLS intensity were also investigated before characterizing MB/TiO2-BSA complex. It was proved that the mechanism of MB/TiO2 nanocomposites binding to BSA was mainly a result of the formation of MB/TiO2-BSA complex. The binding constant of MB/TiO2-BSA is 0.762 × 10(-5) L mol(-1) at 298K. By calculating the binding constant at different temperature, the thermodynamic parameters ΔH, ΔG, and ΔS can be observed and deduced that the hydrophobic interactions played an important role to stabilize the complex. The distance r (3.73 nm) between donor (BSA) and acceptor (MB/TiO2) was obtained according to fluorescence resonance energy transfer (FRET). The binding site for MB/TiO2 on BSA was mainly located in sub-domain IIA. The UV-vis absorbance, circular dichroism and three dimension fluorescence have also been used to investigate the effect of MB/TiO2 on the conformation of BSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dynamic properties of epidemic spreading on finite size complex networks

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben

    2005-11-01

    The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.

  20. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    NASA Astrophysics Data System (ADS)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-09-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly( N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs.

  1. Diurnal and Seasonal Responses of High Frequency Chlorophyll Fluorescence and PRI Measurements to Abiotic Stress in Almonds

    NASA Astrophysics Data System (ADS)

    Bambach-Ortiz, N. E.; Paw U, K. T.

    2016-12-01

    Plants have evolved to efficiently utilize light to synthesize energy-rich carbon compounds, and at the same time, dissipate absorbed but excessive photon that would otherwise transfer excitation energy to potentially toxic reactive oxygen species (ROS). Nevertheless, even the most rapidly growing plants with the highest rates of photosynthesis only utilize about half of the light their leaves absorb during the hours of peak irradiance in sun-exposed habitats. Usually, that daily peak of irradiance coincides with high temperature and a high vapor pressure deficit, which are conditions related to plant stomata closure. Consequently, specially in water stressed environments, plants need to have mechanisms to dissipate most of absorbed photons. Plants avoid photo-oxidative damage of the photosynthetic apparatus due to the formation of ROS under excess light using different mechanisms in order to either lower the amount of ROS formation or detoxify already formed ROS. Photoinhibition is defined as a reduction in photosynthetic activity due largely to a sustained reduction in the photochemical efficiency of Photosystem II (PSII), which can be assessed by monitoring Chlorophyll a fluorescence (ChlF). Alternatively, monitoring abiotic stress effects upon photosynthetic activity and photoinhibition may be possible using high frequency spectral reflectance sensors. We aim to find the potential relationships between high frequency PRI and ChlF as indicators of photoinhibition and permanent photodamage at a seasonal scale. Preliminary results show that PRI responses are sensitive to photoinhibition, but provide a poor representation of permanent photodamage observed at a seasonal scale.

  2. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  3. Electricity generation using electromagnetic radiation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-08-22

    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  4. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  5. BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda

    2018-04-01

    We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

  6. Measurement of the 240Pu/ 239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE PAGES

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; ...

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/ 239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. Wemore » found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/ 239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  7. Fast ionized X-ray absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2016-05-01

    We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.

  8. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    NASA Astrophysics Data System (ADS)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made in recent years, which is described in this review. We complement this by discussing how observations of emission from circumstellar molecules and dust can be used to estimate the characteristics of the mass loss along the AGB, and in different environments. We also briefly touch upon the issue of binarity.

  9. High-density arrays of x-ray microcalorimeters for Constellation-X

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Bandler, Simon R.; Brown, Ari D.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Iyomoto, Naoko; Kelley, Richard L.; Porter, F. Scott; Saab, Tarek; Sadleir, John; White, Jennifer

    2006-06-01

    We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition-edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu or Au/Bi absorbers. We have achieved a resolution of 4.0 eV FWHM at 6 keV in such devices, which meets the Constellation-X resolution requirement at 6 keV. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25-mm pixels the standard absorber design is adequate to avoid unacceptable line-broadening from position dependence caused by thermal diffusion. In order to improve reproducibility and to push closer to the 2-eV goal at 6 keV, however, we are refining the design of the TES and the interface to the absorber. Recent efforts to introduce a barrier layer between the Bi and the Mo/Au to avoid variable interface chemistry and thus improve the reproducibility of device characteristics have thus far yielded unsatisfactory results. However, we have developed a new set of absorber designs with contacts to the TES engineered to allow contact only in regions that do not serve as the active thermometer. We have further constrained the design so that a low-resistance absorber will not electrically short the TES. It is with such a design that we have achieved 4.0 eV resolution at 6 keV.

  10. The removal of disinfection by-product precursors from water with ceramic membranes.

    PubMed

    Harman, B I; Koseoglu, H; Yigit, N O; Sayilgan, E; Beyhan, M; Kitis, M

    2010-01-01

    The main objective of this work was to investigate the effectiveness of ceramic ultrafiltration (UF) membranes with different pore sizes in removing natural organic matter (NOM) from model solutions and drinking water sources. A lab-scale, cross-flow ceramic membrane test unit was used in all experiments. Two different single-channel tubular ceramic membrane modules were tested with average pore sizes of 4 and 10 nm. The impacts of membrane pore size and pressure on permeate flux and the removals of UV(280 nm) absorbance, specific UV absorbance (SUVA(280 nm)), and dissolved organic carbon (DOC) were determined. Prior to experiments with model solutions and raw waters, clean water flux tests were conducted. UV(280) absorbance reductions ranged between 63 and 83% for all pressures and membranes tested in the raw water. More than 90% of UV(280) absorbance reduction was consistently achieved with both membranes in the model NOM solutions. Such high UV absorbance reductions are advantageous due to the fact that UV absorbing sites of NOM are known to be one of the major precursors to disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. For both UF membranes, the ranges of DOC removals in the raw water and model NOM solutions were 55-73% and 79-91%, respectively. SUVA(280) value of the raw water decreased from 2 to about 1.5 L/mg-m by both membranes. For the model solutions, SUVA(280) values were consistently reduced to < or =1 L/mg-m levels after membrane treatment. As the SUVA(280) value of the NOM source increased, the extent of SUVA(280) reduction and DOC removal by the tested ceramic UF membranes also increased. The results overall indicated that ceramic UF membranes, especially the one with 4 nm average pore size, appear to be effective in removing organic matter and DBP precursors from drinking water sources with relatively high and sustainable permeate flux values.

  11. Fuel from water: the photochemical generation of hydrogen from water.

    PubMed

    Han, Zhiji; Eisenberg, Richard

    2014-08-19

    Hydrogen has been labeled the fuel of the future since it contains no carbon, has the highest specific enthalpy of combustion of any chemical fuel, yields only water upon complete oxidation, and is not limited by Carnot considerations in the amount of work obtained when used in a fuel cell. To be used on the scale needed for sustainable growth on a global scale, hydrogen must be produced by the light-driven splitting of water into its elements, as opposed to reforming of methane, as is currently done. The photochemical generation of H2, which is the reductive side of the water splitting reaction, is the focus of this Account, particularly with regard to work done in the senior author's laboratory over the last 5 years. Despite seminal work done more than 30 years ago and the extensive research conducted since then on all aspects of the process, no viable system has been developed for the efficient and robust photogeneration of H2 from water using only earth abundant elements. For the photogeneration of H2 from water, a system must contain a light absorber, a catalyst, and a source of electrons. In this Account, the discovery and study of new Co and Ni catalysts are described that suggest H2 forms via a heterocoupling mechanism from a metal-hydride and a ligand-bound proton. Several complexes with redox active dithiolene ligands are newly recognized to be effective in promoting the reaction. A major new development in the work described is the use of water-soluble CdSe quantum dots (QDs) as light absorbers for H2 generation in water. Both activity and robustness of the most successful systems are impressive with turnover numbers (TONs) approaching 10(6), activity maintained over 15 days, and a quantum yield for H2 of 36% with 520 nm light. The water solubilizing capping agent for the first system examined was dihydrolipoic acid (DHLA) anion, and the catalyst was determined to be a DHLA complex of Ni(II) formed in situ. Dissociation of DHLA from the QD surface proved problematic in assessing other catalysts and stimulated the synthesis of tridentate trithiolate (S3) capping agents that are inert to dissociation. In this way, CdSe QD's having these S3 capping agents were used in systems for the photogeneration of H2 that allowed meaningful comparison of the relative activity of different catalysts for the light-driven production of H2 from water. This new chemistry also points the way to the development of new photocathodes based on S3-capped QDs for removal of the chemical sacrificial electron donor and its replacement electrochemically in photoelectrosynthetic cells.

  12. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Treesearch

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  13. Microscale nutrient patches produced by zooplankton

    PubMed Central

    Lehman, John T.; Scavia, Donald

    1982-01-01

    Both track autoradiography and grain-density autoradiography show that individual zooplankton create miniature patches of dissolved nutrients and that algae exploit those regions to absorb phosphate. The patches are short lived and can be dispersed artificially by small-scale turbulence. Our data support a simple model of encounters between algae and nutrient plumes produced by swimming zooplankton. PMID:16593218

  14. What tissue bankers should know about the use of allograft meniscus in orthopaedics.

    PubMed

    McDermott, Ian D

    2010-02-01

    The menisci of the knee are two crescent shaped cartilage shock absorbers sitting between the femur and the tibia, which act as load sharers and shock absorbers. Loss of a meniscus leads to a significant increase in the risk of developing arthritis in the knee. Replacement of a missing meniscus with allograft tissue can reduce symptoms and may potentially reduce the risk of future arthritis. Meniscal allograft transplantation is a complex surgical procedure with many outstanding issues, including 'what techniques should be used for processing and storing grafts?', 'how should the allografts be sized?' and 'what surgical implantation techniques might be most appropriate?' Further clinical research is needed and close collaboration between the users (surgeons) and the suppliers (tissue banks) is essential. This review explores the above subject in detail.

  15. Identifying local characteristic lengths governing sound wave properties in solid foams

    NASA Astrophysics Data System (ADS)

    Tan Hoang, Minh; Perrot, Camille

    2013-02-01

    Identifying microscopic geometric properties and fluid flow through opened-cell and partially closed-cell solid structures is a challenge for material science, in particular, for the design of porous media used as sound absorbers in building and transportation industries. We revisit recent literature data to identify the local characteristic lengths dominating the transport properties and sound absorbing behavior of polyurethane foam samples by performing numerical homogenization simulations. To determine the characteristic sizes of the model, we need porosity and permeability measurements in conjunction with ligament lengths estimates from available scanning electron microscope images. We demonstrate that this description of the porous material, consistent with the critical path picture following from the percolation arguments, is widely applicable. This is an important step towards tuning sound proofing properties of complex materials.

  16. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  17. Phycourobilin in Trichromatic Phycocyanin from Oceanic Cyanobacteria Is Formed Post-translationally by a Phycoerythrobilin Lyase-Isomerase*S⃞

    PubMed Central

    Blot, Nicolas; Wu, Xian-Jun; Thomas, Jean-Claude; Zhang, Juan; Garczarek, Laurence; Böhm, Stephan; Tu, Jun-Ming; Zhou, Ming; Plöscher, Matthias; Eichacker, Lutz; Partensky, Frédéric; Scheer, Hugo; Zhao, Kai-Hong

    2009-01-01

    Most cyanobacteria harvest light with large antenna complexes called phycobilisomes. The diversity of their constituting phycobiliproteins contributes to optimize the photosynthetic capacity of these microorganisms. Phycobiliprotein biosynthesis, which involves several post-translational modifications including covalent attachment of the linear tetrapyrrole chromophores (phycobilins) to apoproteins, begins to be well understood. However, the biosynthetic pathway to the blue-green-absorbing phycourobilin (λmax ∼ 495 nm) remained unknown, although it is the major phycobilin of cyanobacteria living in oceanic areas where blue light penetrates deeply into the water column. We describe a unique trichromatic phycocyanin, R-PC V, extracted from phycobilisomes of Synechococcus sp. strain WH8102. It is evolutionarily remarkable as the only chromoprotein known so far that absorbs the whole wavelength range between 450 and 650 nm. R-PC V carries a phycourobilin chromophore on its α-subunit, and this can be considered an extreme case of adaptation to blue-green light. We also discovered the enzyme, RpcG, responsible for its biosynthesis. This monomeric enzyme catalyzes binding of the green-absorbing phycoerythrobilin at cysteine 84 with concomitant isomerization to phycourobilin. This reaction is analogous to formation of the orange-absorbing phycoviolobilin from the red-absorbing phycocyanobilin that is catalyzed by the lyase-isomerase PecE/F in some freshwater cyanobacteria. The fusion protein, RpcG, and the heterodimeric PecE/F are mutually interchangeable in a heterologous expression system in Escherichia coli. The novel R-PC V likely optimizes rod-core energy transfer in phycobilisomes and thereby adaptation of a major phytoplankton group to the blue-green light prevailing in oceanic waters. PMID:19182270

  18. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  19. Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon.

    PubMed

    Stavenga, Doekele G; Leertouwer, Hein L; Meglič, Andrej; Drašlar, Kazimir; Wehling, Martin F; Pirih, Primož; Belušič, Gregor

    2018-01-01

    The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales.

  20. Imbibition dynamics on surfaces of legs of a small animal and on artificial surfaces mimicking them

    NASA Astrophysics Data System (ADS)

    Tani, Marie; Ishii, Daisuke; Ito, Shuto; Hariyama, Takahiko; Shimomura, Masatsugu; Okumura, Ko

    2014-03-01

    Recently, imbibition of textured surfaces covered with homogeneous micro-pillar arrays has been actively studied partly because of the potential for transport of a small amount of liquids. In most cases, the dynamics is described by the Washburn law, in which the imbibition distance scales with the square root of elapsed time, while a different scaling law has been recently found. In this study, we studied imbibition on legs of a small animal that absorbs water via its legs to find yet another scaling law. Furthermore, imbibition of artificial surfaces mimicking the leg surface was found to be described well by a composite theory.

Top