Sample records for complex scientific information

  1. Semantic Information Processing of Physical Simulation Based on Scientific Concept Vocabulary Model

    NASA Astrophysics Data System (ADS)

    Kino, Chiaki; Suzuki, Yoshio; Takemiya, Hiroshi

    Scientific Concept Vocabulary (SCV) has been developed to actualize Cognitive methodology based Data Analysis System: CDAS which supports researchers to analyze large scale data efficiently and comprehensively. SCV is an information model for processing semantic information for physics and engineering. In the model of SCV, all semantic information is related to substantial data and algorisms. Consequently, SCV enables a data analysis system to recognize the meaning of execution results output from a numerical simulation. This method has allowed a data analysis system to extract important information from a scientific view point. Previous research has shown that SCV is able to describe simple scientific indices and scientific perceptions. However, it is difficult to describe complex scientific perceptions by currently-proposed SCV. In this paper, a new data structure for SCV has been proposed in order to describe scientific perceptions in more detail. Additionally, the prototype of the new model has been constructed and applied to actual data of numerical simulation. The result means that the new SCV is able to describe more complex scientific perceptions.

  2. Exploring Scientific Information for Policy Making under Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Forni, L.; Galaitsi, S.; Mehta, V. K.; Escobar, M.; Purkey, D. R.; Depsky, N. J.; Lima, N. A.

    2016-12-01

    Each actor evaluating potential management strategies brings her/his own distinct set of objectives to a complex decision space of system uncertainties. The diversity of these objectives require detailed and rigorous analyses that responds to multifaceted challenges. However, the utility of this information depends on the accessibility of scientific information to decision makers. This paper demonstrates data visualization tools for presenting scientific results to decision makers in two case studies, La Paz/ El Alto, Bolivia, and Yuba County,California. Visualization output from the case studies combines spatiotemporal, multivariate and multirun/multiscenario information to produce information corresponding to the objectives defined by key actors and stakeholders. These tools can manage complex data and distill scientific information into accessible formats. Using the visualizations, scientists and decision makers can navigate the decision space and potential objective trade-offs to facilitate discussion and consensus building. These efforts can support identifying stable negotiatedagreements between different stakeholders.

  3. Teaching Scientific Metaphors through Informational Text Read-Alouds

    ERIC Educational Resources Information Center

    Barnes, Erica M.; Oliveira, Alandeom W.

    2018-01-01

    Elementary students are expected to use various features of informational texts to build knowledge in the content areas. In science informational texts, scientific metaphors are commonly used to make sense of complex and invisible processes. Although elementary students may be familiar with literary metaphors as used in narratives, they may be…

  4. Mechanisation and Automation of Information Library Procedures in the USSR.

    ERIC Educational Resources Information Center

    Batenko, A. I.

    Scientific and technical libraries represent a fundamental link in a complex information storage and retrieval system. The handling of a large volume of scientific and technical data and provision of information library services requires the utilization of computing facilities and automation equipment, and was started in the Soviet Union on a…

  5. Biological network extraction from scientific literature: state of the art and challenges.

    PubMed

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. The Media as an Invaluable Tool for Informal Earth System Science Education

    NASA Astrophysics Data System (ADS)

    James, E.; Gautier, C.

    2001-12-01

    One of the most widely utilized avenues for educating the general public about the Earth's environment is the media, be it print, radio or broadcast. Accurate and effective communication of issues in Earth System Science (ESS), however, is significantly hindered by the public's relative scientific illiteracy. Discussion of ESS concepts requires the laying down of a foundation of complex scientific information, which must first be conveyed to an incognizant audience before any strata of sophisticated social context can be appropriately considered. Despite such a substantial obstacle to be negotiated, the environmental journalist is afforded the unique opportunity of providing a broad-reaching informal scientific education to a largely scientifically uninformed population base. This paper will review the tools used by various environmental journalists to address ESS issues and consider how successful each of these approaches has been at conveying complex scientific messages to a general audience lacking sufficient scientific sophistication. Different kinds of media materials used to this effect will be analyzed for their ideas and concepts conveyed, as well as their effectiveness in reaching the public at large.

  7. Learning the wrong lessons? Science and fisheries management in the Chesapeake Bay blue crab fishery.

    PubMed

    Beem, Betsi

    2012-05-01

    This paper argues that information produced and then taken up for policy decision making is a function of a complex interplay within the scientific community and between scientists and the broader policy network who are all grappling with issues in a complex environment with a high degree of scientific uncertainty. The dynamics of forming and re-forming the scientific community are shaped by political processes, as are the directions and questions scientists attend to in their roles as policy advisors. Three factors: 1) social construction of scientific communities, 2) the indeterminacy of science, and 3) demands by policy makers to have concrete information for decision making; are intertwined in the production and dissemination of information that may serve as the basis for policy learning. Through this process, however, what gets learned may not be what is needed to mitigate the problem, be complete in terms of addressing multiple causations, or be correct.

  8. 76 FR 53872 - Fisheries of the Northeastern United States; Northeast Skate Complex Fishery; Secretarial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... scientific information indicating significant increases in skate biomass. DATES: Public comments must be... Framework 1, new scientific information on skate catch and biomass became available, which allowed the SSC.../biomass ratio by the most recent 3-yr average skate biomass. Therefore, significant increases in the...

  9. Topological Landscapes: A Terrain Metaphor for ScientificData

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2007-08-01

    Scientific visualization and illustration tools are designed to help people understand the structure and complexity of scientific data with images that are as informative and intuitive as possible. In this context, the use of metaphors plays an important role, since they make complex information easily accessible by using commonly known concepts. In this paper we propose a new metaphor, called 'Topological Landscapes', which facilitates understanding the topological structure of scalar functions. The basic idea is to construct a terrain with the same topology as a given dataset and to display the terrain as an easily understood representation of the actualmore » input data. In this projection from an n-dimensional scalar function to a two-dimensional (2D) model we preserve function values of critical points, the persistence (function span) of topological features, and one possible additional metric property (in our examples volume). By displaying this topologically equivalent landscape together with the original data we harness the natural human proficiency in understanding terrain topography and make complex topological information easily accessible.« less

  10. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    USGS Publications Warehouse

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  11. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    NASA Astrophysics Data System (ADS)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  12. Authentic scientific data collection in support of an integrative model-based class: A framework for student engagement in the classroom

    NASA Astrophysics Data System (ADS)

    Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.

    2017-12-01

    A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.

  13. Scientific Digital Libraries, Interoperability, and Ontologies

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.

    2009-01-01

    Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.

  14. Environmental/Biomedical Terminology Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually groupedmore » as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).« less

  15. Ethical, legal, and social issues in the translation of genomics into health care.

    PubMed

    Badzek, Laurie; Henaghan, Mark; Turner, Martha; Monsen, Rita

    2013-03-01

    The rapid continuous feed of new information from scientific discoveries related to the human genome makes translation and incorporation of information into the clinical setting difficult and creates ethical, legal, and social challenges for providers. This article overviews some of the legal and ethical foundations that guide our response to current complex issues in health care associated with the impact of scientific discoveries related to the human genome. Overlapping ethical, legal, and social implications impact nurses and other healthcare professionals as they seek to identify and translate into practice important information related to new genomic scientific knowledge. Ethical and legal foundations such as professional codes, human dignity, and human rights provide the framework for understanding highly complex genomic issues. Ethical, legal, and social concerns of the health provider in the translation of genomic knowledge into practice including minimizing harms, maximizing benefits, transparency, confidentiality, and informed consent are described. Additionally, nursing professional competencies related to ethical, legal, and social issues in the translation of genomics into health care are discussed. Ethical, legal, and social considerations in new genomic discovery necessitate that healthcare professionals have knowledge and competence to respond to complex genomic issues and provide appropriate information and care to patients, families, and communities. Understanding the ethical, legal, and social issues in the translation of genomic information into practice is essential to provide patients, families, and communities with competent, safe, effective health care. © 2013 Sigma Theta Tau International.

  16. The effects of different types of text and individual differences on view complexity about genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Dinsmore, Daniel L.; Zoellner, Brian P.; Parkinson, Meghan M.; Rossi, Anthony M.; Monk, Mary J.; Vinnachi, Jenelle

    2017-05-01

    View change about socio-scientific issues has been well studied in the literature, but the change in the complexity of those views has not. In the current study, the change in the complexity of views about a specific scientific topic (i.e. genetically modified organisms; GMOs) and use of evidence in explaining those views was examined in relation to individual factors and type of text (informational, persuasive, or narrative). Undergraduate students completed measures of their prior views about GMOs their epistemic beliefs about the nature of science, and activities related to food consumption. Participants then read either an informational, persuasive, or narrative passage about GMOs and again answered a question related to their views about GMOs. Participants who read the persuasive passage decreased in the complexity of their views, while those who read the narrative and expository passage increased in the complexity of their views. Additionally, while cultural activities related to the complexity of individuals' views during the pretest, these significant differences were not evident at posttest after the text intervention. These findings can be used to help scientists and teachers better understand how to communicate information critical to understanding complex science and environmental issues to the public and their students.

  17. Climate Change, Capitalism, and Citizen Science: Developing a dialectical framework for examining volunteer participation in climate change research

    NASA Astrophysics Data System (ADS)

    Wixom, Joshua A.

    This dissertation discusses the complex social relations that link citizen science, scientific literacy, and the dissemination of information to the public. Scientific information is not produced in value-neutral settings by people removed from their social context. Instead, science is a social pursuit and the scientist's social context is embedded in the knowledge produced. Additionally, the dissemination of this information via numerous media outlets is filtered through institutional lenses and subject to journalistic norms. As a result, the general public must be able to recognize the inherent biases in this information. Yet, the rates of scientific literacy in the U.S. are quite low, which suggests that people may not be capable of fully understanding the biases present. Furthermore, people tend to seek out sources that reinforce their values and personal perspectives, thus reinforcing their own biases. Improving scientific literacy allows people to see past these biases and translate media narratives in order to comprehend the facts and evidence presented to them. Citizen science is both an epistemological tool used by scientists to collect and interpret scientific data and a means to improve the scientific literacy of participants. Citizen science programs have the ability to generate real knowledge and improve the critical thinking skills necessary for the general public to interpret scientific information.

  18. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers, and Automation Technology, Number 27

    DTIC Science & Technology

    1977-05-10

    apply this method of forecast- ing in the solution of all major scientific-technical problems of the na- tional economy. Citing the slow...the future, however, computers will "mature" and learn to recognize patterns in what amounts to a much more complex language—the language of visual...images. Photoelectronic tracking devices or "eyes" will allow the computer to take in information in a much more complex form and to perform opera

  19. Beyond the media: A new strategy for distributing scientific and technical information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preecs, B.L.

    Communications media -- newspapers, television, magazines, etc. -- may be the most powerful single influence on modern life. Certainly they are the most important source of information citizens use to form opinions about such complex scientific questions as global warming or nuclear waste cleanup. But commercial news media have built-in limitations on their effectiveness as information sources. Reliance on advertising for revenue means the media are limited in the volume of material they can cover. In addition, the need to attract the largest possible, or the most select, audience for advertisers limits the complexity of information that the media canmore » present. Finally, existing media organizations offer few, if any, ways for users to retrieve past information. These limitations deprive citizens of needed information, increase pressure on political leaders, and create the gridlock over scientific and public policy questions caused by the Not in My Backyard'' snydrome. Fortunately, modern communications technology is changing in ways that allow public policy makers to address these shortenings. Companies now barred from the information business are seeking to enter, existing media companies are looking for new sources of revenue, and new information products are seeking markets. Several changes to existing media and communications policy will be suggested and general principles for building a better overall communications system will be discussed. 18 refs.« less

  20. Learning To Live with Complexity.

    ERIC Educational Resources Information Center

    Dosa, Marta

    Neither the design of information systems and networks nor the delivery of library services can claim true user centricity without an understanding of the multifaceted psychological environment of users and potential users. The complexity of the political process, social problems, challenges to scientific inquiry, entrepreneurship, and…

  1. Science information systems: Visualization

    NASA Technical Reports Server (NTRS)

    Wall, Ray J.

    1991-01-01

    Future programs in earth science, planetary science, and astrophysics will involve complex instruments that produce data at unprecedented rates and volumes. Current methods for data display, exploration, and discovery are inadequate. Visualization technology offers a means for the user to comprehend, explore, and examine complex data sets. The goal of this program is to increase the effectiveness and efficiency of scientists in extracting scientific information from large volumes of instrument data.

  2. Oceans of Data: In what ways can learning research inform the development of electronic interfaces and tools for use by students accessing large scientific databases?

    NASA Astrophysics Data System (ADS)

    Krumhansl, R. A.; Foster, J.; Peach, C. L.; Busey, A.; Baker, I.

    2012-12-01

    The practice of science and engineering is being revolutionized by the development of cyberinfrastructure for accessing near real-time and archived observatory data. Large cyberinfrastructure projects have the potential to transform the way science is taught in high school classrooms, making enormous quantities of scientific data available, giving students opportunities to analyze and draw conclusions from many kinds of complex data, and providing students with experiences using state-of-the-art resources and techniques for scientific investigations. However, online interfaces to scientific data are built by scientists for scientists, and their design can significantly impede broad use by novices. Knowledge relevant to the design of student interfaces to complex scientific databases is broadly dispersed among disciplines ranging from cognitive science to computer science and cartography and is not easily accessible to designers of educational interfaces. To inform efforts at bridging scientific cyberinfrastructure to the high school classroom, Education Development Center, Inc. and the Scripps Institution of Oceanography conducted an NSF-funded 2-year interdisciplinary review of literature and expert opinion pertinent to making interfaces to large scientific databases accessible to and usable by precollege learners and their teachers. Project findings are grounded in the fundamentals of Cognitive Load Theory, Visual Perception, Schemata formation and Universal Design for Learning. The Knowledge Status Report (KSR) presents cross-cutting and visualization-specific guidelines that highlight how interface design features can address/ ameliorate challenges novice high school students face as they navigate complex databases to find data, and construct and look for patterns in maps, graphs, animations and other data visualizations. The guidelines present ways to make scientific databases more broadly accessible by: 1) adjusting the cognitive load imposed by the user interface and visualizations so that it doesn't exceed the amount of information the learner can actively process; 2) drawing attention to important features and patterns; and 3) enabling customization of visualizations and tools to meet the needs of diverse learners.

  3. Enabling long-term oceanographic research: Changing data practices, information management strategies and informatics

    NASA Astrophysics Data System (ADS)

    Baker, Karen S.; Chandler, Cynthia L.

    2008-09-01

    Interdisciplinary global ocean science requires new ways of thinking about data and data management. With new data policies and growing technological capabilities, datasets of increasing variety and complexity are being made available digitally and data management is coming to be recognized as an integral part of scientific research. To meet the changing expectations of scientists collecting data and of data reuse by others, collaborative strategies involving diverse teams of information professionals are developing. These changes are stimulating the growth of information infrastructures that support multi-scale sampling, data repositories, and data integration. Two examples of oceanographic projects incorporating data management in partnership with science programs are discussed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned from a decade of data management within these communities provide an experience base from which to develop information management strategies—short-term and long-term. Ocean Informatics provides one example of a conceptual framework for managing the complexities inherent to sharing oceanographic data. Elements are introduced that address the economies-of-scale and the complexities-of-scale pertinent to a broader vision of information management and scientific research.

  4. Risk Assessment and Management for Medically Complex Potential Living Kidney Donors: A Few Deontological Criteria and Ethical Values

    PubMed Central

    Petrini, Carlo

    2011-01-01

    A sound evaluation of every bioethical problem should be predicated on a careful analysis of at least two basic elements: (i) reliable scientific information and (ii) the ethical principles and values at stake. A thorough evaluation of both elements also calls for a careful examination of statements by authoritative institutions. Unfortunately, in the case of medically complex living donors neither element gives clear-cut answers to the ethical problems raised. Likewise, institutionary documents frequently offer only general criteria, which are not very helpful when making practical choices. This paper first introduces a brief overview of scientific information, ethical values, and institutionary documents; the notions of “acceptable risk” and “minimal risk” are then briefly examined, with reference to the problem of medically complex living donors. The so-called precautionary principle and the value of solidarity are then discussed as offering a possible approach to the ethical problem of medically complex living donors. PMID:22174982

  5. Distinguishing Provenance Equivalence of Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Yesha, Ye; Halem, M.

    2010-01-01

    Reproducibility of scientific research relies on accurate and precise citation of data and the provenance of that data. Earth science data are often the result of applying complex data transformation and analysis workflows to vast quantities of data. Provenance information of data processing is used for a variety of purposes, including understanding the process and auditing as well as reproducibility. Certain provenance information is essential for producing scientifically equivalent data. Capturing and representing that provenance information and assigning identifiers suitable for precisely distinguishing data granules and datasets is needed for accurate comparisons. This paper discusses scientific equivalence and essential provenance for scientific reproducibility. We use the example of an operational earth science data processing system to illustrate the application of the technique of cascading digital signatures or hash chains to precisely identify sets of granules and as provenance equivalence identifiers to distinguish data made in an an equivalent manner.

  6. Meta-Sticks: Having Children Consider the Source of Knowledge Promotes Scientific Thinking

    ERIC Educational Resources Information Center

    Kuhn, Mason

    2016-01-01

    Many elementary science teachers understand that the best way to enhance reasoning and thinking skills in their students is to have them engage in scientific negotiation. They know that teaching is not the simple transmission of information but a complex act that requires teachers to apply knowledge from multiple sources, including student…

  7. Student-Centered and Dynamic Interfaces that Enrich Technical Learning for Online Science Learners: A Review of the Literature

    ERIC Educational Resources Information Center

    Killian, Susan A.; Beck, Dennis E.; O'Bryan, Corliss A.; Jarvis, Nathan; Clausen, Edgar C.; Crandall, Philip G.

    2014-01-01

    Communicating complex scientific and technical information presents a challenge for food science educators. The most efficient learning occurs when all senses are engaged, one reason that many educators believe that scientific principles are best taught with hands-on laboratory experiences. Today there are many challenges to the continuation of…

  8. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    ERIC Educational Resources Information Center

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific…

  9. The owl: spotted, listed, barred, or gone?

    Treesearch

    Sally Duncan

    1998-01-01

    The information we bring to the table is usually complex. The April issue of Science Findings illustrates this complexity. Scientific inquiry about an individual species and its habitat requires modeling, assumptions, and time. Uncertainty remains after studies are done. Once policy is made, implementation continues to build new understanding, which may present...

  10. Thomson Scientific's expanding Web of Knowledge: beyond citation databases and current awareness services.

    PubMed

    London, Sue; Brahmi, Frances A

    2005-01-01

    As end-user demand for easy access to electronic full text continues to climb, an increasing number of information providers are combining that access with their other products and services, making navigating their Web sites by librarians seeking information on a given product or service more daunting than ever. One such provider of a complex array of products and services is Thomson Scientific. This paper looks at some of the many products and tools available from two of Thomson Scientific's businesses, Thomson ISI and Thomson ResearchSoft. Among the items of most interest to health sciences and veterinary librarians and their users are the variety of databases available via the ISI Web of Knowledge platform and the information management products available from ResearchSoft.

  11. 50 CFR 600.315 - National Standard 2-Scientific Information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sources to improve understanding and management of the resource, marine ecosystem, and the fishery... any stock or stock complex is approaching the minimum stock size threshold. (ii) Any management..., social, and ecological information pertinent to the success of management or the achievement of...

  12. 50 CFR 600.315 - National Standard 2-Scientific Information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sources to improve understanding and management of the resource, marine ecosystem, and the fishery... any stock or stock complex is approaching the minimum stock size threshold. (ii) Any management..., social, and ecological information pertinent to the success of management or the achievement of...

  13. High rate information systems - Architectural trends in support of the interdisciplinary investigator

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Preheim, Larry E.

    1990-01-01

    Data systems requirements in the Earth Observing System (EOS) Space Station Freedom (SSF) eras indicate increasing data volume, increased discipline interplay, higher complexity and broader data integration and interpretation. A response to the needs of the interdisciplinary investigator is proposed, considering the increasing complexity and rising costs of scientific investigation. The EOS Data Information System, conceived to be a widely distributed system with reliable communication links between central processing and the science user community, is described. Details are provided on information architecture, system models, intelligent data management of large complex databases, and standards for archiving ancillary data, using a research library, a laboratory and collaboration services.

  14. Data Processing Center of Radioastron Project: 3 years of operation.

    NASA Astrophysics Data System (ADS)

    Shatskaya, Marina

    ASC DATA PROCESSING CENTER (DPC) of Radioastron Project is a fail-safe complex centralized system of interconnected software/ hardware components along with organizational procedures. Tasks facing of the scientific data processing center are organization of service information exchange, collection of scientific data, storage of all of scientific data, data science oriented processing. DPC takes part in the informational exchange with two tracking stations in Pushchino (Russia) and Green Bank (USA), about 30 ground telescopes, ballistic center, tracking headquarters and session scheduling center. Enormous flows of information go to Astro Space Center. For the inquiring of enormous data volumes we develop specialized network infrastructure, Internet channels and storage. The computer complex has been designed at the Astro Space Center (ASC) of Lebedev Physical Institute and includes: - 800 TB on-line storage, - 2000 TB hard drive archive, - backup system on magnetic tapes (2000 TB); - 24 TB redundant storage at Pushchino Radio Astronomy Observatory; - Web and FTP servers, - DPC management and data transmission networks. The structure and functions of ASC Data Processing Center are fully adequate to the data processing requirements of the Radioastron Mission and has been successfully confirmed during Fringe Search, Early Science Program and first year of Key Science Program.

  15. Distributed Data Integration Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchlow, T; Ludaescher, B; Vouk, M

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, usemore » them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired actions. In order to provide access to the largest number of resources possible, our lowest level utilizes automatic wrapper generation techniques to create information and data wrappers capable of interacting with the complex interfaces typical in scientific analysis. The remainder of this document outlines our work in these three areas, the impact our work has made, and our plans for the future.« less

  16. Field Day: A Case Study examining scientists’ oral performance skills

    USDA-ARS?s Scientific Manuscript database

    Communication is a complex cyclic process wherein senders and receivers encode and decode information in an effort to reach a state of mutuality or mutual understanding. When the communication of scientific or technical information occurs in a public space, effective speakers follow a formula for co...

  17. Comprehensible Presentation of Topological Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Beketayev, Kenes; Bremer, Peer-Timo

    2012-03-05

    Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations,more » the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.« less

  18. Computational science: shifting the focus from tools to models

    PubMed Central

    Hinsen, Konrad

    2014-01-01

    Computational techniques have revolutionized many aspects of scientific research over the last few decades. Experimentalists use computation for data analysis, processing ever bigger data sets. Theoreticians compute predictions from ever more complex models. However, traditional articles do not permit the publication of big data sets or complex models. As a consequence, these crucial pieces of information no longer enter the scientific record. Moreover, they have become prisoners of scientific software: many models exist only as software implementations, and the data are often stored in proprietary formats defined by the software. In this article, I argue that this emphasis on software tools over models and data is detrimental to science in the long term, and I propose a means by which this can be reversed. PMID:25309728

  19. Politics and the Erosion of Federal Scientific Capacity: Restoring Scientific Integrity to Public Health Science

    PubMed Central

    Rest, Kathleen M.; Halpern, Michael H.

    2007-01-01

    Our nation’s health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today’s most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking. PMID:17901422

  20. Politics and the erosion of federal scientific capacity: restoring scientific integrity to public health science.

    PubMed

    Rest, Kathleen M; Halpern, Michael H

    2007-11-01

    Our nation's health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today's most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking.

  1. Cancer Research in the Media

    Cancer.gov

    Cancer Research in the Media (CRiM) is a two-day seminar designed for international journalists to increase their understanding of complex scientific findings, improving their ability to communicate accurate cancer-related information to the public.

  2. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  3. Securing Information with Complex Optical Encryption Networks

    DTIC Science & Technology

    2015-08-11

    Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military

  4. Student-Teachers' Use of "Google Earth" in Problem-Based Geology Learning

    ERIC Educational Resources Information Center

    Ratinen, Ilkka; Keinonen, Tuula

    2011-01-01

    Geographical Information Systems (GIS) are adequate for analyzing complex scientific and spatial phenomena in geography education. "Google Earth" is a geographic information tool for GIS-based learning. It allows students to engage in the lesson, explore the Earth, explain what they identify and evaluate the implications of what they are…

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojick, D E; Warnick, W L; Carroll, B C

    With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on investment. The process by which science knowledge is spread is called diffusion. It is therefore important to better understand and measure the benefits of this diffusion of knowledge. In particular, it is important to understand whether advances in Internet searching can speed up the diffusion of scientific knowledge and accelerate scientific progress despite the fact that the vast majority of scientific information resources continue to be held in deep web databases that manymore » search engines cannot fully access. To address the complexity of the search issue, the term global discovery is used for the act of searching across heterogeneous environments and distant communities. This article discusses these issues and describes research being conducted by the Office of Scientific and Technical Information (OSTI).« less

  6. Explore the virtual side of earth science

    USGS Publications Warehouse

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  7. Tackling Tough Topics: Using Socio-Scientific Issues to Help Museum Visitors Participate in Democratic Dialogue and Increase Their Understandings of Current Science and Technology

    ERIC Educational Resources Information Center

    Kollmann, Elizabeth Kunz; Reich, Christine; Bell, Larry; Goss, Juli

    2013-01-01

    In a world of increasing scientific and technological complexity, where science and technology play an expanding role in our lives, there is need for a democratic citizenry that is skilled at discussing and making choices that are informed by science and shaped by individual and collective values. Although an oft argued rationale for teaching…

  8. From the Teachers' Eyes: An Ethnographic-Case Study on Developing Models of Informal Formative Assessments (IFA) and Understanding the Challenges to Effective Implementation in Science Classrooms

    ERIC Educational Resources Information Center

    Sezen, Asli

    2011-01-01

    The emphasis on socio-cultural theories of learning has required the understanding of multi-dimensional, dynamic and social nature of acquiring the scientific knowledge and practices. Recent policy documents suggest a focus on formative and dynamic assessment practices that will help understand and improve the complex nature of scientific learning…

  9. Assessing what to address in science communication.

    PubMed

    Bruine de Bruin, Wändi; Bostrom, Ann

    2013-08-20

    As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions.

  10. Serious games experiment toward agent-based simulation

    USGS Publications Warehouse

    Wein, Anne; Labiosa, William

    2013-01-01

    We evaluate the potential for serious games to be used as a scientifically based decision-support product that supports the United States Geological Survey’s (USGS) mission--to provide integrated, unbiased scientific information that can make a substantial contribution to societal well-being for a wide variety of complex environmental challenges. Serious or pedagogical games are an engaging way to educate decisionmakers and stakeholders about environmental challenges that are usefully informed by natural and social scientific information and knowledge and can be designed to promote interactive learning and exploration in the face of large uncertainties, divergent values, and complex situations. We developed two serious games that use challenging environmental-planning issues to demonstrate and investigate the potential contributions of serious games to inform regional-planning decisions. Delta Skelta is a game emulating long-term integrated environmental planning in the Sacramento-San Joaquin Delta, California, that incorporates natural hazards (flooding and earthquakes) and consequences for California water supplies amidst conflicting water interests. Age of Ecology is a game that simulates interactions between economic and ecologic processes, as well as natural hazards while implementing agent-based modeling. The content of these games spans the USGS science mission areas related to water, ecosystems, natural hazards, land use, and climate change. We describe the games, reflect on design and informational aspects, and comment on their potential usefulness. During the process of developing these games, we identified various design trade-offs involving factual information, strategic thinking, game-winning criteria, elements of fun, number and type of players, time horizon, and uncertainty. We evaluate the two games in terms of accomplishments and limitations. Overall, we demonstrated the potential for these games to usefully represent scientific information within challenging environmental and ecosystem-management contexts and to provide an interactive way of learning about the complexity of interactions between people and natural systems. Further progress on the use of pedagogical games to fulfill the USGS mission will require collaboration among scientists, game developers, educators, and stakeholders. We conclude that as the USGS positions itself to communicate and convey the results of multiple science strategies, including natural-resource security and sustainability, pedagogical game development and agent-based modeling offer a means to (1) establish interdisciplinary and collaborative teams with a focused integrated outcome; (2) contribute to the modeling of interaction, feedback, and adaptation of ecosystems; and (3) enable social learning through a broadly appealing and increasingly sophisticated medium.

  11. EASI: An electronic assistant for scientific investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schur, A.; Feller, D.; DeVaney, M.

    1991-09-01

    Although many automated tools support the productivity of professionals (engineers, managers, architects, secretaries, etc.), none specifically address the needs of the scientific researcher. The scientist's needs are complex and the primary activities are cognitive rather than physical. The individual scientist collects and manipulates large data sets, integrates, synthesizes, generates, and records information. The means to access and manipulate information are a critical determinant of the performance of the system as a whole. One hindrance in this process is the scientist's computer environment, which has changed little in the last two decades. Extensive time and effort is demanded from the scientistmore » to learn to use the computer system. This paper describes how chemists' activities and interactions with information were abstracted into a common paradigm that meets the critical requirement of facilitating information access and retrieval. This paradigm was embodied in EASI, a working prototype that increased the productivity of the individual scientific researcher. 4 refs., 2 figs., 1 tab.« less

  12. Andrzej PȨKALSKI Networks of Scientific Interests with Internal Degrees of Freedom Through Self-Citation Analysis

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Lambiotte, R.; Scharnhorst, A.; Hellsten, I.

    Old and recent theoretical works by Andrzej Pȩkalski (APE) are recalled as possible sources of interest for describing network formation and clustering in complex (scientific) communities, through self-organization and percolation processes. Emphasis is placed on APE self-citation network over four decades. The method is that used for detecting scientists' field mobility by focusing on author's self-citation, co-authorships and article topics networks as in Refs. 1 and 2. It is shown that APE's self-citation patterns reveal important information on APE interest for research topics over time as well as APE engagement on different scientific topics and in different networks of collaboration. Its interesting complexity results from "degrees of freedom" and external fields leading to so called internal shock resistance. It is found that APE network of scientific interests belongs to independent clusters and occurs through rare or drastic events as in irreversible "preferential attachment processes", similar to those found in usual mechanics and thermodynamics phase transitions.

  13. Lessons from the Trenches

    NASA Astrophysics Data System (ADS)

    Lubchenco, J.

    2006-12-01

    One of the most important roles of science is to inform the discussions and decisions of individuals and institutions. In a world that is changing rapidly, information is urgently needed to help citizens and leaders understand what's happening, what's causing changes, what the implications are and what are the likely consequences of various options. Most everyone agrees that decisions should be informed (not dictated) by scientific information, but achieving that goal has proven a challenge. Decision-makers need to have access to scientific information that is understandable, relevant, useable, current and credible. However, the science is complex, nuanced and difficult to communicate simply. Most scientists are ill equipped to speak in language that is non-technical. Many academic scientists are wary of talking to the press. Academia does not generally reward time spent doing outreach. As a consequence, others step into the breach and communicate their version of `the science.' All too often this means that vested interests spin, distort or cherry-pick information. The result is that decisions are made without good scientific knowledge and science is seen increasingly as a weapon, not as useful knowledge. The presentation will focus on how one program, the Aldo Leopold Leadership Program is training academic environmental scientists to be better communicators of their science to non-scientists. Lessons learned and suggestions for revolutionizing the communication of scientific information will be offered.

  14. The Moon in the Russian scientific-educational project: Kazan-GeoNa-2010

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Kitiashvili, I.; Petrova, N.

    Historically thousand-year Kazan city and the two-hundred-year Kazan university Russia carry out a role of the scientific-organizational and cultural-educational center of Volga region For the further successful development of educational and scientific-educational activity of the Russian Federation the Republic Tatarstan Kazan is offered the national project - the International Center of the Science and the Internet of Technologies bf GeoNa bf Geo metry of bf Na ture - bf GeoNa is developed - wisdom enthusiasm pride grandeur which includes a modern complex of conference halls up to 4 thousand places the Center the Internet of Technologies 3D Planetarium - development of the Moon PhysicsLand an active museum of natural sciences an oceanarium training a complex Spheres of Knowledge botanical and landscape oases In center bf GeoNa will be hosted conferences congresses fundamental scientific researches of the Moon scientific-educational actions presentation of the international scientific programs on lunar research modern lunar databases exhibition Hi-tech of the equipment the extensive cultural-educational tourist and cognitive programs Center bf GeoNa will enable scientists and teachers of the Russian universities to join to advanced achievements of a science information technologies to establish scientific communications with foreign colleagues in sphere of the high technology and educational projects with world space centers

  15. Principles of cancer prevention.

    PubMed

    Meyskens, Frank L; Tully, Patricia

    2005-11-01

    To summarize the scientific principles underlying cancer prevention. Articles, text books, personal communications, and experience. The scientific basis of cancer prevention is complex and involves experimental and epidemiologic approaches and clinical trials. As more information becomes available regarding proven and potential cancer-prevention strategies, oncology nurses are regularly called upon to guide patients and others in making choices regarding preventative options. It is important for oncology nurses to stay abreast of this growing body of knowledge.

  16. Bringing science to the table: Case studies in science-informed decision making on climate change and beyond

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Phartiyal, P.; Mulvey, K.

    2016-12-01

    Federal government officials often rely on the research and advice of scientists to inform their decision making around climate change and other complex topics. Decision makers, however, are constrained by the time and accessibility needed to obtain and incorporate scientific information. At the same time, scientists have limited capacity and incentive to devote significant time to communicating their science to decision makers. The Union of Concerned Scientists has employed several strategies to produce policy-relevant scientific work and to facilitate engagement between scientists and decision makers across research areas. This talk will feature lessons learned and key strategies for science-informed decision making around climate change and other areas of the geosciences. Case studies will include conducting targeted sea level rise studies to inform rulemaking at federal agencies, bringing science to policy discussions on hydraulic fracturing, and leveraging the voice of the scientific community on specific policy proposals around climate change disclosure of companies. Recommendations and lessons learned for producing policy-relevant science and effectively communicating it with decision makers will be offered.

  17. CORUM: the comprehensive resource of mammalian protein complexes

    PubMed Central

    Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner

    2008-01-01

    Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090

  18. ECOLOGICAL INDICATORS IN RISK ASSESSMENT WORKSHOP SUMMARY

    EPA Science Inventory

    Ecological indicators can be defined as relatively simple measurements that relay scientific information about complex ecosystems. Such indicators are used to characterize risk in ecological risk assessment (ERA) and to mark progress toward resource management goals. In late 1997...

  19. ECOLOGICAL INDICATORS IN RISK ASSESSMENT: WORKSHOP SUMMARY

    EPA Science Inventory

    Ecological indicators can be defined as relatively simple measurements that relay scientific information about complex ecosystems. Such indicators are used to characterize risk in ecological risk assessment and to mark progress toward resource management goals. In late 1997 scien...

  20. Scientific and Legal Perspectives on Science Generated for Regulatory Activities

    PubMed Central

    Henry, Carol J.; Conrad, James W.

    2008-01-01

    This article originated from a conference that asked “Should scientific work conducted for purposes of advocacy before regulatory agencies or courts be judged by the same standards as science conducted for other purposes?” In the article, which focuses on the regulatory advocacy context, we argue that it can be and should be. First, we describe a set of standards and practices currently being used to judge the quality of scientific research and testing and explain how these standards and practices assist in judging the quality of research and testing regardless of why the work was conducted. These standards and practices include the federal Information Quality Act, federal Good Laboratory Practice standards, peer review, disclosure of funding sources, and transparency in research policies. The more that scientific information meets these standards and practices, the more likely it is to be of high quality, reliable, reproducible, and credible. We then explore legal issues that may be implicated in any effort to create special rules for science conducted specifically for a regulatory proceeding. Federal administrative law does not provide a basis for treating information in a given proceeding differently depending on its source or the reason for which it was generated. To the contrary, this law positively assures that interested persons have the right to offer their technical expertise toward the solution of regulatory problems. Any proposal to subject scientific information generated for the purpose of a regulatory proceeding to more demanding standards than other scientific information considered in that proceeding would clash with this law and would face significant administrative complexities. In a closely related example, the U.S. Environmental Protection Agency considered but abandoned a program to implement standards aimed at “external” information. PMID:18197313

  1. Scientific and legal perspectives on science generated for regulatory activities.

    PubMed

    Henry, Carol J; Conrad, James W

    2008-01-01

    This article originated from a conference that asked "Should scientific work conducted for purposes of advocacy before regulatory agencies or courts be judged by the same standards as science conducted for other purposes?" In the article, which focuses on the regulatory advocacy context, we argue that it can be and should be. First, we describe a set of standards and practices currently being used to judge the quality of scientific research and testing and explain how these standards and practices assist in judging the quality of research and testing regardless of why the work was conducted. These standards and practices include the federal Information Quality Act, federal Good Laboratory Practice standards, peer review, disclosure of funding sources, and transparency in research policies. The more that scientific information meets these standards and practices, the more likely it is to be of high quality, reliable, reproducible, and credible. We then explore legal issues that may be implicated in any effort to create special rules for science conducted specifically for a regulatory proceeding. Federal administrative law does not provide a basis for treating information in a given proceeding differently depending on its source or the reason for which it was generated. To the contrary, this law positively assures that interested persons have the right to offer their technical expertise toward the solution of regulatory problems. Any proposal to subject scientific information generated for the purpose of a regulatory proceeding to more demanding standards than other scientific information considered in that proceeding would clash with this law and would face significant administrative complexities. In a closely related example, the U.S. Environmental Protection Agency considered but abandoned a program to implement standards aimed at "external" information.

  2. The art of talking about science: beginning to teach physiology students how to communicate with nonscientists.

    PubMed

    Petzold, Andrew M; Dunbar, Robert L

    2018-06-01

    The ability to clearly disseminate scientific knowledge is a skill that is necessary for any undergraduate student within the sciences. Traditionally, this is accomplished through the instruction of scientific presentation or writing with a focus on peer-to-peer communication at the expense of teaching communication aimed at a nonscientific audience. One of the ramifications of focusing on peer-to-peer communication has presented itself as an apprehension toward scientific knowledge within the general populace. This apprehension can be seen in a variety of venues, including the traditional media, popular culture, and education, which generally paint scientists as aloof and with an inability to discuss scientific issues to anyone other than other scientists. This paper describes a curriculum designed to teach Introduction to Anatomy and Physiology students the tools necessary for communicating complex concepts that were covered during the semester using approachable language. Students were assessed on their word usage in associated writing activities, the student's ability to reduce complexity of their statements, and performance in an informal scientific presentation to a lay audience. Results showed that this pedagogical approach has increased students' ability to reduce the complexity of their language in both a written and oral format. This, in turn, led to evaluators reporting greater levels of understanding of the topic presented following the presentation.

  3. Databases on biotechnology and biosafety of GMOs.

    PubMed

    Degrassi, Giuliano; Alexandrova, Nevena; Ripandelli, Decio

    2003-01-01

    Due to the involvement of scientific, industrial, commercial and public sectors of society, the complexity of the issues concerning the safety of genetically modified organisms (GMOs) for the environment, agriculture, and human and animal health calls for a wide coverage of information. Accordingly, development of the field of biotechnology, along with concerns related to the fate of released GMOs, has led to a rapid development of tools for disseminating such information. As a result, there is a growing number of databases aimed at collecting and storing information related to GMOs. Most of the sites deal with information on environmental releases, field trials, transgenes and related sequences, regulations and legislation, risk assessment documents, and literature. Databases are mainly established and managed by scientific, national or international authorities, and are addressed towards scientists, government officials, policy makers, consumers, farmers, environmental groups and civil society representatives. This complexity can lead to an overlapping of information. The purpose of the present review is to analyse the relevant databases currently available on the web, providing comments on their vastly different information and on the structure of the sites pertaining to different users. A preliminary overview on the development of these sites during the last decade, at both the national and international level, is also provided.

  4. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  5. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  6. Recordkeeping alters economic history by promoting reciprocity

    PubMed Central

    Basu, Sudipta; Dickhaut, John; Hecht, Gary; Towry, Kristy; Waymire, Gregory

    2009-01-01

    We experimentally demonstrate a causal link between recordkeeping and reciprocal exchange. Recordkeeping improves memory of past interactions in a complex exchange environment, which promotes reputation formation and decision coordination. Economies with recordkeeping exhibit a beneficially altered economic history where the risks of exchanging with strangers are substantially lessened. Our findings are consistent with prior assertions that complex and extensive reciprocity requires sophisticated memory to store information on past transactions. We offer insights on this research by scientifically demonstrating that reciprocity can be facilitated by information storage external to the brain. This is consistent with the archaeological record, which suggests that prehistoric transaction records and the invention of writing for recordkeeping were linked to increased complexity in human interaction. PMID:19147843

  7. Jesuit scientific activity in the overseas missions, 1540-1773.

    PubMed

    Harris, Steven J

    2005-03-01

    Within the context of national traditions in colonial science, the scientific activities of Jesuit missionaries present us with a unique combination of challenges. The multinational membership of the Society of Jesus gave its missionaries access to virtually every Portuguese, Spanish, and French colony. The Society was thus compelled to engage an astonishingly diverse array of cultural and natural environments, and that diversity of contexts is reflected in the range and the complexity of Jesuit scientific practices. Underlying that complexity, however, was what I see as a unique combination of institutional structures; namely, European colleges, overseas mission stations, and the regular circulation of personnel and information. With this institutional framework as a backdrop, I briefly trace what I see as the most salient themes emerging from recent studies of Jesuit overseas science: (1) the Societys ability to use scientific expertise to its advantage amid the complex web of dependencies upon which it missionary activities rested; (2) the ability of its missionaries to become intimate with a wide range of cultures and to appropriate natural knowledge held by indigenous peoples, especially in the fields of material medica and geography; and (3) the different ways Jesuits used published accounts of "remote nature" (i.e., natural histories of overseas colonies) to advance their corporate and religious causes.

  8. On Modeling Research Work for Describing and Filtering Scientific Information

    NASA Astrophysics Data System (ADS)

    Sicilia, Miguel-Ángel

    Existing models for Research Information Systems (RIS) properly address the description of people and organizations, projects, facilities and their outcomes, e.g. papers, reports or patents. While this is adequate for the recording and accountability of research investments, helping researchers in finding relevant people, organizations or results requires considering both the content of research work and also its context. The content is not only related to the domain area, but it requires modeling methodological issues as variables, instruments or scientific methods that can then be used as search criteria. The context of research work is determined by the ongoing projects or scientific interests of an individual or a group, and can be expressed using the same methodological concepts. However, modeling methodological issues is notably complex and dependent on the scientific discipline and research area. This paper sketches the main requirements for those models, providing some motivating examples that could serve as a point of departure for future attempts in developing an upper ontology for research methods and tools.

  9. [Journal "Surgery" (1934-2004): (historiographical and cognitological study-cadastre)].

    PubMed

    Kumanova, A; Iarŭmov, N; Kumanov, M

    2005-01-01

    The study is based on the methodology of the contemporary interdisciplinary cognitive images of the information entity of the surgical sphere, reflected in the phenomenology of the journal "Surgery", which is gathering --as a publication of the Scientific Society of Surgeons--the kaleidoscope of the genealogy of the scientific and practical thought in Bulgaria in the treated area for an impressive historical lapse of time. The information image observed is represented in the form of a triptych: I. Macrostructure of the periodicals in the field of medicine in the years 30 of XX century: Bibliographic analysis: Historiographical description [: Background]; II. Microstructure of the journal "Surgery" (1934-2004): Periodization [1934-1944: non-party system with priority of the monarchy; 1944-1989: totalitarian epoch; 1989-2004: democracy and pluralism]: Scientometrical synthesis: Transformatism of the information modeling [: History]; III. Status of the surgical field in the intelligible prism of the journal "Surgery" (1934-2004): Interdisciplinary deduction: Cognitological proscopy [: Classification]. The ontological synthesis concludes the study by which is expressed the systemic dynamical entity of the relation "surgical field"--"its scientific expression in a periodical" as a base of future scientific research--as well as a complex scientific and applied field of knowledge, and a social important phenomenon. The Supplements and References and notes are an empirical base and a fragment of the expose.

  10. Interactive Visualization of Large-Scale Hydrological Data using Emerging Technologies in Web Systems and Parallel Programming

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2013-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.

  11. Critical issues in NASA information systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The National Aeronautics and Space Administration has developed a globally-distributed complex of earth resources data bases since LANDSAT 1 was launched in 1972. NASA envisages considerable growth in the number, extent, and complexity of such data bases, due to the improvements expected in its remote sensing data rates, and the increasingly multidisciplinary nature of its scientific investigations. Work already has begun on information systems to support multidisciplinary research activities based on data acquired by the space station complex and other space-based and terrestrial sources. In response to a request from NASA's former Associate Administrator for Space Science and Applications, the National Research Council convened a committee in June 1985 to identify the critical issues involving information systems support to space science and applications. The committee has suggested that OSSA address four major information systems issues; centralization of management functions, interoperability of user involvement in the planning and implementation of its programs, and technology.

  12. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a reader. Climatologists recognize the wealth of data and content found in these representations and therefore find themselves in a position where they can effectively interact with the author and their claims. This expert ability to seamlessly integrate text with the associated representations is at one end of the continuum of scientific text comprehension, but what abilities define a novice and those in between expert and novice in this continuum of scientific text comprehension? This talk will describe an ongoing research project with the overarching goal to establish the balance of this continuum in order to identify scaffolds that will assist non expert readers negotiate meaning from complex scientific text inclusive of multiple representations found in popular literature in climatology. It will inform those creating data representations on how best to create the representations so that claims and causal relationships may be derived from the literature or media source.

  13. Learning as change: Responding to socio-scientific issues through informal education

    NASA Astrophysics Data System (ADS)

    Allen, Lauren Brooks

    Informal learning is an important venue for educating the general public about complex socio-scientific issues: intersections of scientific understanding and society. My dissertation is a multi-tiered analysis of how informal education, and particularly informal educators, can leverage learning to respond to one particular socio-scientific issue: climate change. Life-long, life-wide, and life-deep learning not only about the science of climate change, but how communities and society as a whole can respond to it in ways that are commensurate with its scale are necessary. In my three-article dissertation, I investigated the changes in practice and learning that informal educators from a natural history museum underwent in the process of implementing a new type of field trip about climate change. This study focused on inquiry-based learning principles taken on by the museum educators, albeit in different ways: learner autonomy, conversation, and deep investigation. My second article, a short literature review, makes the argument that climate change education must have goals beyond simply increasing learners' knowledge of climate science, and proposes three research-based principles for such learning: participation, relevance, and interconnectedness. These principles are argued to promote learning to respond to climate change as well as increased collective efficacy, necessary for responding. Finally, my third article is an in-depth examination of a heterogeneous network of informal educators and environmental professionals who worked together to design and implement a city-wide platform for informal climate change learning. By conceptualizing climate change learning at the level of the learning ecology, educators and learners are able to see how it can be responded to at the community level, and understand how climate change is interconnected with other scientific, natural, and social systems. I briefly discuss a different socio-scientific issue to which these principles can be applied: heritable, human manipulation of other biological entities; in other words, genetic engineering.

  14. Storytelling with Chemistry and Related Hands-on Activities: Informal Learning Experiences to Prevent "Chemophobia" and Promote Young Children's Scientific Literacy

    ERIC Educational Resources Information Center

    Morais, Carla

    2015-01-01

    The dissemination of chemistry has been experienced as a difficult task, largely because of the negative image that the public has of this science, but also because of its inherent complexity and its own semantics and symbolism. Science centers, as informal learning environments, can contribute to a more effective dissemination of chemistry to an…

  15. Summary Report Panel 4: Communication and Interpretation: Presenting Information to the General Public.

    PubMed

    Scowcroft, Gail

    2016-01-01

    Complex scientific information is often difficult to communicate to nonscience audiences who may not have the foundational knowledge to understand the content. Scientists are called on with increasing frequency to share the results of their research for the purposes of education, outreach, and popular media stories. These three spheres of activity, represented in Fig. 1, are geared toward different but complementary goals.

  16. Hypertext and hypermedia systems in information retrieval

    NASA Technical Reports Server (NTRS)

    Kaye, K. M.; Kuhn, A. D.

    1992-01-01

    This paper opens with a brief history of hypertext and hypermedia in the context of information management during the 'information age.' Relevant terms are defined and the approach of the paper is explained. Linear and hypermedia information access methods are contrasted. A discussion of hyperprogramming in the handling of complex scientific and technical information follows. A selection of innovative hypermedia systems is discussed. An analysis of the Clinical Practice Library of Medicine NASA STI Program hypermedia application is presented. The paper concludes with a discussion of the NASA STI Program's future hypermedia project plans.

  17. Do complexity-informed health interventions work? A scoping review.

    PubMed

    Brainard, Julii; Hunter, Paul R

    2016-09-20

    The lens of complexity theory is widely advocated to improve health care delivery. However, empirical evidence that this lens has been useful in designing health care remains elusive. This review assesses whether it is possible to reliably capture evidence for efficacy in results or process within interventions that were informed by complexity science and closely related conceptual frameworks. Systematic searches of scientific and grey literature were undertaken in late 2015/early 2016. Titles and abstracts were screened for interventions (A) delivered by the health services, (B) that explicitly stated that complexity science provided theoretical underpinning, and (C) also reported specific outcomes. Outcomes had to relate to changes in actual practice, service delivery or patient clinical indicators. Data extraction and detailed analysis was undertaken for studies in three developed countries: Canada, UK and USA. Data were extracted for intervention format, barriers encountered and quality aspects (thoroughness or possible biases) of evaluation and reporting. From 5067 initial finds in scientific literature and 171 items in grey literature, 22 interventions described in 29 articles were selected. Most interventions relied on facilitating collaboration to find solutions to specific or general problems. Many outcomes were very positive. However, some outcomes were measured only subjectively, one intervention was designed with complexity theory in mind but did not reiterate this in subsequent evaluation and other interventions were credited as compatible with complexity science but reported no relevant theoretical underpinning. Articles often omitted discussion on implementation barriers or unintended consequences, which suggests that complexity theory was not widely used in evaluation. It is hard to establish cause and effect when attempting to leverage complex adaptive systems and perhaps even harder to reliably find evidence that confirms whether complexity-informed interventions are usually effective. While it is possible to show that interventions that are compatible with complexity science seem efficacious, it remains difficult to show that explicit planning with complexity in mind was particularly valuable. Recommendations are made to improve future evaluation reports, to establish a better evidence base about whether this conceptual framework is useful in intervention design and implementation.

  18. Measuring the Level of Complexity of Scientific Inquiries: The LCSI Index

    ERIC Educational Resources Information Center

    Eilam, Efrat

    2015-01-01

    The study developed and applied an index for measuring the level of complexity of full authentic scientific inquiry. Complexity is a fundamental attribute of real life scientific research. The level of complexity is an overall reflection of complex cognitive and metacognitive processes which are required for navigating the authentic inquiry…

  19. 75 FR 22756 - Federal Advisory Committee; United States Army Science Board; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... with the pressing and complex technology and business management issues facing the Department of the... Management Officer for the Department of Defense, 703-601-6128. SUPPLEMENTARY INFORMATION: The Board is a... relating to the Army's scientific, technical, manufacturing, acquisition, logistics, and business...

  20. Image processing mini manual

    NASA Technical Reports Server (NTRS)

    Matthews, Christine G.; Posenau, Mary-Anne; Leonard, Desiree M.; Avis, Elizabeth L.; Debure, Kelly R.; Stacy, Kathryn; Vonofenheim, Bill

    1992-01-01

    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC.

  1. The Cholera Epidemic in Zimbabwe, 2008-2009: A Review and Critique of the Evidence.

    PubMed

    Cuneo, C Nicholas; Sollom, Richard; Beyrer, Chris

    2017-12-01

    The 2008-2009 Zimbabwe cholera epidemic resulted in 98,585 reported cases and caused more than 4,000 deaths. In this study, we used a mixed-methods approach that combined primary qualitative data from a 2008 Physicians for Human Rights-led investigation with a systematic review and content analysis of the scientific literature. Our initial investigation included semi-structured interviews of 92 key informants, which we supplemented with reviews of the social science and human rights literature, as well as international news reports. Our systematic review of the scientific literature retrieved 59 unique citations, of which 30 met criteria for inclusion in the content analysis: 14 of the 30 (46.7%) articles mentioned the political dimension of the epidemic, while 7 (23.3%) referenced Mugabe or his political party (ZANU-PF). Our investigation revealed that the 2008-2009 Zimbabwean cholera epidemic was exacerbated by a series of human rights abuses, including the politicization of water, health care, aid, and information. The failure of the scientific community to directly address the political determinants of the epidemic exposes challenges to maintaining scientific integrity in the setting of humanitarian responses to complex health and human rights crises. While the period of the cholera epidemic and the health care system collapse is now nearly a decade in the past, the findings of this work remain highly relevant for Zimbabwe and other countries, as complex health and rights interactions remain widespread, and governance concerns continue to limit improvements in human health.

  2. The Cholera Epidemic in Zimbabwe, 2008–2009

    PubMed Central

    Sollom, Richard; Beyrer, Chris

    2017-01-01

    Abstract The 2008–2009 Zimbabwe cholera epidemic resulted in 98,585 reported cases and caused more than 4,000 deaths. In this study, we used a mixed-methods approach that combined primary qualitative data from a 2008 Physicians for Human Rights-led investigation with a systematic review and content analysis of the scientific literature. Our initial investigation included semi-structured interviews of 92 key informants, which we supplemented with reviews of the social science and human rights literature, as well as international news reports. Our systematic review of the scientific literature retrieved 59 unique citations, of which 30 met criteria for inclusion in the content analysis: 14 of the 30 (46.7%) articles mentioned the political dimension of the epidemic, while 7 (23.3%) referenced Mugabe or his political party (ZANU-PF). Our investigation revealed that the 2008–2009 Zimbabwean cholera epidemic was exacerbated by a series of human rights abuses, including the politicization of water, health care, aid, and information. The failure of the scientific community to directly address the political determinants of the epidemic exposes challenges to maintaining scientific integrity in the setting of humanitarian responses to complex health and human rights crises. While the period of the cholera epidemic and the health care system collapse is now nearly a decade in the past, the findings of this work remain highly relevant for Zimbabwe and other countries, as complex health and rights interactions remain widespread, and governance concerns continue to limit improvements in human health. PMID:29302180

  3. Objects and processes: Two notions for understanding biological information.

    PubMed

    Mercado-Reyes, Agustín; Padilla-Longoria, Pablo; Arroyo-Santos, Alfonso

    2015-09-07

    In spite of being ubiquitous in life sciences, the concept of information is harshly criticized. Uses of the concept other than those derived from Shannon׳s theory are denounced as metaphoric. We perform a computational experiment to explore whether Shannon׳s information is adequate to describe the uses of said concept in commonplace scientific practice. Our results show that semantic sequences do not have unique complexity values different from the value of meaningless sequences. This result suggests that quantitative theoretical frameworks do not account fully for the complex phenomenon that the term "information" refers to. We propose a restructuring of the concept into two related, but independent notions, and conclude that a complete theory of biological information must account completely not only for both notions, but also for the relationship between them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Prescriptive scientific narratives for communicating usable science.

    PubMed

    Downs, Julie S

    2014-09-16

    In this paper I describe how a narrative approach to science communication may help audiences to more fully understand how science is relevant to their own lives and behaviors. The use of prescriptive scientific narrative can help to overcome challenges specific to scientific concepts, especially the need to reconsider long-held beliefs in the face of new empirical findings. Narrative can captivate the audience, driving anticipation for plot resolution, thus becoming a self-motivating vehicle for information delivery. This quality gives narrative considerable power to explain complex phenomena and causal processes, and to create and reinforce memory traces for better recall and application over time. Because of the inherent properties of narrative communication, their creators have a special responsibility to ensure even-handedness in selection and presentation of the scientific evidence. The recent transformation in communication and information technology has brought about new platforms for delivering content, particularly through interactivity, which can use structured self-tailoring to help individuals most efficiently get exactly the content that they need. As with all educational efforts, prescriptive scientific narratives must be evaluated systematically to determine whether they have the desired effects in improving understanding and changing behavior.

  5. Prescriptive scientific narratives for communicating usable science

    PubMed Central

    Downs, Julie S.

    2014-01-01

    In this paper I describe how a narrative approach to science communication may help audiences to more fully understand how science is relevant to their own lives and behaviors. The use of prescriptive scientific narrative can help to overcome challenges specific to scientific concepts, especially the need to reconsider long-held beliefs in the face of new empirical findings. Narrative can captivate the audience, driving anticipation for plot resolution, thus becoming a self-motivating vehicle for information delivery. This quality gives narrative considerable power to explain complex phenomena and causal processes, and to create and reinforce memory traces for better recall and application over time. Because of the inherent properties of narrative communication, their creators have a special responsibility to ensure even-handedness in selection and presentation of the scientific evidence. The recent transformation in communication and information technology has brought about new platforms for delivering content, particularly through interactivity, which can use structured self-tailoring to help individuals most efficiently get exactly the content that they need. As with all educational efforts, prescriptive scientific narratives must be evaluated systematically to determine whether they have the desired effects in improving understanding and changing behavior. PMID:25225369

  6. Astronomy in the Russian Scientific-Educational Project: "KAZAN-GEONA-2010"

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Kitiashvili, I.

    2006-08-01

    The European Union promotes the Sixth Framework Programme. One of the goals of the EU Programme is opening national research and training programs. A special role in the history of the Kazan University was played by the great mathematician Nikolai Lobachevsky - the founder of non-Euclidean geometry (1826). Historically, the thousand-year old city of Kazan and the two-hundred-year old Kazan University carry out the role of the scientific, organizational, and cultural educational center of the Volga region. For the continued successful development of educational and scientific-educational activity of the Russian Federation, the Republic Tatarstan, Kazan was offered the national project: the International Center of the Sciences and Internet Technologies "GeoNa" (Geometry of Nature - GeoNa - is wisdom, enthusiasm, pride, grandeur). This is a modern complex of conference halls including the Center for Internet Technologies, a 3D Planetarium - development of the Moon, PhysicsLand, an active museum of natural sciences, an oceanarium, and a training complex "Spheres of Knowledge". Center GeoNa promotes the direct and effective channel of cooperation with scientific centers around the world. GeoNa will host conferences, congresses, fundamental scientific research sessions of the Moon and planets, and scientific-educational actions: presentation of the international scientific programs on lunar research and modern lunar databases. A more intense program of exchange between scientific centers and organizations for a better knowledge and planning of their astronomical curricula and the introduction of the teaching of astronomy are proposed. Center GeoNa will enable scientists and teachers of the Russian universities with advanced achievements in science and information technologies to join together to establish scientific communications with foreign colleagues in the sphere of the high technology and educational projects with world scientific centers.

  7. Supporting Scientific Experimentation and Reasoning in Young Elementary School Students

    NASA Astrophysics Data System (ADS)

    Varma, Keisha

    2014-06-01

    Researchers from multiple perspectives have shown that young students can engage in the scientific reasoning involved in science experimentation. However, there is little research on how well these young students learn in inquiry-based learning environments that focus on using scientific experimentation strategies to learn new scientific information. This work investigates young children's science concept learning via inquiry-based instruction on the thermodynamics system in a developmentally appropriate, technology-supported learning environment. First- and third-grade students participate in three sets of guided experimentation activities that involve using handheld computers to measure change in temperature given different types of insulation materials. Findings from pre- and post-comparisons show that students at both grade levels are able to learn about the thermodynamics system through engaging in the guided experiment activities. The instruction groups outperformed the control groups on multiple measures of thermodynamics knowledge, and the older children outperform the younger children. Knowledge gains are discussed in the context of mental models of the thermodynamics system that include the individual concepts mentioned above and the relationships between them. This work suggests that young students can benefit from science instruction centered on experimentation activities. It shows the benefits of presenting complex scientific information authentic contexts and the importance of providing the necessary scaffolding for meaningful scientific inquiry and experimentation.

  8. Managing scientific complexity in public policy: the case of U.S. climate change legislation in the 111th Congress

    NASA Astrophysics Data System (ADS)

    Mueller, J. A.; Runci, P. J.

    2009-12-01

    The recent passage of the American Climate and Energy Security Act by the U.S. House of Representatives in June of this year was a landmark in U.S. efforts to move climate change legislation through Congress. Although an historic achievement, the bill (and surrounding debate) highlights many concerns about the processes by which lawmakers and the public inform themselves about scientifically relevant problems and, subsequently, by which policy responses are crafted in a context of complexity, uncertainty, and competition for resources and attention. In light of the ever-increasing specialization of expertise in the sciences and other technical fields, and the inherent complexity of scientifically relevant problems such as climate change, society faces significant hurdles in its efforts to integrate knowledge and develop sufficient understanding of these problems to which it must respond with legislation or other effective collective or individual action. The emergence of a new class of experts who act as science-policy brokers may not be sufficient to cross these hurdles. Herein, we explore how society and the scientific community in particular can work toward closing the ever-growing gap between technical knowledge and society’s ability to comprehend and use it. Both authors are currently legislative fellows working on energy and climate change issues in the U.S. Senate.

  9. Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists

    NASA Astrophysics Data System (ADS)

    Bruck, L. F.

    2006-05-01

    Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.

  10. Information driving force and its application in agent-based modeling

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  11. Ethics and genomic medicine, how to navigate decisions in surgical oncology.

    PubMed

    Devon, Karen M; Lerner-Ellis, Jordan P; Ganai, Sabha; Angelos, Peter

    2015-01-01

    Using genetic information to make medical decisions and tailor treatments to individuals will likely provide major benefits and become an important part of health care. Surgical oncologists must ethically apply scientific genetic information in a complex and evolving environment to the benefit of their patients. In this review we address ethical issues associated with: indications for genetic testing, informed consent for testing and therapy, confidentiality, targeted therapy, prophylactic surgery, and genetic testing in children. © 2014 Wiley Periodicals, Inc.

  12. Learning Complex Scientific Information: Motivation Theory and Its Relation to Student Perceptions.

    ERIC Educational Resources Information Center

    Hynd, Cynthia; Holschuh, Jodi; Nist, Sherrie

    2000-01-01

    Examines motivation in high school students' conceptual change about physics principles, and college students' motivation for biology learning. Finds grades and interest were important, but students did not report the importance of social support. Suggests similar motivations are important in both conceptual change and assimilation and help…

  13. Ancient texts to PubMed: a brief history of the peer-review process.

    PubMed

    Farrell, P R; Magida Farrell, L; Farrell, M K

    2017-01-01

    The formal evaluation of scientific literature by invited referees (peer reviewers) is a relatively recent phenomenon and now is considered a cornerstone of modern science. However, its roots can be traced back to antiquity. As the speed and complexity of scientific information and publishing increases in the digital age, peer review must continue to evolve. To understand the future direction of peer review, we must understand its past. Here, we briefly explore the history of scientific peer review. This may help us predict and design appropriate peer review for the new era. This work was originally presented at the Pediatric Academic Societies Annual Meeting in Baltimore, Maryland in the Spring of 2016.

  14. Developing Effective Communications about Extreme Weather Risks.

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.

    2014-12-01

    Members of the general public often face complex decisions about the risks that they face, including those associated with extreme weather and climate change adaptation. Scientific experts may be asked to develop communications with the goal of improving people's understanding of weather and climate risks, and informing people's decisions about how to protect against these risks. Unfortunately, scientific experts' communication efforts may fail if they lack information about what people need or want to know to make more informed decisions or what wording people prefer use to describe relevant concepts. This presentation provides general principles for developing effective risk communication materials that aim for widespread dissemination, such as brochures and websites. After a brief review of the social science evidence on how to design effective risk communication materials, examples will focus on communications about extreme weather events and climate change. Specifically, data will be presented from ongoing projects on flood risk perception, public preparedness for heat waves, and public perceptions of climate change. The presentation will end with specific recommendations about how to improve recipients' understanding about risks and inform decisions. These recommendations should be useful to scientific experts who aim to communicate about extreme weather, climate change, or other risks.

  15. Genetics, Genomics and Cancer Risk Assessment: State of the art and future directions in the era of personalized medicine

    PubMed Central

    Weitzel, Jeffrey N.; Blazer, Kathleen R.; MacDonald, Deborah J.; Culver, Julie O.; Offit, Kenneth

    2012-01-01

    Scientific and technologic advances are revolutionizing our approach to genetic cancer risk assessment, cancer screening and prevention, and targeted therapy, fulfilling the promise of personalized medicine. In this monograph we review the evolution of scientific discovery in cancer genetics and genomics, and describe current approaches, benefits and barriers to the translation of this information to the practice of preventive medicine. Summaries of known hereditary cancer syndromes and highly penetrant genes are provided and contrasted with recently-discovered genomic variants associated with modest increases in cancer risk. We describe the scope of knowledge, tools, and expertise required for the translation of complex genetic and genomic test information into clinical practice. The challenges of genomic counseling include the need for genetics and genomics professional education and multidisciplinary team training, the need for evidence-based information regarding the clinical utility of testing for genomic variants, the potential dangers posed by premature marketing of first-generation genomic profiles, and the need for new clinical models to improve access to and responsible communication of complex disease-risk information. We conclude that given the experiences and lessons learned in the genetics era, the multidisciplinary model of genetic cancer risk assessment and management will serve as a solid foundation to support the integration of personalized genomic information into the practice of cancer medicine. PMID:21858794

  16. Genetics, systems, and alcohol.

    PubMed

    McClearn, G E

    1993-03-01

    Under a variety of rubrics (e.g., complexity, self-constructing systems, dissipative structures), interest has recently burgeoned in applying principles of complex systems to a wide variety of scientific issues. A major concern is with emergent properties of systems not derivable from the properties of components of the systems. In this paper, some elementary aspects of "systems" considerations are applied to phenomena of alcohol pharmacogenetics. It is likely that whole new families of informative phenotypes can be generated by this approach.

  17. An Assessment of Information Literacy Instruction in Physics Curricula

    NASA Astrophysics Data System (ADS)

    Fosmire, Michael

    1999-10-01

    Although the information landscape in scientific and technical fields in general and physics in particular is becoming increasingly complicated, a survey of physics librarians found that information literacy instruction for undergraduate and graduate physics students is almost nonexistent. The rise of electronic (and often unrefereed) communication, through websites, electronic discussion lists, and eprint servers, has made the system of information dissemination even more complex. Despite this increased complexity, in physics curricula formal instruction on navigating and intelligently consuming information resources is minimal. The limited instruction that is done appears to be very pragmatic training on how to use specific resources and does not address issues of information literacy. Research literature indicates that students with immediate and concrete information needs (e.g., course assignments) are most receptive to information literacy instruction. Thus, faculty and librarians need to work together to co-ordinate instruction efforts in a way that is not currently being done, so students with information needs have the appropriate skills to fill those needs.

  18. Integrated design and management of complex and fast track projects

    NASA Astrophysics Data System (ADS)

    Mancini, Dario

    2003-02-01

    Modern scientific and technological projects are increasingly in competition over scientific aims, technological innovation, performance, time and cost. They require a dedicated and innovative organization able to satisfy contemporarily various technical and logistic constraints imposed by the final user, and guarantee the satisfaction of technical specifications, identified on the basis of scientific aims. In order to satisfy all the above, the management has to be strategically innovative and intuitive, by removing, first of all, the bottlenecks that are pointed out, usually only at the end of the projects, as the causes of general dissatisfaction. More than 30 years spent working on complex multidisciplinary systems and 20 years of formative experience in managing contemporarily both scientific, technological and industrial projects have given the author the possibility to study, test and validate strategies for parallel project management and integrated design, merged in a sort of unique optimized task, using the newly-coined word "Technomethodology". The paper highlights useful information to be taken into consideration during project organization to minimize the program deviations from the expected goals and describe some of the basic meanings of this new advanced method that is the key for parallel successful management of multiple and interdisciplinary activities.

  19. Cornelia de Lange syndrome and molecular implications of the cohesin complex: Abstracts from the 7th biennial scientific and educational symposium 2016

    PubMed Central

    Kline, Antonie D.; Krantz, Ian D.; Deardorff, Matthew A.; Shirahige, Katsuhiko; Dorsett, Dale; Gerton, Jennifer L.; Wu, Meng; Mehta, Devanshi; Mills, Jason A.; Carrico, Cheri S.; Noon, Sarah; Herrera, Pamela S.; Horsfield, Julia A.; Bettale, Chiara; Morgan, Jeremy; Huisman, Sylvia A.; Moss, Jo; McCleery, Joseph; Grados, Marco; Hansen, Blake D.; Srivastava, Siddharth; Taylor-Snell, Emily; Kerr, Lynne M.; Katz, Olivia; Calof, Anne L.; Musio, Antonio; Egense, Alena; Haaland, Richard E.

    2017-01-01

    Cornelia de Lange Syndrome (CdLS) is due to mutations in the genes for the structural and regulatory proteins that make up the cohesin complex, and is considered a cohesinopathy disorder or, more recently, a transcriptomopathy. New phenotypes have been recognized in this expanding field. There are multiple clinical issues facing individuals with all forms of CdLS, particularly in the neurodevelopmental system, but also gastrointestinal, cardiac, and musculoskeletal. Aspects of developmental and cell biology have found common endpoints in the biology of the cohesin complex, with improved understanding of the mechanisms, easier diagnostic tests, and the possibility of potential therapeutics, all major clinical implications for the individual with CdLS. The following abstracts are the presentations from the 7th Cornelia de Lange Syndrome Scientific and Educational Symposium, June 22–23, 2016, in Orlando, FL, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting. In addition to the scientific and clinical discussions, there were talks related to practical aspects of behavior including autism, transitions, communication, access to medical care, and databases. At the end of the symposium, a panel was held, which included several parents, affected individuals and genetic counselors, and discussed the greatest challenges in life and how this information can assist in guiding future research. The Research Committee of the CdLS Foundation organizes this meeting, reviews, and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board and publications. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD. PMID:28190301

  20. "The Dose Makes the Poison": Informing Consumers About the Scientific Risk Assessment of Food Additives.

    PubMed

    Bearth, Angela; Cousin, Marie-Eve; Siegrist, Michael

    2016-01-01

    Intensive risk assessment is required before the approval of food additives. During this process, based on the toxicological principle of "the dose makes the poison,ˮ maximum usage doses are assessed. However, most consumers are not aware of these efforts to ensure the safety of food additives and are therefore sceptical, even though food additives bring certain benefits to consumers. This study investigated the effect of a short video, which explains the scientific risk assessment and regulation of food additives, on consumers' perceptions and acceptance of food additives. The primary goal of this study was to inform consumers and enable them to construct their own risk-benefit assessment and make informed decisions about food additives. The secondary goal was to investigate whether people have different perceptions of food additives of artificial (i.e., aspartame) or natural origin (i.e., steviolglycoside). To attain these research goals, an online experiment was conducted on 185 Swiss consumers. Participants were randomly assigned to either the experimental group, which was shown a video about the scientific risk assessment of food additives, or the control group, which was shown a video about a topic irrelevant to the study. After watching the video, the respondents knew significantly more, expressed more positive thoughts and feelings, had less risk perception, and more acceptance than prior to watching the video. Thus, it appears that informing consumers about complex food safety topics, such as the scientific risk assessment of food additives, is possible, and using a carefully developed information video is a successful strategy for informing consumers. © 2015 Society for Risk Analysis.

  1. Complexity, information loss, and model building: from neuro- to cognitive dynamics

    NASA Astrophysics Data System (ADS)

    Arecchi, F. Tito

    2007-06-01

    A scientific problem described within a given code is mapped by a corresponding computational problem, We call complexity (algorithmic) the bit length of the shortest instruction which solves the problem. Deterministic chaos in general affects a dynamical systems making the corresponding problem experimentally and computationally heavy, since one must reset the initial conditions at a rate higher than that of information loss (Kolmogorov entropy). One can control chaos by adding to the system new degrees of freedom (information swapping: information lost by chaos is replaced by that arising from the new degrees of freedom). This implies a change of code, or a new augmented model. Within a single code, changing hypotheses is equivalent to fixing different sets of control parameters, each with a different a-priori probability, to be then confirmed and transformed to an a-posteriori probability via Bayes theorem. Sequential application of Bayes rule is nothing else than the Darwinian strategy in evolutionary biology. The sequence is a steepest ascent algorithm, which stops once maximum probability has been reached. At this point the hypothesis exploration stops. By changing code (and hence the set of relevant variables) one can start again to formulate new classes of hypotheses . We call semantic complexity the number of accessible scientific codes, or models, that describe a situation. It is however a fuzzy concept, in so far as this number changes due to interaction of the operator with the system under investigation. These considerations are illustrated with reference to a cognitive task, starting from synchronization of neuron arrays in a perceptual area and tracing the putative path toward a model building.

  2. Fostering Environmental Literacy For A Changing Earth: Interactive and Participatory Outreach Programs at Biosphere 2

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.; Huxman, T.; Morehouse, B.

    2008-12-01

    Earth system and ecological sustainability problems are complex outcomes of biological, physical, social, and economic interactions. A common goal of outreach and education programs is to foster a scientifically literate community that possesses the knowledge to contribute to environmental policies and decision making. Uncertainty and variability that is both inherent in Earth system and ecological sciences can confound such goals of improved ecological literacy. Public programs provide an opportunity to engage lay-persons in the scientific method, allowing them to experience science in action and confront these uncertainties face-on. We begin with a definition of scientific literacy that expands its conceptualization of science beyond just a collection of facts and concepts to one that views science as a process to aid understanding of natural phenomena. A process-based scientific literacy allows the public, teachers, and students to assimilate new information, evaluate climate research, and to ultimately make decisions that are informed by science. The Biosphere 2 facility (B2) is uniquely suited for such outreach programs because it allows linking Earth system and ecological science research activities in a large scale controlled environment setting with outreach and education opportunities. A primary outreach goal is to demonstrate science in action to an audience that ranges from K-12 groups to retired citizens. Here we discuss approaches to outreach programs that focus on soil-water-atmosphere-plant interactions and their roles in the impacts and causes of global environmental change. We describe a suite of programs designed to vary the amount of participation a visitor has with the science process (from passive learning to data collection to helping design experiments) to test the hypothesis that active learning fosters increased scientific literacy and the creation of science advocates. We argue that a revised framing of the scientific method with a more open role for citizens in science will have greater success in fostering science literacy and produce a citizenry that is equipped to tackle complex environmental decision making.

  3. From the desktop to the grid: scalable bioinformatics via workflow conversion.

    PubMed

    de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver

    2016-03-12

    Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a positive impact on reproducibility, thus elevating the quality of obtained scientific results.

  4. A Complexity Approach to Evaluating National Scientific Systems through International Scientific Collaborations

    ERIC Educational Resources Information Center

    Zelnio, Ryan J.

    2013-01-01

    This dissertation seeks to contribute to a fuller understanding of how international scientific collaboration has affected national scientific systems. It does this by developing three methodological approaches grounded in social complexity theory and applying them to the evaluation of national scientific systems. The first methodology identifies…

  5. [Visual hygiene in LED lighting. Modern scientific imaginations].

    PubMed

    Deynego, V N; Kaptsov, V A

    2014-01-01

    There are considered a classic and modern paradigm of perception of light and its impact on human health. To consider the perception of light as a complex self-organizing synergistic system of compression of information in the process of its sequencing was supposed. This allowed to develop a complex of interrelated measures, which may become the basis for modern hygiene, and determine requirements for the led lamp with biologically adequate spectrum of the light, for which there were obtained patents in Russia, Europe and USA.

  6. Beyond Slopes and Points: Teaching Students How Graphs Describe the Relationships between Scientific Pheomena

    ERIC Educational Resources Information Center

    Harris, David; Gomez Zwiep, Susan

    2013-01-01

    Graphs represent complex information. They show relationships and help students see patterns and compare data. Students often do not appreciate the illuminating power of graphs, interpreting them literally rather than as symbolic representations (Leinhardt, Zaslavsky, and Stein 1990). Students often read graphs point by point instead of seeing…

  7. Variability Is Not the Villain: Finding Patterns in Complex Natural Images

    ERIC Educational Resources Information Center

    Brinton, Brigette Adair; Curran, Mary Carla

    2015-01-01

    Everyone needs strong observational skills to solve challenging problems and make informed decisions. However, many students expect to find exact answers to their questions by using the internet and do not understand the role of uncertainty, especially in decision making and scientific research. Humans and other animals choose among many options…

  8. 77 FR 25097 - Fisheries of the Northeastern United States; 2012-2013 Northeast Skate Complex Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... scientific information and reflect recent increases in skate biomass. DATES: This rule is effective May 1... average trawl survey biomass of clearnose skate declines by 40 percent or more. Additionally, this final... precautionary catch levels designed to promote biomass increases in all skates. Therefore, the commenter's...

  9. A consumer guide: tools to manage vegetation and fuels.

    Treesearch

    David L. Peterson; Louisa Evers; Rebecca A. Gravenmier; Ellen Eberhardt

    2007-01-01

    Current efforts to improve the scientific basis for fire management on public lands will benefit from more efficient transfer of technical information and tools that support planning, implementation, and effectiveness of vegetation and hazardous fuel treatments. The technical scope, complexity, and relevant spatial scale of analytical and decision support tools differ...

  10. A Practical Philosophy of Complex Climate Modelling

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  11. Building a Data Science capability for USGS water research and communication

    NASA Astrophysics Data System (ADS)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  12. Expanding our perspectives on research in musculoskeletal science and practice.

    PubMed

    Kerry, Roger

    2017-12-01

    The quantity and quality of scientific research within physiotherapy has unquestionably grown and matured over the last few decades, especially since the "formal" onset of evidence-based physiotherapy in the 1990s. The urgent need to evaluate our practice for effectiveness and efficiency has been responded to with thought and respect to both scientific integrity and shop-floor clinical needs. However, after thirty years or more of a professionally-governed and strategic approach to research activity, it is now timely to reflect, review, and consider the next chapter in the relationship between scientific research and clinical practice. This masterclass aims to develop a research vision for the future of physiotherapy. It is proposed that a crisis is evident within evidence-based physiotherapy, particular so given the assumed complexity and context-sensitivity of our clinical practice. This crisis period has highlighted fundamental limitations within the way research and practice are currently related. These limitations are presented and framed within the problematisation of empirical and philosophical concerns. As research becomes increasingly aligned to traditional scientific principles, examination of the real world context in which its outcomes are intended expose critical challenges for both research and clinical practice. A reconceptualisation of fundamental elements of scientific research may allow more meaningful relationships between research and clinical practice. A proposed research vision encourages scientific activity to embrace real-world complexity in a way that it is presently unable to. An enhanced person-centered, scientifically-informed world of effective musculoskeletal practice is envisaged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Innovative Climate Communication Strategies: What Sticks?

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M. F.; Heid, M.; Spanger-Siegfried, E.; Sideris, J.; Sanford, T. J.; Nurnberger, L.; Huertas, A.; Ekwurzel, B.; Cleetus, R.; Cell, K.

    2013-12-01

    A unique aspect of our work at the Union of Concerned Scientists (UCS) is the melding of scientific research and a robust communications initiative to bring salient information to decision makers and the public. Over the years, we have tried many different strategies to convey complex scientific information in an effective and appealing way, from movie stars to hope psychology, from dire warnings to academic appeals. But now that we are seeing climate impacts locally and climate change is no longer a future reality, what new vision do we need to support ongoing education? In this session we will present some of the techniques we have used to convey climate science concepts including our use of metaphors, data visualization, photography, blogs, social media, video, and public outreach events. Realizing that messages that stick are those that contain powerful narrative and speak to the emotional centers of our brains, we use innovative infographics as well as personal stories to encourage people to care about creating a healthier, cleaner planet. Reaching new audiences using unexpected messengers is a key focus. Some of the questions we will explore are: What metrics can we use to determine the efficacy of these tools? What are the best ways to convey urgency without a sense of hopelessness? How can we improve our communication at a time when action on climate is a necessity? Research shows infographics convey concepts much more easily and quickly than text alone, as our brains are wired to process visual scenes. Making complex scientific information accessible to the non-specialist public involves creativity and excellent data visualization.

  14. A Landscape Indicator Approach to the Identification and Articulation of the Ecological Consequences of Land Cover Change in the Chesapeake Bay Watershed, 1970-2000

    USGS Publications Warehouse

    Slonecker, Terrence

    2008-01-01

    The advancement of geographic science in the area of land surface status and trends and land cover change is at the core of the current geographic scientific research of the U.S. Geological Survey (USGS) (McMahon and others, 2005). Perhaps the least developed or articulated aspects of USGS land change science have been the identification and analysis of the ecological consequences of land cover change. Changes in land use and land cover significantly affect the ability of ecosystems to provide essential ecological goods and services, which, in turn, affect the economic, public health, and social benefits that these ecosystems provide. One of the great scientific challenges for geographic science is to understand and calibrate the effects of land use and land cover change and the complex interaction between human and biotic systems at a variety of natural, geographic, and political scales. Understanding the dynamics of land surface change requires an increased understanding of the complex nature of human-environmental systems and will require a suite of scientific tools that include traditional geographic data and analysis methods, such as remote sensing and geographic information systems (GIS), as well as innovative approaches to understanding the dynamics of complex systems. One such approach that has gained much recent scientific attention is the landscape indicator, or landscape assessment, approach, which has been developed with the emergence of the science of landscape ecology.

  15. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations.

    PubMed

    Losko, Sascha; Heumann, Klaus

    2017-01-01

    The vast quantities of information generated by academic and industrial research groups are reflected in a rapidly growing body of scientific literature and exponentially expanding resources of formalized data, including experimental data, originating from a multitude of "-omics" platforms, phenotype information, and clinical data. For bioinformatics, the challenge remains to structure this information so that scientists can identify relevant information, to integrate this information as specific "knowledge bases," and to formalize this knowledge across multiple scientific domains to facilitate hypothesis generation and validation. Here we report on progress made in building a generic knowledge management environment capable of representing and mining both explicit and implicit knowledge and, thus, generating new knowledge. Risk management in drug discovery and clinical research is used as a typical example to illustrate this approach. In this chapter we introduce techniques and concepts (such as ontologies, semantic objects, typed relationships, contexts, graphs, and information layers) that are used to represent complex biomedical networks. The BioXM™ Knowledge Management Environment is used as an example to demonstrate how a domain such as oncology is represented and how this representation is utilized for research.

  16. Neuroscience of water molecules: a salute to professor Linus Carl Pauling.

    PubMed

    Nakada, Tsutomu

    2009-04-01

    More than 35 years ago double Nobel laureate Linus Carl Pauling published a powerful model of the molecular mechanism of general anesthesia, generally referred to as the hydrate-microcrystal (aqueous-phase) theory. This hypothesis, based on the molecular behavior of water molecules, did not receive serious attention during Pauling's life time, when scientific tools for examining complex systems such as the brain were still in their infancy. The situation has since drastically changed, and, now, in the twenty first century, many scientific tools are available for examining different types of complex systems. The discovery of aquaporin-4, a subtype of water channel abundantly expressed in glial systems, further highlighted the concept that the dynamics of water molecules in the cerebral cortex play an important role in important physiological brain functions including consciousness and information processing.

  17. The spread of scientific information: insights from the web usage statistics in PLoS article-level metrics.

    PubMed

    Yan, Koon-Kiu; Gerstein, Mark

    2011-01-01

    The presence of web-based communities is a distinctive signature of Web 2.0. The web-based feature means that information propagation within each community is highly facilitated, promoting complex collective dynamics in view of information exchange. In this work, we focus on a community of scientists and study, in particular, how the awareness of a scientific paper is spread. Our work is based on the web usage statistics obtained from the PLoS Article Level Metrics dataset compiled by PLoS. The cumulative number of HTML views was found to follow a long tail distribution which is reasonably well-fitted by a lognormal one. We modeled the diffusion of information by a random multiplicative process, and thus extracted the rates of information spread at different stages after the publication of a paper. We found that the spread of information displays two distinct decay regimes: a rapid downfall in the first month after publication, and a gradual power law decay afterwards. We identified these two regimes with two distinct driving processes: a short-term behavior driven by the fame of a paper, and a long-term behavior consistent with citation statistics. The patterns of information spread were found to be remarkably similar in data from different journals, but there are intrinsic differences for different types of web usage (HTML views and PDF downloads versus XML). These similarities and differences shed light on the theoretical understanding of different complex systems, as well as a better design of the corresponding web applications that is of high potential marketing impact.

  18. The Spread of Scientific Information: Insights from the Web Usage Statistics in PLoS Article-Level Metrics

    PubMed Central

    Yan, Koon-Kiu; Gerstein, Mark

    2011-01-01

    The presence of web-based communities is a distinctive signature of Web 2.0. The web-based feature means that information propagation within each community is highly facilitated, promoting complex collective dynamics in view of information exchange. In this work, we focus on a community of scientists and study, in particular, how the awareness of a scientific paper is spread. Our work is based on the web usage statistics obtained from the PLoS Article Level Metrics dataset compiled by PLoS. The cumulative number of HTML views was found to follow a long tail distribution which is reasonably well-fitted by a lognormal one. We modeled the diffusion of information by a random multiplicative process, and thus extracted the rates of information spread at different stages after the publication of a paper. We found that the spread of information displays two distinct decay regimes: a rapid downfall in the first month after publication, and a gradual power law decay afterwards. We identified these two regimes with two distinct driving processes: a short-term behavior driven by the fame of a paper, and a long-term behavior consistent with citation statistics. The patterns of information spread were found to be remarkably similar in data from different journals, but there are intrinsic differences for different types of web usage (HTML views and PDF downloads versus XML). These similarities and differences shed light on the theoretical understanding of different complex systems, as well as a better design of the corresponding web applications that is of high potential marketing impact. PMID:21603617

  19. The role of NASA for aerospace information

    NASA Technical Reports Server (NTRS)

    Chandler, G. P., Jr.

    1980-01-01

    The NASA Scientific and Technical Information Program operations are performed by two contractor operated facilities. The NASA STI Facility, located near Baltimore, Maryland, employs about 210 people who process report literature, operate the computer complex, and provide support for software maintenance and developments. A second contractor, the Technical Information Services of the American Institute of Aeronautics and Astronautics, employs approximately 80 people in New York City and processes the open literature such as journals, magazines, and books. Features of these programs include online access via RECON, announcement services, and international document exchange.

  20. An Ontology-Enabled Natural Language Processing Pipeline for Provenance Metadata Extraction from Biomedical Text (Short Paper).

    PubMed

    Valdez, Joshua; Rueschman, Michael; Kim, Matthew; Redline, Susan; Sahoo, Satya S

    2016-10-01

    Extraction of structured information from biomedical literature is a complex and challenging problem due to the complexity of biomedical domain and lack of appropriate natural language processing (NLP) techniques. High quality domain ontologies model both data and metadata information at a fine level of granularity, which can be effectively used to accurately extract structured information from biomedical text. Extraction of provenance metadata, which describes the history or source of information, from published articles is an important task to support scientific reproducibility. Reproducibility of results reported by previous research studies is a foundational component of scientific advancement. This is highlighted by the recent initiative by the US National Institutes of Health called "Principles of Rigor and Reproducibility". In this paper, we describe an effective approach to extract provenance metadata from published biomedical research literature using an ontology-enabled NLP platform as part of the Provenance for Clinical and Healthcare Research (ProvCaRe). The ProvCaRe-NLP tool extends the clinical Text Analysis and Knowledge Extraction System (cTAKES) platform using both provenance and biomedical domain ontologies. We demonstrate the effectiveness of ProvCaRe-NLP tool using a corpus of 20 peer-reviewed publications. The results of our evaluation demonstrate that the ProvCaRe-NLP tool has significantly higher recall in extracting provenance metadata as compared to existing NLP pipelines such as MetaMap.

  1. End-User Applications of Real-Time Earthquake Information in Europe

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Gasparini, P.; Giardini, D.; Zschau, J.; Filangieri, A. R.; Reakt Wp7 Team

    2011-12-01

    The primary objective of European FP7 project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction) is to improve the efficiency of real-time earthquake risk mitigation methods and their capability of protecting structures, infrastructures, and populations. REAKT aims to address the issues of real-time earthquake hazard and response from end-to-end, with efforts directed along the full spectrum of methodology development in earthquake forecasting, earthquake early warning, and real-time vulnerability systems, through optimal decision-making, and engagement and cooperation of scientists and end users for the establishment of best practices for use of real-time information. Twelve strategic test cases/end users throughout Europe have been selected. This diverse group of applications/end users includes civil protection authorities, railway systems, hospitals, schools, industrial complexes, nuclear plants, lifeline systems, national seismic networks, and critical structures. The scale of target applications covers a wide range, from two school complexes in Naples, to individual critical structures, such as the Rion Antirion bridge in Patras, and the Fatih Sultan Mehmet bridge in Istanbul, to large complexes, such as the SINES industrial complex in Portugal and the Thessaloniki port area, to distributed lifeline and transportation networks and nuclear plants. Some end-users are interested in in-depth feasibility studies for use of real-time information and development of rapid response plans, while others intend to install real-time instrumentation and develop customized automated control systems. From the onset, REAKT scientists and end-users will work together on concept development and initial implementation efforts using the data products and decision-making methodologies developed with the goal of improving end-user risk mitigation. The aim of this scientific/end-user partnership is to ensure that scientific efforts are applicable to operational, real-world problems.

  2. US EPA's Ecological Risk Assessment Support Center ...

    EPA Pesticide Factsheets

    BackgroundThe ERASC provides technical information and addresses scientific questions of concern or interest on topics relevant to ecological risk assessment at hazardous waste sites for EPA's Office of Solid Waste and Emergency Response (OSWER) personnel and the Office of Resource Conservation and Recovery (ORCR) staff. Requests are channeled to ERASC through the Ecological Risk Assessment Forum (ERAF). To assess emerging and complex scientific issues that require expert judgment, the ERASC relies on the expertise of scientists and engineers located throughout EPA's Office of Research and Development (ORD) labs and centers.ResponseERASC develops responses that reflect the state of the science for ecological risk assessment and also provides a communication point for the distribution of the responses to other interested parties. For further information, contact Ecology_ERASC@epa.gov or call 513-569-7940.

  3. Being there: The continuing need for human presence in the deep ocean for scientific research and discovery

    NASA Astrophysics Data System (ADS)

    Fryer, P.; Fornari, D.; Perfit, M.; Von Damm, K.; Humphris, S.; Fox, P. J.; Lippsett, L.

    We see with our mind's eye. This poetic phrase attempts to describe a complex set of human interactions by which we take in and process information about the physical world around us. For millennia, scientists and philosophers have relied on our ability to apply the uniquely human traits of perception, cognition, memory and motor action to scientific observations and experiments. "There is no authority higher than the human eye," observed Leonardo Da Vinci, and his statement still holds true; as most field scientists will attest, there is no substitute for direct observation.

  4. Philosophy and Sociology of Science Evolution and History

    NASA Astrophysics Data System (ADS)

    Rosen, Joe

    The following sections are included: * Concrete Versus Abstract Theoretical Models * Introduction: concrete and abstract in kepler's contribution * Einstein's theory of gravitation and mach's principle * Unitary symmetry and the structure of hadrons * Conclusion * Dedication * Symmetry, Entropy and Complexity * Introduction * Symmetry Implies Abstraction and Loss of Information * Broken Symmetries - Imposed or Spontaneous * Symmetry, Order and Information * References * Cosmological Surrealism: More Than "Eternal Reality" Is Needed * Pythagoreanism in atomic, nuclear and particle physics * Introduction: Pythagoreanism as part of the Greek scientific world view — and the three questions I will tackle * Point 1: the impact of Gersonides and Crescas, two scientific anti-Aristotelian rebels * Point 2: Kepler's spheres to Bohr's orbits — Pythagoreanisms at last! * Point 3: Aristotle to Maupertuis, Emmy Noether, Schwinger * References * Paradigm Completion For Generalized Evolutionary Theory With Application To Epistemology * Evolution Fully Generalized * Entropy: Gravity as Model * Evolution and Entropy: Measures of Complexity * Extinctions and a Balanced Evolutionary Paradigm * The Evolution of Human Society - the Age of Information as example * High-Energy Physics and the World Wide Web * Twentieth Century Epistemology has Strong (de facto) Evolutionary Elements * The discoveries towards the beginning of the XXth Century * Summary and Conclusions * References * Evolutionary Epistemology and Invalidation * Introduction * Extinctions and A New Evolutionary Paradigm * Evolutionary Epistemology - Active Mutations * Evolutionary Epistemology: Invalidation as An Extinction * References

  5. Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.

    2017-12-01

    Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.

  6. Acceptance of standardized ultrasound classification, use of albendazole, and long-term follow-up in clinical management of cystic echinococcosis: a systematic review.

    PubMed

    Tamarozzi, Francesca; Nicoletti, Giovanni J; Neumayr, Andreas; Brunetti, Enrico

    2014-10-01

    Cystic echinococcosis is a chronic, complex, and neglected disease. The need for a simple classification of cyst morphology that would provide an accepted framework for scientific and clinical work on cystic echinococcosis has been addressed by two documents issued by the WHO Informal Working Group on Echinococcosis in 2003 (cyst classification) and in 2010 (Expert consensus for the diagnosis and treatment of echinococcosis). Here we evaluate the use of the WHO Informal Working Group on Echinococcosis classification of hepatic cystic echinococcosis, the acceptance by clinicians of recommendations regarding the use of albendazole, and the implementation of the long-term follow-up of patients with hepatic cystic echinococcosis in the scientific literature since the WHO Informal Working Group on Echinococcosis recommendations were issued. Of the publications included in our review, 71.2% did not indicate any classification, whereas 14% used the WHO Informal Working Group on Echinococcosis classification. Seventy-four percent reported the administration of peri-interventional albendazole, although less than half reported its modality, and 51% the length of patient follow-up. A joint effort is needed from the scientific community to encourage the acceptance and implementation of these three key issues in the clinical management of cystic echinococcosis.

  7. A survey of scientific production and collaboration rate among of medical library and information sciences in ISI, scopus and Pubmed databases during 2001-2010.

    PubMed

    Yousefy, Alireza; Malekahmadi, Parisa

    2013-01-01

    Research is essential for development. In other words, scientific development of each country can be evaluated by researchers' scientific production. Understanding and assessing the activities of researchers for planning and policy making is essential. The significance of collaboration in the production of scientific publications in today's complex world where technology is everything is very apparent. Scientists realized that in order to get their work wildly used and cited to by experts, they must collaborate. The collaboration among researchers results in the development of scientific knowledge and hence, attainment of wider information. The main objective of this research is to survey scientific production and collaboration rate in philosophy and theoretical bases of medical library and information sciences in ISI, SCOPUS, and Pubmed databases during 2001-2010. This is a descriptive survey and scientometrics methods were used for this research. Then data gathered via check list and analyzed by the SPSS software. Collaboration rate was calculated according to the formula. Among the 294 related abstracts about philosophy, and theoretical bases of medical library and information science in ISI, SCOPUS, and Pubmed databases during 2001-2010, the year 2007 with 45 articles has the most and the year 2003 with 16 articles has the least number of related collaborative articles in this scope. "B. Hjorland" with eight collaborative articles had the most one among Library and Information Sciences (LIS) professionals in ISI, SCOPUS, and Pubmed. Journal of Documentation with 29 articles and 12 collaborative articles had the most related articles. Medical library and information science challenges with 150 articles had first place in number of articles. Results also show that the most elaborative country in terms of collaboration point of view and number of articles was US. "University of Washington" and "University Western Ontario" are the most elaborative affiliation from a collaboration point. The average collaboration rate between researchers in this field during the years studied is 0.25. The most completive reviewed articles are single authors that included 60.54% of the whole articles. Only 30.46% of articles were provided with two or more than two authors.

  8. Increasing public understanding of transgenic crops through the World Wide Web.

    PubMed

    Byrne, Patrick F; Namuth, Deana M; Harrington, Judy; Ward, Sarah M; Lee, Donald J; Hain, Patricia

    2002-07-01

    Transgenic crops among the most controversial "science and society" issues of recent years. Because of the complex techniques involved in creating these crops and the polarized debate over their risks and beliefs, a critical need has arisen for accessible and balanced information on this technology. World Wide Web sites offer several advantages for disseminating information on a fast-changing technical topic, including their global accessibility; and their ability to update information frequently, incorporate multimedia formats, and link to networks of other sites. An alliance between two complementary web sites at Colorado State University and the University of Nebraska-Lincoln takes advantage of the web environment to help fill the need for public information on crop genetic engineering. This article describes the objectives and features of each site. Viewership data and other feedback have shown these web sites to be effective means of reaching public audiences on a complex scientific topic.

  9. Cornelia de Lange syndrome and molecular implications of the cohesin complex: Abstracts from the 7th biennial scientific and educational symposium 2016.

    PubMed

    Kline, Antonie D; Krantz, Ian D; Deardorff, Matthew A; Shirahige, Katsuhiko; Dorsett, Dale; Gerton, Jennifer L; Wu, Meng; Mehta, Devanshi; Mills, Jason A; Carrico, Cheri S; Noon, Sarah; Herrera, Pamela S; Horsfield, Julia A; Bettale, Chiara; Morgan, Jeremy; Huisman, Sylvia A; Moss, Jo; McCleery, Joseph; Grados, Marco; Hansen, Blake D; Srivastava, Siddharth; Taylor-Snell, Emily; Kerr, Lynne M; Katz, Olivia; Calof, Anne L; Musio, Antonio; Egense, Alena; Haaland, Richard E

    2017-05-01

    Cornelia de Lange Syndrome (CdLS) is due to mutations in the genes for the structural and regulatory proteins that make up the cohesin complex, and is considered a cohesinopathy disorder or, more recently, a transcriptomopathy. New phenotypes have been recognized in this expanding field. There are multiple clinical issues facing individuals with all forms of CdLS, particularly in the neurodevelopmental system, but also gastrointestinal, cardiac, and musculoskeletal. Aspects of developmental and cell biology have found common endpoints in the biology of the cohesin complex, with improved understanding of the mechanisms, easier diagnostic tests, and the possibility of potential therapeutics, all major clinical implications for the individual with CdLS. The following abstracts are the presentations from the 7th Cornelia de Lange Syndrome Scientific and Educational Symposium, June 22-23, 2016, in Orlando, FL, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting. In addition to the scientific and clinical discussions, there were talks related to practical aspects of behavior including autism, transitions, communication, access to medical care, and databases. At the end of the symposium, a panel was held, which included several parents, affected individuals and genetic counselors, and discussed the greatest challenges in life and how this information can assist in guiding future research. The Research Committee of the CdLS Foundation organizes this meeting, reviews, and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board and publications. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD. © 2017 Wiley Periodicals, Inc.

  10. NOAA Photo Library - Meet the Photographers/Frank Ruopoli

    Science.gov Websites

    Services Center since 1997. Frank earned a B.F.A. in Graphic Design at the Savannah College of Art and Design in 1993. As a designer, he helps package complex scientific information into useful products for /illustrator, his work includes design and layouts for print publications, exhibits, web pages, and multi-media

  11. Writing syntheses for managers: Lessons from the Rainbow Series and Fire Effects Information System

    Treesearch

    Jane Kapler Smith; Kristin L. Zouhar; Janet Fryer

    2009-01-01

    Scientific knowledge is essential for sound wildland management, but this knowledge is a complex, ever-expanding resource. Managers often request syntheses or reviews of available knowledge, and scientists have responded with an increasing number of syntheses for managers. Unfortunately, little guidance is available for this kind of writing. While most scientists have...

  12. Fostering Third-Grade Students' Use of Scientific Models with the Water Cycle: Elementary Teachers' Conceptions and Practices

    ERIC Educational Resources Information Center

    Vo, Tina; Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Elementary teachers play a crucial role in supporting and scaffolding students' model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers' learning to foster model-centered, science learning environments. To address this…

  13. Experimental Physical Sciences Vitae 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Del Mauro, Diana; Patterson, Eileen Frances

    Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.

  14. Human-Nature Relationships in School Science: A Critical Discourse Analysis of a Middle-Grade Science Textbook

    ERIC Educational Resources Information Center

    Sharma, Ajay; Buxton, Cory A.

    2015-01-01

    Science education has a central role to play in preparing a scientifically literate citizenry that is capable of understanding complex environmental challenges facing human societies and making well-informed and evidence-based decisions that help resolve these challenges. However, evidence suggests that most Americans are poorly equipped with the…

  15. Representation of Serendipitous Scientific Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program defines and implements an innovative kind of data structure than can be used for representing information derived from serendipitous discoveries made via collection of scientific data on long exploratory spacecraft missions. Data structures capable of collecting any kind of data can easily be implemented in advance, but the task of designing a fixed and efficient data structure suitable for processing raw data into useful information and taking advantage of serendipitous scientific discovery is becoming increasingly difficult as missions go deeper into space. The present software eases the task by enabling definition of arbitrarily complex data structures that can adapt at run time as raw data are transformed into other types of information. This software runs on a variety of computers, and can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware. It has no specific memory requirements and depends upon the other software with which it is used. This program is implemented as a library that is called by, and becomes folded into, the other software with which it is used.

  16. Linking Student Achievement and Teacher Science Content Knowledge about Climate Change: Ensuring the Nations 3 Million Teachers Understand the Science through an Electronic Professional Development System

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Byers, A.

    2009-12-01

    The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.

  17. A virtual data language and system for scientific workflow management in data grid environments

    NASA Astrophysics Data System (ADS)

    Zhao, Yong

    With advances in scientific instrumentation and simulation, scientific data is growing fast in both size and analysis complexity. So-called Data Grids aim to provide high performance, distributed data analysis infrastructure for data- intensive sciences, where scientists distributed worldwide need to extract information from large collections of data, and to share both data products and the resources needed to produce and store them. However, the description, composition, and execution of even logically simple scientific workflows are often complicated by the need to deal with "messy" issues like heterogeneous storage formats and ad-hoc file system structures. We show how these difficulties can be overcome via a typed workflow notation called virtual data language, within which issues of physical representation are cleanly separated from logical typing, and by the implementation of this notation within the context of a powerful virtual data system that supports distributed execution. The resulting language and system are capable of expressing complex workflows in a simple compact form, enacting those workflows in distributed environments, monitoring and recording the execution processes, and tracing the derivation history of data products. We describe the motivation, design, implementation, and evaluation of the virtual data language and system, and the application of the virtual data paradigm in various science disciplines, including astronomy, cognitive neuroscience.

  18. IAI Capacity Building Activities in the Americas: Fostering Multinational and Multidisciplinary Research

    NASA Astrophysics Data System (ADS)

    Ohira, M. S.

    2007-05-01

    The IAI's Training and Education (T&E) activities are designed to encourage capacity building in the Americas and are developed within and in parallel with the IAI research programs in global environmental change (GEC). The IAI has various training priorities: (1) support for graduate students in the form of fellowships through research programs; (2) development of IAI Training Institutes in Interdisciplinary Sciences and Science-Policy Fora; and (3) support for technical workshops, scientific meetings, and seminars. It becomes increasingly evident that institutions such as IAI must provide training and support to policy and decision makers who deal with environmental issues. The IAI Training Institutes emphasize an exchange of information about the various scientific languages, needs, and methodologies of disciplines that study GEC. Particular attention is given to socio-economic impacts and ways in which nations can gain a better understanding of the complex mechanisms, degrees of change, causes, and consequences - and therefore, plan sound public and private policies to minimize problems and maximize opportunities. The IAI has also implemented a Training Institute Seed Grant (TISG) Program as an assessment activity of the Training Institutes to further encourage network building and multinational and multidisciplinary collaboration among its 19 member countries in the Americas. By fostering the development of such new multidisciplinary, multinational teams, the IAI ensures a future generation of professionals who will be engaged in IAI research programs and networks and will lead the integrated science programs in the next decades. Furthermore, IAI has organized Science-Policy Fora, which focus on the science- policy interface and ways to incorporate scientific information into policy and decision-making processes. Participants discussed what scientific information is available, what aspects need to be better understood, translation of scientific information for the nonscientific community, potential uses of technical information, and policy issues that should be incorporated into the scientific community's agenda. Participants are individuals from governmental agencies, national and international organizations, nongovernmental organizations (NGO), universities, and private companies. Various other T&E-based initiatives that contribute to the building of scientific capacity in the Americas are supported by the IAI. Workshops, seminars, conferences, and other venues encourage the exchange of information and data providing scientists and professionals in global change related fields many opportunities to interact and benefit from multinational, multidisciplinary collaborations.

  19. The science of team science: A review of the empirical evidence and research gaps on collaboration in science.

    PubMed

    Hall, Kara L; Vogel, Amanda L; Huang, Grace C; Serrano, Katrina J; Rice, Elise L; Tsakraklides, Sophia P; Fiore, Stephen M

    2018-01-01

    Collaborations among researchers and across disciplinary, organizational, and cultural boundaries are vital to address increasingly complex challenges and opportunities in science and society. In addition, unprecedented technological advances create new opportunities to capitalize on a broader range of expertise and information in scientific collaborations. Yet rapid increases in the demand for scientific collaborations have outpaced changes in the factors needed to support teams in science, such as institutional structures and policies, scientific culture, and funding opportunities. The Science of Team Science (SciTS) field arose with the goal of empirically addressing questions from funding agencies, administrators, and scientists regarding the value of team science (TS) and strategies for successfully leading, engaging in, facilitating, and supporting science teams. Closely related fields have rich histories studying teams, groups, organizations, and management and have built a body of evidence for effective teaming in contexts such as industry and the military. Yet few studies had focused on science teams. Unique contextual factors within the scientific enterprise create an imperative to study these teams in context, and provide opportunities to advance understanding of other complex forms of collaboration. This review summarizes the empirical findings from the SciTS literature, which center around five key themes: the value of TS, team composition and its influence on TS performance, formation of science teams, team processes central to effective team functioning, and institutional influences on TS. Cross-cutting issues are discussed in the context of new research opportunities to further advance SciTS evidence and better inform policies and practices for effective TS. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Environmental Biosciences Program Second Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2004-12-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyls (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  1. Environmental Biosciences Program Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2006-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  2. Environmental Biosciences Program Fourth Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2005-06-30

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation s need for new and better approaches to the solution of a complex and expansive array of environment-related health problems.more » The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyles (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  3. Burning mouth syndrome: a discussion of a complex pathology.

    PubMed

    Zur, Eyal

    2012-01-01

    Burning mouth syndrome is a complex pathology for which there is very little information about the etiology and pathogenesis. This lack of knowledge leaves patients with suboptimal treatments. This article discusses the existing scientific evidence about this disease. Since topical oral use of clonazepam have been shown to be effective and safe to treat some patients suffering with burning mouth syndrome, formulations including clonazepam are included with this article. Compounding topical preparations of clonazepam offers opportunities for compounding pharmacists to be more involved in improving the quality of life of burning mouth syndrome patients.

  4. Jupyter meets Earth: Creating Comprehensible and Reproducible Scientific Workflows with Jupyter Notebooks and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2016-12-01

    Deriving actionable information from Earth observation data obtained from sensors or models can be quite complicated, and sharing those insights with others in a form that they can understand, reproduce, and improve upon is equally difficult. Journal articles, even if digital, commonly present just a summary of an analysis that cannot be understood in depth or reproduced without major effort on the part of the reader. Here we show a method of improving scientific literacy by pairing a recently developed scientific presentation technology (Jupyter Notebooks) with a petabyte-scale platform for accessing and analyzing Earth observation and model data (Google Earth Engine). Jupyter Notebooks are interactive web documents that mix live code with annotations such as rich-text markup, equations, images, videos, hyperlinks and dynamic output. Notebooks were first introduced as part of the IPython project in 2011, and have since gained wide acceptance in the scientific programming community, initially among Python programmers but later by a wide range of scientific programming languages. While Jupyter Notebooks have been widely adopted for general data analysis, data visualization, and machine learning, to date there have been relatively few examples of using Jupyter Notebooks to analyze geospatial datasets. Google Earth Engine is cloud-based platform for analyzing geospatial data, such as satellite remote sensing imagery and/or Earth system model output. Through its Python API, Earth Engine makes petabytes of Earth observation data accessible, and provides hundreds of algorithmic building blocks that can be chained together to produce high-level algorithms and outputs in real-time. We anticipate that this technology pairing will facilitate a better way of creating, documenting, and sharing complex analyses that derive information on our Earth that can be used to promote broader understanding of the complex issues that it faces. http://jupyter.orghttps://earthengine.google.com

  5. Making species checklists understandable to machines - a shift from relational databases to ontologies.

    PubMed

    Laurenne, Nina; Tuominen, Jouni; Saarenmaa, Hannu; Hyvönen, Eero

    2014-01-01

    The scientific names of plants and animals play a major role in Life Sciences as information is indexed, integrated, and searched using scientific names. The main problem with names is their ambiguous nature, because more than one name may point to the same taxon and multiple taxa may share the same name. In addition, scientific names change over time, which makes them open to various interpretations. Applying machine-understandable semantics to these names enables efficient processing of biological content in information systems. The first step is to use unique persistent identifiers instead of name strings when referring to taxa. The most commonly used identifiers are Life Science Identifiers (LSID), which are traditionally used in relational databases, and more recently HTTP URIs, which are applied on the Semantic Web by Linked Data applications. We introduce two models for expressing taxonomic information in the form of species checklists. First, we show how species checklists are presented in a relational database system using LSIDs. Then, in order to gain a more detailed representation of taxonomic information, we introduce meta-ontology TaxMeOn to model the same content as Semantic Web ontologies where taxa are identified using HTTP URIs. We also explore how changes in scientific names can be managed over time. The use of HTTP URIs is preferable for presenting the taxonomic information of species checklists. An HTTP URI identifies a taxon and operates as a web address from which additional information about the taxon can be located, unlike LSID. This enables the integration of biological data from different sources on the web using Linked Data principles and prevents the formation of information silos. The Linked Data approach allows a user to assemble information and evaluate the complexity of taxonomical data based on conflicting views of taxonomic classifications. Using HTTP URIs and Semantic Web technologies also facilitate the representation of the semantics of biological data, and in this way, the creation of more "intelligent" biological applications and services.

  6. Introduction to the LaRC central scientific computing complex

    NASA Technical Reports Server (NTRS)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  7. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy

    PubMed Central

    Weng, Liming; Zhang, Li; Peng, Yan; Huang, R Stephanie

    2013-01-01

    In the past decade, advances in pharmacogenetics and pharmacogenomics (PGx) have gradually unveiled the genetic basis of interindividual differences in drug responses. A large portion of these advances have been made in the field of anticancer therapy. Currently, the US FDA has updated the package inserts of approximately 30 anticancer agents to include PGx information. Given the complexity of this genetic information (e.g., tumor mutation and gene overexpression, chromosomal translocation and germline variations), as well as the variable level of scientific evidence, the FDA recommendation and potential action needed varies among drugs. In this review, we have highlighted some of these PGx discoveries for their scientific values and utility in improving therapeutic efficacy and reducing side effects. Furthermore, examples are also provided for the role of PGx in new anticancer drug development by revealing novel druggable targets. PMID:23394393

  8. A Drupal-Based Collaborative Framework for Science Workflows

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Gandara, A.

    2010-12-01

    Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.

  9. Experiences and attitudes towards evidence-informed policy-making among research and policy stakeholders in the Canadian agri-food public health sector.

    PubMed

    Young, I; Gropp, K; Pintar, K; Waddell, L; Marshall, B; Thomas, K; McEwen, S A; Rajić, A

    2014-12-01

    Policy-makers working at the interface of agri-food and public health often deal with complex and cross-cutting issues that have broad health impacts and socio-economic implications. They have a responsibility to ensure that policy-making based on these issues is accountable and informed by the best available scientific evidence. We conducted a qualitative descriptive study of agri-food public health policy-makers and research and policy analysts in Ontario, Canada, to understand their perspectives on how the policy-making process is currently informed by scientific evidence and how to facilitate this process. Five focus groups of 3-7 participants and five-one-to-one interviews were held in 2012 with participants from federal and provincial government departments and industry organizations in the agri-food public health sector. We conducted a thematic analysis of the focus group and interview transcripts to identify overarching themes. Participants indicated that the following six key principles are necessary to enable and demonstrate evidence-informed policy-making (EIPM) in this sector: (i) establish and clarify the policy objectives and context; (ii) support policy-making with credible scientific evidence from different sources; (iii) integrate scientific evidence with other diverse policy inputs (e.g. economics, local applicability and stakeholder interests); (iv) ensure that scientific evidence is communicated by research and policy stakeholders in relevant and user-friendly formats; (V) create and foster interdisciplinary relationships and networks across research and policy communities; and (VI) enhance organizational capacity and individual skills for EIPM. Ongoing and planned efforts in these areas, a supportive culture, and additional education and training in both research and policy realms are important to facilitate evidence-informed policy-making in this sector. Future research should explore these findings further in other countries and contexts. © 2014 Blackwell Verlag GmbH.

  10. The AIRInforma experiment: peer-reviewed public dissemination of science in Italy

    NASA Astrophysics Data System (ADS)

    Forneris, Federico; Cassetta, Luca; Gravina, Teresita

    2015-04-01

    Public dissemination of science to the public is often negatively affected by biased, incorrect information distributed over the world wide web through social networks and weblogs. In Italy, the lack of correct scientific information has generated several important issues, raising concerns by the international scientific community in several occasions over the past five years. Our association AIRIcerca (International Association of Italian Researchers, http://www.airicerca.org) has recently started a novel scientific dissemination initiative to the general public in Italy. The project is based on 1) direct involvement of researchers (with accademic or industrial affiliation) in article preparation and publication and 2) introduction of a peer-reviewing system similar to that applied in conventional scientific publishing. Our initiative, named AIRInforma (http://informa.airicerca.org) has already published more than 10 original articles and 3 meeting reports, in Italian language, about various fields of scientific research, ranging from social sciences to evolutionary biology , mathematics and medicine . The editorial board is composed of approximately 20 Italian scientists working all over the world and voluntarily contributing to the AIRInforma initiative. Submitted manuscripts are initially evaluated by the editorial board and, if suitable, they are assigned to four non-anonymous reviewers selected by the editorial board for accurate evaluation. Two reviewers are selected based on their specific expertise on the topic presented in the manuscript (expert reviewers), and two are specifically selected as working on distant fields (naive reviewers). The purpose of naive reviewers is to provide feedback on the efficacy and clarity of the information for the general public. So far, AIRInforma has established a novel channel of scientific communication in Italy, receiving excellent feedback and reaching more than 8000 new unique visitors every month on our website and social network communication pages. Recently established collaborations with other scientific blogs will facilitate the expansion of our public and of our pool of authors, which is constantly growing. Following the initial enthusiasm and success of our initiative, we are considering to convert AIRInforma into an effective scientific publication by obtaining digital object identifiers for our articles in order to increase their impact and facilitate their dissemination. We are strongly convinced that a correct scientific information to the public will be more and more relevant in the future, and we are confident that AIRInforma will contribute solid milestones of correctness and scientific accuracy to the complex landscape of scientific communication in Italy.

  11. [Medico-ecological approaches to the integrated management of water resources].

    PubMed

    El'piner, L I

    2012-01-01

    The necessity of taking into account the interests of public health care informing and implementing solutions for water management has been substantiated. Scientific frameworks and regulatory sanitary legislative documents relating to various areas of water management have been considered. The possibilities and the importance of performing complex territory medical ecological forecasts of effects of changes in hydrological situation have been demonstrated.

  12. K-8 Science Education: Elements That Matter. A Report from the 2007 North Carolina Science Summit

    ERIC Educational Resources Information Center

    James B. Hunt Jr. Institute for Educational Leadership and Policy, 2007

    2007-01-01

    Today's world is challenged by complex issues and citizens need ever-increasing scientific literacy to understand the impact of issues such as global warming, alternative energy, and genetic engineering, on their daily lives and to make informed decisions. Students need to be prepared to tackle issues such as these by being exposed to learning…

  13. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  14. Reading Assessment: A Primer for Teachers and Coaches. Second Edition. Solving Problems in the Teaching of Literacy

    ERIC Educational Resources Information Center

    Caldwell, JoAnne Schudt

    2007-01-01

    Now in a revised and expanded second edition, this invaluable book provides teachers and coaches with the information and tools they need to get started on the complex process of reading assessment. Grounded in a solid scientific framework, the book presents practical strategies that enable teachers to recognize "good reader" behaviors, assess…

  15. The Poetry of Dandelions: Merging Content-Area Literacy and Science Content Knowledge in a Fourth-Grade Science Classroom

    ERIC Educational Resources Information Center

    Madden, Lauren; Peel, Anne; Watson, Heather

    2014-01-01

    As teachers begin to implement the Common Core State Standards (CCSS) and Next Generation Science Standards (NGSS), they are challenged to focus on informational texts across the disciplines and engage children in critical thinking about complex scientific ideas. In this article, we present an integrated science-language arts lesson that explores…

  16. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    PubMed

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  17. The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE)

    PubMed Central

    Tian, Xin; Li, Zengyuan; Chen, Erxue; Liu, Qinhuo; Yan, Guangjian; Wang, Jindi; Niu, Zheng; Zhao, Shaojie; Li, Xin; Pang, Yong; Su, Zhongbo; van der Tol, Christiaan; Liu, Qingwang; Wu, Chaoyang; Xiao, Qing; Yang, Le; Mu, Xihan; Bo, Yanchen; Qu, Yonghua; Zhou, Hongmin; Gao, Shuai; Chai, Linna; Huang, Huaguo; Fan, Wenjie; Li, Shihua; Bai, Junhua; Jiang, Lingmei; Zhou, Ji

    2015-01-01

    The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework of COMPLICATE. The first was designed for continuous and elaborate experiments. The experimental strategy helps enhance our understanding of the radiative and scattering mechanisms of soil and vegetation and modeling of remotely sensed information for complex land surfaces. To validate the methodologies and models for dynamic analyses of remote sensing for complex land surfaces, the second campaign consisted of simultaneous satellite-borne, airborne, and ground-based experiments. During field campaigns, several continuous and intensive observations were obtained. Measurements were undertaken to answer key scientific issues, as follows: 1) Determine the characteristics of spatial heterogeneity and the radiative and scattering mechanisms of remote sensing on complex land surfaces. 2) Determine the mechanisms of spatial and temporal scale extensions for remote sensing on complex land surfaces. 3) Determine synergist inversion mechanisms for soil and vegetation parameters using multi-mode remote sensing on complex land surfaces. Here, we introduce the background, the objectives, the experimental designs, the observations and measurements, and the overall advances of COMPLICATE. As a result of the implementation of COMLICATE and for the next several years, we expect to contribute to quantitative remote sensing science and Earth observation techniques. PMID:26332035

  18. Scientific and technical complex for modeling, researching and testing of rocket-space vehicles’ electric power installations

    NASA Astrophysics Data System (ADS)

    Bezruchko, Konstantin; Davidov, Albert

    2009-01-01

    In the given article scientific and technical complex for modeling, researching and testing of rocket-space vehicles' power installations which was created in Power Source Laboratory of National Aerospace University "KhAI" is described. This scientific and technical complex gives the opportunity to replace the full-sized tests on model tests and to reduce financial and temporary inputs at modeling, researching and testing of rocket-space vehicles' power installations. Using the given complex it is possible to solve the problems of designing and researching of rocket-space vehicles' power installations efficiently, and also to provide experimental researches of physical processes and tests of solar and chemical batteries of rocket-space complexes and space vehicles. Scientific and technical complex also allows providing accelerated tests, diagnostics, life-time control and restoring of chemical accumulators for rocket-space vehicles' power supply systems.

  19. [Government management and society: information, technology and scientific output].

    PubMed

    Ribeiro, Patrícia; Sophia, Daniela Carvalho; Grigório, Deise de Araújo

    2007-01-01

    The complexity of government tasks today suggests that virtual interaction processes that could streamline flows and exchanges of information between governments and society in public policymaking may contribute to more effective intervention that is more closely attuned to the heterogeneity and diversity of social problems. Innovative participatory government administration initiatives have proliferated, together with the extension of public control over government actions, handled through by information technologies. Exploring this field, this paper identifies some key issues for better demarcation and qualification of such initiatives in public sector management, based on the authors' own experience in leading an institutional project designed to empower the political, technical, and communicative participation of society in discussions of the implementation of the Unified National Health System in Brazil. Based on a review of the literature analyzing the links among information, technology, development, and democracy, and particularly with regard to social management, this paper systematizes aspects for consideration drawn from in experiences of interactions between government and society, mediated by scientific knowledge, fostering greater transparency and plurality of views in government management.

  20. Scepticism and trust: two counterpoint essentials in science education for complex socio-scientific issues

    NASA Astrophysics Data System (ADS)

    Fensham, Peter J.

    2014-09-01

    In this response to Tom G. K. Bryce and Stephen P. Day's (Cult Stud Sci Educ. doi: 10.1007/s11422-013-9500-0, 2013) original article, I share with them their interest in the teaching of climate change in school science, but I widen it to include other contemporary complex socio-scientific issues that also need to be discussed. I use an alternative view of the relationship between science, technology and society, supported by evidence from both science and society, to suggest science-informed citizens as a more realistic outcome image of school science than the authors' one of mini-scientists. The intellectual independence of students Bryce and Day assume, and intend for school science, is countered with an active intellectual dependence. It is only in relation to emerging and uncertain scientific contexts that students should be taught about scepticism, but they also need to learn when, and why to trust science as an antidote to the expressions of doubting it. Some suggestions for pedagogies that could lead to these new learnings are made. The very recent fifth report of the IPCC answers many of their concerns about climate change.

  1. Clinical, developmental and molecular update on Cornelia de Lange syndrome and the cohesin complex: abstracts from the 2014 Scientific and Educational Symposium.

    PubMed

    Kline, Antonie D; Calof, Anne L; Lander, Arthur D; Gerton, Jennifer L; Krantz, Ian D; Dorsett, Dale; Deardorff, Matthew A; Blagowidow, Natalie; Yokomori, Kyoko; Shirahige, Katsuhiko; Santos, Rosaysela; Woodman, Julie; Megee, Paul C; O'Connor, Julia T; Egense, Alena; Noon, Sarah; Belote, Maurice; Goodban, Marjorie T; Hansen, Blake D; Timmons, Jenni Glad; Musio, Antonio; Ishman, Stacey L; Bryan, Yvon; Wu, Yaning; Bettini, Laura R; Mehta, Devanshi; Zakari, Musinu; Mills, Jason A; Srivastava, Siddharth; Haaland, Richard E

    2015-06-01

    Cornelia de Lange Syndrome (CdLS) is the most common example of disorders of the cohesin complex, or cohesinopathies. There are a myriad of clinical issues facing individuals with CdLS, particularly in the neurodevelopmental system, which also have implications for the parents and caretakers, involved professionals, therapists, and schools. Basic research in developmental and cell biology on cohesin is showing significant progress, with improved understanding of the mechanisms and the possibility of potential therapeutics. The following abstracts are presentations from the 6th Cornelia de Lange Syndrome Scientific and Educational Symposium, which took place on June 25-26, 2014, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting in Costa Mesa, CA. The Research Committee of the CdLS Foundation organizes the meeting, reviews and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board. In addition to the scientific and clinical discussions, there were educationally focused talks related to practical aspects of behavior and development. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD. © 2015 Wiley Periodicals, Inc.

  2. The Search for Braddock's Caldera-Guidebook for Colorado Scientific Society Fall 2008 Field Trip, Never Summer Mountains, Colorado

    USGS Publications Warehouse

    Cole, James C.; Larson, Ed; Farmer, Lang; Kellogg, Karl S.

    2008-01-01

    The report contains the illustrated guidebook that was used for the fall field trip of the Colorado Scientific Society on September 6-7, 2008. It summarizes new information about the Tertiary geologic history of the northern Front Range and the Never Summer Mountains, particularly the late Oligocene volcanic and intrusive rocks designated the Braddock Peak complex. Minor modifications were made in response to technical reviews by D.J. Lidke and C.A. Ruleman (U.S. Geological Survey) regarding clarity and consistency, and text editing by M.A. Kidd. However, the text remains essentially similar to the guidebook that was circulated to the participants on the Colorado Scientific Society 2008 field trip. Several notes were added following the trip (as indicated) to address developments since the guidebook was written.

  3. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research coveredmore » in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.« less

  4. Policy-Aware Content Reuse on the Web

    NASA Astrophysics Data System (ADS)

    Seneviratne, Oshani; Kagal, Lalana; Berners-Lee, Tim

    The Web allows users to share their work very effectively leading to the rapid re-use and remixing of content on the Web including text, images, and videos. Scientific research data, social networks, blogs, photo sharing sites and other such applications known collectively as the Social Web have lots of increasingly complex information. Such information from several Web pages can be very easily aggregated, mashed up and presented in other Web pages. Content generation of this nature inevitably leads to many copyright and license violations, motivating research into effective methods to detect and prevent such violations.

  5. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  6. U.S. Geological Survey core science systems strategy: characterizing, synthesizing, and understanding the critical zone through a modular science framework

    USGS Publications Warehouse

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2013-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that resulted from the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the Core Science Systems vision and outlines a strategy to facilitate integrated characterization and understanding of the complex Earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of the USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on Earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet-food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or affect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex Earth and biological systems through research, modeling, mapping, and the production of high quality data on the Nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential collaborations that transcend all USGS missions. The framework is designed to improve the efficiency of scientific work within USGS by establishing a means to preserve and recall data for future applications, organizing existing scientific knowledge and data to facilitate new use of older information, and establishing a future workflow that naturally integrates new data, applications, and other science products to make interdisciplinary research easier and more efficient. Given the increasing need for integrated data and interdisciplinary approaches to solve modern problems, leadership by the Core Science Systems mission will facilitate problem solving by all USGS missions in ways not formerly possible. The report lays out a strategy to achieve this vision through three goals with accompanying objectives and actions. The first goal builds on and enhances the strengths of the Core Science Systems mission in characterizing and understanding the Earth system from the geologic framework to the topographic characteristics of the land surface and biodiversity across the Nation. The second goal enhances and develops new strengths in computer and information science to make it easier for USGS scientists to discover data and models, share and publish results, and discover connections between scientific information and knowledge. The third goal brings additional focus to research and development methods to address complex issues affecting society that require integration of knowledge and new methods for synthesizing scientific information. Collectively, the report lays out a strategy to create a seamless connection between all USGS activities to accelerate and make USGS science more efficient by fully integrating disciplinary expertise within a new and evolving science paradigm for a changing world in the 21st century.

  7. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    USGS Publications Warehouse

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential collaborations that transcend all USGS missions. The framework is designed to improve the efficiency of scientific work within USGS by establishing a means to preserve and recall data for future applications, organizing existing scientific knowledge and data to facilitate new use of older information, and establishing a future workflow that naturally integrates new data, applications, and other science products to make it easier and more efficient to conduct interdisciplinary research over time. Given the increasing need for integrated data and interdisciplinary approaches to solve modern problems, leadership by the Core Science Systems mission will facilitate problem solving by all USGS missions in ways not formerly possible.The report lays out a strategy to achieve this vision through three goals with accompanying objectives and actions. The first goal builds on and enhances the strengths of the Core Science Systems mission in characterizing and understanding the earth system from the geologic framework to the topographic characteristics of the land surface and biodiversity across the nation. The second goal enhances and develops new strengths in computer and information science to make it easier for USGS scientists to discover data and models, share and publish results, and discover connections between scientific information and knowledge. The third goal brings additional focus to research and development methods to address complex issues affecting society that require integration of knowledge and new methods for synthesizing scientific information. Collectively, the report lays out a strategy to create a seamless connection between all USGS activities to accelerate and make USGS science more efficient by fully integrating disciplinary expertise within a new and evolving science paradigm for a changing world in the 21st century.

  8. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products.

    PubMed

    Bondi, Cara Am; Marks, Julia L; Wroblewski, Lauren B; Raatikainen, Heidi S; Lenox, Shannon R; Gebhardt, Kay E

    2015-01-01

    Environmental chemical exposure is a major concern for consumers of packaged goods. The complexity of chemical nomenclature and wide availability of scientific research provide detailed information but lends itself to misinterpretation by the lay person. For the surfactant sodium lauryl sulfate (SLS), this has resulted in a misunderstanding of the environmental health impact of the chemical and statements in the media that are not scientifically supported. This review demonstrates how scientific works can be misinterpreted and used in a manner that was not intended by the authors, while simultaneously providing insight into the true environmental health impact of SLS. SLS is an anionic surfactant commonly used in consumer household cleaning products. For decades, this chemical has been developing a negative reputation with consumers because of inaccurate interpretations of the scientific literature and confusion between SLS and chemicals with similar names. Here, we review the human and environmental toxicity profiles of SLS and demonstrate that it is safe for use in consumer household cleaning products.

  9. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products

    PubMed Central

    Bondi, Cara AM; Marks, Julia L; Wroblewski, Lauren B; Raatikainen, Heidi S; Lenox, Shannon R; Gebhardt, Kay E

    2015-01-01

    Environmental chemical exposure is a major concern for consumers of packaged goods. The complexity of chemical nomenclature and wide availability of scientific research provide detailed information but lends itself to misinterpretation by the lay person. For the surfactant sodium lauryl sulfate (SLS), this has resulted in a misunderstanding of the environmental health impact of the chemical and statements in the media that are not scientifically supported. This review demonstrates how scientific works can be misinterpreted and used in a manner that was not intended by the authors, while simultaneously providing insight into the true environmental health impact of SLS. SLS is an anionic surfactant commonly used in consumer household cleaning products. For decades, this chemical has been developing a negative reputation with consumers because of inaccurate interpretations of the scientific literature and confusion between SLS and chemicals with similar names. Here, we review the human and environmental toxicity profiles of SLS and demonstrate that it is safe for use in consumer household cleaning products. PMID:26617461

  10. Educating Students on the Need to Protect Authentic Science in Public Policy

    NASA Astrophysics Data System (ADS)

    Grifo, F.; McCarthy, M.; Langlais, C.

    2008-12-01

    Scientists have an important responsibility to be sure their students are aware of the ways in which their research results can be politicized and misused. Political interference in science has penetrated deeply into the culture and practices of federal agencies. The persistent and energetic engagement of scientists is critical to ensuring the government meets its obligation to serve the public interest. To foster thoughtful discussions about the proper role of science in federal policy making, the Union of Concerned Scientists (UCS) has created a Scientific Integrity Curriculum Guide to help graduate, undergraduate and advanced high school instructors teach this complex subject. The guide is a fully developed lesson plan that teachers in both scientific and non-scientific disciplines can tailor to suit their needs. It provides lecture slides, worksheets, homework assignments, essay suggestions, and links to other resources. Educating the next generation of scientists is essential because significant and long-lasting reforms require the support of a well- informed scientific community.

  11. Digital Archive Issues from the Perspective of an Earth Science Data Producer

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.

    2004-01-01

    Contents include the following: Introduction. A Producer Perspective on Earth Science Data. Data Producers as Members of a Scientific Community. Some Unique Characteristics of Scientific Data. Spatial and Temporal Sampling for Earth (or Space) Science Data. The Influence of the Data Production System Architecture. The Spatial and Temporal Structures Underlying Earth Science Data. Earth Science Data File (or Relation) Schemas. Data Producer Configuration Management Complexities. The Topology of Earth Science Data Inventories. Some Thoughts on the User Perspective. Science Data User Communities. Spatial and Temporal Structure Needs of Different Users. User Spatial Objects. Data Search Services. Inventory Search. Parameter (Keyword) Search. Metadata Searches. Documentation Search. Secondary Index Search. Print Technology and Hypertext. Inter-Data Collection Configuration Management Issues. An Archive View. Producer Data Ingest and Production. User Data Searching and Distribution. Subsetting and Supersetting. Semantic Requirements for Data Interchange. Tentative Conclusions. An Object Oriented View of Archive Information Evolution. Scientific Data Archival Issues. A Perspective on the Future of Digital Archives for Scientific Data. References Index for this paper.

  12. The Goldstone solar system radar: A science instrument for planetary research

    NASA Technical Reports Server (NTRS)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  13. Visual analytics as a translational cognitive science.

    PubMed

    Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard

    2011-07-01

    Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.

  14. Remote Sensing of Soils for Environmental Assessment and Management.

    NASA Technical Reports Server (NTRS)

    DeGloria, Stephen D.; Irons, James R.; West, Larry T.

    2014-01-01

    The next generation of imaging systems integrated with complex analytical methods will revolutionize the way we inventory and manage soil resources across a wide range of scientific disciplines and application domains. This special issue highlights those systems and methods for the direct benefit of environmental professionals and students who employ imaging and geospatial information for improved understanding, management, and monitoring of soil resources.

  15. SEE: structured representation of scientific evidence in the biomedical domain using Semantic Web techniques

    PubMed Central

    2014-01-01

    Background Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. Results We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. Conclusions SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats. PMID:25093070

  16. SEE: structured representation of scientific evidence in the biomedical domain using Semantic Web techniques.

    PubMed

    Bölling, Christian; Weidlich, Michael; Holzhütter, Hermann-Georg

    2014-01-01

    Accounts of evidence are vital to evaluate and reproduce scientific findings and integrate data on an informed basis. Currently, such accounts are often inadequate, unstandardized and inaccessible for computational knowledge engineering even though computational technologies, among them those of the semantic web, are ever more employed to represent, disseminate and integrate biomedical data and knowledge. We present SEE (Semantic EvidencE), an RDF/OWL based approach for detailed representation of evidence in terms of the argumentative structure of the supporting background for claims even in complex settings. We derive design principles and identify minimal components for the representation of evidence. We specify the Reasoning and Discourse Ontology (RDO), an OWL representation of the model of scientific claims, their subjects, their provenance and their argumentative relations underlying the SEE approach. We demonstrate the application of SEE and illustrate its design patterns in a case study by providing an expressive account of the evidence for certain claims regarding the isolation of the enzyme glutamine synthetase. SEE is suited to provide coherent and computationally accessible representations of evidence-related information such as the materials, methods, assumptions, reasoning and information sources used to establish a scientific finding by adopting a consistently claim-based perspective on scientific results and their evidence. SEE allows for extensible evidence representations, in which the level of detail can be adjusted and which can be extended as needed. It supports representation of arbitrary many consecutive layers of interpretation and attribution and different evaluations of the same data. SEE and its underlying model could be a valuable component in a variety of use cases that require careful representation or examination of evidence for data presented on the semantic web or in other formats.

  17. The Earth Education by the traces of cartoons and comics: a vision of what was published in newspapers, available online, on five continents

    NASA Astrophysics Data System (ADS)

    Teixeira, Carlos; Paulo, Gallo; Nogueira, Maria Inês

    2015-04-01

    Communication's Purpose: Identify the artistic expression that uses the language of cartoons and comics for public communication, having as reference the Earth Education for a better planet sustainability. Object/Theme: Cartoons and comics published in newspapers, on five continents, made available in online version. Theoretical: This study is related to the assumption that the public communication of science by cartoons and comics constitute a textual genre, by the fact that they report scientific and complex themes presented in playful language, using humor and artistic traces accessible to the lay public. The scientific cartoons and comics aim to call public attention to scientific discoveries and science themes using illustrative chart features and short texts, both contextualized in a humorous structure. There are in the cartoons and comics, which are created to the public communication of science, an unintentionally pedagogical approach/formal, while transmitting information by unpretentious way and using graphic/artistic communication By the fact that in this specific format of communication there is knowledge being informed, the scientific cartoons and comics can contribute to the scientific empowerment of the society, in addition to being instruments that can also arouse scientific curiosity. The scientific cartoons and comics use objective language and short sentences, also employ words that may have a double meaning. It can be considered as an incentive for people's reflection. Method: It was analyzed cartoons and comics published in newspapers, made available in online version, published on five continents, in English, Portuguese and Spanish. Palavras-chave: science communication, public communication of science and technology; cartoons; comics

  18. Volume and Value of Big Healthcare Data.

    PubMed

    Dinov, Ivo D

    Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions.

  19. Volume and Value of Big Healthcare Data

    PubMed Central

    Dinov, Ivo D.

    2016-01-01

    Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions. PMID:26998309

  20. JPRS Report, Science & Technology, USSR: Science and Technology Policy.

    DTIC Science & Technology

    1988-03-03

    accordance with the Kazakhstan Regional Scientific Research Program, which is called upon to unite scientific development of a basic and applied nature...Resources for 1986-1990 and the Period to 2000." The institute is a part of the union Avtogennyye protsessy Scientific Technical Complex and the...republic Tsvetnaya metallurgiya Scientific Technical Complex and is participating in the work of the creative youth collective for the automation of

  1. Featured Article: Genotation: Actionable knowledge for the scientific reader

    PubMed Central

    Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L

    2016-01-01

    We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org. The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug–gene relationships, 5981 gene–disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. PMID:26900164

  2. Featured Article: Genotation: Actionable knowledge for the scientific reader.

    PubMed

    Nagahawatte, Panduka; Willis, Ethan; Sakauye, Mark; Jose, Rony; Chen, Hao; Davis, Robert L

    2016-06-01

    We present an article viewer application that allows a scientific reader to easily discover and share knowledge by linking genomics-related concepts to knowledge of disparate biomedical databases. High-throughput data streams generated by technical advancements have contributed to scientific knowledge discovery at an unprecedented rate. Biomedical Informaticists have created a diverse set of databases to store and retrieve the discovered knowledge. The diversity and abundance of such resources present biomedical researchers a challenge with knowledge discovery. These challenges highlight a need for a better informatics solution. We use a text mining algorithm, Genomine, to identify gene symbols from the text of a journal article. The identified symbols are supplemented with information from the GenoDB knowledgebase. Self-updating GenoDB contains information from NCBI Gene, Clinvar, Medgen, dbSNP, KEGG, PharmGKB, Uniprot, and Hugo Gene databases. The journal viewer is a web application accessible via a web browser. The features described herein are accessible on www.genotation.org The Genomine algorithm identifies gene symbols with an accuracy shown by .65 F-Score. GenoDB currently contains information regarding 59,905 gene symbols, 5633 drug-gene relationships, 5981 gene-disease relationships, and 713 pathways. This application provides scientific readers with actionable knowledge related to concepts of a manuscript. The reader will be able to save and share supplements to be visualized in a graphical manner. This provides convenient access to details of complex biological phenomena, enabling biomedical researchers to generate novel hypothesis to further our knowledge in human health. This manuscript presents a novel application that integrates genomic, proteomic, and pharmacogenomic information to supplement content of a biomedical manuscript and enable readers to automatically discover actionable knowledge. © 2016 by the Society for Experimental Biology and Medicine.

  3. 77 FR 11121 - Scientific Information Request on Treatment of Atrial Fibrillation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... fibrillation medical devices. Scientific information is being solicited to inform our Comparative Effectiveness... unpublished pertinent scientific information on this device will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative...

  4. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs

    PubMed Central

    Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-01-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs. PMID:21816958

  5. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs.

    PubMed

    Kagan, Jonathan M; Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs.

  6. Web-Accessible Scientific Workflow System for Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roelof Versteeg; Roelof Versteeg; Trevor Rowe

    2006-03-01

    We describe the design and implementation of a web accessible scientific workflow system for environmental monitoring. This workflow environment integrates distributed, automated data acquisition with server side data management and information visualization through flexible browser based data access tools. Component technologies include a rich browser-based client (using dynamic Javascript and HTML/CSS) for data selection, a back-end server which uses PHP for data processing, user management, and result delivery, and third party applications which are invoked by the back-end using webservices. This environment allows for reproducible, transparent result generation by a diverse user base. It has been implemented for several monitoringmore » systems with different degrees of complexity.« less

  7. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  8. Advances in Understanding the Fate and Effects of Oil from Accidental Spills in the United States Beginning with the Exxon Valdez.

    PubMed

    Short, Jeffrey W

    2017-07-01

    Scientific studies of the environmental effects of oil spills in the United States have produced a steady stream of unexpected discoveries countering prior and often simplistic assumptions. In this brief review, I present how major discoveries from scientific studies of oil spill effects on marine ecosystems and environments, beginning with the 1989 Exxon Valdez, have led to a more informed appreciation for the complexity and the severity of the damage that major spills can do to marine ecosystems and to an increasing recognition that our ability to evaluate those damages is very limited, resulting in a structural bias toward underestimation of adverse environmental effects.

  9. 77 FR 24716 - Scientific Information Request on Medical Devices To Treat Otitis Media With Effusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... devices. Scientific information is being solicited to inform our Comparative Effectiveness Review of... scientific information on this device will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  10. Transmedia Storytelling in Science Communication: One Subject, Multiple Media, Multiple Stories

    NASA Astrophysics Data System (ADS)

    Unger, M.; Moloney, K.

    2012-12-01

    Each communication medium has particular storytelling strengths. For example, video is particularly good at illustrating a progression of events, text at background and context, and games at describing systems. In what USC's Prof. Henry Jenkins described as "transmedia storytelling," multiple media are used simultaneously, in an expansive rather than repetitive way, to better tell a single, complex story. The audience is given multiple entry points to the story, and the story is exposed to diverse and dispersed audiences, ultimately engaging a broader public. We will examine the effectiveness of a transmedia approach to communicating scientific and other complex concepts to a broad and diverse audience. Using the recently developed Educational Visitor Center at the NCAR-Wyoming Supercomputing Center as a case study, we will evaluate the reach of various means of presenting information about the geosciences, climate change and computational science. These will include an assessment of video, mechanical and digital interactive elements, animated movie segments, web-based content, photography, scientific visualizations, printed material and docent-led activities.

  11. A multi-service data management platform for scientific oceanographic products

    NASA Astrophysics Data System (ADS)

    D'Anca, Alessandro; Conte, Laura; Nassisi, Paola; Palazzo, Cosimo; Lecci, Rita; Cretì, Sergio; Mancini, Marco; Nuzzo, Alessandra; Mirto, Maria; Mannarini, Gianandrea; Coppini, Giovanni; Fiore, Sandro; Aloisio, Giovanni

    2017-02-01

    An efficient, secure and interoperable data platform solution has been developed in the TESSA project to provide fast navigation and access to the data stored in the data archive, as well as a standard-based metadata management support. The platform mainly targets scientific users and the situational sea awareness high-level services such as the decision support systems (DSS). These datasets are accessible through the following three main components: the Data Access Service (DAS), the Metadata Service and the Complex Data Analysis Module (CDAM). The DAS allows access to data stored in the archive by providing interfaces for different protocols and services for downloading, variables selection, data subsetting or map generation. Metadata Service is the heart of the information system of the TESSA products and completes the overall infrastructure for data and metadata management. This component enables data search and discovery and addresses interoperability by exploiting widely adopted standards for geospatial data. Finally, the CDAM represents the back-end of the TESSA DSS by performing on-demand complex data analysis tasks.

  12. Reflections from the interface between seismological research and earthquake risk reduction

    NASA Astrophysics Data System (ADS)

    Sargeant, S.

    2012-04-01

    Scientific understanding of earthquakes and their attendant hazards is vital for the development of effective earthquake risk reduction strategies. Within the global disaster reduction policy framework (the Hyogo Framework for Action, overseen by the UN International Strategy for Disaster Reduction), the anticipated role of science and scientists is clear, with respect to risk assessment, loss estimation, space-based observation, early warning and forecasting. The importance of information sharing and cooperation, cross-disciplinary networks and developing technical and institutional capacity for effective disaster management is also highlighted. In practice, the degree to which seismological information is successfully delivered to and applied by individuals, groups or organisations working to manage or reduce the risk from earthquakes is variable. The challenge for scientists is to provide fit-for-purpose information that can be integrated simply into decision-making and risk reduction activities at all levels of governance and at different geographic scales, often by a non-technical audience (i.e. people without any seismological/earthquake engineering training). The interface between seismological research and earthquake risk reduction (defined here in terms of both the relationship between the science and its application, and the scientist and other risk stakeholders) is complex. This complexity is a function of a range issues that arise relating to communication, multidisciplinary working, politics, organisational practices, inter-organisational collaboration, working practices, sectoral cultures, individual and organisational values, worldviews and expectations. These factors can present significant obstacles to scientific information being incorporated into the decision-making process. The purpose of this paper is to present some personal reflections on the nature of the interface between the worlds of seismological research and risk reduction, and the implications for scientists and information delivery.

  13. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    PubMed Central

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  14. Science preparedness and science response: perspectives on the dynamics of preparedness conference.

    PubMed

    Lant, Timothy; Lurie, Nicole

    2013-01-01

    The ability of the scientific modeling community to meaningfully contribute to postevent response activities during public health emergencies was the direct result of a discrete set of preparedness activities as well as advances in theory and technology. Scientists and decision-makers have recognized the value of developing scientific tools (e.g. models, data sets, communities of practice) to prepare them to be able to respond quickly--in a manner similar to preparedness activities by first-responders and emergency managers. Computational models have matured in their ability to better inform response plans by modeling human behaviors and complex systems. We advocate for further development of science preparedness activities as deliberate actions taken in advance of an unpredicted event (or an event with unknown consequences) to increase the scientific tools and evidence-base available to decision makers and the whole-of-community to limit adverse outcomes.

  15. The Integrity of Science: Identifying Logical Fallacies, Deceitful Tactics, and Abuse of the Public Trust

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2006-12-01

    Science, government, and society interact in diverse and complex ways, but good scientific information and advice are vital for making sound policy decisions. Recent efforts to discredit or distort science for political agendas raise difficult questions for the scientific community. As a result, there is growing distrust of scientists long held in esteem by the public and a growing misuse of science critical for public policy. This paper will categorize and define more than 20 different kinds of problems that challenge the integrity of science, including logical fallacies, such as Arguments from Ideology, Personal Incredulity, or Ignorance; and deceitful tactics, such as ad hominem attacks, "straw man" mischaracterizations, scientific misconduct, and misuse of facts. Examples from the geophysical sciences and its intersection with the public policy arena will be presented, together with suggestions for strengthening the public trust.

  16. Evidence-based patient information about treatment of multiple sclerosis--a phase one study on comprehension and emotional responses.

    PubMed

    Kasper, Jürgen; Köpke, Sascha; Mühlhauser, Ingrid; Heesen, Christoph

    2006-07-01

    This study analysis the comprehension and emotional responses of people suffering from multiple sclerosis when provided with an evidence-based information module. It is a core module of a comprehensive decision aid about immunotherapy. The core module is designed to enable patients to process scientific uncertainty without adverse effects. It considers existing standards for risk communication and presentation of data. Using a mailing approach we investigated 169 patients with differing courses of disease in a before-after design. Items addressed the competence in processing relative and absolute risk information and patients' emotional response to the tool, comprising grade of familiarity with the information, understanding, relevance, emotional arousal, and certainty. Overall, numeracy improved (p < 0.001), although 99 of 169 patients did not complete the numeracy task correctly. Understanding depended on the relevance related to the course of disease. A moderate level of uncertainty was induced. No adverse emotional responses could be shown, neither in those who did comprehend the information, nor in those who did not develop numeracy skills. In conclusion, the tool supports people suffering from multiple sclerosis to process evidence-based medical information and scientific uncertainty without burdening them emotionally. This study is an example for the documentation of an important step in the development process of a complex intervention.

  17. 78 FR 42954 - Scientific Information Request on Imaging Tests for the Staging of Colorectal Cancer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    .... Scientific information is being solicited to inform our Comparative Effectiveness Review of Imaging Tests for... scientific information on these devices will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  18. 78 FR 38716 - Scientific Information Request on Imaging Tests for the Staging of Colorectal Cancer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    .... Scientific information is being solicited to inform our Comparative Effectiveness Review of Imaging Tests for... scientific information on these devices will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  19. USGS Capabilities to Study the Impacts of Drought and Climate Change in the Southeastern United States

    USGS Publications Warehouse

    ,

    2009-01-01

    In the Southeast, U.S. Geological Survey (USGS) scientists are researching issues through technical studies of water availability and quality, geologic processes (marine, coastal, and terrestrial), geographic complexity, and biological resources. The USGS is prepared to tackle multifaceted questions associated with global climate change and resulting weather patterns such as drought through expert scientific skill, innovative research approaches, and accurate information technology.

  20. How Much Confidence Can We Have in EU-SILC? Complex Sample Designs and the Standard Error of the Europe 2020 Poverty Indicators

    ERIC Educational Resources Information Center

    Goedeme, Tim

    2013-01-01

    If estimates are based on samples, they should be accompanied by appropriate standard errors and confidence intervals. This is true for scientific research in general, and is even more important if estimates are used to inform and evaluate policy measures such as those aimed at attaining the Europe 2020 poverty reduction target. In this article I…

  1. Challenges for allergy diagnosis in regions with complex pollen exposures.

    PubMed

    Barber, Domingo; Díaz-Perales, Araceli; Villalba, Mayte; Chivato, Tomas

    2015-02-01

    Over the past few decades, significant scientific progress has influenced clinical allergy practice. The biological standardization of extracts was followed by the massive identification and characterization of new allergens and their progressive use as diagnostic tools including allergen micro arrays that facilitate the simultaneous testing of more than 100 allergen components. Specific diagnosis is the basis of allergy practice and is always aiming to select the best therapeutic or avoidance intervention. As a consequence, redundant or irrelevant information might be adding unnecessary cost and complexity to daily clinical practice. A rational use of the different diagnostic alternatives would allow a significant improvement in the diagnosis and treatment of allergic patients, especially for those residing in complex pollen exposure areas.

  2. Surgical Treatment and Rehabilitation of Combined Complex Ligament Injuries

    PubMed Central

    Romeyn, Richard L.; Jennings, Jason

    2008-01-01

    This article is a description of the surgical treatment and rehabilitation of combined complex ligament injuries. A background will be provided, and information on the combined complex knee injuries, selected aspects of surgical treatments, and rehabilitation strategies will be presented. Combined complex ligament injuries are devastating injuries and are not very common compared to other knee injuries. No meta-analysis or systematic review studies exist regarding the best treatments for these patients. This article's emphasis is on the stages in the rehabilitation program with documentation of the scientific and clinical rationale for the treatment techniques in each stage. Treatment interventions are described and documented with the limited evidence available in treating these patients. Guidelines for treatment, surgery, and a clinical protocol for treating patients with combined complex ligament injuries are provided for the practicing clinician to use as a template for treating these complicated patients. PMID:21509123

  3. Anticoagulant treatment of medical patients with complex clinical conditions.

    PubMed

    Ruiz-Ruiz, F; Medrano, F J; Santos-Lozano, J M; Rodríguez-Torres, P; Navarro-Puerto, A; Calderón, E J

    2018-06-12

    There is scarce available information on the treatment or prophylaxis with anticoagulant drugs of outpatients with medical diseases and complex clinical conditions. There are no clinical practice guidelines and/or specific recommendations for this patient subgroup, which are frequently treated by internists. Complex clinical conditions are those in which, due to comorbidity, age, vital prognosis or multiple treatment with drugs, a clinical situation arises of disease-disease, disease-drug or drug-drug interactions that is not included within the scenarios that commonly generate the scientific evidence. The objective of this narrative review is collecting and adapting of the clinical guidelines recommendations and systematic reviews to complex clinical conditions, in which the direct application of recommendations based on studies that do not include patients with this complexity and comorbidity could be problematic. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  4. The difficulties of systematic reviews.

    PubMed

    Westgate, Martin J; Lindenmayer, David B

    2017-10-01

    The need for robust evidence to support conservation actions has driven the adoption of systematic approaches to research synthesis in ecology. However, applying systematic review to complex or open questions remains challenging, and this task is becoming more difficult as the quantity of scientific literature increases. We drew on the science of linguistics for guidance as to why the process of identifying and sorting information during systematic review remains so labor intensive, and to provide potential solutions. Several linguistic properties of peer-reviewed corpora-including nonrandom selection of review topics, small-world properties of semantic networks, and spatiotemporal variation in word meaning-greatly increase the effort needed to complete the systematic review process. Conversely, the resolution of these semantic complexities is a common motivation for narrative reviews, but this process is rarely enacted with the rigor applied during linguistic analysis. Therefore, linguistics provides a unifying framework for understanding some key challenges of systematic review and highlights 2 useful directions for future research. First, in cases where semantic complexity generates barriers to synthesis, ecologists should consider drawing on existing methods-such as natural language processing or the construction of research thesauri and ontologies-that provide tools for mapping and resolving that complexity. These tools could help individual researchers classify research material in a more robust manner and provide valuable guidance for future researchers on that topic. Second, a linguistic perspective highlights that scientific writing is a rich resource worthy of detailed study, an observation that can sometimes be lost during the search for data during systematic review or meta-analysis. For example, mapping semantic networks can reveal redundancy and complementarity among scientific concepts, leading to new insights and research questions. Consequently, wider adoption of linguistic approaches may facilitate improved rigor and richness in research synthesis. © 2017 Society for Conservation Biology.

  5. The Stigma Complex

    PubMed Central

    Pescosolido, Bernice A.; Martin, Jack K.

    2016-01-01

    Since the beginning of the twenty-first century, research on stigma has continued. Building on conceptual and empirical work, the recent period clarifies new types of stigmas, expansion of measures, identification of new directions, and increasingly complex levels. Standard beliefs have been challenged, the relationship between stigma research and public debates reconsidered, and new scientific foundations for policy and programs suggested. We begin with a summary of the most recent Annual Review articles on stigma, which reminded sociologists of conceptual tools, informed them of developments from academic neighbors, and claimed findings from the early period of “resurgence.” Continued (even accelerated) progress has also revealed a central problem. Terms and measures are often used interchangeably, leading to confusion and decreasing accumulated knowledge. Drawing from this work but focusing on the past 14 years of stigma research (including mental illness, sexual orientation, HIV/AIDS, and race/ethnicity), we provide a theoretical architecture of concepts (e.g., prejudice, experienced/received discrimination), drawn together through a stigma process (i.e., stigmatization), based on four theoretical premises. Many characteristics of the mark (e.g., discredited, concealable) and variants (i.e., stigma types and targets) become the focus of increasingly specific and multidimensional definitions. Drawing from complex and systems science, we propose a stigma complex, a system of interrelated, heterogeneous parts bringing together insights across disciplines to provide a more realistic and complicated sense of the challenge facing research and change efforts. The Framework Integrating Normative Influences on Stigma (FINIS) offers a multilevel approach that can be tailored to stigmatized statuses. Finally, we outline challenges for the next phase of stigma research, with the goal of continuing scientific activity that enhances our understanding of stigma and builds the scientific foundation for efforts to reduce intolerance. PMID:26855471

  6. An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy

    ERIC Educational Resources Information Center

    Pavlova, Iglika V.; Lewis, Kayla C.

    2013-01-01

    Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles."…

  7. Echoes That Never Were: American Mobile Intercontinental Ballistic Missiles, 1956-1983

    DTIC Science & Technology

    2006-05-11

    research, develop, operate, maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific ...maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific laws, economic...technological system that blended scientific laws, economic realities, political forces, and social concerns that included environmentalism and

  8. Promissory accounts of personalisation in the commercialisation of genomic knowledge.

    PubMed

    Arribas-Ayllon, Michael; Sarangi, Srikant; Clarke, Angus

    2011-01-01

    As part of personalised medicine emerging from the human genomics revolution, many websites now offer direct-to-consumer genetic testing. Here, we examine three personal genomics companies--Navigenics, deCODEme and 23andMe--each of which represents contrasting registers of 'personalisation'. We identify three distinctive registers in these websites: a paternalistic (medical) register; a translational (scientific) register and a democratic (consumerist) register. We explore in detail the rhetorical and discourse devices employed in these websites to assess how personalised healthcare is promised to the public. Promising information that will empower prevention of common complex diseases and ensure better quality of life is conflated with promising greater access to personal information. The presence and absence of scientific legitimacy is related to concerns about accuracy and validity on the one side, and fears of paternalism and elitism on the other. Nevertheless, a common strategy uniting these different styles of personalisation is consumer empowerment. Finally, we consider the tension between the drive of translational medicine to make human genomic research practically relevant, and the intrinsic uncertainties of scientific research and show how, in the commercial domain, future risks are transformed into discourses of promise by concealing these uncertainties.

  9. Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon.

    PubMed

    Barlow, Jos; Ewers, Robert M; Anderson, Liana; Aragao, Luiz E O C; Baker, Tim R; Boyd, Emily; Feldpausch, Ted R; Gloor, Emanuel; Hall, Anthony; Malhi, Yadvinder; Milliken, William; Mulligan, Mark; Parry, Luke; Pennington, Toby; Peres, Carlos A; Phillips, Oliver L; Roman-Cuesta, Rosa Maria; Tobias, Joseph A; Gardner, Toby A

    2011-05-01

    Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  10. New insights from monogenic diabetes for “common” type 2 diabetes

    PubMed Central

    Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.

    2015-01-01

    Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908

  11. Practising alchemy: the transmutation of evidence into best health care.

    PubMed

    Goodyear-Smith, Felicity

    2011-04-01

    Alchemy was the synthesis or transmutation of all elements in perfect balance to obtain the philosopher's stone, the key to health. Just as alchemists sought this, so health practitioners always seek the best possible practice for optimal health outcomes for our patients. Best practice requires full knowledge--a little information can be dangerous. We need to serve our apprenticeship before we master our profession. Our profession is about improving health care. While the journey may start at medical school, the learning never ceases. It is not only about practising medicine, it is about the development of the practitioner. Professional practice requires systematic thinking combined with capacity to deal morally and creatively in areas of complexity and uncertainty appropriate to a specific context. It requires exemplary communication skills to interact with patients to facilitate collaborative decision making resulting in best practice. The synthesis of scientific and contextual evidence is a concept which applies to all disciplines where theoretical knowledge needs to be transferred to action to inform best practice. Decisions need to be made which take into account a complex array of factors, such as social and legal issues and resource constraints. Therefore, journey towards best practice involves transmutation of these three elements: scientific knowledge, the context in which it is applied and phronesis, the practical wisdom of the practitioner. All science has its limitations and we can never know all possible contextual information. Hence, like the philosopher's stone, best practice is a goal to which we aspire but never quite attain.

  12. Environmental Biosciences Program Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-07-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  13. Environmental Biosciences Program Report for Year 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-04-30

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  14. Environmental Biosciences Report for Year 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  15. Environmental Biosciences Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence C. Mohr, M.D.

    2007-01-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less

  16. Aerospace education program realization by means of the micro-satellite

    NASA Astrophysics Data System (ADS)

    Tamkovich, G.; Angarov, V.; Vasiliev, S.; Grigoriev, Y.; Grigoryan, O.; Dobriyan, M.; Kazanski, Y.; Klimov, S.; Papkov, A.; Pharnakeev, I.

    The aerospace education is the basic task of the Program (2002 - 2006) of the scientific - educational micro-satellite (? S?) and school centre of reception of the telemetering information (SCRI), developed by Interregional public organization "Micro-satellite" (? ? ? " Micro -satellite"). With this organization having the legal status, the experts of a number of institutes of the Russian Academy of Sciences, first of all of the Space Research Institute (IKI), and also Nuclear Physics Institute of MSU; Institute of atomic engineering (Obninsk); conducting organizations of a space industry, such as the RSK "Energy", NPOMash, DB "Polet", ROSTO et al. In the given publication the authors summarize the basic rules of the Programs produced by a wide circle of the experts, included in ? ? ? "Micro-satellite". The program is guided and on the international cooperation and is directed on the decision of three tasks: -Educational; -Research; -Technical, including technological and design. The realization of Russian-Australian scientific - educational micro -satellite "Kolibri-2000" (weight of 20.5 kgs), March 20, 2002, delivered into an orbit by "Progress ? 1-7", was by the first item of the Program and serves a starting point of development of scientific - educational tasks for the whole series perspective ? S ? . The basic design principle at creation ? S? is the universality sold with the help of a base design. Due to this the preservation in all series ? S? till 60-80 of % of constructive elements and systems is supposed. Proceeding from all complex of tasks of the Program, is determined and the base structure of a complex of the scientific equipment investigating major parameters " of space weather ", connected with fundamental processes of transport of energy from the Sun in magnetosphere, ionosphere and atmosphere of the Earth is included in "Kolibri-2000". Reception of the information carry out SCRI at Physical-technical school of Obninsk (Russia) and two schools of Sydney (Australia).

  17. Grand challenges for integrated USGS science—A workshop report

    USGS Publications Warehouse

    Jenni, Karen E.; Goldhaber, Martin B.; Betancourt, Julio L.; Baron, Jill S.; Bristol, R. Sky; Cantrill, Mary; Exter, Paul E.; Focazio, Michael J.; Haines, John W.; Hay, Lauren E.; Hsu, Leslie; Labson, Victor F.; Lafferty, Kevin D.; Ludwig, Kristin A.; Milly, Paul C. D.; Morelli, Toni L.; Morman, Suzette A.; Nassar, Nedal T.; Newman, Timothy R.; Ostroff, Andrea C.; Read, Jordan S.; Reed, Sasha C.; Shapiro, Carl D.; Smith, Richard A.; Sanford, Ward E.; Sohl, Terry L.; Stets, Edward G.; Terando, Adam J.; Tillitt, Donald E.; Tischler, Michael A.; Toccalino, Patricia L.; Wald, David J.; Waldrop, Mark P.; Wein, Anne; Weltzin, Jake F.; Zimmerman, Christian E.

    2017-06-30

    Executive SummaryThe U.S. Geological Survey (USGS) has a long history of advancing the traditional Earth science disciplines and identifying opportunities to integrate USGS science across disciplines to address complex societal problems. The USGS science strategy for 2007–2017 laid out key challenges in disciplinary and interdisciplinary arenas, culminating in a call for increased focus on a number of crosscutting science directions. Ten years on, to further the goal of integrated science and at the request of the Executive Leadership Team (ELT), a workshop with three dozen invited scientists spanning different disciplines and career stages in the Bureau convened on February 7–10, 2017, at the USGS John Wesley Powell Center for Analysis and Synthesis in Fort Collins, Colorado.The workshop focused on identifying “grand challenges” for integrated USGS science. Individual participants identified nearly 70 potential grand challenges before the workshop and through workshop discussions. After discussion, four overarching grand challenges emerged:Natural resource security,Societal risk from existing and emerging threats,Smart infrastructure development, andAnticipatory science for changing landscapes.Participants also identified a “comprehensive science challenge” that highlights the development of integrative science, data, models, and tools—all interacting in a modular framework—that can be used to address these and other future grand challenges:Earth Monitoring, Analyses, and Projections (EarthMAP)EarthMAP is our long-term vision for an integrated scientific framework that spans traditional scientific boundaries and disciplines, and integrates the full portfolio of USGS science: research, monitoring, assessment, analysis, and information delivery.The Department of Interior, and the Nation in general, have a vast array of information needs. The USGS meets these needs by having a broadly trained and agile scientific workforce. Encouraging and supporting cross-discipline engagement would position the USGS to tackle complex and multifaceted scientific and societal challenges in the 21st Century.

  18. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    PubMed

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  19. Arm injury produces long-term behavioral and neural hypersensitivity in octopus.

    PubMed

    Alupay, Jean S; Hadjisolomou, Stavros P; Crook, Robyn J

    2014-01-13

    Cephalopod molluscs are the most neurally and behaviorally complex invertebrates, with brains rivaling those of some vertebrates in size and complexity. This has fostered the opinion that cephalopods, particularly octopuses, may experience vertebrate-like pain when injured. However, it is not known whether octopuses possess nociceptors or if their somatic sensory neurons exhibit sensitization after injury. Here we show that the octopus Abdopus aculeatus expresses nocifensive behaviors including arm autotomy, and displays marked neural hyperexcitability both in injured and uninjured arms for at least 24h after injury. These findings do not demonstrate that octopuses experience pain-like states; instead they add to the minimal existing literature on how cephalopods receive, process, and integrate noxious sensory information, potentially informing and refining regulations governing use of cephalopods in scientific research. Published by Elsevier Ireland Ltd.

  20. 48 CFR 935.010 - Scientific and technical reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information. The DOE Order 241.1B Scientific and Technical Information Management, or its successor version... conveyed in scientific and technical information (STI) shall include an instruction requiring the.... Department of Energy (DOE), Office of Scientific and Technical Information (OSTI), using the DOE Energy Link...

  1. 48 CFR 935.010 - Scientific and technical reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information. The DOE Order 241.1B Scientific and Technical Information Management, or its successor version... conveyed in scientific and technical information (STI) shall include an instruction requiring the.... Department of Energy (DOE), Office of Scientific and Technical Information (OSTI), using the DOE Energy Link...

  2. 48 CFR 935.010 - Scientific and technical reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information. The DOE Order 241.1B Scientific and Technical Information Management, or its successor version... conveyed in scientific and technical information (STI) shall include an instruction requiring the.... Department of Energy (DOE), Office of Scientific and Technical Information (OSTI), using the DOE Energy Link...

  3. 48 CFR 935.010 - Scientific and technical reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information. The DOE Order 241.1B Scientific and Technical Information Management, or its successor version... conveyed in scientific and technical information (STI) shall include an instruction requiring the.... Department of Energy (DOE), Office of Scientific and Technical Information (OSTI), using the DOE Energy Link...

  4. 48 CFR 935.010 - Scientific and technical reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information. The DOE Order 241.1B Scientific and Technical Information Management, or its successor version... conveyed in scientific and technical information (STI) shall include an instruction requiring the.... Department of Energy (DOE), Office of Scientific and Technical Information (OSTI), using the DOE Energy Link...

  5. Research on tactical information display technology for interactive virtual cockpit

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyun; Tian, Tao; Su, Feng

    2018-04-01

    Based on a fact that traditional tactical information display technology suffers from disadvantages of a large number of data to be transferred and low plotting efficiency in an interactive virtual cockpit, a GID protocol-based simulation has been designed. This method dissolves complex tactical information screens into basic plotting units. The indication of plotting units is controlled via the plotting commands, which solves the incompatibility between the tactical information display in traditional simulation and the desktop-based virtual simulation training system. Having been used in desktop systems for helicopters, fighters, and transporters, this method proves to be scientific and reasonable in design and simple and efficient in usage, which exerts a significant value in establishing aviation equipment technology support training products.

  6. Climate change and public health policy: translating the science.

    PubMed

    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein

    2013-12-19

    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character.

  7. Climate Change and Public Health Policy: Translating the Science

    PubMed Central

    Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein

    2013-01-01

    Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character. PMID:24452252

  8. PDB-wide collection of binding data: current status of the PDBbind database.

    PubMed

    Liu, Zhihai; Li, Yan; Han, Li; Li, Jie; Liu, Jie; Zhao, Zhixiong; Nie, Wei; Liu, Yuchen; Wang, Renxiao

    2015-02-01

    Molecular recognition between biological macromolecules and organic small molecules plays an important role in various life processes. Both structural information and binding data of biomolecular complexes are indispensable for depicting the underlying mechanism in such an event. The PDBbind database was created to collect experimentally measured binding data for the biomolecular complexes throughout the Protein Data Bank (PDB). It thus provides the linkage between structural information and energetic properties of biomolecular complexes, which is especially desirable for computational studies or statistical analyses. Since its first public release in 2004, the PDBbind database has been updated on an annual basis. The latest release (version 2013) provides experimental binding affinity data for 10,776 biomolecular complexes in PDB, including 8302 protein-ligand complexes and 2474 other types of complexes. In this article, we will describe the current methods used for compiling PDBbind and the updated status of this database. We will also review some typical applications of PDBbind published in the scientific literature. All contents of this database are freely accessible at the PDBbind-CN Web server at http://www.pdbbind-cn.org/. wangrx@mail.sioc.ac.cn. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Dynamics of information diffusion and its applications on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Ke; Liu, Chuang; Zhan, Xiu-Xiu; Lu, Xin; Zhang, Chu-Xu; Zhang, Yi-Cheng

    2016-09-01

    The ongoing rapid expansion of the Word Wide Web (WWW) greatly increases the information of effective transmission from heterogeneous individuals to various systems. Extensive research for information diffusion is introduced by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and empirical studies, unification and comparison of different theories and approaches are lacking, which impedes further advances. In this article, we review recent developments in information diffusion and discuss the major challenges. We compare and evaluate available models and algorithms to respectively investigate their physical roles and optimization designs. Potential impacts and future directions are discussed. We emphasize that information diffusion has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.

  10. Educator Exploration of Authentic Environmental Issues of the Coastal Margin Through Information Technology

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Schielack, J. F.

    2004-12-01

    Teachers immersed in authentic science inquiry in professional development programs, with the goal of transferring the nature of scientific research to the classroom, face two enormous problems: (1) issues surrounding the required knowledgebase, skills set, and habits of mind of the teachers that control, to a large degree, the ability of teachers to immerse themselves in authentic scientific research in the available time, and (2) the difficulties in transferring this experience to the classroom. Most professional development programs utilize one of two design models, the first limits the authenticity of the scientific experience while placing more emphasis on pedagogical issues, and second where teachers are immersed in scientific research, often through mentoring programs with scientists, but with less explicit attention to problems of transfer to the classroom. The ITS Center for Teaching and Learning (its.tamu.edu), a five-year NSF-funded collaborative program that engages scientists, educational researchers, and educators in the use of information technology to improve science teaching and learning at all levels, has developed a model that supports teachers' learning about authentic scientific research, pedagogical training in inquiry-based learning, and educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. This connection is achieved through scaffolding by information technology that supports the modeling, visualization and exploration of complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum. Our professional development model constitutes a Learning Research Cycle, which is characterized as a seamless continuum of inquiry activities and prolonged engagement in a learning community of educators, scientists, and mathematicians centered on the development of teachers' pedagogical content knowledge as it relates to the use of information technology in doing, learning, and teaching science. This talk will explore the design changes of the geoscience team of the ITS as it moved from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house) over two, two-year cohorts. We have assessed the impact of our Learning Research Cycle model on ITS participants using both a mixed model assessment of learning products, surveys, interviews, and teacher inquiry projects. Assessment results indicate that teachers involved in the second cohort improved their understanding of geoscience and inquiry-based learning, while improving their ability to establish authentic inquiry in their classrooms through the use of information technology and to assess student learning.

  11. The nature of the (visualization) game: Challenges and opportunities from computational geophysics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.

  12. Species accounts for the Alamosa/Monte Vista/Baca National Wildlife Refuge Complex

    USGS Publications Warehouse

    Ellison, Laura E.

    2011-01-01

    As part of an interagency agreement between the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS), the Alamosa/Monte Vista/Baca National Wildlife Refuge Complex requested help with the synthesis of scientific information for 10 focal species and their habitat requirements in response to common Refuge management activities in the San Luis Valley, Colorado. This information will be instrumental in developing the Service's Comprehensive Conservation Plan (CCP), which is required by law for each unit of the National Wildlife Refuge System. After consultation with Refuge managers and USGS staff, the 10 species chosen for detailed literature reviews and synthesis of information were the following: (1) American Avocet (Recurvirostra americana); (2) Wilson's Phalarope (Phalaropus tricolorPorzana carolina); (4) White-faced Ibis (Plegadis chihi); (5) Black Tern (Chlidonias niger); (6) Short-eared Owl (Asio flammeus); (7) Brewer's Sparrow (Spizella breweri); (8) Savannah Sparrow (Passerculus sandwichensis); (9) Northern Leopard Frog [Lithobates (=Rana) pipiens]; and, (10) Tadpole Shrimp (Triops longicaudatus).

  13. Meta 2: Lingua Franca Design and Integration Language

    DTIC Science & Technology

    2011-08-01

    the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of...buses must be powered in case of no more than 1 failure beyond the Minimum Equipment List (MEL – list of failure combinations that do not affect the...in real systems are rarely plain, but rather they are a complex logical combination of many factors and parameters. The specific processes that

  14. Autonomous Systems and Robotics: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to monitor, maintain, and where possible, repair complex space systems. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  15. Distributed Information System for Dynamic Ocean Data in Indonesia

    NASA Astrophysics Data System (ADS)

    Romero, Laia; Sala, Joan; Polo, Isabel; Cases, Oscar; López, Alejandro; Jolibois, Tony; Carbou, Jérome

    2014-05-01

    Information systems are widely used to enable access to scientific data by different user communities. MyOcean information system is a good example of such applications in Europe. The present work describes a specific distributed information system for Ocean Numerical Model (ONM) data in the scope of the INDESO project, a project focused on Infrastructure Development of Space Oceanography in Indonesia. INDESO, as part of the Blue Revolution policy conducted by the Indonesian government for the sustainable development of fisheries and aquaculture, presents challenging service requirements in terms of services performance, reliability, security and overall usability. Following state-of-the-art technologies on scientific data networks, this robust information system provides a high level of interoperability of services to discover, view and access INDESO dynamic ONM scientific data. The entire system is automatically updated four times a day, including dataset metadata, taking into account every new file available in the data repositories. The INDESO system architecture has been designed in great part around the extension and integration of open-source flexible and mature technologies. It involves three separate modules: web portal, dissemination gateway, and user administration. Supporting different gridded and non-gridded data, the INDESO information system features search-based data discovery, data access by temporal and spatial subset extraction, direct download and ftp, and multiple-layer visualization of datasets. A complex authorization system has been designed and applied throughout all components, in order to enable services authorization at dataset level, according to the different user profiles stated in the data policy. Finally, a web portal has been developed as the single entry point and standardized interface to all data services (discover, view, and access). Apache SOLR has been implemented as the search server, allowing faceted browsing among ocean data products and the connection to an external catalogue of metadata records. ncWMS and Godiva2 have been the basis of the viewing server and client technologies developed, MOTU has been used for data subsetting and intelligent management of data queues, and has allowed the deployment of a centralised download interface applicable to all ONM products. Unidata's Thredds server has been employed to provide file metadata and remote access to ONM data. CAS has been used as the single sign-on protocol for all data services. The user management application developed has been based on GOSA2. Joomla and Bootstrap have been the technologies used for the web portal, compatible with mobile phone and tablet devices. The INDESO information system comes up as an information system that is scalable, extremely easy to use, operate and maintain. This will facilitate the extensive use of ocean numerical model data by the scientific community in Indonesia. Constituted mostly of open-source solutions, the system is able to meet strict operational requirements, and carry out complex functions. It is feasible to adapt this architecture to different static and dynamic oceanographic data sources and large data volumes, in an accessible, fast, and comprehensive manner.

  16. What is the role of induction and deduction in reasoning and scientific inquiry?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    2005-08-01

    A long-standing and continuing controversy exists regarding the role of induction and deduction in reasoning and in scientific inquiry. Given the inherent difficulty in reconstructing reasoning patterns based on personal and historical accounts, evidence about the nature of human reasoning in scientific inquiry has been sought from a controlled experiment designed to identify the role played by enumerative induction and deduction in cognition as well as from the relatively new field of neural modeling. Both experimental results and the neurological models imply that induction across a limited set of observations plays no role in task performance and in reasoning. Therefore, support has been obtained for Popper's hypothesis that enumerative induction does not exist as a psychological process. Instead, people appear to process information in terms of increasingly abstract cycles of hypothetico-deductive reasoning. Consequently, science instruction should provide students with opportunities to generate and test increasingly complex and abstract hypotheses and theories in a hypothetico-deductive manner. In this way students can be expected to become increasingly conscious of their underlying hypothetico-deductive thought processes, increasingly skilled in their application, and hence increasingly scientifically literate.

  17. Science on Stage: Engaging and teaching scientific content through performance art

    NASA Astrophysics Data System (ADS)

    Posner, Esther

    2016-04-01

    Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.

  18. The Worldviews Network: Transformative Global Change Education in Immersive Environments

    NASA Astrophysics Data System (ADS)

    Hamilton, H.; Yu, K. C.; Gardiner, N.; McConville, D.; Connolly, R.; "Irving, Lindsay", L. S.

    2011-12-01

    Our modern age is defined by an astounding capacity to generate scientific information. From DNA to dark matter, human ingenuity and technologies create an endless stream of data about ourselves and the world of which we are a part. Yet we largely founder in transforming information into understanding, and understanding into rational action for our society as a whole. Earth and biodiversity scientists are especially frustrated by this impasse because the data they gather often point to a clash between Earth's capacity to sustain life and the decisions that humans make to garner the planet's resources. Immersive virtual environments offer an underexplored link in the translation of scientific data into public understanding, dialogue, and action. The Worldviews Network is a collaboration of scientists, artists, and educators focused on developing best practices for the use of immersive environments for science-based ecological literacy education. A central tenet of the Worldviews Network is that there are multiple ways to know and experience the world, so we are developing scientifically accurate, geographically relevant, and culturally appropriate programming to promote ecological literacy within informal science education programs across the United States. The goal of Worldviews Network is to offer transformative learning experiences, in which participants are guided on a process integrating immersive visual explorations, critical reflection and dialogue, and design-oriented approaches to action - or more simply, seeing, knowing, and doing. Our methods center on live presentations, interactive scientific visualizations, and sustainability dialogues hosted at informal science institutions. Our approach uses datasets from the life, Earth, and space sciences to illuminate the complex conditions that support life on earth and the ways in which ecological systems interact. We are leveraging scientific data from federal agencies, non-governmental organizations, and our own research to develop a library of immersive visualization stories and templates that explore ecological relationships across time at cosmic, global, and bioregional scales, with learning goals aligned to climate and earth science literacy principles. These experiential narratives are used to increase participants' awareness of global change issues as well as to engage them in dialogues and design processes focused on steps they can take within their own communities to systemically address these interconnected challenges. More than 600 digital planetariums in the U.S. collectively represent a pioneering opportunity for distributing Earth systems messages over large geographic areas. By placing the viewer-and Earth itself-within the context of the rest of the universe, digital planetariums can uniquely provide essential transcalar perspectives on the complex interdependencies of Earth's interacting physical and biological systems. The Worldviews Network is creating innovative, data-driven approaches for engaging the American public in dialogues about human-induced global changes.

  19. Announcement Notice (AN) 241.4 - Software | OSTI, US Dept of Energy Office

    Science.gov Websites

    of Scientific and Technical Information Skip to main content Scientific and Technical Information Program The home of the U.S. Department of Energy's Scientific and Technical Information Program ) Scientific and Technical Information (STI) products for announcement and availability. An AN includes review

  20. Reviewing innovative Earth observation solutions for filling science-policy gaps in hydrology

    NASA Astrophysics Data System (ADS)

    Lehmann, Anthony; Giuliani, Gregory; Ray, Nicolas; Rahman, Kazi; Abbaspour, Karim C.; Nativi, Stefano; Craglia, Massimo; Cripe, Douglas; Quevauviller, Philippe; Beniston, Martin

    2014-10-01

    Improved data sharing is needed for hydrological modeling and water management that require better integration of data, information and models. Technological advances in Earth observation and Web technologies have allowed the development of Spatial Data Infrastructures (SDIs) for improved data sharing at various scales. International initiatives catalyze data sharing by promoting interoperability standards to maximize the use of data and by supporting easy access to and utilization of geospatial data. A series of recent European projects are contributing to the promotion of innovative Earth observation solutions and the uptake of scientific outcomes in policy. Several success stories involving different hydrologists' communities can be reported around the World. Gaps still exist in hydrological, agricultural, meteorological and climatological data access because of various issues. While many sources of data exists at all scales it remains difficult and time-consuming to assemble hydrological information for most projects. Furthermore, data and sharing formats remain very heterogeneous. Improvements require implementing/endorsing some commonly agreed standards and documenting data with adequate metadata. The brokering approach allows binding heterogeneous resources published by different data providers and adapting them to tools and interfaces commonly used by consumers of these resources. The challenge is to provide decision-makers with reliable information, based on integrated data and tools derived from both Earth observations and scientific models. Successful SDIs rely therefore on various aspects: a shared vision between all participants, necessity to solve a common problem, adequate data policies, incentives, and sufficient resources. New data streams from remote sensing or crowd sourcing are also producing valuable information to improve our understanding of the water cycle, while field sensors are developing rapidly and becoming less costly. More recent data standards are enhancing interoperability between hydrology and other scientific disciplines, while solutions exist to communicate uncertainty of data and models, which is an essential pre-requisite for decision-making. Distributed computing infrastructures can handle complex and large hydrological data and models, while Web Processing Services bring the flexibility to develop and execute simple to complex workflows over the Internet. The need for capacity building at human, infrastructure and institutional levels is also a major driver for reinforcing the commitment to SDI concepts.

  1. A Second Chance: What can informal science learning institutions uniquely contribute to public inquiry about climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bartels, D.

    2009-12-01

    The science of climate change is complicated. Even for adult audiences, scientific ideas such as non-linear modeling, probability and uncertainty, complexity and multivariate relationships, and the dynamic relationship between physical and human systems were not part of the typical curriculum for most of us in school. Moreover, many adults are invested in the myth that the aim of scientists is “truth-seeking” as opposed to finding the best interpretation that fits the best available empirical data. Science too often is presented even to adults as sets of answers and certainties. The forthcoming “Green Book” from the NSF Advisory Committee on Environmental Research and Education makes a novel recommendation that in these times adult environmental science literacy is as critical as education programs for K-12 and university students. Its reasoning is the stakes regarding the most pressing global environmental issues of our day—climate change chief among them—likely require such significant change in human behavior in the immediate term that it cannot wait for another generation of children to grow up. Practices and behaviors must change immediately. The report identifies the approximately 15,000 informal science learning institutions across the United States as the perfect adult science education delivery system to address this challenge. However, for the informal science learning community to engage this challenge most effectively, it must take care in its response given the complexity of the science, even for adults. It cannot perpetuate the idea of science as static and certain or separate itself from the social sciences. Yet the scientific community has very important stories to tell which have an immediate urgency to humankind. How do you explain the importance of uncertainty and science as a process while at the same time conveying confidence about scientific consensus where it exists? We will discuss ways of framing these important questions about adult learning and the science of climate change to assist scientists, informal science learning institutions and others increase the probability of enhanced credibility, understanding and action on the part of those of us beyond our school years.

  2. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  3. Scaffolding Student Learning in the Discipline-Specific Knowledge through Contemporary Science Practices: Developing High-School Students' Epidemiologic Reasoning through Data Analysis

    NASA Astrophysics Data System (ADS)

    Oura, Hiroki

    Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.

  4. Quantitative and qualitative analysis of study-related patient information sheets in randomised neuro-oncology phase III-trials.

    PubMed

    Reinert, Christiane; Kremmler, Lukas; Burock, Susen; Bogdahn, Ulrich; Wick, Wolfgang; Gleiter, Christoph H; Koller, Michael; Hau, Peter

    2014-01-01

    In randomised controlled trials (RCTs), patient informed consent documents are an essential cornerstone of the study flow. However, these documents are often oversized in format and content. Clinical experience suggests that study information sheets are often not used as an aid to decision-making due to their complexity. We analysed nine patient informed consent documents from clinical neuro-oncological phase III-studies running at a German Brain Tumour Centre with the objective to investigate the quality of these documents. Text length, formal layout, readability, application of ethical and legal requirements, scientific evidence and social aspects were used as rating categories. Results were assessed quantitatively by two independents investigators and were depicted using net diagrams. All patient informed consent documents were of insufficient quality in all categories except that ethical and legal requirements were fulfilled. Notably, graduate levels were required to read and understand five of nine consent documents. Quality deficits were consistent between the individual study information texts. Irrespective of formal aspects, a document that is intended to inform and motivate patients to participate in a study needs to be well-structured and understandable. We therefore strongly mandate to re-design patient informed consent documents in a patient-friendly way. Specifically, standardised components with a scientific foundation should be provided that could be retrieved at various times, adapted to the mode of treatment and the patient's knowledge, and could weigh information dependent of the stage of treatment decision. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A systematic review of publications studies on medical tourism.

    PubMed

    Masoud, Ferdosi; Alireza, Jabbari; Mahmoud, Keyvanara; Zahra, Agharahimi

    2013-01-01

    Medical tourism for any study area is complex. Using full articles from other databases, Institute for Scientific Information (ISI), Science Direct, Emerald, Oxford, Magiran, and Scientific Information Database (SID), to examine systematically published articles about medical tourism in the interval 2000-2011 paid. Articles were obtained using descriptive statistics and content analysis categories were analyzed. Among the 28 articles reviewed, 11 cases were a kind of research articles, three cases were case studies in Mexico, India, Hungary, Germany, and Iran, and 14 were case studies, review documents and data were passed. The main topics of study included the definition of medical tourism, medical tourists' motivation and development of medical tourism, ethical issues in medical tourism, and impact on health and medical tourism marketing. The findings indicate the definition of medical tourism in various articles, and medical tourists are motivated. However, most studies indicate the benefits of medical tourism in developing countries and more developed countries reflect the consequences of medical tourism.

  6. A systematic review of publications studies on medical tourism

    PubMed Central

    Masoud, Ferdosi; Alireza, Jabbari; Mahmoud, Keyvanara; Zahra, Agharahimi

    2013-01-01

    Introduction: Medical tourism for any study area is complex. Materials and Methods: Using full articles from other databases, Institute for Scientific Information (ISI), Science Direct, Emerald, Oxford, Magiran, and Scientific Information Database (SID), to examine systematically published articles about medical tourism in the interval 2000-2011 paid. Articles were obtained using descriptive statistics and content analysis categories were analyzed. Results: Among the 28 articles reviewed, 11 cases were a kind of research articles, three cases were case studies in Mexico, India, Hungary, Germany, and Iran, and 14 were case studies, review documents and data were passed. The main topics of study included the definition of medical tourism, medical tourists’ motivation and development of medical tourism, ethical issues in medical tourism, and impact on health and medical tourism marketing. Conclusion: The findings indicate the definition of medical tourism in various articles, and medical tourists are motivated. However, most studies indicate the benefits of medical tourism in developing countries and more developed countries reflect the consequences of medical tourism. PMID:24251287

  7. [Stability of home based care arrangements for people with dementia : Development of a consensus definition of stability using expert focus groups].

    PubMed

    von Kutzleben, Milena; Köhler, Kerstin; Dreyer, Jan; Holle, Bernhard; Roes, Martina

    2017-04-01

    The majority of people with dementia in Germany live at home. These informal care arrangements, which are mostly coordinated by informal carers, are the backbone of home-based dementia care. Creating and maintaining stability is an underlying theme in informal care; however, a definition of the complex phenomenon of 'stability' in this context is still lacking. The aim was to develop a working definition of stability of home-based care arrangements for people with dementia, which can be applied in current and future research projects at the German Center for Neurodegenerative Diseases in Witten (DZNE Witten) and others. Ensuing from prior research a preliminary version of the definition was formulated. This definition was discussed in a focus group of scientific experts with expertise in dementia research and care (n = 8). After data analysis using content analysis, the definition was revised during a scientific colloquium (n = 18) and a consensus was finally reached. There were four major themes which were considered by the experts as being relevant for the definition of stability: (1) creating and maintaining stability as a continuous adaptation process, (2) a qualitative component of stability, (3) persons with dementia and informal carers as pivotal players and (4) transitions to residential care. The working definition introduced in this article reflects the authors' understanding of the phenomenon of stability of home-based care arrangements for people with dementia. In times of increasing need for evidence-based interventions it is necessary to develop elaborated definitions of complex phenomena in order to be able to systematically evaluate the efficacy of interventions on the basis of a common understanding.

  8. Copyrighted Software | OSTI, US Dept of Energy Office of Scientific and

    Science.gov Websites

    Technical Information Skip to main content Scientific and Technical Information Program The home of the U.S. Department of Energy's Scientific and Technical Information Program (STIP) Here you Energy U.S. Department of Energy Office of Science Office of Scientific and Technical information Website

  9. About STIP | OSTI, US Dept of Energy Office of Scientific and Technical

    Science.gov Websites

    Information Skip to main content Scientific and Technical Information Program The home of the U.S. Department of Energy's Scientific and Technical Information Program (STIP) Here you will find through scientific and technical information (STI), a key outcome of DOE R&D and other activities

  10. Contact Us | OSTI, US Dept of Energy Office of Scientific and Technical

    Science.gov Websites

    Information Skip to main content Scientific and Technical Information Program The home of the U.S. Department of Energy's Scientific and Technical Information Program (STIP) Here you will find MAIL TO: U.S. Department of Energy Office of Scientific and Technical Information ATTN: STIP P.O. Box

  11. 78 FR 57159 - Scientific Information Request on Medication Therapy Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... Information Request on Medication Therapy Management AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Request for scientific information submissions. SUMMARY: The Agency for Healthcare... therapy management Scientific information is being solicited to inform our review of Medication Therapy...

  12. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  13. Science Partnerships Enabling Rapid Response: Designing a Strategy for Improving Scientific Collaboration during Crisis Response

    NASA Astrophysics Data System (ADS)

    Mease, L.; Gibbs, T.; Adiseshan, T.

    2014-12-01

    The 2010 Deepwater Horizon disaster required unprecedented engagement and collaboration with scientists from multiple disciplines across government, academia, and industry. Although this spurred the rapid advancement of valuable new scientific knowledge and tools, it also exposed weaknesses in the system of information dissemination and exchange among the scientists from those three sectors. Limited government communication with the broader scientific community complicated the rapid mobilization of the scientific community to assist with spill response, evaluation of impact, and public perceptions of the crisis. The lessons and new laws produced from prior spills such as Exxon Valdez were helpful, but ultimately did not lead to the actions necessary to prepare a suitable infrastructure that would support collaboration with non-governmental scientists. As oil demand pushes drilling into increasingly extreme environments, addressing the challenge of effective, science-based disaster response is an imperative. Our study employs a user-centered design process to 1) understand the obstacles to and opportunity spaces for effective scientific collaboration during environmental crises such as large oil spills, 2) identify possible tools and strategies to enable rapid information exchange between government responders and non-governmental scientists from multiple relevant disciplines, and 3) build a network of key influencers to secure sufficient buy-in for scaled implementation of appropriate tools and strategies. Our methods include user ethnography, complex system mapping, individual and system behavioral analysis, and large-scale system design to identify and prototype a solution to this crisis collaboration challenge. In this talk, we will present out insights gleaned from existing analogs of successful scientific collaboration during crises and our initial findings from the 60 targeted interviews we conducted that highlight key collaboration challenges that government agencies, academic research institutions, and industry scientists face during oil spill crises. We will also present a synthesis of leverage points in the system that may amplify the impact of an improved collaboration strategy among scientific stakeholders.

  14. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  16. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  17. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  18. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  19. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  20. TDRS-L Spacecraft is Lifted Onto Transporter

    NASA Image and Video Library

    2014-01-10

    TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being mounted on a transporter for its trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett

  1. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft begins it trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  2. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians ensure precision as the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  3. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  4. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  5. TDRS-L Spacecraft is Lifted Onto Transporter

    NASA Image and Video Library

    2014-01-10

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett

  6. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  7. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is transported along the Saturn Causeway at the Kennedy Space Center on its way to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  8. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  9. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, P.Y.; Wassom, J.S.

    Scientific and technological developments bring unprecedented stress to our environment. Society has to predict the results of potential health risks from technologically based actions that may have serious, far-reaching consequences. The potential for error in making such predictions or assessment is great and multiplies with the increasing size and complexity of the problem being studied. Because of this, the availability and use of reliable data is the key to any successful forecasting effort. Scientific research and development generate new data and information. Much of the scientific data being produced daily is stored in computers for subsequent analysis. This situation providesmore » both an invaluable resource and an enormous challenge. With large amounts of government funds being devoted to health and environmental research programs and with maintenance of our living environment at stake, we must make maximum use of the resulting data to forecast and avert catastrophic effects. Along with the readily available. The most efficient means of obtaining the data necessary for assessing the health effects of chemicals is to utilize applications include the toxicology databases and information files developed at ORNL. To make most efficient use of the data/information that has already been prepared, attention and resources should be directed toward projects that meticulously evaluate the available data/information and create specialized peer-reviewed value-added databases. Such projects include the National Library of Medicine`s Hazardous Substances Data Bank, and the U.S. Air Force Installation Restoration Toxicology Guide. These and similar value-added toxicology databases were developed at ORNL and are being maintained and updated. These databases and supporting information files, as well as some data evaluation techniques are discussed in this paper with special focus on how they are used to assess potential health effects of environmental agents. 19 refs., 5 tabs.« less

  11. An environmental database for Venice and tidal zones

    NASA Astrophysics Data System (ADS)

    Macaluso, L.; Fant, S.; Marani, A.; Scalvini, G.; Zane, O.

    2003-04-01

    The natural environment is a complex, highly variable and physically non reproducible system (not in laboratory, nor in a confined territory). Environmental experimental studies are thus necessarily based on field measurements distributed in time and space. Only extensive data collections can provide the representative samples of the system behavior which are essential for scientific advancement. The assimilation of large data collections into accessible archives must necessarily be implemented in electronic databases. In the case of tidal environments in general, and of the Venice lagoon in particular, it is useful to establish a database, freely accessible to the scientific community, documenting the dynamics of such systems and their response to anthropic pressures and climatic variability. At the Istituto Veneto di Scienze, Lettere ed Arti in Venice (Italy) two internet environmental databases has been developed: one collects information regarding in detail the Venice lagoon; the other co-ordinate the research consortium of the "TIDE" EU RTD project, that attends to three different tidal areas: Venice Lagoon (Italy), Morecambe Bay (England), and Forth Estuary (Scotland). The archives may be accessed through the URL: www.istitutoveneto.it. The first one is freely available and applies to anyone is interested. It is continuously updated and has been structured in order to promote documentation concerning Venetian environment and disseminate this information for educational purposes (see "Dissemination" section). The second one is supplied by scientists and engineers working on this tidal system for various purposes (scientific, management, conservation purposes, etc.); it applies to interested researchers and grows with their own contributions. Both intend to promote scientific communication, to contribute to the realization of a distributed information system collecting homogeneous themes, and to initiate the interconnection among databases regarding different kinds of environment.

  12. Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.

    PubMed

    Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C

    2008-08-15

    One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)

  13. Enabling Long-Term Oceanographic Research: Changing Data Practices, Information Management Strategies and Informatics

    NASA Astrophysics Data System (ADS)

    Baker, K. S.; Chandler, C. L.

    2008-12-01

    Data management and informatics research are in a state of change in terms of data practices, information strategies, and roles. New ways of thinking about data and data management can facilitate interdisciplinary global ocean science. To meet contemporary expectations for local data use and reuse by a variety of audiences, collaborative strategies involving diverse teams of information professionals are developing. Such changes are fostering the growth of information infrastructures that support multi-scale sampling, data integration, and nascent networks of data repositories. In this retrospective, two examples of oceanographic projects incorporating data management in partnership with long-term science programs are reviewed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned - short-term and long-term - from a decade of data management within these two communities will be presented. A conceptual framework called Ocean Informatics provides one example for managing the complexities inherent to sharing oceanographic data. Elements are discussed that address the economies-of-scale as well as the complexities-of-scale pertinent to a broad vision of information management and scientific research.

  14. 76 FR 36539 - Scientific Information Request on Insulin Delivery and Glucose Monitoring Devices for Diabetes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Scientific... for Healthcare Research and Quality (AHRQ), HHS. ACTION: Request for scientific information submissions. SUMMARY: The Agency for Healthcare Research and Quality (AHRQ) is seeking scientific information...

  15. Proceedings of the Workshop on Software Engineering Foundations for End-User Programming (SEEUP 2009)

    DTIC Science & Technology

    2009-11-01

    interest of scientific and technical information exchange. This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a...an interesting conti- nuum between how many different requirements a program must satisfy: the more complex and diverse the requirements, the more... Gender differences in approaches to end-user software development have also been reported in debugging feature usage [1] and in end-user web programming

  16. Planetary Data Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical aspects of the Planetary Data System (PDS) are addressed. Methods and tools for maintaining and accessing large, complex sets of data are discussed. The specific software and applications needed for processing imaging and non-imaging science data are reviewed. The need for specific software that provides users with information on the location and geometry of scientific observations is discussed. Computer networks and user interface to the PDS are covered along with Computer hardware available to this data system.

  17. Working Toward An Informed Society

    NASA Astrophysics Data System (ADS)

    Hill, R. L.

    2006-12-01

    Despite major differences in the nature of their jobs, scientists and journalists are alike in many ways: a curiosity about the world, a healthy skepticism, a continuing reexamination of their work and professions. Reporters and researchers need to understand better how their disparate worlds function in order to close the gap between science and journalism. They both need to actively participate in a common goal of communicating science and making complex scientific topics understandable and interesting to the public.

  18. Component Technology for High-Performance Scientific Simulation Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epperly, T; Kohn, S; Kumfert, G

    2000-11-09

    We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less

  19. Strategic crisis and risk communication during a prolonged natural hazard event: lessons learned from the Canterbury earthquake sequence

    NASA Astrophysics Data System (ADS)

    Wein, A. M.; Potter, S.; Becker, J.; Doyle, E. E.; Jones, J. L.

    2015-12-01

    While communication products are developed for monitoring and forecasting hazard events, less thought may have been given to crisis and risk communication plans. During larger (and rarer) events responsible science agencies may find themselves facing new and intensified demands for information and unprepared for effectively resourcing communications. In a study of the communication of aftershock information during the 2010-12 Canterbury Earthquake Sequence (New Zealand), issues are identified and implications for communication strategy noted. Communication issues during the responses included reliability and timeliness of communication channels for immediate and short decision time frames; access to scientists by those who needed information; unfamiliar emergency management frameworks; information needs of multiple audiences, audience readiness to use the information; and how best to convey empathy during traumatic events and refer to other information sources about what to do and how to cope. Other science communication challenges included meeting an increased demand for earthquake education, getting attention on aftershock forecasts; responding to rumor management; supporting uptake of information by critical infrastructure and government and for the application of scientific information in complex societal decisions; dealing with repetitive information requests; addressing diverse needs of multiple audiences for scientific information; and coordinating communications within and outside the science domain. For a science agency, a communication strategy would consider training scientists in communication, establishing relationships with university scientists and other disaster communication roles, coordinating messages, prioritizing audiences, deliberating forecasts with community leaders, identifying user needs and familiarizing them with the products ahead of time, and practicing the delivery and use of information via scenario planning and exercises.

  20. Chinese Scientific and Technical Information Institutions: Development and Perspective

    ERIC Educational Resources Information Center

    Yanning, Zheng

    2011-01-01

    The collection, storage, processing, and dissemination of scientific and technical information make an important basis for economic and social development as well as for scientific development. A nation has to develop the right mechanisms and modalities to collect, store, process, and disseminate scientific and technical information tailored to…

  1. Explaining the Alluring Influence of Neuroscience Information on Scientific Reasoning

    ERIC Educational Resources Information Center

    Rhodes, Rebecca E.; Rodriguez, Fernando; Shah, Priti

    2014-01-01

    Previous studies have investigated the influence of neuroscience information or images on ratings of scientific evidence quality but have yielded mixed results. We examined the influence of neuroscience information on evaluations of flawed scientific studies after taking into account individual differences in scientific reasoning skills, thinking…

  2. 77 FR 4043 - Scientific Information Request on the Use of Natriuretic Peptide Measurement in the Management of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Scientific...: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Request for scientific information submissions. SUMMARY: The Agency for Healthcare Research and Quality (AHRQ) is seeking scientific information...

  3. Social and ethical dimension of the natural sciences, complex problems of the age, interdisciplinarity, and the contribution of education

    NASA Astrophysics Data System (ADS)

    Develaki, Maria

    2008-09-01

    In view of the complex problems of this age, the question of the socio-ethical dimension of science acquires particular importance. We approach this matter from a philosophical and sociological standpoint, looking at such focal concerns as the motivation, purposes and methods of scientific activity, the ambivalence of scientific research and the concomitant risks, and the conflict between research freedom and external socio-political intervention. We then point out the impediments to the effectiveness of cross-disciplinary or broader meetings for addressing these complex problems and managing the associated risks, given the difficulty in communication between experts in different fields and non-experts, difficulties that education is challenged to help resolve. We find that the social necessity of informed decision-making on the basis of cross-disciplinary collaboration is reflected in the newer curricula, such as that of Greece, in aims like the acquisition of cross-subject knowledge and skills, and the ability to make decisions on controversial issues involving value conflicts. The interest and the reflections of the science education community in these matters increase its—traditionally limited—contribution to the theoretical debate on education and, by extension, the value of science education in the education system.

  4. Mars Sample Return without Landing on the Surface

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.

    2000-01-01

    Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.

  5. A prospective multiple case study of the impact of emerging scientific evidence on established colorectal cancer screening programs: a study protocol.

    PubMed

    Geddie, Hannah; Dobrow, Mark J; Hoch, Jeffrey S; Rabeneck, Linda

    2012-06-01

    Health-policy decision making is a complex and dynamic process, for which strong evidentiary support is required. This includes scientifically produced research, as well as information that relates to the context in which the decision takes place. Unlike scientific evidence, this "contextual evidence" is highly variable and often includes information that is not scientifically produced, drawn from sources such as political judgement, program management experience and knowledge, or public values. As the policy decision-making process is variable and difficult to evaluate, it is often unclear how this heterogeneous evidence is identified and incorporated into "evidence-based policy" decisions. Population-based colorectal cancer screening poses an ideal context in which to examine these issues. In Canada, colorectal cancer screening programs have been established in several provinces over the past five years, based on the fecal occult blood test (FOBT) or the fecal immunochemical test. However, as these programs develop, new scientific evidence for screening continues to emerge. Recently published randomized controlled trials suggest that the use of flexible sigmoidoscopy for population-based screening may pose a greater reduction in mortality than the FOBT. This raises the important question of how policy makers will address this evidence, given that screening programs are being established or are already in place. This study will examine these issues prospectively and will focus on how policy makers monitor emerging scientific evidence and how both scientific and contextual evidence are identified and applied for decisions about health system improvement. This study will employ a prospective multiple case study design, involving participants from Ontario, Alberta, Manitoba, Nova Scotia, and Quebec. In each province, data will be collected via document analysis and key informant interviews. Documents will include policy briefs, reports, meeting minutes, media releases, and correspondence. Interviews will be conducted in person with senior administrative leaders, government officials, screening experts, and high-level cancer system stakeholders. The proposed study comprises the third and final phase of an Emerging Team grant to address the challenges of health-policy decision making and colorectal cancer screening decisions in Canada. This study will contribute a unique prospective look at how policy makers address new, emerging scientific evidence in several different policy environments and at different stages of program planning and implementation. Findings will provide important insight into the various approaches that are or should be used to monitor emerging evidence, the relative importance of scientific versus contextual evidence for decision making, and the tools and processes that may be important to support challenging health-policy decisions.

  6. Stakeholder-led science: engaging resource managers to identify science needs for long-term management of floodplain conservation lands

    USGS Publications Warehouse

    Bouska, Kristin L.; Lindner, Garth; Paukert, Craig P.; Jacobson, Robert B.

    2016-01-01

    Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly dynamic floodplain environments. Although the problems facing managers of these lands are complex, products focused on a small suite of inundation metrics were determined to be the most useful to guide the decision making process.

  7. A lattice model for data display

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.

    1994-01-01

    In order to develop a foundation for visualization, we develop lattice models for data objects and displays that focus on the fact that data objects are approximations to mathematical objects and real displays are approximations to ideal displays. These lattice models give us a way to quantize the information content of data and displays and to define conditions on the visualization mappings from data to displays. Mappings satisfy these conditions if and only if they are lattice isomorphisms. We show how to apply this result to scientific data and display models, and discuss how it might be applied to recursively defined data types appropriate for complex information processing.

  8. Application of construal level and value-belief norm theories to undergraduate decision-making on a wildlife socio-scientific issue

    NASA Astrophysics Data System (ADS)

    Sutter, A. McKinzie; Dauer, Jenny M.; Forbes, Cory T.

    2018-06-01

    One aim of science education is to develop scientific literacy for decision-making in daily life. Socio-scientific issues (SSI) and structured decision-making frameworks can help students reach these objectives. This research uses value belief norm (VBN) theory and construal level theory (CLT) to explore students' use of personal values in their decision-making processes and the relationship between abstract and concrete problematization and their decision-making. Using mixed methods, we conclude that the level of abstraction with which students problematise a prairie dog agricultural production and ecosystem preservation issue has a significant relationship to the values students used in the decision-making process. However, neither abstraction of the problem statement nor students' surveyed value orientations were significantly related to students' final decisions. These results may help inform teachers' understanding of students and their use of a structured-decision making tool in a classroom, and aid researchers in understanding if these tools help students remain objective in their analyses of complex SSIs.

  9. History, Philosophy and Sociology of Science in Science Education: Results from the Third International Mathematics and Science Study

    NASA Astrophysics Data System (ADS)

    Wang, Hsingchi A.; Sshmidt, William H.

    Throughout the history of enhancing the public scientific literacy, researchers have postulated that since every citizen is expected to have informal opinions on the relationships among government, education, and issues of scientific research and development, it is imperative that appreciation of the past complexities of science and society and the nature of scientific knowledge be a part of the education of both scientists and non-scientists. HPSS inclusion has been found to be an effective way to reach the goal of enhancing science literacy for all citizens. Although reports stated that HPSS inclusion is not a new educational practice in other part of the world, nevertheless, no large scale study has ever been attempted to report the HPSS educational conditions around the world. This study utilizes the rich data collected by TIMSS to unveil the current conditions of HPSS in the science education of about forty TIMSS countries. Based on the analysis results, recommendations to science educators of the world are provided.

  10. Team science for science communication.

    PubMed

    Wong-Parodi, Gabrielle; Strauss, Benjamin H

    2014-09-16

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.

  11. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    NASA Astrophysics Data System (ADS)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  12. On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.

    Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.

  13. Government Information Quarterly. Volume 7, no. 2: National Aeronautics and Space Administration Scientific and Technical Information Programs. Special issue

    NASA Technical Reports Server (NTRS)

    Hernon, Peter (Editor); Mcclure, Charles R. (Editor); Pinelli, Thomas E. (Editor)

    1990-01-01

    NASA scientific and technical information (STI) programs are discussed. Topics include management of information in a research and development agency, the new space and Earth science information systems at NASA's archive, scientific and technical information management, and technology transfer of NASA aerospace technology to other industries.

  14. The Effects of Different Types of Text and Individual Differences on View Complexity about Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Zoellner, Brian P.; Parkinson, Meghan M.; Rossi, Anthony M.; Monk, Mary J.; Vinnachi, Jenelle

    2017-01-01

    View change about socio-scientific issues has been well studied in the literature, but the change in the complexity of those views has not. In the current study, the change in the complexity of views about a specific scientific topic (i.e. genetically modified organisms; GMOs) and use of evidence in explaining those views was examined in relation…

  15. Pedagogical Affordances of Multiple External Representations in Scientific Processes

    NASA Astrophysics Data System (ADS)

    Wu, Hsin-Kai; Puntambekar, Sadhana

    2012-12-01

    Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.

  16. Numerical information processing under the global rule expressed by the Euler-Riemann ζ function defined in the complex plane

    NASA Astrophysics Data System (ADS)

    Chatelin, Françoise

    2010-09-01

    When nonzero, the ζ function is intimately connected with numerical information processing. Two other functions play a key role, namely, η(s )=∑n ≥1(-1)n +1/ns and λ(s )=∑n ≥01/(2n+1)s. The paper opens on a survey of some of the seminal work of Euler [Mémoires Acad. Sci., Berlin 1768, 83 (1749)] and of the amazing theorem by Voronin [Math. USSR, Izv. 9, 443 (1975)] Then, as a follow-up of Chatelin [Qualitative Computing. A Computational Journey into Nonlinearity (World Scientific, Singapore, in press)], we present a fresh look at the triple (η ,ζ,λ) which suggests an elementary analysis based on the distances of the three complex numbers z, z /2, and 2/z to 0 and 1. This metric approach is used to contextualize any nonlinear computation when it is observed at a point describing a complex plane. The results applied to ζ, η, and λ shed a new epistemological light about the critical line. The suggested interpretation related to ζ carries computational significance.

  17. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  18. PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows

    DOE PAGES

    Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...

    2015-07-14

    Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less

  19. Integrating entertainment and scientific rigor to facilitate a co-creation of knowledge

    NASA Astrophysics Data System (ADS)

    Hezel, Bernd; Broschkowski, Ephraim; Kropp, Jürgen

    2013-04-01

    The advancing research on the changing climate system and on its impacts has uncovered the magnitude of the expectable societal implications. It therefore created substantial awareness of the problem with stakeholders and the general public. But despite this awareness, unsustainable trends have continued untamed. For a transition towards a sustainable world it is, apparently, not enough to disseminate the "scientific truth" and wait for the people to "understand". In order to remedy this problem it is rather necessary to develop new entertaining formats to communicate the complex topic in an integrated and comprehensive way. Beyond that, it could be helpful to acknowledge that science can only generate part of the knowledge that is necessary for the transformation. The nature of the problem and its deep societal implications call for a co-creation of knowledge by science and society in order to enable change. In this spirit the RAMSES project (Reconciling Adaptation, Mitigation and Sustainable Development for Cities) follows a dialogic communication approach allowing for a co-formulation of research questions by stakeholders. A web-based audio-visual guidance application presents embedded scientific information in an entertaining and intuitive way on the basis of a "complexity on demand" approach. It aims at enabling decision making despite uncertainty and it entails a reframing of the project's research according to applied and local knowledge.

  20. Teaching global and local environmental change through Remote Sensing

    NASA Astrophysics Data System (ADS)

    Mauri, Emanuela Paola; Rossi, Giovanni

    2013-04-01

    Human beings perceive the world primarily through their sense of sight. This can explain why the use of images is so important and common in educational materials, in particular for scientific subjects. The development of modern technologies for visualizing the scientific features of the Earth has provided new opportunities for communicating the increasing complexity of science both to the public and in school education. In particular, the use of Earth observation satellites for civil purposes, which started in the 70s, has opened new perspectives in the study of natural phenomena and human impact on the environment; this is particularly relevant for those processes developing on a long term period and on a global scale. Instruments for Remote Sensing increase the power of human sight, giving access to additional information about the physical world, which the human eye could not otherwise perceive. The possibility to observe from a remote perspective significant processes like climate change, ozone depletion, desertification, urban development, makes it possible for observers to better appreciate and experience the complexity of environment. Remote Sensing reveals the impact of human activities on ecosystems: this allows students to understand important concepts like global and local change in much more depth. This poster describes the role and effectiveness of Remote Sensing imagery in scientific education, and its importance towards a better global environmental awareness.

  1. Advancing Translational Space Research Through Biospecimen Sharing: Amplified Impact of Studies Utilizing Analogue Space Platforms

    NASA Technical Reports Server (NTRS)

    Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.

    2016-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.

  2. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  3. Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks

    PubMed Central

    Ding, Ying

    2010-01-01

    Scientific collaboration and endorsement are well-established research topics which utilize three kinds of methods: survey/questionnaire, bibliometrics, and complex network analysis. This paper combines topic modeling and path-finding algorithms to determine whether productive authors tend to collaborate with or cite researchers with the same or different interests, and whether highly cited authors tend to collaborate with or cite each other. Taking information retrieval as a test field, the results show that productive authors tend to directly coauthor with and closely cite colleagues sharing the same research interests; they do not generally collaborate directly with colleagues having different research topics, but instead directly or indirectly cite them; and highly cited authors do not generally coauthor with each other, but closely cite each other. PMID:21344057

  4. [From popularization to participation: communicating science in the "knowledge society".

    PubMed

    Scalari, Antonio

    2017-01-01

    Vaccines are among the scientific topics that draw most interest in the public sphere. The discussion, however, can produce polarization, eventually becoming a controversy between "supporters of science" and "antiscience people". The aggressiveness of some anti-vaxxers, and their resistance to scientific evidence, can induce the belief that the confrontation is worthless, because many think that the top-down approach is the only one that can be used. The premise of this approach is that the gap of information is the main barrier between the scientific community and the society. However, from the '80s to date, studies have shown the fallacy of some assumptions of the so-called "deficit model", including the claim that the communication of science can be reduced only to dissemination and popularization of scientific facts. Studies and experiences, even in public health communications about vaccines, have highlighted the relevance of public engagement, social context, values systems, "lay knowledge" and the complexity of the relationship between science and society, fostering the emergence of new communication models. In the "knowledge society" we need effective communication to all, because people make use of scientific facts when they are involved in decisions on many public issues. Therefore, an evidence-based assessment of each communication approach and an evaluation of the effectiveness of methods in different contexts are required.

  5. If an antelope is a document, then a rock is data: preserving earth science samples for the future

    NASA Astrophysics Data System (ADS)

    Ramdeen, S.

    2015-12-01

    As discussed in seminal works by Briet (1951) and Buckland (1998), physical objects can be considered documents when given specific context. In the case of an antelope, in the wild it's an animal, in a zoo it's a document. It is the primary source of information, specifically when it is made an object of study. When discussing earth science data, we may think about numbers in a spreadsheet or verbal descriptions of a rock. But what about physical materials such as cores, cuttings, fossils, and other tangible objects? The most recent version of the American Geophysical Union's data position statement states data preservation and management policies should apply to both "digital data and physical objects"[1]. If an antelope is a document, than isn't a rock a form of data? Like books in a library or items in a museum, these objects require surrogates (digital or analog) that allow researchers to access and retrieve them. Once these scientific objects are acquired, researchers can process the information they contain. Unlike books, and some museum materials, most earth science objects cannot yet be completely replaced by digital surrogates. A fossil may be scanned, but the original is needed for chemical testing and ultimately for 'not yet developed' processes of scientific analysis. These objects along with their metadata or other documentation become scientific data when they are used in research. Without documentation of key information (i.e. the location where it was collected) these objects may lose their scientific value. This creates a complex situation where we must preserve the object, its metadata, and the connection between them. These factors are important as we consider the future of earth science data, our definitions of what constitutes scientific data, as well as our data preservation and management practices. This talk will discuss current initiatives within the earth science communities (EarthCube's EC3 and iSamples; USGS's data preservation program; etc.) and within the communities of information science. As practitioners, these librarians, information scientists, and archivists work on similar issues and can offer practices and theories that might help us 'future proof' physical earth science records. [1] http://sciencepolicy.agu.org/draft-data-position-statement-comment

  6. 76 FR 77834 - Scientific Information Request on Intravascular Diagnostic and Imaging Medical Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... solicited to inform our Comparative Effectiveness Review of Intravascular Diagnostic Procedures and Imaging... scientific information on this device will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  7. 77 FR 11120 - Scientific Information Request on Treatment Strategies for Patients With Peripheral Artery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... is being solicited to inform our Comparative Effectiveness Review of Treatment Strategies for... scientific information on this device will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  8. 77 FR 11123 - Scientific Information Request on Local Therapies for Unresectable Colorectal Cancer Metastases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... being solicited to inform our Comparative Effectiveness Review of Local Therapies for Unresectable... scientific information on this device will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  9. Science in the Public Sphere: Greater Sage-grouse Conservation Planning from a Transdisciplinary Perspective

    USGS Publications Warehouse

    Torregrosa, Alicia; Casazza, Michael L.; Caldwell, Margaret R.; Mathiasmeier, Teresa A.; Morgan, Peter M.; Overton, Cory T.

    2010-01-01

    Integration of scientific data and adaptive management techniques is critical to the success of species conservation, however, there are uncertainties about effective methods of knowledge exchange between scientists and decisionmakers. The conservation planning and implementation process for Greater Sage-grouse (Centrocercus urophasianus; ) in the Mono Basin, Calif. region, was used as a case study to observe the exchange of scientific information among stakeholders with differing perspectives; resource manager, scientist, public official, rancher, and others. The collaborative development of a risk-simulation model was explored as a tool to transfer knowledge between stakeholders and inform conservation planning and management decisions. Observations compiled using a transdisciplinary approach were used to compare the exchange of information during the collaborative model development and more traditional interactions such as scientist-led presentations at stakeholder meetings. Lack of congruence around knowledge needs and prioritization led to insufficient commitment to completely implement the risk-simulation model. Ethnographic analysis of the case study suggests that further application of epistemic community theory, which posits a strong boundary condition on knowledge transfer, could help support application of risk simulation models in conservation-planning efforts within similarly complex social and bureaucratic landscapes.

  10. A Virtual Tour of the 1868 Hayward Earthquake in Google EarthTM

    NASA Astrophysics Data System (ADS)

    Lackey, H. G.; Blair, J. L.; Boatwright, J.; Brocher, T.

    2007-12-01

    The 1868 Hayward earthquake has been overshadowed by the subsequent 1906 San Francisco earthquake that destroyed much of San Francisco. Nonetheless, a modern recurrence of the 1868 earthquake would cause widespread damage to the densely populated Bay Area, particularly in the east Bay communities that have grown up virtually on top of the Hayward fault. Our concern is heightened by paleoseismic studies suggesting that the recurrence interval for the past five earthquakes on the southern Hayward fault is 140 to 170 years. Our objective is to build an educational web site that illustrates the cause and effect of the 1868 earthquake drawing on scientific and historic information. We will use Google EarthTM software to visually illustrate complex scientific concepts in a way that is understandable to a non-scientific audience. This web site will lead the viewer from a regional summary of the plate tectonics and faulting system of western North America, to more specific information about the 1868 Hayward earthquake itself. Text and Google EarthTM layers will include modeled shaking of the earthquake, relocations of historic photographs, reconstruction of damaged buildings as 3-D models, and additional scientific data that may come from the many scientific studies conducted for the 140th anniversary of the event. Earthquake engineering concerns will be stressed, including population density, vulnerable infrastructure, and lifelines. We will also present detailed maps of the Hayward fault, measurements of fault creep, and geologic evidence of its recurrence. Understanding the science behind earthquake hazards is an important step in preparing for the next significant earthquake. We hope to communicate to the public and students of all ages, through visualizations, not only the cause and effect of the 1868 earthquake, but also modern seismic hazards of the San Francisco Bay region.

  11. Using Next Generation Science Standards (NGSS) Practices to Address Scientific Misunderstandings Around Complex Environmental Issues

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Kenna, T. C.

    2014-12-01

    The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a given condition, to predict an outcome and to better judge the seriousness of an overall situation. While the problem solving skills students are taught are built around a specific case study, they can be broadly applied to a much wider range of topics, areas of study, and other aspects of their lives as new challenges arise, fitting the goals of NGSS.

  12. Scientific and Technological Information Activity in China (White Paper on Science and Technology : No.1, 1986.5)

    NASA Astrophysics Data System (ADS)

    Translated By Joho Kanri Editorial Committee

    This is a translation of Chapter 4 : Information Systems of Volume 5 : Environment and Resources in the first number of White Paper on Science and Technology edited in May 1986 by State Scientific and Technological Commission (SSTC). Scientific and technological information activity in China has progressed by keeping close cooperation among the Institute for Scientific and Technological Information in China (ISTIC) as a core organization, 33 information institutes under the control of each ministrial commission of The State Council and 35 information institutes of the local governments and cities. As a result of having promoted the information activities along with the guiding principle decided by the 5th National Conference on Scientific and Technological Information in July 1980, information business could be made a great contribution to political decision, national projects and economy stressing plan, technology introduction, etc. The Scientific and Technological Information Bureau of SSTC as a coordinating body proposed the following subjects as an important item for promoting future information business in China: standardization of abstract journals, bringing up of investigators and researchers, production of data bases and consolidation of international online retrieval services, step by step introduction of a charging system for information service, etc.

  13. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The Intersection of Information and Science Literacy

    ERIC Educational Resources Information Center

    Klucevsek, Kristin

    2017-01-01

    To achieve higher science literacy, both students and the public require discipline-specific information literacy in the sciences. Scientific information literacy is a core component of the scientific process. In addition to teaching how to find and evaluate resources, scientific information literacy should include teaching the process of…

  15. "gnparser": a powerful parser for scientific names based on Parsing Expression Grammar.

    PubMed

    Mozzherin, Dmitry Y; Myltsev, Alexander A; Patterson, David J

    2017-05-26

    Scientific names in biology act as universal links. They allow us to cross-reference information about organisms globally. However variations in spelling of scientific names greatly diminish their ability to interconnect data. Such variations may include abbreviations, annotations, misspellings, etc. Authorship is a part of a scientific name and may also differ significantly. To match all possible variations of a name we need to divide them into their elements and classify each element according to its role. We refer to this as 'parsing' the name. Parsing categorizes name's elements into those that are stable and those that are prone to change. Names are matched first by combining them according to their stable elements. Matches are then refined by examining their varying elements. This two stage process dramatically improves the number and quality of matches. It is especially useful for the automatic data exchange within the context of "Big Data" in biology. We introduce Global Names Parser (gnparser). It is a Java tool written in Scala language (a language for Java Virtual Machine) to parse scientific names. It is based on a Parsing Expression Grammar. The parser can be applied to scientific names of any complexity. It assigns a semantic meaning (such as genus name, species epithet, rank, year of publication, authorship, annotations, etc.) to all elements of a name. It is able to work with nested structures as in the names of hybrids. gnparser performs with ≈99% accuracy and processes 30 million name-strings/hour per CPU thread. The gnparser library is compatible with Scala, Java, R, Jython, and JRuby. The parser can be used as a command line application, as a socket server, a web-app or as a RESTful HTTP-service. It is released under an Open source MIT license. Global Names Parser (gnparser) is a fast, high precision tool for biodiversity informaticians and biologists working with large numbers of scientific names. It can replace expensive and error-prone manual parsing and standardization of scientific names in many situations, and can quickly enhance the interoperability of distributed biological information.

  16. The Huaihe Basin Water Resource and Water Quality Management Platform Implemented with a Spatio-Temporal Data Model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, W.; Yan, C.

    2012-07-01

    Presently, planning and assessment in maintenance, renewal and decision-making for watershed hydrology, water resource management and water quality assessment are evolving toward complex, spatially explicit regional environmental assessments. These problems have to be addressed with object-oriented spatio-temporal data models that can restore, manage, query and visualize various historic and updated basic information concerning with watershed hydrology, water resource management and water quality as well as compute and evaluate the watershed environmental conditions so as to provide online forecasting to police-makers and relevant authorities for supporting decision-making. The extensive data requirements and the difficult task of building input parameter files, however, has long been an obstacle to use of such complex models timely and effectively by resource managers. Success depends on an integrated approach that brings together scientific, education and training advances made across many individual disciplines and modified to fit the needs of the individuals and groups who must write, implement, evaluate, and adjust their watershed management plans. The centre for Hydro-science Research, Nanjing University, in cooperation with the relevant watershed management authorities, has developed a WebGIS management platform to facilitate this complex process. Improve the management of watersheds over the Huaihe basin through the development, promotion and use of a web-based, user-friendly, geospatial watershed management data and decision support system (WMDDSS) involved many difficulties for the development of this complicated System. In terms of the spatial and temporal characteristics of historic and currently available information on meteorological, hydrological, geographical, environmental and other relevant disciplines, we designed an object-oriented spatiotemporal data model that combines spatial, attribute and temporal information to implement the management system. Using this system, we can update, query and analyze environmental information as well as manage historical data, and a visualization tool was provided to help the user interpret results so as to provide scientific support for decision-making. The utility of the system has been demonstrated its values by being used in watershed management and environmental assessments.

  17. To be or not to be: How do we speak about uncertainty in public?

    NASA Astrophysics Data System (ADS)

    Todesco, Micol; Lolli, Barbara; Sheldrake, Tom; Odbert, Henry

    2016-04-01

    One of the challenges related to hazard communication concerns the public perception and understanding of scientific uncertainties, and of its implications in terms of hazard assessment and mitigation. Often science is perceived as an effective dispenser of resolving answers to the main issues posed by the complexities of life and nature. In this perspective, uncertainty is seen as a pernicious lack of knowledge that hinders our ability to face complex problems. From a scientific perspective, however, the definition of uncertainty is the only valuable tool we have to handle errors affecting our data and propagating through the increasingly complex models we develop to describe reality. Through uncertainty, scientists acknowledge the great variability that characterises natural systems and account for it in their assessment of possible scenarios. From this point of view, uncertainty is not ignorance, but it rather provides a great deal of information that is needed to inform decision making. To find effective ways to bridge the gap between these different meaning of uncertainty, we asked high-school students for assistance. With their help, we gathered definitions of the term 'uncertainty' interviewing different categories of peoples, including schoolmates and professors, neighbours, families and friends. These definitions will be compared with those provided by scientists, to find differences and similarity. To understand the role of uncertainty on judgment, a hands-on experiment is performed where students will have to estimate the exact time of explosion of party poppers subjected to a variable degree of pull. At the end of the project, the students will express their own understanding of uncertainty in a video, which will be made available for sharing. Materials collected during all the activities will contribute to our understanding of how uncertainty is portrayed and can be better expressed to improve our hazard communication.

  18. Using integrated research and interdisciplinary science: Potential benefits and challenges to managers of parks and protected areas

    USGS Publications Warehouse

    van Riper, Charles; Powell, Robert B.; Machlis, Gary; van Wagtendonk, Jan W.; van Riper, Carena J.; von Ruschkowski, Eick; Schwarzbach, Steven E.; Galipeau, Russell E.

    2012-01-01

    Our purpose in this paper is to build a case for utilizing interdisciplinary science to enhance the management of parks and protected areas. We suggest that interdisciplinary science is necessary for dealing with the complex issues of contemporary resource management, and that using the best available integrated scientific information be embraced and supported at all levels of agencies that manage parks and protected areas. It will take the commitment of park managers, scientists, and agency leaders to achieve the goal of implementing the results of interdisciplinary science into park management. Although such calls go back at least several decades, today interdisciplinary science is sporadically being promoted as necessary for supporting effective protected area management(e.g., Machlis et al. 1981; Kelleher and Kenchington 1991). Despite this history, rarely has "interdisciplinary science" been defined, its importance explained, or guidance provided on how to translate and then implement the associated research results into management actions (Tress et al. 2006; Margles et al. 2010). With the extremely complex issues that now confront protected areas (e.g., climate change influences, extinctions and loss of biodiversity, human and wildlife demographic changes, and unprecedented human population growth) information from more than one scientific discipline will need to be brought to bear in order to achieve sustained management solutions that resonate with stakeholders (Ostrom 2009). Although interdisciplinary science is not the solution to all problems, we argue that interdisciplinary research is an evolving and widely supported best practice. In the case of park and protected area management, interdisciplinary science is being driven by the increasing recognition of the complexity and interconnectedness of human and natural systems, and the notion that addressing many problems can be more rapidly advanced through interdisciplinary study and analysis.

  19. Apollo Experiment Report: Lunar-Sample Processing in the Lunar Receiving Laboratory High-Vacuum Complex

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1976-01-01

    A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.

  20. Science information systems: Archive, access, and retrieval

    NASA Technical Reports Server (NTRS)

    Campbell, William J.

    1991-01-01

    The objective of this research is to develop technology for the automated characterization and interactive retrieval and visualization of very large, complex scientific data sets. Technologies will be developed for the following specific areas: (1) rapidly archiving data sets; (2) automatically characterizing and labeling data in near real-time; (3) providing users with the ability to browse contents of databases efficiently and effectively; (4) providing users with the ability to access and retrieve system independent data sets electronically; and (5) automatically alerting scientists to anomalies detected in data.

  1. Object-oriented structures supporting remote sensing databases

    NASA Technical Reports Server (NTRS)

    Wichmann, Keith; Cromp, Robert F.

    1995-01-01

    Object-oriented databases show promise for modeling the complex interrelationships pervasive in scientific domains. To examine the utility of this approach, we have developed an Intelligent Information Fusion System based on this technology, and applied it to the problem of managing an active repository of remotely-sensed satellite scenes. The design and implementation of the system is compared and contrasted with conventional relational database techniques, followed by a presentation of the underlying object-oriented data structures used to enable fast indexing into the data holdings.

  2. Closing the data gap: Creating an open data environment

    NASA Astrophysics Data System (ADS)

    Hester, J. R.

    2014-02-01

    Poor data management brought on by increasing volumes of complex data undermines both the integrity of the scientific process and the usefulness of datasets. Researchers should endeavour both to make their data citeable and to cite data whenever possible. The reusability of datasets is improved by community adoption of comprehensive metadata standards and public availability of reversibly reduced data. Where standards are not yet defined, as much information as possible about the experiment and samples should be preserved in datafiles written in a standard format.

  3. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    PubMed

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  4. The Military-Industrial-Scientific Complex and the Rise of New Powers: Conceptual, Theoretical and Methodological Contributions and the Brazilian Case

    DTIC Science & Technology

    2017-09-29

    Report: The Military-Industrial-Scientific Complex and the Rise of New Powers: Conceptual, Theoretical and Methodological Contributions and the... Methodological Contributions and the Brazilian Case Report Term: 0-Other Email: aminvielle@ucsd.edu Distribution Statement: 1-Approved for public

  5. Complexity of Secondary Scientific Data Sources and Students' Argumentative Discourse

    ERIC Educational Resources Information Center

    Kerlin, Steven C.; McDonald, Scott P.; Kelly, Gregory J.

    2010-01-01

    This study examined the learning opportunities provided to students through the use of complex geological data supporting scientific inquiry. Through analysis of argumentative discourse in a high school Earth science classroom, uses of US Geological Survey (USGS) data were contrasted with uses of geoscience textbook data. To examine these…

  6. An adaptable XML based approach for scientific data management and integration

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Thiel, Florian; Furrer, Daniel; Vergara-Niedermayr, Cristobal; Qin, Chen; Hackenberg, Georg; Bourgue, Pierre-Emmanuel; Kaltschmidt, David; Wang, Mo

    2008-03-01

    Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.

  7. An Adaptable XML Based Approach for Scientific Data Management and Integration.

    PubMed

    Wang, Fusheng; Thiel, Florian; Furrer, Daniel; Vergara-Niedermayr, Cristobal; Qin, Chen; Hackenberg, Georg; Bourgue, Pierre-Emmanuel; Kaltschmidt, David; Wang, Mo

    2008-02-20

    Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.

  8. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  9. The NSF ITR Project: Framework for the National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Szalay, A. S.; Williams, R. D.; NVO Collaboration

    2002-05-01

    Technological advances in telescope and instrument design during the last ten years, coupled with the exponential increase in computer and communications capability, have caused a dramatic and irreversible change in the character of astronomical research. Large-scale surveys of the sky from space and ground are being initiated at wavelengths from radio to x-ray, thereby generating vast amounts of high quality irreplaceable data. The potential for scientific discovery afforded by these new surveys is enormous. Entirely new and unexpected scientific results of major significance will emerge from the combined use of the resulting datasets, science that would not be possible from such sets used singly. However, their large size and complexity require tools and structures to discover the complex phenomena encoded within them. We plan to build the NVO framework both through coordinating diverse efforts already in existence and providing a focus for the development of capabilities that do not yet exist. The NVO we envisage will act as an enabling and coordinating entity to foster the development of further tools, protocols, and collaborations necessary to realize the full scientific potential of large astronomical datasets in the coming decade. The NVO must be able to change and respond to the rapidly evolving world of IT technology. In spite of its underlying complex software, the NVO should be no harder to use for the average astronomer, than today's brick-and-mortar observatories and telescopes. Development of these capabilities will require close interaction and collaboration with the information technology community and other disciplines facing similar challenges. We need to ensure that the tools that we need exist or are built, but we do not duplicate efforts, and rely on relevant experience of others.

  10. Civilizing the Conversation? Using Surveys to Inform Water Management and Science in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Hanak, E.; Phillips Chappelle, C.

    2013-12-01

    Improving ecosystem outcomes in California's Sacramento-San Joaquin Delta is a complex, high-stakes water resource management challenge. The Delta is a major hub for water supply conveyance and a valued ecological resource. Yet long-term declines in native fish populations have resulted in severe legal constraints on water exports and fueled growing public debates about the roles and responsibilities of flow modification and other sources of ecosystem stress. Meanwhile, scientific uncertainty, and the inability of the scientific community to effectively communicate what *is* known, has frustrated policymakers and encouraged 'combat science' - the commissioning and use of competing scientific opinions in the courtroom. This paper summarizes results from a study designed to inform the policy process through the use of confidential surveys of scientific researchers (those publishing in peer-reviewed journals, n=122) and engaged stakeholders and policymakers (n=240). The surveys, conducted in mid-2012, sought respondents' views on the sources of ecosystem stress and priority ecosystem management actions. The scientist survey is an example of the growing use of expert elicitation to address gaps in the scientific literature, particularly where there is uncertainty about priorities for decisionmaking (e.g., Cvitanovic et al. 2013, J. of Env. Mgmt; McDaniels et al. 2012, Risk Analysis). The stakeholder survey is a useful complement, enabling the identification of areas of consensus and divergence among stakeholder groups and between these groups and scientific experts. The results suggest such surveys are a promising tool for addressing complex water management problems. We found surprisingly high agreement among scientists on the relative roles of stressors and the most promising management actions; they emphasized restoring more natural processes through habitat and flow actions within the watershed, consistent with 'reconciliation ecology' approaches (Rosenzweig 2003, Oxford Univ. Press). In contrast, scientific consensus was far lower on the potential of relatively low-cost infrastructure and technology tools (e.g. gates, hatcheries) - underscoring the importance of building knowledge on such efforts. Surprisingly, and positively, stakeholders from groups with widely diverging public positions broadly agreed with scientists that multiple stressors are responsible for the Delta's plight. And most agreed with scientists on management priorities. However, individual groups were more likely to prioritize actions unrelated to their own uses of Delta resources and to shy away from actions that would be costly for them. The results point to the need for building shared understanding on Delta science for a more constructive policy process. To this end, the study proposed changes in the organization of Delta science drawing on 'common pool' models that have been effective for water quality research in both northern and southern California.

  11. [Position Paper of The AG Digital Health DNVF on Digital Health Applications: Framework Conditions For Use in Health Care, Structural Development and Science].

    PubMed

    Vollmar, Horst Christian; Kramer, Ursula; Müller, Hardy; Griemmert, Maria; Noelle, Guido; Schrappe, Matthias

    2017-12-01

    The term "digital health" is currently the most comprehensive term that includes all information and communication technologies in healthcare, including e-health, mobile health, telemedicine, big data, health apps and others. Digital health can be seen as a good example of the use of the concept and methodology of health services research in the interaction between complex interventions and complex contexts. The position paper deals with 1) digital health as the subject of health services research; 2) digital health as a methodological and ethical challenge for health services research. The often-postulated benefits of digital health interventions should be demonstrated with good studies. First systematic evaluations of apps for "treatment support" show that risks are higher than benefits. The need for a rigorous proof applies even more to big data-assisted interventions that support decision-making in the treatment process with the support of artificial intelligence. Of course, from the point of view of health services research, it is worth participating as much as possible in data access available through digital health and "big data". However, there is the risk that a noncritical application of digital health and big data will lead to a return to a linear understanding of biomedical research, which, at best, accepts complex conditions assuming multivariate models but does not take complex facts into account. It is not just a matter of scientific ethical requirements in health services care research, for instance, better research instead of unnecessary research ("reducing waste"), but it is primarily a matter of anticipating the social consequences (system level) of scientific analysis and evaluation. This is both a challenge and an attractive option for health services research to present itself as a mature and responsible scientific discipline. © Georg Thieme Verlag KG Stuttgart · New York.

  12. "It Should at Least Seem Scientific!" Textual Features of "Scientificness" and Their Impact on Lay Assessments of Online Information

    ERIC Educational Resources Information Center

    Thomm, Eva; Bromme, Rainer

    2012-01-01

    The Internet is a convenient source of information about science-based topics (e.g., health matters). Whereas experts are familiar with the conventions of "true" scientific discourse and the assessment of scientific information, laypeople may have great difficulty choosing among, evaluating, and deciding on the vast amount of information…

  13. Understanding the Data Complexity continuum to reduce data management costs and increase data usability through partnerships with the National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Mesick, S.; Weathers, K. W.

    2017-12-01

    Data complexity can be seen as a continuum from complex to simple. The term data complexity refers to data collections that are disorganized, poorly documented, and generally do not follow best data management practices. Complex data collections are challenging and expensive to manage. Simplified collections readily support automated archival processes, enhanced discovery and data access, as well as production of services that make data easier to reuse. In this session, NOAA NCEI scientific data stewards will discuss the data complexity continuum. This talk will explore data simplification concepts, methods, and tools that data managers can employ which may offer more control over data management costs and processes, while achieving policy goals for open data access and ready reuse. Topics will include guidance for data managers on best allocation of limited data management resources; models for partnering with NCEI to accomplish shared data management goals; and will demonstrate through case studies the benefits of investing in documentation, accessibility, and services to increase data value and return on investment.

  14. Patients' perception of risk: informed choice in prenatal testing for foetal aneuploidy.

    PubMed

    Choolani, Mahesh; Biswas, Arijit

    2012-10-01

    Each of us perceives risk differently, and so do our patients. This perception of risk gets even more complex when multiple individuals and interactions are involved: the doctor, the patient-pregnant mother, the spouse-father and the foetus-unborn child. In this review, we address the relationship between different levels of information gathering, from clinical data to experiential knowledge - data, information, knowledge, perception, attitude, wisdom - and how these would impact the perception of risk and informed consent. We discuss how patients might interpret the risks of the same event differently based upon past experiences, and suggest how risk data could be presented more meaningfully for patients and family to assimilate for informed decision making. Finally, we demonstrate how patients' expectations and risk management can impact scientific research and clinical progress by way of the most topical subject of risk screening in pregnancy - non-invasive prenatal testing using cell-free DNA in maternal plasma.

  15. GBIS: the information system of the German Genebank

    PubMed Central

    Oppermann, Markus; Weise, Stephan; Dittmann, Claudia; Knüpffer, Helmut

    2015-01-01

    The German Federal ex situ Genebank of Agricultural and Horticultural Crop Species is the largest collection of its kind in the countries of the European Union and amongst the 10 largest collections worldwide. Beside its enormous scientific value as a safeguard of plant biodiversity, the plant genetic resources maintained are also of high importance for breeders to provide new impulses. The complex processes of managing such a collection are supported by the Genebank Information System (GBIS). GBIS is an important source of information for researchers and plant breeders, e.g. for identifying appropriate germplasm for breeding purposes. In addition, the access to genebank material as a sovereign task is also of high interest to the general public. Moreover, GBIS acts as a data source for global information systems, such as the Global Biodiversity Information Facility (GBIF) or the European Search Catalogue for Plant Genetic Resources (EURISCO). Database URL: http://gbis.ipk-gatersleben.de/ PMID:25953079

  16. [The organization of scientific innovative laboratory complex of modern technologies].

    PubMed

    Totskaia, E G; Rozhnova, O M; Mamonova, E V

    2013-01-01

    The article discusses the actual issues of scientific innovative activity during the realization of principles of private-public partnership. The experience of development of model of scientific innovative complex is presented The possibilities to implement research achievements and their application in the area of cell technologies, technologies of regenerative medicine, biochip technologies are demonstrated. The opportunities to provide high level of diagnostic and treatment in practical health care increase of accessibility and quality of medical care and population health promotion are discussed.

  17. A need to simplify informed consent documents in cancer clinical trials. A position paper of the ARCAD Group

    PubMed Central

    Bleiberg, H.; Decoster, G.; de Gramont, A.; Rougier, P.; Sobrero, A.; Benson, A.; Chibaudel, B.; Douillard, J. Y.; Eng, C.; Fuchs, C.; Fujii, M.; Labianca, R.; Larsen, A. K.; Mitchell, E.; Schmoll, H. J.; Sprumont, D.; Zalcberg, J.

    2017-01-01

    Background In respect of the principle of autonomy and the right of self-determination, obtaining an informed consent of potential participants before their inclusion in a study is a fundamental ethical obligation. The variations in national laws, regulations, and cultures contribute to complex informed consent documents for patients participating in clinical trials. Currently, only few ethics committees seem willing to address the complexity and the length of these documents and to request investigators and sponsors to revise them in a way to make them understandable for potential participants. The purpose of this work is to focus on the written information in the informed consent documentation for drug development clinical trials and suggests (i) to distinguish between necessary and not essential information, (ii) to define the optimal format allowing the best legibility of those documents. Methods The Aide et Recherche en Cancérologie Digestive (ARCAD) Group, an international scientific committee involving oncologists from all over the world, addressed these issues and developed and uniformly accepted a simplified informed consent documentation for future clinical research. Results A simplified form of informed consent with the leading part of 1200–1800 words containing all of the key information necessary to meet ethical and regulatory requirements and ‘relevant supportive information appendix’ of 2000–3000 words is provided. Conclusions This position paper, on the basis of the ARCAD Group experts discussions, proposes our informed consent model and the rationale for its content. PMID:28453700

  18. All-Union Conference on Information Retrieval Systems and Automatic Processing of Scientific and Technical Information, 3rd, Moscow, 1967, Transactions. (Selected Articles).

    ERIC Educational Resources Information Center

    Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

    The role and place of the machine in scientific and technical information is explored including: basic trends in the development of information retrieval systems; preparation of engineering and scientific cadres with respect to mechanization and automation of information works; the logic of descriptor retrieval systems; the 'SETKA-3' automated…

  19. Science to support the understanding of Ohio's water resources, 2016-17

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  20. Science to support the understanding of Ohio's water resources

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  1. Media-Savvy Scientific Literacy: Developing Critical Evaluation Skills by Investigating Scientific Claims

    ERIC Educational Resources Information Center

    Brickman, Peggy; Gormally, Cara; Francom, Greg; Jardeleza, Sarah E.; Schutte, Virginia G. W.; Jordan, Carly; Kanizay, Lisa

    2012-01-01

    Students must learn content knowledge and develop scientific literacy skills to evaluate and use scientific information in real-world situations. Recognizing the accessibility of scientific information to the average citizen, we developed an instructional approach to help students learn how to judge the quality of claims. We describe a…

  2. Scientific and Technical Information in Canada, Part II, Chapter 1: Government Departments and Agencies.

    ERIC Educational Resources Information Center

    Science Council of Canada, Ottawa (Ontario).

    Canada's major scientific and technical information resources are supported largely by the Federal Government. They consist of libraries, data files, specialized information centers, and field services. The Canadian Government has no overall policy concerning the handling of scientific and technical information. The need for a national information…

  3. Development of a Centralized Automated Scientific and Technical Information Service in the People's Republic of Bulgaria.

    ERIC Educational Resources Information Center

    Kiratsov, P.

    1983-01-01

    Discusses the design and organization of the Automated Information Centre, a centralized automated scientific and technical information service established within the main organ of Bulgaria's National System for Scientific and Technical Information, with UNESCO and United Nations Development Program assistance. Problems and perspectives for…

  4. Integrated Bio-Entity Network: A System for Biological Knowledge Discovery

    PubMed Central

    Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng

    2011-01-01

    A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677

  5. Metadata Management on the SCEC PetaSHA Project: Helping Users Describe, Discover, Understand, and Use Simulation Data in a Large-Scale Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.

    2007-12-01

    Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.

  6. 77 FR 22324 - Scientific Information Request on Treatment of Tinnitus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Scientific Information Request on Treatment of Tinnitus AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Request for scientific information submissions. SUMMARY: The Agency for Healthcare Research and...

  7. AGU, Science and Engagement with the Energy Industry

    NASA Astrophysics Data System (ADS)

    Leinen, M.; Davidson, E. A.

    2016-12-01

    The relationship between science and society evolves over time and the social, political, and economic factors shaping this relationship are complex. When problems facing society become more challenging, the public, NGOs, and policy makers call for science to more directly inform solutions, to assure accountability for the use of funds and to address conflicts of interest. But when policy solutions for such challenges require significant economic and societal tradeoffs, discussion of the science can become polarized and politicized. When this occurs, AGU's policies that uphold the highest standards of scientific integrity, address conflicts of interests and promote independence for members are even more important. These policies are implemented through processes for: a) control of science presented at meeting and in publications; b) requirements for data cited in publications to be publicly accessible, and c) an organizational support policy that prohibits sponsors from influencing science presented in AGU programs. The private sector wields vast influence on human behavior and governmental policy through commerce and lobbying. These actions can be controversial when the profit motive appears incongruent with other societal opinions of what is in the public interest. Climate change is an example of this tension, where the economic exploitation of fossil fuels has complex effects on food and energy security as well as on the environment. Nonetheless, the AGU Board unanimously agreed that given our mission to advance science to create a more sustainable earth, engagement of the private sector rather than disengagement is the best way to influence decision makers on all sides because we believe that the private sector needs to be part of any solutions. We plan to use our convening power and scientific authority to bring together diverse views on climate change solutions from the private, NGO, policy, decision-maker and scientific sectors to begin a substantial, responsible and on-going dialogue. We want this dialogue to inform issues of energy, environment, security and the associated economic and societal benefits and tradeoffs in addressing climate change. AGU will share our initial ideas for convening such engagement and in the future will inform our membership on the successes and the on-going challenges.

  8. Thematic Continuities: Talking and Thinking about Adaptation in a Socially Complex Classroom

    ERIC Educational Resources Information Center

    Ash, Doris

    2008-01-01

    In this study I rely on sociocultural views of learning and teaching to describe how fifth- sixth-grade students in a Fostering a Community of Learners (FCL) classroom gradually adopted scientific ideas and language in a socially complex classroom. Students practiced talking science together, using everyday, scientific, and hybrid discourses as…

  9. The Computational Infrastructure for Geodynamics as a Community of Practice

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Kellogg, L. H.

    2016-12-01

    Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.

  10. Intelligent Design and the Creationism/Evolution Controversy

    NASA Astrophysics Data System (ADS)

    Scott, E. C.

    2004-12-01

    "Intelligent Design" (ID) is a new form of creationism that emerged after legal decisions in the 1980s hampered the inclusion of "creation science" in the public school curriculum. To avoid legal challenge, proponents claim agnosticism regarding the identity of the intelligent agent, which could be material (such as highly intelligent terrestrials) or transcendental (God). ID consists of a scientific/scholarly effort, and a politico-religious movement of "cultural renewal." Intelligent design is supposedly detectable through the application of Michael Behe's "irreducible complexity" concept and/or William Dembski's concept of "complex specified information". ID's claims amount to, first, that "Darwinism" (vaguely defined) is incapable of providing an adequate mechanism for evolution, and second (subsequently), that evolution did not occur. Although scientific ideas not infrequently are slow to be accepted, in the 20 years since ID appeared, there is no evidence of it being used to solve problems in biology. Even if the scientific/scholarly part of ID has been a failure, the "cultural renewal" part of ID has been a success. This social and political aspect of ID seeks "restoration" of a theistic sensibility in American culture to replace what supporters consider an overemphasis on secularism. In the last few years, in several states, legislators have introduced legislation promoting ID (to date, unsuccessfully) and an addendum to the 2001 federal education bill conference committee report (the "Santorum amendment") is being used to promote the teaching of ID in public schools. Perhaps because ID has no actual content other than antievolutionism, ID proponents contend that pre-college teachers should teach wweaknesses of evolutionw or "evidence against evolutionw - largely warmed-over arguments from creation science - even though professional scientists do not recognize these as valid scientific claims.

  11. Second Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program information on NASA's ground-based and space-based flight research facilities. An international forum offered participants an opportunity to hear from French, German, and Russian speakers about the microgravity research programs in their respective countries. Two keynote speakers provided broad technical overviews on multiphase flow and complex fluids research. Presenters briefed their peers on the scientific results of their ground-based and flight research. Fifty-eight of the sixty-two technical papers are included here.

  12. The structure of control and data transfer management system for the GAMMA-400 scientific complex

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, A. I.; Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Topchiev, N. P.

    2016-02-01

    A description of the control and data transfer management system for scientific instrumentation involved in the GAMMA-400 space project is given. The technical capabilities of all specialized equipment to provide the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands, as well as program commands in the form of 16-bit code words, which are transmitted via onboard control system and scientific data acquisition system. Up to 100 GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified by the experimental working-off of the prototype of the GAMMA-400 scientific complex in laboratory conditions.

  13. Lay Americans' views of why scientists disagree with each other.

    PubMed

    Johnson, Branden B; Dieckmann, Nathan F

    2017-10-01

    A survey experiment assessed response to five explanations of scientific disputes: problem complexity, self-interest, values, competence, and process choices (e.g. theories and methods). A US lay sample ( n = 453) did not distinguish interests from values, nor competence from process, as explanations of disputes. Process/competence was rated most likely and interests/values least; all, on average, were deemed likely to explain scientific disputes. Latent class analysis revealed distinct subgroups varying in their explanation preferences, with a more complex latent class structure for participants who had heard of scientific disputes in the past. Scientific positivism and judgments of science's credibility were the strongest predictors of latent class membership, controlling for scientific reasoning, political ideology, confidence in choice, scenario, education, gender, age, and ethnicity. The lack of distinction observed overall between different explanations, as well as within classes, raises challenges for further research on explanations of scientific disputes people find credible and why.

  14. Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi

    As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) andmore » its hybrid data store combining both of these data provenance perspectives.« less

  15. Compressibility, Laws of Nature, Initial Conditions and Complexity

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Vulpiani, Angelo

    2017-10-01

    We critically analyse the point of view for which laws of nature are just a mean to compress data. Discussing some basic notions of dynamical systems and information theory, we show that the idea that the analysis of large amount of data by means of an algorithm of compression is equivalent to the knowledge one can have from scientific laws, is rather naive. In particular we discuss the subtle conceptual topic of the initial conditions of phenomena which are generally incompressible. Starting from this point, we argue that laws of nature represent more than a pure compression of data, and that the availability of large amount of data, in general, is not particularly useful to understand the behaviour of complex phenomena.

  16. What can we learn from PISA?: Investigating PISA's approach to scientific literacy

    NASA Astrophysics Data System (ADS)

    Schwab, Cheryl Jean

    This dissertation is an investigation of the relationship between the multidimensional conception of scientific literacy and its assessment. The Programme for International Student Assessment (PISA), developed under the auspices of the Organization for Economic Cooperation and Development (OECD), offers a unique opportunity to evaluate the assessment of scientific literacy. PISA developed a continuum of performance for scientific literacy across three competencies (i.e., process, content, and situation). Foundational to the interpretation of PISA science assessment is PISA's definition of scientific literacy, which I argue incorporates three themes drawn from history: (a) scientific way of thinking, (b) everyday relevance of science, and (c) scientific literacy for all students. Three coordinated studies were conducted to investigate the validity of PISA science assessment and offer insight into the development of items to assess scientific 2 literacy. Multidimensional models of the internal structure of the PISA 2003 science items were found not to reflect the complex character of PISA's definition of scientific literacy. Although the multidimensional models across the three competencies significantly decreased the G2 statistic from the unidimensional model, high correlations between the dimensions suggest that the dimensions are similar. A cognitive analysis of student verbal responses to PISA science items revealed that students were using competencies of scientific literacy, but the competencies were not elicited by the PISA science items at the depth required by PISA's definition of scientific literacy. Although student responses contained only knowledge of scientific facts and simple scientific concepts, students were using more complex skills to interpret and communicate their responses. Finally the investigation of different scoring approaches and item response models illustrated different ways to interpret student responses to assessment items. These analyses highlighted the complexities of students' responses to the PISA science items and the use of the ordered partition model to accommodate different but equal item responses. The results of the three investigations are used to discuss ways to improve the development and interpretation of PISA's science items.

  17. Lakatos' Scientific Research Programmes as a Framework for Analysing Informal Argumentation about Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Chang, Shu-Nu; Chiu, Mei-Hung

    2008-01-01

    The purpose of this study is to explore how Lakatos' scientific research programmes might serve as a theoretical framework for representing and evaluating informal argumentation about socio-scientific issues. Seventy undergraduate science and non-science majors were asked to make written arguments about four socio-scientific issues. Our analysis…

  18. Canadian Thoracic Society recommendations for management of chronic obstructive pulmonary disease - 2007 update.

    PubMed

    O'Donnell, Denis E; Aaron, Shaw; Bourbeau, Jean; Hernandez, Paul; Marciniuk, Darcy D; Balter, Meyer; Ford, Gordon; Gervais, Andre; Goldstein, Rogers; Hodder, Rick; Kaplan, Alan; Keenan, Sean; Lacasse, Yves; Maltais, Francois; Road, Jeremy; Rocker, Graeme; Sin, Don; Sinuff, Tasmin; Voduc, Nha

    2007-09-01

    Chronic obstructive pulmonary disease (COPD) is a major respiratory illness in Canada that is both preventable and treatable. Our understanding of the pathophysiology of this complex condition continues to grow and our ability to offer effective treatment to those who suffer from it has improved considerably. The purpose of the present educational initiative of the Canadian Thoracic Society (CTS) is to provide up to date information on new developments in the field so that patients with this condition will receive optimal care that is firmly based on scientific evidence. Since the previous CTS management recommendations were published in 2003, a wealth of new scientific information has become available. The implications of this new knowledge with respect to optimal clinical care have been carefully considered by the CTS Panel and the conclusions are presented in the current document. Highlights of this update include new epidemiological information on mortality and prevalence of COPD, which charts its emergence as a major health problem for women; a new section on common comorbidities in COPD; an increased emphasis on the meaningful benefits of combined pharmacological and nonpharmacological therapies; and a new discussion on the prevention of acute exacerbations. A revised stratification system for severity of airway obstruction is proposed, together with other suggestions on how best to clinically evaluate individual patients with this complex disease. The results of the largest randomized clinical trial ever undertaken in COPD have recently been published, enabling the Panel to make evidence-based recommendations on the role of modern pharmacotherapy. The Panel hopes that these new practice guidelines, which reflect a rigorous analysis of the recent literature, will assist caregivers in the diagnosis and management of this common condition.

  19. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  20. Canadian Thoracic Society recommendations for management of chronic obstructive pulmonary disease – 2007 update

    PubMed Central

    O’Donnell, Denis E; Aaron, Shawn; Bourbeau, Jean; Hernandez, Paul; Marciniuk, Darcy D; Balter, Meyer; Ford, Gordon; Gervais, Andre; Goldstein, Roger; Hodder, Rick; Kaplan, Alan; Keenan, Sean; Lacasse, Yves; Maltais, Francois; Road, Jeremy; Rocker, Graeme; Sin, Don; Sinuff, Tasmin; Voduc, Nha

    2007-01-01

    Chronic obstructive pulmonary disease (COPD) is a major respiratory illness in Canada that is both preventable and treatable. Our understanding of the pathophysiology of this complex condition continues to grow and our ability to offer effective treatment to those who suffer from it has improved considerably. The purpose of the present educational initiative of the Canadian Thoracic Society (CTS) is to provide up to date information on new developments in the field so that patients with this condition will receive optimal care that is firmly based on scientific evidence. Since the previous CTS management recommendations were published in 2003, a wealth of new scientific information has become available. The implications of this new knowledge with respect to optimal clinical care have been carefully considered by the CTS Panel and the conclusions are presented in the current document. Highlights of this update include new epidemiological information on mortality and prevalence of COPD, which charts its emergence as a major health problem for women; a new section on common comorbidities in COPD; an increased emphasis on the meaningful benefits of combined pharmacological and nonpharmacological therapies; and a new discussion on the prevention of acute exacerbations. A revised stratification system for severity of airway obstruction is proposed, together with other suggestions on how best to clinically evaluate individual patients with this complex disease. The results of the largest randomized clinical trial ever undertaken in COPD have recently been published, enabling the Panel to make evidence-based recommendations on the role of modern pharmacotherapy. The Panel hopes that these new practice guidelines, which reflect a rigorous analysis of the recent literature, will assist caregivers in the diagnosis and management of this common condition. PMID:17885691

  1. Pre-Service Teachers Critically Evaluate Scientific Information on the World-Wide Web: What Makes Information Believable?

    ERIC Educational Resources Information Center

    Iding, Marie; Klemm, E. Barbara

    2005-01-01

    The present study addresses the need for teachers to critically evaluate the credibility, validity, and cognitive load associated with scientific information on Web sites, in order to effectively teach students to evaluate scientific information on the World Wide Web. A line of prior research investigating high school and university students'…

  2. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  3. A Bourdieusian Analysis of U.S. Military Culture Ground in the Mental Help-Seeking Literature.

    PubMed

    Abraham, Traci; Cheney, Ann M; Curran, Geoffrey M

    2017-09-01

    This theoretical treatise uses the scientific literature concerning help seeking for mental illness among those with a background in the U.S. military to posit a more complex definition of military culture. The help-seeking literature is used to illustrate how hegemonic masculinity, when situated in the military field, informs the decision to seek formal treatment for mental illness among those men with a background in the U.S. military. These analyses advocate for a nuanced, multidimensional, and situated definition of U.S. military culture that emphasizes the way in which institutional structures and social relations of power intersect with individual values, beliefs, and motivations to inform and structure health-related practices.

  4. 76 FR 74789 - Scientific Information Request on Pressure Ulcer Treatment Medical Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... Strategies: A Comparative Effectiveness Review, which is currently being conducted by the Evidence-based... scientific information on these devices will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...

  5. 78 FR 61363 - Correction-Scientific Information Request on Medication Therapy Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Correction--Scientific Information Request on Medication Therapy Management The original date of publication for this....AHRQ.gov/index.cfm/submit-scientific-information-packets/ Dated: September 27, 2013. Richard Kronick...

  6. 78 FR 40147 - Scientific Information Request on Vitamin D and Calcium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Scientific Information Request on Vitamin D and Calcium AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Request for Scientific Information Submissions. SUMMARY: The Agency for Healthcare Research and...

  7. 78 FR 42952 - Scientific Information Request on Vitamin D and Calcium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Scientific Information Request on Vitamin D and Calcium AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Request for scientific information submissions. SUMMARY: The Agency for Healthcare Research and...

  8. THE OFFICE OF AEROSPACE RESEARCH SCIENTIFIC AND TECHNICAL INFORMATION PROGRAM

    DTIC Science & Technology

    The document outlines the mission and organization of the Office of Aerospace Research (OAR), then describes how its principal product, scientific...effective technical information program, are documented by examples. The role of the Office of Scientific and Technical Information within OAR as performed

  9. Science Language Accommodation in Elementary School Read-Alouds

    NASA Astrophysics Data System (ADS)

    Glass, Rory; Oliveira, Alandeom W.

    2014-03-01

    This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity, open up an alternate channel of communication, namely oral discussion. By doing so, teachers grant students access to a simplified linguistic input, a strategy designed to promote student comprehension of the textual contents of children's science books. It was found that nearly half (46%) of the read-aloud time was allotted to discussions with an increased percentage of less sophisticated words and reduced use of more sophisticated vocabulary than found in the books through communicative strategies such as simplified rewording, simplified definition, and simplified questioning. Further, aloud reading of more linguistically complex books required longer periods of discussion and an increased degree of teacher oral input and accommodation. We also found evidence of reversed simplification (i.e. sophistication), leading to student uptake of scientific language. The main significance of this study is that it reveals that teacher talk serves two often competing pedagogical functions (accessible communication of scientific information to students and promotion of student acquisition of the specialized language of science). It also underscores the importance of giving analytical consideration to the simplification-sophistication dimension of science classroom discourse as well as the potential of computer-based analysis of classroom discourse to inform science teaching.

  10. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    PubMed

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  11. Lessons Over a Decade of Writing About Scientific Data

    NASA Astrophysics Data System (ADS)

    Beitler, J.; Collins, S. R.; Naranjo, L.

    2006-12-01

    For eleven years, the NASA Distributed Active Archive Centers (DAACs) have sponsored writing about research and applications using NASA remote sensing data. The publication, NASA: Supporting Earth System Science, is premised on stimulating scientific curiosity and leading a broad audience carefully into the challenging puzzles that researchers address with the help of remote-sensing data. The National Snow and Ice Data Center, one of the NASA DAACs, has handled the challenge of telling these stories across multiple science disciplines, researching and writing ten to twelve articles each year. Our approach centers on quality science. We preserve its complexity, and attract and stimulate audience interest by placing scientific endeavor at center stage. We propose to share our experiences, successes, and strategies with others who are interested in telling stories that highlight the essential nature of data in the scientific enterprise. We have learned how to write engagingly about abstract, long-term research projects involving a lot of math and physics, in ways that appeal to both scientific and lay readers. We will also talk about the skills and resources that we consider necessary to write informative data stories. We welcome leads on scientific research topics that use NASA remote sensing data. Talk to us at the conference, or write us at nasadaacs@nsidc.org. View our eleventh annual publication as well as past stories online at http://nasadaacs.eos.nasa.gov/articles/index.html, or stop by the NASA booth to pick up a color copy.

  12. Formal and Informal Learning and First-Year Psychology Students’ Development of Scientific Thinking: A Two-Wave Panel Study

    PubMed Central

    Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363

  13. Formal and Informal Learning and First-Year Psychology Students' Development of Scientific Thinking: A Two-Wave Panel Study.

    PubMed

    Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.

  14. magHD: a new approach to multi-dimensional data storage, analysis, display and exploitation

    NASA Astrophysics Data System (ADS)

    Angleraud, Christophe

    2014-06-01

    The ever increasing amount of data and processing capabilities - following the well- known Moore's law - is challenging the way scientists and engineers are currently exploiting large datasets. The scientific visualization tools, although quite powerful, are often too generic and provide abstract views of phenomena, thus preventing cross disciplines fertilization. On the other end, Geographic information Systems allow nice and visually appealing maps to be built but they often get very confused as more layers are added. Moreover, the introduction of time as a fourth analysis dimension to allow analysis of time dependent phenomena such as meteorological or climate models, is encouraging real-time data exploration techniques that allow spatial-temporal points of interests to be detected by integration of moving images by the human brain. Magellium is involved in high performance image processing chains for satellite image processing as well as scientific signal analysis and geographic information management since its creation (2003). We believe that recent work on big data, GPU and peer-to-peer collaborative processing can open a new breakthrough in data analysis and display that will serve many new applications in collaborative scientific computing, environment mapping and understanding. The magHD (for Magellium Hyper-Dimension) project aims at developing software solutions that will bring highly interactive tools for complex datasets analysis and exploration commodity hardware, targeting small to medium scale clusters with expansion capabilities to large cloud based clusters.

  15. TDRS-L Media Day

    NASA Image and Video Library

    2014-01-03

    TITUSVILLE, Fla. – Members of the news media are given an up-close look at the Tracking and Data Relay Satellite, or TDRS-L, spacecraft undergoing preflight processing inside the Astrotech payload processing facility in Titusville. TDRS-L is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. Journalists visited Astrotech as part of TDRS-L Media Day to conduct interviews and photograph the satellite that will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  16. [M.S. Gilyarov's Scientific School of Soil Zoology].

    PubMed

    Chesnova, L V

    2005-01-01

    The role of M.S. Gilyarov's scientific school in the development of the subject and methodology of a new complex discipline formed in the mid-20th century--soil zoology--was considered. The establishment and evolution of the proper scientific school was periodized. The creative continuity and development of the basic laws and technical approaches included in the teacher's scientific program was demonstrated by scientific historical analysis.

  17. Proceedings from Heart Rhythm Society’s Emerging Technologies Forum

    PubMed Central

    Zeitler, Emily P.; Al-Khatib, Sana M.; Slotwiner, David; Kumar, Uday N.; Varosy, Paul; Van Wagoner, David R.; Marcus, Gregory M.; Kusumoto, Fred M.; Blum, Laura

    2015-01-01

    Physicians are in an excellent position to significantly contribute to medical device innovation, but the process of bringing an idea to the bedside is complex. To begin to address these perceived barriers, the Heart Rhythm Society (HRS) convened a forum of stakeholders in medical device innovation in conjunction with the 2015 HRS Scientific Sessions. The forum facilitated open discussion about medical device innovation, including obstacles to physician involvement and possible solutions. This report is based on the themes that emerged. First, physician innovators must take an organized approach to identifying unmet clinical needs and potential solutions. Second, extensive funds, usually secured through solicitation for investment, are often required to achieve meaningful progress developing an idea into a device. Third, planning for regulatory requirements of the U.S. Food & Drug Administration (FDA) and Centers for Medicare and Medicaid Services (CMS) is essential. In addition to these issues, intellectual property and overall trends in health care, including international markets, are critically relevant considerations for the physician innovator. Importantly, there are a number of ways in which professional societies can assist physician innovators to navigate the complex medical device innovation landscape, bring clinically meaningful devices to market more quickly, and ultimately improve patient care. These efforts include facilitating interaction between potential collaborators through scientific meetings and other gatherings; collecting, evaluating, and disseminating state-of-the-art scientific information; and representing the interests of members in interactions with regulators and policy makers. PMID:26801401

  18. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    ERIC Educational Resources Information Center

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  19. Student Cognitive Difficulties and Mental Model Development of Complex Earth and Environmental Systems

    NASA Astrophysics Data System (ADS)

    Sell, K.; Herbert, B.; Schielack, J.

    2004-05-01

    Students organize scientific knowledge and reason about environmental issues through manipulation of mental models. The nature of the environmental sciences, which are focused on the study of complex, dynamic systems, may present cognitive difficulties to students in their development of authentic, accurate mental models of environmental systems. The inquiry project seeks to develop and assess the coupling of information technology (IT)-based learning with physical models in order to foster rich mental model development of environmental systems in geoscience undergraduate students. The manipulation of multiple representations, the development and testing of conceptual models based on available evidence, and exposure to authentic, complex and ill-constrained problems were the components of investigation utilized to reach the learning goals. Upper-level undergraduate students enrolled in an environmental geology course at Texas A&M University participated in this research which served as a pilot study. Data based on rubric evaluations interpreted by principal component analyses suggest students' understanding of the nature of scientific inquiry is limited and the ability to cross scales and link systems proved problematic. Results categorized into content knowledge and cognition processes where reasoning, critical thinking and cognitive load were driving factors behind difficulties in student learning. Student mental model development revealed multiple misconceptions and lacked complexity and completeness to represent the studied systems. Further, the positive learning impacts of the implemented modules favored the physical model over the IT-based learning projects, likely due to cognitive load issues. This study illustrates the need to better understand student difficulties in solving complex problems when using IT, where the appropriate scaffolding can then be implemented to enhance student learning of the earth system sciences.

  20. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less

  1. The Scientific Challenge of Expanding the Frontiers of Nutrition.

    PubMed

    Rezzi, Serge; Solari, Soren; Bouche, Nicolas; Baetge, Emmanuel E

    2016-01-01

    Nutritional research is entering a paradigm shift which necessitates the modeling of complex interactions between diet, genetics, lifestyle, and environmental factors. This requires the development of analytical and processing capabilities for multiple data and information sources to be able to improve targeted and personalized nutritional approaches for the maintenance of health. Ideally, such knowledge will be employed to underpin the development of concepts that combine consumer and medical nutrition with diagnostic targeting for early intervention designed to maintain proper metabolic homeostasis and delay the onset of chronic diseases. Nutritional status is fundamental to any description of health, and when combined with other data on lifestyle, environment, and genetics, it can be used to drive stratified or even personalized nutritional strategies for health maintenance and preventive medicine. In this work, we will discuss the importance of developing new nutrient assessment methods and diagnostic capabilities for nutritional status to generate scientific hypotheses and actionable concepts from which to develop targeted and eventually personalized nutritional solutions for health protection. We describe efforts to develop algorithms for dietary nutrient intake and a holistic nutritional profiling platform as the basis of understanding the complex nutrition and health interactome. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  2. Combining complex networks and data mining: Why and how

    NASA Astrophysics Data System (ADS)

    Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.

    2016-05-01

    The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.

  3. Oak Regeneration: A Knowledge Synthesis

    Treesearch

    H. Michael Rauscher; David L. Loftis; Charles E. McGee; Christopher V. Worth

    1997-01-01

    This scientific literature is represented by a hypertext software. To view this literature you must download and install the hypertext software.Abstract: The scientific literature concerning oak regeneration problems is lengthy, complex, paradoxical, and often perplexing. Despite a large scientific literature and numerous conference...

  4. Regulatory Agencies and Food Safety

    PubMed Central

    Chapman, R. A.; Morrison, A. B.

    1966-01-01

    Prior to Confederation, food control legislation in Canada consisted of only a few simple laws governing the quality, grading, packing and inspection of certain staple foods. The Inland Revenue Act of 1875 provided the first real control in Canada over adulteration of liquor, foods and drugs. Since then, food legislation has evolved in scope and complexity as the industries involved have developed, as consumers have become better informed, and as scientific advances have provided a sound basis for regulations. Present regulations under the Food and Drugs Act are intended to give consumers broad protection against health hazards and fraud in the production, manufacture, labelling, packaging, advertising, and sale of foods. This principle is well illustrated by present requirements for the control of pesticide residues, chemical additives, and the addition of vitamins to foods. In today's era of rapid technological change, application of current scientific knowledge to the food industry obviously involves the possibility of hazards to health. Regulatory agencies with responsibility for food safety must, therefore, fully utilize scientific knowledge in order to reduce the risks involved to a minimum. PMID:5905951

  5. Diabetic foot infections: recent literature and cornerstones of management.

    PubMed

    Uçkay, Ilker; Gariani, Karim; Dubois-Ferrière, Victor; Suvà, Domizio; Lipsky, Benjamin A

    2016-04-01

    Diabetes mellitus has reached pandemic levels and will continue to increase worldwide. Physicians and surgeons should know to manage one of its most prevalent complications, the diabetic foot infection (DFI), in a scientifically based and resource-sparing way. We performed a nonsystematic review of recent scientific literature to provide guidance on management of DFIs. Studies in the past couple of years provide data on which recommendations for diagnosing and treating DFI are based, especially with validated guidelines and reviews of the microbiology and selected aspects of the complex DFI problem. Recent literature provides approaches to prevention and studies support more conservative surgical treatment. Unfortunately, there have been virtually no new therapeutic molecules, antibiotic regimens, randomized trials, or surgical techniques introduced in the recent past; we briefly discuss how this may change in the future. Recent scientific evidence on DFI strongly supports the value of multidisciplinary and some new care models, guideline-based management, more preventive approaches, and confirms several established therapeutic concepts. In contrast, there has been almost no new substantial information regarding the optimal antibiotic or surgical management in recent literature.

  6. Impact of delayed information in sub-second complex systems

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.

    What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.

  7. Virtual Observatory and Distributed Data Mining

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    2012-03-01

    New modes of discovery are enabled by the growth of data and computational resources (i.e., cyberinfrastructure) in the sciences. This cyberinfrastructure includes structured databases, virtual observatories (distributed data, as described in Section 20.2.1 of this chapter), high-performance computing (petascale machines), distributed computing (e.g., the Grid, the Cloud, and peer-to-peer networks), intelligent search and discovery tools, and innovative visualization environments. Data streams from experiments, sensors, and simulations are increasingly complex and growing in volume. This is true in most sciences, including astronomy, climate simulations, Earth observing systems, remote sensing data collections, and sensor networks. At the same time, we see an emerging confluence of new technologies and approaches to science, most clearly visible in the growing synergism of the four modes of scientific discovery: sensors-modeling-computing-data (Eastman et al. 2005). This has been driven by numerous developments, including the information explosion, development of large-array sensors, acceleration in high-performance computing (HPC) power, advances in algorithms, and efficient modeling techniques. Among these, the most extreme is the growth in new data. Specifically, the acquisition of data in all scientific disciplines is rapidly accelerating and causing a data glut (Bell et al. 2007). It has been estimated that data volumes double every year—for example, the NCSA (National Center for Supercomputing Applications) reported that their users cumulatively generated one petabyte of data over the first 19 years of NCSA operation, but they then generated their next one petabyte in the next year alone, and the data production has been growing by almost 100% each year after that (Butler 2008). The NCSA example is just one of many demonstrations of the exponential (annual data-doubling) growth in scientific data collections. In general, this putative data-doubling is an inevitable result of several compounding factors: the proliferation of data-generating devices, sensors, projects, and enterprises; the 18-month doubling of the digital capacity of these microprocessor-based sensors and devices (commonly referred to as "Moore’s law"); the move to digital for nearly all forms of information; the increase in human-generated data (both unstructured information on the web and structured data from experiments, models, and simulation); and the ever-expanding capability of higher density media to hold greater volumes of data (i.e., data production expands to fill the available storage space). These factors are consequently producing an exponential data growth rate, which will soon (if not already) become an insurmountable technical challenge even with the great advances in computation and algorithms. This technical challenge is compounded by the ever-increasing geographic dispersion of important data sources—the data collections are not stored uniformly at a single location, or with a single data model, or in uniform formats and modalities (e.g., images, databases, structured and unstructured files, and XML data sets)—the data are in fact large, distributed, heterogeneous, and complex. The greatest scientific research challenge with these massive distributed data collections is consequently extracting all of the rich information and knowledge content contained therein, thus requiring new approaches to scientific research. This emerging data-intensive and data-oriented approach to scientific research is sometimes called discovery informatics or X-informatics (where X can be any science, such as bio, geo, astro, chem, eco, or anything; Agresti 2003; Gray 2003; Borne 2010). This data-oriented approach to science is now recognized by some (e.g., Mahootian and Eastman 2009; Hey et al. 2009) as the fourth paradigm of research, following (historically) experiment/observation, modeling/analysis, and computational science.

  8. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    USGS Publications Warehouse

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP supports approximately 40 USGS research specialists who utilize cooperative agreements with universities, industry, and other governmental agencies to support their collaborative research and information exchange. Scientists of the WMERSC study how and where non-fuel mineral resources form and are concentrated in the earth's crust, where mineral resources might be found in the future, and how mineral materials interact with the environment to affect human and ecosystem health. Natural systems (ecosystems) are complex - our understanding of how ecosystems operate requires collecting and synthesizing large amounts of geologic, geochemical, biologic, hydrologic, and meteorological information. Scientists in the Center strive to understand the interplay of various processes and how they affect the structure, composition, and health of ecosystems. Such understanding, which is then summarized in publicly available reports, is used to address and solve a wide variety of issues that are important to society and the economy. WMERSC scientists have extensive national and international experience in these scientific specialties and capabilities - they have collaborated with many Federal, State, and local agencies; with various private sector organizations; as well as with foreign countries and organizations. Nearly every scientific and societal challenge requires a different combination of scientific skills and capabilities. With their breadth of scientific specialties and capabilities, the scientists of the WMERSC can provide scientifically sound approaches to a wide range of societal challenges and issues. The following sections describe examples of important issues that have been addressed by scientists in the Center, the methods employed, and the relevant conclusions. New directions are inevitable as societal needs change over time. Scientists of the WMERSC have a diverse set of skills and capabilities and are proficient in the collection and integration of

  9. Measuring the intangibles: a metrics for the economic complexity of countries and products.

    PubMed

    Cristelli, Matthieu; Gabrielli, Andrea; Tacchella, Andrea; Caldarelli, Guido; Pietronero, Luciano

    2013-01-01

    We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation.

  10. Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products

    PubMed Central

    Cristelli, Matthieu; Gabrielli, Andrea; Tacchella, Andrea; Caldarelli, Guido; Pietronero, Luciano

    2013-01-01

    We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation. PMID:23940633

  11. Soliciting scientific information and beliefs in predictive modeling and adaptive management

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.

    2015-12-01

    Post-normal science requires public engagement and adaptive corrections in addressing issues with high complexity and uncertainty. An adaptive management framework is presented for the improved management of natural resources and environments through a public participation process. The framework solicits the gathering and transformation and/or modeling of scientific information but also explicitly solicits the expression of participant beliefs. Beliefs and information are compared, explicitly discussed for alignments or misalignments, and ultimately melded back together as a "knowledge" basis for making decisions. An effort is made to recognize the human or participant biases that may affect the information base and the potential decisions. In a separate step, an attempt is made to recognize and predict the potential "winners" and "losers" (perceived or real) of any decision or action. These "winners" and "losers" include present human communities with different spatial, demographic or socio-economic characteristics as well as more dispersed or more diffusely characterized regional or global communities. "Winners" and "losers" may also include future human communities as well as communities of other biotic species. As in any adaptive management framework, assessment of predictions, iterative follow-through and adaptation of policies or actions is essential, and commonly very difficult or impossible to achieve. Recognizing beforehand the limits of adaptive management is essential. More generally, knowledge of the behavioral and economic sciences and of ethics and sociology will be key to a successful implementation of this adaptive management framework. Knowledge of biogeophysical processes will also be essential, but by definition of the issues being addressed, will always be incomplete and highly uncertain. The human dimensions of the issues addressed and the participatory processes used carry their own complexities and uncertainties. Some ideas and principles are provided that may help guide and implement the proposed adaptive management framework and its public and stakeholder engagement processes. Examples and characteristics of issues that could be beneficially addressed through the proposed framework will also be presented.

  12. Tools and data services registry: a community effort to document bioinformatics resources

    PubMed Central

    Ison, Jon; Rapacki, Kristoffer; Ménager, Hervé; Kalaš, Matúš; Rydza, Emil; Chmura, Piotr; Anthon, Christian; Beard, Niall; Berka, Karel; Bolser, Dan; Booth, Tim; Bretaudeau, Anthony; Brezovsky, Jan; Casadio, Rita; Cesareni, Gianni; Coppens, Frederik; Cornell, Michael; Cuccuru, Gianmauro; Davidsen, Kristian; Vedova, Gianluca Della; Dogan, Tunca; Doppelt-Azeroual, Olivia; Emery, Laura; Gasteiger, Elisabeth; Gatter, Thomas; Goldberg, Tatyana; Grosjean, Marie; Grüning, Björn; Helmer-Citterich, Manuela; Ienasescu, Hans; Ioannidis, Vassilios; Jespersen, Martin Closter; Jimenez, Rafael; Juty, Nick; Juvan, Peter; Koch, Maximilian; Laibe, Camille; Li, Jing-Woei; Licata, Luana; Mareuil, Fabien; Mičetić, Ivan; Friborg, Rune Møllegaard; Moretti, Sebastien; Morris, Chris; Möller, Steffen; Nenadic, Aleksandra; Peterson, Hedi; Profiti, Giuseppe; Rice, Peter; Romano, Paolo; Roncaglia, Paola; Saidi, Rabie; Schafferhans, Andrea; Schwämmle, Veit; Smith, Callum; Sperotto, Maria Maddalena; Stockinger, Heinz; Vařeková, Radka Svobodová; Tosatto, Silvio C.E.; de la Torre, Victor; Uva, Paolo; Via, Allegra; Yachdav, Guy; Zambelli, Federico; Vriend, Gert; Rost, Burkhard; Parkinson, Helen; Løngreen, Peter; Brunak, Søren

    2016-01-01

    Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand. Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners. As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools. PMID:26538599

  13. Scientific drilling projects in ancient lakes: Integrating geological and biological histories

    NASA Astrophysics Data System (ADS)

    Wilke, Thomas; Wagner, Bernd; Van Bocxlaer, Bert; Albrecht, Christian; Ariztegui, Daniel; Delicado, Diana; Francke, Alexander; Harzhauser, Mathias; Hauffe, Torsten; Holtvoeth, Jens; Just, Janna; Leng, Melanie J.; Levkov, Zlatko; Penkman, Kirsty; Sadori, Laura; Skinner, Alister; Stelbrink, Björn; Vogel, Hendrik; Wesselingh, Frank; Wonik, Thomas

    2016-08-01

    Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets to create an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep-drilling projects.

  14. Development and Application of Learning Materials to Help Students Understand Ten Statements Describing the Nature of Scientific Observation

    ERIC Educational Resources Information Center

    Kim, Sangsoo; Park, Jongwon

    2018-01-01

    Observing scientific events or objects is a complex process that occurs through the interaction between the observer's knowledge or expectations, the surrounding context, physiological features of the human senses, scientific inquiry processes, and the use of observational instruments. Scientific observation has various features specific to this…

  15. Assessment of Burmese Refugee Students' Meaning Making of Scientific Informational Texts

    ERIC Educational Resources Information Center

    Croce, Keri-Anne

    2014-01-01

    This two and a half year study examines how non-native English-speaking Burmese refugee students from first to third grades made meaning of scientific informational texts. The study is framed by sociocultural theory and transactional theory. Primary data were drawn from 160 student retellings of scientific informational texts. Secondary data…

  16. SCIENTIFIC AND TECHNICAL MANPOWER RESOURCES, SUMMARY INFORMATION ON EMPLOYMENT, CHARACTERISTICS, SUPPLY, AND TRAINING.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    THE LEGISLATION ESTABLISHING THE NATIONAL SCIENCE FOUNDATION STIPULATED THAT IT MAINTAIN A REGISTER OF SCIENTIFIC AND TECHNICAL PERSONNEL AND IN OTHER WAYS PROVIDE A CENTRAL CLEARINGHOUSE FOR INFORMATION COVERING ALL SCIENTIFIC AND TECHNICAL PERSONNEL IN THE UNITED STATES. THIS PUBLICATION BRINGS TOGETHER INFORMATION FROM MANY SOURCES ON THE…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bales, Benjamin B; Barrett, Richard F

    In almost all modern scientific applications, developers achieve the greatest performance gains by tuning algorithms, communication systems, and memory access patterns, while leaving low level instruction optimizations to the compiler. Given the increasingly varied and complicated x86 architectures, the value of these optimizations is unclear, and, due to time and complexity constraints, it is difficult for many programmers to experiment with them. In this report we explore the potential gains of these 'last mile' optimization efforts on an AMD Barcelona processor, providing readers with relevant information so that they can decide whether investment in the presented optimizations is worthwhile.

  18. The design of nonlinear observers for wind turbine dynamic state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Schild, A.; Feldt, M.; Konigorski, U.

    2016-09-01

    This contribution addresses the dynamic state and parameter estimation problem which arises with more advanced wind turbine controllers. These control devices need precise information about the system's current state to outperform conventional industrial controllers effectively. First, the necessity of a profound scientific treatment on nonlinear observers for wind turbine application is highlighted. Secondly, the full estimation problem is introduced and the variety of nonlinear filters is discussed. Finally, a tailored observer architecture is proposed and estimation results of an illustrative application example from a complex simulation set-up are presented.

  19. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  20. Public Engagement on Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically literate public, many of whom have become increasingly skeptical of climate science the more they investigate the topic. Specific issues that this group has with climate science include concerns that science that cannot easily be separated from risk assessment and value judgments; concern that assessments (e.g. IPCC) have become a Maxwell's daemon for climate research; inadequate assessment of our ignorance of this complex scientific issue; elite scientists and scientific institutions losing credibility with the public; political exploitation of the public's lack of understanding; and concerns about the lack of public accountability of climate science and climate models that are being used as the basis for far reaching decisions and policies. Individuals in this group have the technical ability to understand and examine climate science arguments and are not prepared to cede judgment on this issue to the designated and self-proclaimed experts. This talk will describe my experiences in engaging with this group and what has been learned, both by myself and by participants in the discussion at Climate Etc.

  1. A need to simplify informed consent documents in cancer clinical trials. A position paper of the ARCAD Group.

    PubMed

    Bleiberg, H; Decoster, G; de Gramont, A; Rougier, P; Sobrero, A; Benson, A; Chibaudel, B; Douillard, J Y; Eng, C; Fuchs, C; Fujii, M; Labianca, R; Larsen, A K; Mitchell, E; Schmoll, H J; Sprumont, D; Zalcberg, J

    2017-05-01

    In respect of the principle of autonomy and the right of self-determination, obtaining an informed consent of potential participants before their inclusion in a study is a fundamental ethical obligation. The variations in national laws, regulations, and cultures contribute to complex informed consent documents for patients participating in clinical trials. Currently, only few ethics committees seem willing to address the complexity and the length of these documents and to request investigators and sponsors to revise them in a way to make them understandable for potential participants. The purpose of this work is to focus on the written information in the informed consent documentation for drug development clinical trials and suggests (i) to distinguish between necessary and not essential information, (ii) to define the optimal format allowing the best legibility of those documents. The Aide et Recherche en Cancérologie Digestive (ARCAD) Group, an international scientific committee involving oncologists from all over the world, addressed these issues and developed and uniformly accepted a simplified informed consent documentation for future clinical research. A simplified form of informed consent with the leading part of 1200-1800 words containing all of the key information necessary to meet ethical and regulatory requirements and 'relevant supportive information appendix' of 2000-3000 words is provided. This position paper, on the basis of the ARCAD Group experts discussions, proposes our informed consent model and the rationale for its content. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  2. Social and Ethical Dimension of the Natural Sciences, Complex Problems of the Age, Interdisciplinarity, and the Contribution of Education

    ERIC Educational Resources Information Center

    Develaki, Maria

    2008-01-01

    In view of the complex problems of this age, the question of the socio-ethical dimension of science acquires particular importance. We approach this matter from a philosophical and sociological standpoint, looking at such focal concerns as the motivation, purposes and methods of scientific activity, the ambivalence of scientific research and the…

  3. A Framework for Teachers' Assessment of Socio-Scientific Argumentation: An Example Using the GMO Issue

    ERIC Educational Resources Information Center

    Christenson, Nina; Chang Rundgren, Shu-Nu

    2015-01-01

    Socio-scientific issues (SSI) have proven to be suitable contexts for students to actively reflect on and argue about complex social issues related to science. Research has indicated that explicitly teaching SSI argumentation is a good way to help students develop their argumentation skills and make them aware of the complexity of SSI. However,…

  4. Expanding the use of Scientific Data through Maps and Apps

    NASA Astrophysics Data System (ADS)

    Shrestha, S. R.; Zimble, D. A.; Herring, D.; Halpert, M.

    2014-12-01

    The importance of making scientific data more available can't be overstated. There is a wealth of useful scientific data available and demand for this data is only increasing; however, applying scientific data towards practical uses poses several technical challenges. These challenges can arise from difficulty in handling the data due largely to 1) the complexity, variety and volume of scientific data and 2) applying and operating the techniques and tools needed to visualize and analyze the data. As a result, the combined knowledge required to take advantage of these data requires highly specialized skill sets that in total, limit the ability of scientific data from being used in more practical day-to-day decision making activities. While these challenges are daunting, information technologies do exist that can help mitigate some of these issues. Many organizations for years have already been enjoying the benefits of modern service oriented architectures (SOAs) for everyday enterprise tasks. We can use this approach to modernize how we share and access our scientific data where much of the specialized tools and techniques needed to handle and present scientific data can be automated and executed by servers and done so in an appropriate way. We will discuss and show an approach for preparing file based scientific data (e.g. GRIB, netCDF) for use in standard based scientific web services. These scientific web services are able to encapsulate the logic needed to handle and describe scientific data through a variety of service types including, image, map, feature, geoprocessing, and their respective service methods. By combining these types of services and leveraging well-documented and modern web development APIs, we can afford to focus our attention on the design and development of user-friendly maps and apps. Our scenario will include developing online maps through these services by integrating various forecast data from the Climate Forecast System (CFSv2). This presentation showcases a collaboration between the National Oceanic and Atmospheric Administration's (NOAA) Climate.gov portal, Climate Prediction Center and Esri, Inc. on the implementation of the ArcGIS platform, which is aimed at helping modernize scientific data access through a service oriented architecture.

  5. Multi-disciplinary scientists as global change adaptation anchors: Filling the gaps in the Boundary Organization paradigm

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Collazo, J.

    2017-12-01

    Boundary organizations, entities that facilitate the co-production and translation of scientific research in decision making processes, have been promoted as a means to assist global change adaptation, particularly in the areas of landscape conservation and natural resource management. However, scientists can and often still must perform a similar role and act as anchoring agents within wicked adaptation problems that involve a myriad of actors, values, scientific uncertainties, governance structures, and multidisciplinary research needs. We illustrate one such case study in Puerto Rico's Bosque Modelo (Model Forest) where we discuss an ongoing scientific effort to undertake a multi-objective landscape conservation design project that intersects with the Bosque Modelo geography and goals. Perspectives are provided from two research ecologists, one with a background in terrestrial ecology who has worked at the intersection of science, conservation, and government for over 30 years, and the other with a multi-disciplinary background in earth sciences, climatology, and terrestrial ecology. We frame our discussion around the learning process that accompanies the development of global change scenarios that are both useful and useable for a wide spectrum of scientists, and the likelihood that scientifically informed adaptive management actions will ultimately be implemented in this complex and changing landscape.

  6. Homage to Professor Meinhart H. Zenk: Crowd accelerated research and innovation.

    PubMed

    Heinz, Nanna; Møller, Birger Lindberg

    2013-07-01

    Professor Meinhart H. Zenk has had an enormous impact within the plant biochemistry area. Throughout his entire career he was able to identify and address key scientific issues within chemistry and plant secondary metabolism. Meinhart H. Zenk and his research associates have provided seminal scientific contributions within a multitude of research topics. A hallmark in Meinhart H. Zenk's research has been to rapidly introduce and apply new technologies and to initiate cross-disciplinary collaborations to provide groundbreaking new knowledge within research areas that at the time appeared highly complex and inaccessible to experimentation. He strived and managed to reach scientific excellence. In this way, he was an eminent key mentor within the plant biochemistry research community. Today, few single individuals possess so much knowledge. However, web-based social platforms enable fast and global distribution and sharing of information also including science related matters, unfortunately often prior to assessment of its correctness. Thus the demand of scientific mentoring that Meinhart H. Zenk offered the science community is as important as ever. In the honor of Meinhart H. Zenk, let us keep up that tradition and widen our engagement to encompass the new social media and benefit from the opportunities offered by crowd accelerated innovation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The State of the NIH BRAIN Initiative.

    PubMed

    Koroshetz, Walter; Gordon, Joshua; Adams, Amy; Beckel-Mitchener, Andrea; Churchill, James; Farber, Gregory; Freund, Michelle; Gnadt, Jim; Hsu, Nina; Langhals, Nicholas; Lisanby, Sarah; Liu, Guoying; Peng, Grace; Ramos, Khara; Steinmetz, Michael; Talley, Edmund; White, Samantha

    2018-06-19

    The BRAIN Initiative® arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system. As the Initiative enters its fifth year, NIH has supported over 500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual labs, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and NIH continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative. Copyright © 2018 the authors.

  8. The Politics of Evidence Use in Health Policy Making in Germany-the Case of Regulating Hospital Minimum Volumes.

    PubMed

    Ettelt, Stefanie

    2017-06-01

    This article examines the role of scientific evidence in informing health policy decisions in Germany, using minimum volumes policy as a case study. It argues that scientific evidence was used strategically at various stages of the policy process both by individual corporatist actors and by the Federal Joint Committee as the regulator. Minimum volumes regulation was inspired by scientific evidence suggesting a positive relationship between service volume and patient outcomes for complex surgical interventions. Federal legislation was introduced in 2002 to delegate the selection of services and the setting of volumes to corporatist decision makers. Yet, despite being represented in the Federal Joint Committee, hospitals affected by its decisions took the Committee to court to seek legal redress and prevent policy implementation. Evidence has been key to support, and challenge, decisions about minimum volumes, including in court. The analysis of the role of scientific evidence in minimum volumes regulation in Germany highlights the dynamic relationship between evidence use and the political and institutional context of health policy making, which in this case is characterized by the legislative nature of policy making, corporatism, and the role of the judiciary in reviewing policy decisions. Copyright © 2017 by Stefanie Ettelt.

  9. MODIS algorithm development and data visualization using ACTS

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1992-01-01

    The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking.

  10. A self-consistent global emissions inventory spanning 1850 ...

    EPA Pesticide Factsheets

    While emissions inventory development has advanced significantly in recent years, the scientific community still lacks a global inventory utilizing consistent estimation approaches spanning multiple centuries. In this analysis, we investigate the strengths and weaknesses of current approaches to effectively address inventory development over not just a global spatial scale but also a timescale spanning two centuries – from early industrialization into the near future. We discuss the need within the scientific community for a dataset such as this and the landscape of questions it would allow the scientific community to address. In particular, we focus on questions that the scientific community cannot adequately address using the currently available techniques and information.We primarily focus on the difficulties and potential obstacles associated with developing an inventory of this scope and magnitude. We discuss many of the hurdles that the field has already overcome and also highlight the challenges that researchers in the field still face. We detail the complexities related to the extent of spatial and temporal scales required for an undertaking of this magnitude. In addition, we point to areas where the community currently lacks the necessary data to move forward. Our analysis focuses on one direction in which the development of global emissions inventories is heading rather than an in-depth analysis of the path of emissions inventory development

  11. Maximizing information exchange between complex networks

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo

    2008-10-01

    Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain’s response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.

  12. Swiss family physicians' perceptions and attitudes towards knowledge translation practices.

    PubMed

    Bengough, Theresa; Bovet, Emilie; Bécherraz, Camille; Schlegel, Susanne; Burnand, Bernard; Pidoux, Vincent

    2015-12-11

    Several studies have been performed to understand the way family physicians apply knowledge from medical research in practice. However, very little is known concerning family physicians in Switzerland. In an environment in which information constantly accumulates, it is crucial to identify the major sources of scientific information that are used by family physicians to keep their medical knowledge up to date and barriers to use these sources. Our main objective was to examine medical knowledge translation (KT) practices of Swiss family physicians. The population consisted of French- and German-speaking private practice physicians specialised in family medicine. We conducted four interviews and three focus groups (n = 25). The interview guides of the semi-structured interviews and focus groups focused on (a) ways and means used by physicians to keep updated with information relevant to clinical practice; (b) how they consider their role in translating knowledge into practice; (c) potential barriers to KT; (d) solutions proposed by physicians for effective KT. Family physicians find themselves rather ambivalent about the translation of knowledge based on scientific literature, but generally express much interest in KT. They often feel overwhelmed by "information floods" and perceive clinical practice guidelines and other supports to be of limited usefulness for their practice. They often combine various formal and informal information sources to keep their knowledge up to date. Swiss family physicians report considering themselves as artisans, caring for patients with complex needs. Improved performance of KT initiatives in family medicine should be tailored to actual needs and based on high quality evidence-based sources.

  13. Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Heather; Luo, Yiqi; Wullschleger, Stan D

    Recent decades have seen tremendous increases in the quantity of empirical ecological data collected by individual investigators, as well as through research networks such as FLUXNET (Baldocchi et al., 2001). At the same time, advances in computer technology have facilitated the development and implementation of large and complex land surface and ecological process models. Separately, each of these information streams provides useful, but imperfect information about ecosystems. To develop the best scientific understanding of ecological processes, and most accurately predict how ecosystems may cope with global change, integration of empirical and modeling approaches is necessary. However, true integration - inmore » which models inform empirical research, which in turn informs models (Fig. 1) - is not yet common in ecological research (Luo et al., 2011). The goal of this workshop, sponsored by the Department of Energy, Office of Science, Biological and Environmental Research (BER) program, was to bring together members of the empirical and modeling communities to exchange ideas and discuss scientific practices for increasing empirical - model integration, and to explore infrastructure and/or virtual network needs for institutionalizing empirical - model integration (Yiqi Luo, University of Oklahoma, Norman, OK, USA). The workshop included presentations and small group discussions that covered topics ranging from model-assisted experimental design to data driven modeling (e.g. benchmarking and data assimilation) to infrastructure needs for empirical - model integration. Ultimately, three central questions emerged. How can models be used to inform experiments and observations? How can experimental and observational results be used to inform models? What are effective strategies to promote empirical - model integration?« less

  14. Improving the Dissemination of Scientific and Technical Information: A Practitioner's Guide to Innovation. (Final Report).

    ERIC Educational Resources Information Center

    Capital Systems Group, Inc., Rockville, MD.

    The aim of this guide is to alert persons with an operational interest in scientific communication to new ideas, techniques, and equipment in the field of communication media and publications. The focus is on the dissemination of scientific information via the technical journal or its equivalent. Secondary dissemination of information such as…

  15. Flow of Scientific and Technical Information: The Results of a Recent Major Investigation.

    ERIC Educational Resources Information Center

    Goodman, A. F.

    Characterized were the scientific and technical information needs of 1,500 scientists and engineers from 73 companies, 8 research institutes, and 2 universities; and the flow of scientific and technical information (flow process) inherent in satisfying these needs. Interviewers asked 63 questions in the subject areas of (1) the user of scientific…

  16. High School Students' Informal Reasoning Regarding a Socio-Scientific Issue, with Relation to Scientific Epistemological Beliefs and Cognitive Structures

    ERIC Educational Resources Information Center

    Wu, Ying-Tien; Tsai, Chin-Chung

    2011-01-01

    This study investigated the relationship among 68 high school students' scientific epistemological beliefs (SEBs), cognitive structures regarding nuclear power usage, and their informal reasoning regarding this issue. Moreover, the ability of students' SEBs as well as their cognitive structures for predicting their informal reasoning regarding…

  17. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    PubMed Central

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-01-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686

  18. The Lunar Reconnaissance Orbiter Mission Six Years of Science and Exploration at the Moon

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Petro, N. E.; Vondrak, R. R.

    2015-01-01

    Since entering lunar orbit on June 23, 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. These measurements provide new information regarding the physical properties of the lunar surface, the lunar environment, and the location of volatiles and other resources. Scientific interpretation of these observations improves our understanding of the geologic history of the Moon, its current state, and what its history can tell us about the evolution of the Solar System. Scientific results from LRO observations overturned existing paradigms and deepened our appreciation of the complex nature of our nearest neighbor. This paper summarizes the capabilities, measurements, and some of the science and exploration results of the first six years of the LRO mission.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  20. Practical guide to understanding Comparative Effectiveness Research (CER).

    PubMed

    Neely, J Gail; Sharon, Jeffrey D; Graboyes, Evan M; Paniello, Randal C; Nussenbaum, Brian; Grindler, David J; Dassopoulos, Themistocles

    2013-12-01

    "Comparative effectiveness research" (CER) is not a new concept; however, recently it has been popularized as a method to develop scientifically sound actionable data by which patients, physicians, payers, and policymakers may make informed health care decisions. Fundamental to CER is that the comparative data are derived from large diverse populations of patients assembled from point-of-care general primary care practices and that measured outcomes include patient value judgments. The challenge is to obtain scientifically valid data to be acted upon by decision-making stakeholders with potentially quite diversely different agenda. The process requires very thoughtful research designs modulated by complex statistical and analytic methods. This article is composed of a guiding narrative with an extensive set of tables outlining many of the details required in performing and understanding CER. It ends with short discussions of three example papers, limitations of the method, and how a practicing physician may view such reports.

  1. Parallel, distributed and GPU computing technologies in single-particle electron microscopy.

    PubMed

    Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  2. Bringing "Scientific Expeditions" into the Schools

    NASA Technical Reports Server (NTRS)

    Watson, Val; Kutler, Paul (Technical Monitor)

    1994-01-01

    Schools can obtain scientific information over the information superhighway. However, information suppliers use formats that permit access and analysis by the "least common denominator" tools for access and analysis. The result: most sources of dynamic representations of science are in the format of flat movies. We can shorten the time to get the "scientific expeditions" into schools and provide a unifying focus to vendors and information suppliers by establishing a target and goals for the "least common denominator" for tools to be used to access and analyze information over the information superhighway.

  3. Management of Pregnancy in Patients With Complex Congenital Heart Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association.

    PubMed

    Canobbio, Mary M; Warnes, Carole A; Aboulhosn, Jamil; Connolly, Heidi M; Khanna, Amber; Koos, Brian J; Mital, Seema; Rose, Carl; Silversides, Candice; Stout, Karen

    2017-02-21

    Today, most female children born with congenital heart disease will reach childbearing age. For many women with complex congenital heart disease, carrying a pregnancy carries a moderate to high risk for both the mother and her fetus. Many such women, however, do not have access to adult congenital heart disease tertiary centers with experienced reproductive programs. Therefore, it is important that all practitioners who will be managing these women have current information not only on preconception counseling and diagnostic evaluation to determine maternal and fetal risk but also on how to manage them once they are pregnant and when to refer them to a regional center with expertise in pregnancy management. © 2017 American Heart Association, Inc.

  4. Complexity theory and physical unification: From microscopic to oscopic level

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Karakatsanis, L. P.; Tsoutsouras, V. G.; Pavlos, E. G.

    During the last two decades, low dimensional chaotic or self-organized criticality (SOC) processes have been observed by our group in many different physical systems such as space plasmas, the solar or the magnetospheric dynamics, the atmosphere, earthquakes, the brain activity as well as in informational systems. All these systems are complex systems living far from equilibrium with strong self-organization and phase transition character. The theoretical interpretation of these natural phenomena needs a deeper insight into the fundamentals of complexity theory. In this study, we try to give a synoptic description of complexity theory both at the microscopic and at the oscopic level of the physical reality. Also, we propose that the self-organization observed oscopically is a phenomenon that reveals the strong unifying character of the complex dynamics which includes thermodynamical and dynamical characteristics in all levels of the physical reality. From this point of view, oscopical deterministic and stochastic processes are closely related to the microscopical chaos and self-organization. In this study the scientific work of scientists such as Wilson, Nicolis, Prigogine, Hooft, Nottale, El Naschie, Castro, Tsallis, Chang and others is used for the development of a unified physical comprehension of complex dynamics from the microscopic to the oscopic level.

  5. Complexity and Innovation: Army Transformation and the Reality of War

    DTIC Science & Technology

    2004-05-26

    necessary to instill confidence among all members of the interested community that the causal relationships...continues to gain momentum and general acceptance within the scientific community . The topic is addressed in numerous books, studies and scientific journals...scientific community has steadily grown. Since the time of Galileo and Newton, scientific endeavor has been characterized by reductionism (the process

  6. Collective Intelligence: Aggregation of Information from Neighbors in a Guessing Game.

    PubMed

    Pérez, Toni; Zamora, Jordi; Eguíluz, Víctor M

    2016-01-01

    Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena.

  7. Collective Intelligence: Aggregation of Information from Neighbors in a Guessing Game

    PubMed Central

    Pérez, Toni; Zamora, Jordi; Eguíluz, Víctor M.

    2016-01-01

    Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena. PMID:27093274

  8. A Bourdieusian Analysis of U.S. Military Culture Ground in the Mental Help-Seeking Literature

    PubMed Central

    Abraham, Traci; Cheney, Ann M.; Curran, Geoffrey M.

    2015-01-01

    This theoretical treatise uses the scientific literature concerning help seeking for mental illness among those with a background in the U.S. military to posit a more complex definition of military culture. The help-seeking literature is used to illustrate how hegemonic masculinity, when situated in the military field, informs the decision to seek formal treatment for mental illness among those men with a background in the U.S. military. These analyses advocate for a nuanced, multidimensional, and situated definition of U.S. military culture that emphasizes the way in which institutional structures and social relations of power intersect with individual values, beliefs, and motivations to inform and structure health-related practices. PMID:26229053

  9. Environmental impacts of the emerging digital economy: the e-for-environment e-commerce?

    PubMed

    Sui, Daniel Z; Rejeski, David W

    2002-02-01

    The Internet-led digital economy is changing both the production and consumption patterns at the global scale. Although great potential exists to harness information technology in general and the Internet in particular and improve the environment, possible negative impacts of e-commerce on the environment should also be considered and dealt with. In this forum, we discuss both the potential positive and negative impacts of e-commerce. Drawing from insights gained from the complexity theory, we also delineate some broad contours for environmental policies in the information age. Given the paradoxical nature of technological innovations, we want to caution the scientific community and policymakers not to treat the Internet as the Holy Grail for environmental salvation.

  10. Data-driven Ontology Development: A Case Study at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Hertz, J.; Huffer, E.; Kusterer, J.

    2012-12-01

    Well-founded ontologies are key to enabling transformative semantic technologies and accelerating scientific research. One example is semantically enabled search and discovery, making scientific data accessible and more understandable by accurately modeling a complex domain. The ontology creation process remains a challenge for many anxious to pursue semantic technologies. The key may be that the creation process -- whether formal, community-based, automated or semi-automated -- should encompass not only a foundational core and supplemental resources but also a focus on the purpose or mission the ontology is created to support. Are there tools or processes to de-mystify, assess or enhance the resulting ontology? We suggest that comparison and analysis of a domain-focused ontology can be made using text engineering tools for information extraction, tokenizers, named entity transducers and others. The results are analyzed to ensure the ontology reflects the core purpose of the domain's mission and that the ontology integrates and describes the supporting data in the language of the domain - how the science is analyzed and discussed among all users of the data. Commonalities and relationships among domain resources describing the Clouds and Earth's Radiant Energy (CERES) Bi-Directional Scan (BDS) datasets from NASA's Atmospheric Science Data Center are compared. The domain resources include: a formal ontology created for CERES; scientific works such as papers, conference proceedings and notes; information extracted from the datasets (i.e., header metadata); and BDS scientific documentation (Algorithm Theoretical Basis Documents, collection guides, data quality summaries and others). These resources are analyzed using the open source software General Architecture for Text Engineering, a mature framework for computational tasks involving human language.

  11. Carbon Cycle Science in Support of Decision-Making

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; West, T. O.; McGlynn, E.; Gurwick, N. P.; Duren, R. M.; Ocko, I.; Paustian, K.

    2016-12-01

    There has been an extensive amount of basic and applied research conducted on biogeochemical cycles, land cover change, watershed to earth system modeling, climate change, and energy efficiency. Concurrently, there continues to be interest in how to best reduce net carbon emissions, including maintaining or augmenting global carbon stocks and decreasing fossil fuel emissions. Decisions surrounding reductions in net emissions should be grounded in, and informed by, existing scientific knowledge and analyses in order to be most effective. The translation of scientific research to decision-making is rarely direct, and often requires coordination of objectives or intermediate research steps. For example, complex model output may need to be simplified to provide mean estimates for given activities; biogeochemical models used for climate change prediction may need to be altered to estimate net carbon flux associated with particular activities; or scientific analyses may need to aggregate and analyze data in a different manner to address specific questions. In the aforementioned cases, expertise and capabilities of researchers and decision-makers are both needed, and early coordination and communication is most effective. Initial analysis of existing science and current decision-making needs indicate that (a) knowledge that is co-produced by scientists and decision-makers has a higher probability of being usable for decision making, (b) scientific work in the past decade to integrate activity data into models has resulted in more usable information for decision makers, (c) attribution and accounting of carbon cycle fluxes is key to using carbon cycle science for decision-making, and (d) stronger, long-term links among research on climate and management of carbon-related sectors (e.g., energy, land use, industry, and buildings) are needed to adequately address current issues.

  12. Konnichi Wa, Nihon (Hello, Japan!): Best Databases for Business, Technology and News.

    ERIC Educational Resources Information Center

    Hoetker, Glenn

    1994-01-01

    Describes online information sources for Japanese business, scientific, and technical developments. Highlights include English language materials versus the need for translation from Japanese; government research; scientific and technical information; patent information; corporate financial information; business information from newswires and…

  13. Concept Maps for Improved Science Reasoning and Writing: Complexity Isn’t Everything

    PubMed Central

    Dowd, Jason E.; Duncan, Tanya; Reynolds, Julie A.

    2015-01-01

    A pervasive notion in the literature is that complex concept maps reflect greater knowledge and/or more expert-like thinking than less complex concept maps. We show that concept maps used to structure scientific writing and clarify scientific reasoning do not adhere to this notion. In an undergraduate course for thesis writers, students use concept maps instead of traditional outlines to define the boundaries and scope of their research and to construct an argument for the significance of their research. Students generate maps at the beginning of the semester, revise after peer review, and revise once more at the end of the semester. Although some students revised their maps to make them more complex, a significant proportion of students simplified their maps. We found no correlation between increased complexity and improved scientific reasoning and writing skills, suggesting that sometimes students simplify their understanding as they develop more expert-like thinking. These results suggest that concept maps, when used as an intervention, can meet the varying needs of a diverse population of student writers. PMID:26538388

  14. Misreading Science in the Twentieth Century.

    ERIC Educational Resources Information Center

    Budd, John M.

    2001-01-01

    Considers textual aspects of scientific communication and problems for reception presented by the complex dynamics of communicating scientific work. Discusses scientific work based on fraud or misconduct and disputes about the nature of science, and applies reception theory and reader-response criticism to understand variations in readings of the…

  15. 75 FR 34095 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...: University of Minnesota (Dept. of Chemical Engineering and Materials Science), 151 Amundson Hall, 421... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... coatings, of very high crystalline quality materials known as complex oxides. A pertinent characteristic of...

  16. Providing Climate Policy Makers With a Strong Scientific Base (Invited)

    NASA Astrophysics Data System (ADS)

    Struzik, E.

    2009-12-01

    Scientists can and should inform public policy decisions in the Arctic. But the pace of climate change in the polar world has been occurring far more quickly than most scientists have been able to predict. This creates problems for decision-makers who recognize that difficult management decisions have to be made in matters pertaining to wildlife management, cultural integrity and economic development. With sea ice melting, glaciers receding, permafrost thawing, forest fires intensifying, and disease and invasive species rapidly moving north, the challenge for scientists to provide climate policy makers with a strong scientific base has been daunting. Clashing as this data sometimes does with the “traditional knowledge” of indigenous peoples in the north, it can also become very political. As a result the need to effectively communicate complex data is more imperative now than ever before. Here, the author describes how the work of scientists can often be misinterpreted or exploited in ways that were not intended. Examples include the inappropriate use of scientific data in decision-making on polar bears, caribou and other wildlife populations; the use of scientific data to debunk the fact that greenhouse gases are driving climate change, and the use of scientific data to position one scientist against another when there is no inherent conflict. This work will highlight the need for climate policy makers to increase support for scientists working in the Arctic, as well as illustrate why it is important to find new and more effective ways of communicating scientific data. Strategies that might be considered by granting agencies, scientists and climate policy decision-makers will also be discussed.

  17. Practical Advancement of Multipollutant Scientific and Risk Assessment Approaches for Ambient Air Pollution

    PubMed Central

    Johns, Douglas O.; Walker, Katherine; Benromdhane, Souad; Hubbell, Bryan; Ross, Mary; Devlin, Robert B.; Costa, Daniel L.; Greenbaum, Daniel S.

    2012-01-01

    Objectives: The U.S. Environmental Protection Agency is working toward gaining a better understanding of the human health impacts of exposure to complex air pollutant mixtures and the key features that drive the toxicity of these mixtures, which can then be used for future scientific and risk assessments. Data sources: A public workshop was held in Chapel Hill, North Carolina, 22–24 February 2011, to discuss scientific issues and data gaps related to adopting multipollutant science and risk assessment approaches, with a particular focus on the criteria air pollutants. Expert panelists in the fields of epidemiology, toxicology, and atmospheric and exposure sciences led open discussions to encourage workshop participants to think broadly about available and emerging scientific evidence related to multipollutant approaches to evaluating the health effects of air pollution. Synthesis: Although there is clearly a need for novel research and analytical approaches to better characterize the health effects of multipollutant exposures, much progress can be made by using existing scientific information and statistical methods to evaluate the effects of single pollutants in a multipollutant context. This work will have a direct impact on the development of a multipollutant science assessment and a conceptual framework for conducting multipollutant risk assessments. Conclusions: Transitioning to a multipollutant paradigm can be aided through the adoption of a framework for multipollutant science and risk assessment that encompasses well-studied and ubiquitous air pollutants. Successfully advancing methods for conducting these assessments will require collaborative and parallel efforts between the scientific and environmental regulatory and policy communities. PMID:22645280

  18. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  19. Data Democracy and Decision Making: Enhancing the Use and Value of Geospatial Data and Scientific Information

    NASA Astrophysics Data System (ADS)

    Shapiro, C. D.

    2014-12-01

    Data democracy is a concept that has great relevance to the use and value of geospatial data and scientific information. Data democracy describes a world in which data and information are widely and broadly accessible, understandable, and useable. The concept operationalizes the public good nature of scientific information and provides a framework for increasing benefits from its use. Data democracy encompasses efforts to increase accessibility to geospatial data and to expand participation in its collection, analysis, and application. These two pillars are analogous to demand and supply relationships. Improved accessibility, or demand, includes increased knowledge about geospatial data and low barriers to retrieval and use. Expanded participation, or supply, encompasses a broader community involved in developing geospatial data and scientific information. This pillar of data democracy is characterized by methods such as citizen science or crowd sourcing.A framework is developed for advancing the use of data democracy. This includes efforts to assess the societal benefits (economic and social) of scientific information. This knowledge is critical to continued monitoring of the effectiveness of data democracy implementation and of potential impact on the use and value of scientific information. The framework also includes an assessment of opportunities for advancing data democracy both on the supply and demand sides. These opportunities include relatively inexpensive efforts to reduce barriers to use as well as the identification of situations in which participation can be expanded in scientific efforts to enhance the breadth of involvement as well as expanding participation to non-traditional communities. This framework provides an initial perspective on ways to expand the "scientific community" of data users and providers. It also describes a way forward for enhancing the societal benefits from geospatial data and scientific information. As a result, data democracy not only provides benefits to a greater population, it enhances the value of science.

  20. [Ethical reflection on multidisciplinarity and confidentiality of information in medical imaging through new information and communication technologies].

    PubMed

    Béranger, J; Le Coz, P

    2012-05-01

    Technological advances in medical imaging has resulted in the exponential increase of the number of images per examination, caused the irreversible decline of the silver film and imposed digital imaging. This digitization is a concept whose levels of development are multiple, reflecting the complexity of this process of technological change. Under these conditions, the use of medical information via new information and communication technologies is at the crossroads of several scientific approaches and several disciplines (medicine, ethics, law, economics, psychology, etc.) surrounding the information systems in health, doctor-patient relationship and concepts that are associated. Each day, these new information and communication technologies open up new horizons and the space of possibilities, spectacularly developing access to information and knowledge. In this perspective of digital technology emergence impacting the multidisciplinary use of health information systems, the ethical questions are numerous, especially on the preservation of privacy, confidentiality and security of medical data, and their accessibility and integrity. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials.

    PubMed

    Zheng, Nan; Sun, Dajun D; Zou, Peng; Jiang, Wenlei

    2017-05-01

    In the past few decades, the development of medicine at the nanoscale has been applied to oral and parenteral dosage forms in a wide range of therapeutic areas to enhance drug delivery and reduce toxicity. An obvious response to these benefits is reflected in higher market shares of complex drug products containing nanomaterials than that of conventional formulations containing the same active ingredient. The surging market interest has encouraged the pharmaceutical industry to develop cost-effective generic versions of complex drug products based on nanotechnology when the associated patent and exclusivity on the reference products have expired. Due to their complex nature, nanotechnology-based drugs present unique challenges in determining equivalence standards between generic and innovator products. This manuscript attempts to provide the scientific rationales and regulatory considerations of key equivalence standards (e.g., in vivo studies and in vitro physicochemical characterization) for oral drugs containing nanomaterials, iron-carbohydrate complexes, liposomes, protein-bound drugs, nanotube-forming drugs, and nano emulsions. It also presents active research studies in bridging regulatory and scientific gaps for establishing equivalence of complex products containing nanomaterials. We hope that open communication among industry, academia, and regulatory agencies will accelerate the development and approval processes of generic complex products based on nanotechnology.

  2. TRANSACTIONS OF THE ALL-UNION CONFERENCE ON INFORMATION RETRIEVAL SYSTEMS AND AUTOMATED PROCESSING OF SCIENTIFIC AND TECHNICAL INFORMATION (3rd): PREFACE

    DTIC Science & Technology

    The research and development of information services within the USSR, reported at the 3rd All-Union Conference on information retrieval systems and automated processing of scientific and technical information, is discussed.

  3. The Teaching of User Studies as a Subject for the Preparation of Librarians, Documentalists, Archivists and Other Information Specialists.

    ERIC Educational Resources Information Center

    Sene, H.

    This working paper focuses on methods for developing a study program on scientific and technical information users that could serve as a subject of study in the academic preparation of librarians, archivists, and scientific and technical information specialists. Recognizing that in most schools for training specialists of scientific and technical…

  4. Analytical 3D views and virtual globes — scientific results in a familiar spatial context

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    In this paper we introduce analytical three-dimensional (3D) views as a means for effective and comprehensible information delivery, using virtual globes and the third dimension as an additional information carrier. Four case studies are presented, in which information extraction results from very high spatial resolution (VHSR) satellite images were conditioned and aggregated or disaggregated to regular spatial units. The case studies were embedded in the context of: (1) urban life quality assessment (Salzburg/Austria); (2) post-disaster assessment (Harare/Zimbabwe); (3) emergency response (Lukole/Tanzania); and (4) contingency planning (faked crisis scenario/Germany). The results are made available in different virtual globe environments, using the implemented contextual data (such as satellite imagery, aerial photographs, and auxiliary geodata) as valuable additional context information. Both day-to-day users and high-level decision makers are addressees of this tailored information product. The degree of abstraction required for understanding a complex analytical content is balanced with the ease and appeal by which the context is conveyed.

  5. Resolving Complex Research Data Management Issues in Biomedical Laboratories: Qualitative Study of an Industry-Academia Collaboration

    PubMed Central

    Myneni, Sahiti; Patel, Vimla L.; Bova, G. Steven; Wang, Jian; Ackerman, Christopher F.; Berlinicke, Cynthia A.; Chen, Steve H.; Lindvall, Mikael; Zack, Donald J.

    2016-01-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to 1) characterize specific problems faced by biomedical researchers with traditional information management practices, 2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to 3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980

  6. Design training activity for teachers and students on environmental science topic in the frame of ENVRIPLUS project

    NASA Astrophysics Data System (ADS)

    D'Addezio, G.; Beranzoli, L.; Antonella, M.

    2016-12-01

    We elaborated actions to improve the content of the ENVRIPLUS e-Training Platform for multimedia education of secondary school level teachers and students. The purpose is to favor teacher training and consequently students training on selected scientific themes faced within the ENVRIPLUS Research Infrastructures. In particular we address major thematic research areas and challenges on Biodiversity and Ecosystem Services, Greenhouse effect and Earth Warming, Ocean acidifications and Environmental sustainability. First we identified "Best practices" that could positively impacts on students by providing motivation on promoting scientific research and increase the awareness of the Earth System complexity and Environmental challenges for its preservation and sustainability,). Best practice teaching strategies represent an inherent part of a curriculum that exemplifies the connection and relevance identified in education research. To realize the training platform we start detailed study and analysis of teaching and multimedia information materials already available. We plan the realization of a digital repository for access to teachers and students with opportunities to develop original content, with standardization of the design methods of the scientific and technical content, classification / cataloging of information in digital form and definition of a logical model for the provision of thematic content in a single digital environment. To better design the actions and to catch teacher needs, we prepare a questionnaire that will be administered to a large sample of international secondary school level teachers. The first part focused on objective information about the formal, quantitative and qualitative position of science class in schools and the content and methods of teaching in different countries. The second part investigate subjective teacher experiences and their views on what can improve training offer for environmental science lessons and courses.

  7. Success matters: Recasting the relationship among geophysical, biological, and behavioral scientists to support decision making on major environmental challenges

    NASA Astrophysics Data System (ADS)

    Knopman, Debra S.

    2006-03-01

    Coping with global change, providing clean water for growing populations, and disposing of nuclear waste are some of the most difficult public policy challenges of our time. Unknowns in the physical sciences are one source of the difficulty. Real difficulties in meeting these challenges also arise in the behavioral sciences. A potentially rich vein of transdisciplinary research is to integrate the psychology of decision making, known as "judgment and decision making," or JDM, with the development of technical information and decision support tools for complex, long-term environmental problems. Practitioners of JDM conduct research on how individuals and groups respond to uncertainty and ambiguity, hedge against risks, anchor decisions to the status quo, compare relative risks and rewards of alternative strategies, and cope with other classes of decisions. Practitioners use a variety of stimuli, chance devices, hypothetical and real choices involving small stakes, scenarios, and questionnaires to measure (directly and indirectly) preferences under varying conditions. These kinds of experiments can help guide choices about the level of complexity required for different types of decision-making processes, the value of new data collection efforts, and the ways in which uncertainty in model outcomes can be cast to minimize decision-making paralysis. They can also provide a scientific basis for interacting with decision makers throughout the model development process, designing better ways of eliciting and combining opinions and of communicating information relevant to public policy issues with the goal of improving the value of the scientific contribution to the social decision.

  8. Research ethics in dissertations: ethical issues and complexity of reasoning.

    PubMed

    Kjellström, S; Ross, S N; Fridlund, B

    2010-07-01

    Conducting ethically sound research is a fundamental principle of scientific inquiry. Recent research has indicated that ethical concerns are insufficiently dealt with in dissertations. To examine which research ethical topics were addressed and how these were presented in terms of complexity of reasoning in Swedish nurses' dissertations. Analyses of ethical content and complexity of ethical reasoning were performed on 64 Swedish nurses' PhD dissertations dated 2007. A total of seven ethical topics were identified: ethical approval (94% of the dissertations), information and informed consent (86%), confidentiality (67%), ethical aspects of methods (61%), use of ethical principles and regulations (39%), rationale for the study (20%) and fair participant selection (14%). Four of those of topics were most frequently addressed: the majority of dissertations (72%) included 3-5 issues. While many ethical concerns, by their nature, involve systematic concepts or metasystematic principles, ethical reasoning scored predominantly at lesser levels of complexity: abstract (6% of the dissertations), formal (84%) and systematic (10%). Research ethics are inadequately covered in most dissertations by nurses in Sweden. Important ethical concerns are missing, and the complexity of reasoning on ethical principles, motives and implications is insufficient. This is partly due to traditions and norms that discount ethical concerns but is probably also a reflection of the ability of PhD students and supervisors to handle complexity in general. It is suggested that the importance of ethical considerations should be emphasised in graduate and post-graduate studies and that individuals with capacity to deal with systematic and metasystematic concepts are recruited to senior research positions.

  9. Developing Scientific Literacy in a Primary School

    ERIC Educational Resources Information Center

    Smith, Kathleen Veronica; Loughran, John; Berry, Amanda; Dimitrakopoulos, Cathy

    2012-01-01

    The science education literature demonstrates that scientific literacy is generally valued and acknowledged among educators as a desirable student learning outcome. However, what scientific literacy really means in terms of classroom practice and student learning is debatable due to the inherent complexity of the term and varying expectations of…

  10. Science in Writing: Learning Scientific Argument in Principle and Practice

    ERIC Educational Resources Information Center

    Cope, Bill; Kalantzis, Mary; Abd-El-Khalick, Fouad; Bagley, Elizabeth

    2013-01-01

    This article explores the processes of writing in science and in particular the "complex performance" of writing a scientific argument. The article explores in general terms the nature of scientific argumentation in which the author-scientist makes claims, provides evidence to support these claims, and develops chains of scientific…

  11. Active learning-based information structure analysis of full scientific articles and two applications for biomedical literature review.

    PubMed

    Guo, Yufan; Silins, Ilona; Stenius, Ulla; Korhonen, Anna

    2013-06-01

    Techniques that are capable of automatically analyzing the information structure of scientific articles could be highly useful for improving information access to biomedical literature. However, most existing approaches rely on supervised machine learning (ML) and substantial labeled data that are expensive to develop and apply to different sub-fields of biomedicine. Recent research shows that minimal supervision is sufficient for fairly accurate information structure analysis of biomedical abstracts. However, is it realistic for full articles given their high linguistic and informational complexity? We introduce and release a novel corpus of 50 biomedical articles annotated according to the Argumentative Zoning (AZ) scheme, and investigate active learning with one of the most widely used ML models-Support Vector Machines (SVM)-on this corpus. Additionally, we introduce two novel applications that use AZ to support real-life literature review in biomedicine via question answering and summarization. We show that active learning with SVM trained on 500 labeled sentences (6% of the corpus) performs surprisingly well with the accuracy of 82%, just 2% lower than fully supervised learning. In our question answering task, biomedical researchers find relevant information significantly faster from AZ-annotated than unannotated articles. In the summarization task, sentences extracted from particular zones are significantly more similar to gold standard summaries than those extracted from particular sections of full articles. These results demonstrate that active learning of full articles' information structure is indeed realistic and the accuracy is high enough to support real-life literature review in biomedicine. The annotated corpus, our AZ classifier and the two novel applications are available at http://www.cl.cam.ac.uk/yg244/12bioinfo.html

  12. A visual metaphor describing neural dynamics in schizophrenia.

    PubMed

    van Beveren, Nico J M; de Haan, Lieuwe

    2008-07-09

    In many scientific disciplines the use of a metaphor as an heuristic aid is not uncommon. A well known example in somatic medicine is the 'defense army metaphor' used to characterize the immune system. In fact, probably a large part of the everyday work of doctors consists of 'translating' scientific and clinical information (i.e. causes of disease, percentage of success versus risk of side-effects) into information tailored to the needs and capacities of the individual patient. The ability to do so in an effective way is at least partly what makes a clinician a good communicator. Schizophrenia is a severe psychiatric disorder which affects approximately 1% of the population. Over the last two decades a large amount of molecular-biological, imaging and genetic data have been accumulated regarding the biological underpinnings of schizophrenia. However, it remains difficult to understand how the characteristic symptoms of schizophrenia such as hallucinations and delusions are related to disturbances on the molecular-biological level. In general, psychiatry seems to lack a conceptual framework with sufficient explanatory power to link the mental- and molecular-biological domains. Here, we present an essay-like study in which we propose to use visualized concepts stemming from the theory on dynamical complex systems as a 'visual metaphor' to bridge the mental- and molecular-biological domains in schizophrenia. We first describe a computer model of neural information processing; we show how the information processing in this model can be visualized, using concepts from the theory on complex systems. We then describe two computer models which have been used to investigate the primary theory on schizophrenia, the neurodevelopmental model, and show how disturbed information processing in these two computer models can be presented in terms of the visual metaphor previously described. Finally, we describe the effects of dopamine neuromodulation, of which disturbances have been frequently described in schizophrenia, in terms of the same visualized metaphor. The conceptual framework and metaphor described offers a heuristic tool to understand the relationship between the mental- and molecular-biological domains in an intuitive way. The concepts we present may serve to facilitate communication between researchers, clinicians and patients.

  13. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  14. MEMOPS: data modelling and automatic code generation.

    PubMed

    Fogh, Rasmus H; Boucher, Wayne; Ionides, John M C; Vranken, Wim F; Stevens, Tim J; Laue, Ernest D

    2010-03-25

    In recent years the amount of biological data has exploded to the point where much useful information can only be extracted by complex computational analyses. Such analyses are greatly facilitated by metadata standards, both in terms of the ability to compare data originating from different sources, and in terms of exchanging data in standard forms, e.g. when running processes on a distributed computing infrastructure. However, standards thrive on stability whereas science tends to constantly move, with new methods being developed and old ones modified. Therefore maintaining both metadata standards, and all the code that is required to make them useful, is a non-trivial problem. Memops is a framework that uses an abstract definition of the metadata (described in UML) to generate internal data structures and subroutine libraries for data access (application programming interfaces--APIs--currently in Python, C and Java) and data storage (in XML files or databases). For the individual project these libraries obviate the need for writing code for input parsing, validity checking or output. Memops also ensures that the code is always internally consistent, massively reducing the need for code reorganisation. Across a scientific domain a Memops-supported data model makes it easier to support complex standards that can capture all the data produced in a scientific area, share them among all programs in a complex software pipeline, and carry them forward to deposition in an archive. The principles behind the Memops generation code will be presented, along with example applications in Nuclear Magnetic Resonance (NMR) spectroscopy and structural biology.

  15. Proposal for constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael H.; Podolak, Esther; Mckay, Christopher P.; Thompson, David E.

    1990-01-01

    Scientific model building can be a time intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing and using models. The proposed tool will include an interactive intelligent graphical interface and a high level, domain specific, modeling language. As a testbed for this research, we propose development of a software prototype in the domain of planetary atmospheric modeling.

  16. An open source workflow for 3D printouts of scientific data volumes

    NASA Astrophysics Data System (ADS)

    Loewe, P.; Klump, J. F.; Wickert, J.; Ludwig, M.; Frigeri, A.

    2013-12-01

    As the amount of scientific data continues to grow, researchers need new tools to help them visualize complex data. Immersive data-visualisations are helpful, yet fail to provide tactile feedback and sensory feedback on spatial orientation, as provided from tangible objects. The gap in sensory feedback from virtual objects leads to the development of tangible representations of geospatial information to solve real world problems. Examples are animated globes [1], interactive environments like tangible GIS [2], and on demand 3D prints. The production of a tangible representation of a scientific data set is one step in a line of scientific thinking, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or from a data stream generated by an environmental sensor. This data stream is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3D printout. As a last, but crucial step, this new object has to be documented and linked to the associated metadata, and curated in long term repositories to preserve its scientific meaning and context. The workflow to produce tangible 3D data-prints from science data at the German Research Centre for Geosciences (GFZ) was implemented as a software based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview. The workflow was successfully validated in various application scenarios at GFZ using a RapMan printer to create 3D specimens of elevation models, geological underground models, ice penetrating radar soundings for planetology, and space time stacks for Tsunami model quality assessment. While these first pilot applications have demonstrated the feasibility of the overall approach [3], current research focuses on the provision of the workflow as Software as a Service (SAAS), thematic generalisation of information content and long term curation. [1] http://www.arcscience.com/systemDetails/omniTechnology.html [2] http://video.esri.com/watch/53/landscape-design-with-tangible-gis [3] Löwe et al. (2013), Geophysical Research Abstracts, Vol. 15, EGU2013-1544-1.

  17. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  18. TimeTree2: species divergence times on the iPhone

    PubMed Central

    Kumar, Sudhir; Hedges, S. Blair

    2011-01-01

    Summary: Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K–12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. Availability: TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo). Contact: sbh1@psu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21622662

  19. Ethics of research for patients in pain.

    PubMed

    Waisel, David B

    2017-04-01

    This review describes advances in rising and continuing ethical issues in research in patients in pain. Although some of the issues focus directly on pain research, such as research in neonatal pain management, others focus on widespread ethical issues that are relevant to pain research, such as scientific misconduct, deception, placebo use and genomics. Scientific misconduct is more widespread than realized and requires greater awareness of the markers of misconduct like irreproducibility. More education about what qualifies as misconduct, such as consent violations, plagiarism and inappropriate patient recruitment along with data falsification needs to be implemented. Wayward researchers may attend a rehabilitation conference to improve their practices. Studies in neonatal pain management do not require comparing an intervention with the inadequate analgesia of a placebo; comparing with a standard approach is sufficient. Deception of research patients may be acceptable under narrow circumstances. The legitimacy of using broad informed consent for biobanking and genomic studies are being challenged as changes to the Common Rule are being considered. Increasing complexity and the desire to further medical knowledge complicates research methods and informed consent. The ethical issues surrounding these and offshoot areas will continue to develop.

  20. Quality assurance strategies for investigating IAQ problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, C.W.; Ross, J.A.; Sterling, E.M.

    Thousands of buildings have now been investigated throughout North America and western Europe. The evaluative strategies and protocols used by various investigators have been described in the scientific and protocols used by various investigators have been described in the scientific and technical literature, including those used by government agencies, private consultants, researchers, and physicians. Review of these strategies shows a consistency and commonly in approach, despite differences in terminology and organization. Most of the published protocols recognize the need to employ a multidisciplinary approach to the evaluation of indoor environmental problems, an approach that views buildings as complex, dynamic systems.more » The multidisciplinary approaches advocated by investigators gather information about the physical building (architectural), the mechanical systems that control indoor environmental conditions (engineering), the type and extent of occupant health and comfort concerns (medical), the objective quality of the air (industrial hygiene) and the occupants subjective perceptions of conditions in their work environment (social science). These components have generally been organized into a series of steps or phases, with each phase extending the information gathered from the preceding phase until a point when the causes of problems may be identified.« less

  1. Probabilistic eruption forecasting at short and long time scales

    NASA Astrophysics Data System (ADS)

    Marzocchi, Warner; Bebbington, Mark S.

    2012-10-01

    Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

  2. On estimating the economic value of insectivorous bats: Prospects and priorities for biologists

    USGS Publications Warehouse

    Boyles, Justin G.; Sole, Catherine L.; Cryan, Paul M.; McCracken, Gary F.

    2013-01-01

    Bats are among the most economically important nondomesticated mammals in the world. They are well-known pollinators and seed dispersers, but crop pest suppression is probably the most valuable ecosystem service provided by bats. Scientific literature and popular media often include reports of crop pests in the diet of bats and anecdotal or extrapolated estimates of how many insects are eaten by bats. However, quantitative estimates of the ecosystem services provided by bats in agricultural systems are rare, and the few estimates that are available are limited to a single cotton-dominated system in Texas. Despite the tremendous value for conservation and economic security of such information, surprisingly few scientific efforts have been dedicated to quantifying the economic value of bats. Here, we outline the types of information needed to better quantify the value of bats in agricultural ecosystems. Because of the complexity of the ecosystems involved, creative experimental design and innovative new methods will help advance our knowledge in this area. Experiments involving bats in agricultural systems may be needed sooner than later, before population declines associated with white-nose syndrome and wind turbines potentially render them impossible.

  3. CRYSTMET—The NRCC Metals Crystallographic Data File

    PubMed Central

    Wood, Gordon H.; Rodgers, John R.; Gough, S. Roger; Villars, Pierre

    1996-01-01

    CRYSTMET is a computer-readable database of critically evaluated crystallographic data for metals (including alloys, intermetallics and minerals) accompanied by pertinent chemical, physical and bibliographic information. It currently contains about 60 000 entries and covers the literature exhaustively from 1913. Scientific editing of the abstracted entries, consisting of numerous automated and manual checks, is done to ensure consistency with related, previously published studies, to assign structure types where necessary and to help guarantee the accuracy of the data and related information. Analyses of the entries and their distribution across key journals as a function of time show interesting trends in the complexity of the compounds studied as well as in the elements they contain. Two applications of CRYSTMET are the identification of unknowns and the prediction of properties of materials. CRYSTMET is available either online or via license of a private copy from the Canadian Scientific Numeric Database Service (CAN/SND). The indexed online search and analysis system is easy and economical to use yet fast and powerful. Development of a new system is under way combining the capabilities of ORACLE with the flexibility of a modern interface based on the Netscape browsing tool. PMID:27805157

  4. Scientific rationality, uncertainty and the governance of human genetics: an interview study with researchers at deCODE genetics.

    PubMed

    Hjörleifsson, Stefán; Schei, Edvin

    2006-07-01

    Technology development in human genetics is fraught with uncertainty, controversy and unresolved moral issues, and industry scientists are sometimes accused of neglecting the implications of their work. The present study was carried out to elicit industry scientists' reflections on the relationship between commercial, scientific and ethical dimensions of present day genetics and the resources needed for robust governance of new technologies. Interviewing scientists of the company deCODE genetics in Iceland, we found that in spite of optimism, the informants revealed ambiguity and uncertainty concerning the use of human genetic technologies for the prevention of common diseases. They concurred that uncritical marketing of scientific success might cause exaggerated public expectations of health benefits from genetics, with the risk of backfiring and causing resistance to genetics in the population. On the other hand, the scientists did not address dilemmas arising from the commercial nature of their own employer. Although the scientists tended to describe public fear as irrational, they identified issues where scepticism might be well founded and explored examples where they, despite expert knowledge, held ambiguous or tentative personal views on the use of predictive genetic technologies. The rationality of science was not seen as sufficient to ensure beneficial governance of new technologies. The reflexivity and suspension of judgement demonstrated in the interviews exemplify productive features of moral deliberation in complex situations. Scientists should take part in dialogues concerning the governance of genetic technologies, acknowledge any vested interests, and use their expertise to highlight, not conceal the technical and moral complexity involved.

  5. An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook

    PubMed Central

    Stevens, Jean-Luc R.; Elver, Marco; Bednar, James A.

    2013-01-01

    Lancet is a new, simulator-independent Python utility for succinctly specifying, launching, and collating results from large batches of interrelated computationally demanding program runs. This paper demonstrates how to combine Lancet with IPython Notebook to provide a flexible, lightweight, and agile workflow for fully reproducible scientific research. This informal and pragmatic approach uses IPython Notebook to capture the steps in a scientific computation as it is gradually automated and made ready for publication, without mandating the use of any separate application that can constrain scientific exploration and innovation. The resulting notebook concisely records each step involved in even very complex computational processes that led to a particular figure or numerical result, allowing the complete chain of events to be replicated automatically. Lancet was originally designed to help solve problems in computational neuroscience, such as analyzing the sensitivity of a complex simulation to various parameters, or collecting the results from multiple runs with different random starting points. However, because it is never possible to know in advance what tools might be required in future tasks, Lancet has been designed to be completely general, supporting any type of program as long as it can be launched as a process and can return output in the form of files. For instance, Lancet is also heavily used by one of the authors in a separate research group for launching batches of microprocessor simulations. This general design will allow Lancet to continue supporting a given research project even as the underlying approaches and tools change. PMID:24416014

  6. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    PubMed

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  7. Learning from catchments to understand hydrological drought (HS Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne

    2017-04-01

    Drought is a global challenge. To be able to manage drought effectively on global or national scales without losing smaller scale variability and local context, we need to understand what the important hydrological drought processes are at different scales. Global scale models and satellite data are providing a global overview and catchment scale studies provide detailed site-specific information. I am interested in bridging these two scale levels by learning from catchments from around the world. Much information from local case studies is currently underused on larger scales because there is too much complexity. However, some of this complexity might be crucial on the level where people are facing the consequences of drought. In this talk, I will take you on a journey around the world to unlock catchment scale information and see if the comparison of many catchments gives us additional understanding of hydrological drought processes on the global scale. I will focus on the role of storage in different compartments of the terrestrial hydrological cycle, and how we as humans interact with that storage. I will discuss aspects of spatial and temporal variability in storage that are crucial for hydrological drought development and persistence, drawing from examples of catchments with storage in groundwater, lakes and wetlands, and snow and ice. The added complexity of human activities shifts the focus from natural to catchments with anthropogenic increases in storage (reservoirs), decreases in storage (groundwater abstraction), and changes in hydrological processes (urbanisation). We learn how local information is providing valuable insights, in some cases challenging theoretical understanding or model outcomes. Despite the challenges of working across countries, with a high number of collaborators, in a multitude of languages, under data-scarce conditions, the scientific advantages of bridging scales are substantial. The comparison of catchments around the world can inform global scale models, give the needed spatial variability to satellite data, and help us make steps in understanding and managing the complex challenge of drought, now and in the future.

  8. SCIENCE, SCIENTISTS, AND POLICY ADVOCACY

    EPA Science Inventory

    Effectively resolving the typical ecological policy issue requires providing an array of scientific information to decision-makers. In my experience, the ability of scientists (and scientific information) to inform constructively ecological policy deliberations has been diminishe...

  9. The Feature of Scientific Explanation in the Teaching of Chemistry in the Environment of New Information of School Students' Developmental Education

    ERIC Educational Resources Information Center

    Gilmanshina, Suriya I.; Gilmanshin, Iskander R.; Sagitova, Rimma N.; Galeeva, Asiya I.

    2016-01-01

    The aim of this article is to disclose features of scientific explanation in teaching of chemistry in the environment of new information of school students' developmental education. The leading approach to the study of this problem is the information and environmental approach that comprehensively address the problem of scientific explanation in…

  10. The Importance of Why: An Intelligence Approach for a Multi-Polar World

    DTIC Science & Technology

    2016-04-04

    December 27, 2015). 12. 2 Jupiter Scientific, “Definitions of Important Terms in Chaos Theory ,” Jupiter Scientific website, http...Important Terms in Chaos Theory .” Linearizing a system is approximating a nonlinear system through the application of linear system model. 25...Complexity Theory to Anticipate Strategic Surprise,” 24. 16 M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos (New

  11. Scepticism and Trust: Two Counterpoint Essentials in Science Education for Complex Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Fensham, Peter J.

    2014-01-01

    In this response to Tom G. K. Bryce and Stephen P. Day's ("Cult Stud Sci Educ." doi:10.1007/s11422-013-9500-0, 2013) original article, I share with them their interest in the teaching of climate change in school science, but I widen it to include other contemporary complex socio-scientific issues that also need to be discussed. I…

  12. Defending the scientific integrity of conservation-policy processes.

    PubMed

    Carroll, Carlos; Hartl, Brett; Goldman, Gretchen T; Rohlf, Daniel J; Treves, Adrian; Kerr, Jeremy T; Ritchie, Euan G; Kingsford, Richard T; Gibbs, Katherine E; Maron, Martine; Watson, James E M

    2017-10-01

    Government agencies faced with politically controversial decisions often discount or ignore scientific information, whether from agency staff or nongovernmental scientists. Recent developments in scientific integrity (the ability to perform, use, communicate, and publish science free from censorship or political interference) in Canada, Australia, and the United States demonstrate a similar trajectory. A perceived increase in scientific-integrity abuses provokes concerted pressure by the scientific community, leading to efforts to improve scientific-integrity protections under a new administration. However, protections are often inconsistently applied and are at risk of reversal under administrations publicly hostile to evidence-based policy. We compared recent challenges to scientific integrity to determine what aspects of scientific input into conservation policy are most at risk of political distortion and what can be done to strengthen safeguards against such abuses. To ensure the integrity of outbound communications from government scientists to the public, we suggest governments strengthen scientific integrity policies, include scientists' right to speak freely in collective-bargaining agreements, guarantee public access to scientific information, and strengthen agency culture supporting scientific integrity. To ensure the transparency and integrity with which information from nongovernmental scientists (e.g., submitted comments or formal policy reviews) informs the policy process, we suggest governments broaden the scope of independent reviews, ensure greater diversity of expert input and transparency regarding conflicts of interest, require a substantive response to input from agencies, and engage proactively with scientific societies. For their part, scientists and scientific societies have a responsibility to engage with the public to affirm that science is a crucial resource for developing evidence-based policy and regulations in the public interest. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  13. Distributed control systems with incomplete and uncertain information

    NASA Astrophysics Data System (ADS)

    Tang, Jingpeng

    Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs, again in handling incomplete and uncertain information. The third paper combines mathematical and emergent intelligence approaches.

  14. An examination of conceptual change in undergraduate biology majors while learning science concepts including biological evolution

    NASA Astrophysics Data System (ADS)

    McQuaide, Glenn G.

    2006-12-01

    Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual enrichment. Conceptual enrichment occurs through addition of new knowledge, and then examining prior knowledge through the perspective of this new knowledge. In the field of science, enrichment reinforces complex concepts when multiple, convergent lines of supporting evidences point to the same rational scientific conclusion.

  15. Problem based learning - A brief review

    NASA Astrophysics Data System (ADS)

    Nunes, Sandra; Oliveira, Teresa A.; Oliveira, Amílcar

    2017-07-01

    Teaching is a complex mission that requires not only the theoretical knowledge transmission, but furthermore requires to provide the students the necessary skills for solving real problems in their respective professional activities where complex issues and problems must be frequently faced. Over more than twenty years we have been experiencing an increase in scholar failure in the scientific area of mathematics, which means that Teaching Mathematics and related areas can be even a more complex and hard task. Scholar failure is a complex phenomenon that depends on various factors as social factors, scholar factors or biophysical factors. After numerous attempts made in order to reduce scholar failure our goal in this paper is to understand the role of "Problem Based Learning" and how this methodology can contribute to the solution of both: increasing mathematical courses success and increasing skills in the near future professionals in Portugal. Before designing a proposal for applying this technique in our institutions, we decided to conduct a survey to provide us with the necessary information about and the respective advantages and disadvantages of this methodology, so this is the brief review aim.

  16. The authority of complexity.

    PubMed

    Stehr, N; Grundmann, R

    2001-06-01

    The assertion about the unique 'complexity' or the peculiarly intricate character of social phenomena has, at least within sociology, a long, venerable and virtually uncontested tradition. At the turn of the last century, classical social theorists, for example, Georg Simmel and Emile Durkheim, made prominent and repeated reference to this attribute of the subject matter of sociology and the degree to which it complicates, even inhibits the develop and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We present John Maynard Keynes' economic theory and its practical applications as an illustration. We conclude that the practical value of social scientific knowledge is not dependent on a faithful, in the sense of complete, representation of social reality. Instead, social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of social situations that can be altered or are actionable.

  17. The usefulness and scientific accuracy of private sector Arabic language patient drug information leaflets.

    PubMed

    Sukkari, Sana R; Al Humaidan, Abdullah S; Sasich, Larry D

    2012-07-01

    Inadequate access to useful scientifically accurate patient information is a major cause of the inappropriate use of drugs resulting in serious personal injury and related costs to the health care system. The definition of useful scientifically accurate patient information for prescription drugs was accepted by the US Secretary of the Department of Health and Human Services in 1996 as that derived from or consistent with the US FDA approved professional product label for a drug. Previous quality content studies found that English language patient drug information leaflets distributed by US pharmacies failed to meet minimum criteria defining useful and scientifically accurate information. Evaluation forms containing the explicit elements that define useful scientifically accurate information for three drugs with known serious adverse drug reactions were created based on the current US FDA approved professional product labels. The Arabic language patient drug information leaflets for celecoxib, paroxetine, and lamotrigine were obtained locally and evaluated using a methodology similar to that used in previous quality content patient drug information studies in the US. The Arabic leaflets failed to meet the definition of useful scientifically accurate information. The celecoxib leaflet contained 30% of the required information and the paroxetine and lamotrigine leaflets contained 24% and 20%, respectively. There are several limitations to this study. The Arabic leaflets from only one commercial North American vendor were evaluated and the evaluation included a limited number of drugs. A larger study is necessary to be able to generalize these results. The study results are consistent with those of previous quality content studies of commercially available English patient drug information leaflets. The results have important implications for patients as access to a reliable source of drug information may prevent harm or limit the suffering from serious adverse drug reactions.

  18. Challenges in Managing Trustworthy Large-scale Digital Science

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.

    2017-12-01

    The increased use of large-scale international digital science has opened a number of challenges for managing, handling, using and preserving scientific information. The large volumes of information are driven by three main categories - model outputs including coupled models and ensembles, data products that have been processing to a level of usability, and increasingly heuristically driven data analysis. These data products are increasingly the ones that are usable by the broad communities, and far in excess of the raw instruments data outputs. The data, software and workflows are then shared and replicated to allow broad use at an international scale, which places further demands of infrastructure to support how the information is managed reliably across distributed resources. Users necessarily rely on these underlying "black boxes" so that they are productive to produce new scientific outcomes. The software for these systems depend on computational infrastructure, software interconnected systems, and information capture systems. This ranges from the fundamentals of the reliability of the compute hardware, system software stacks and libraries, and the model software. Due to these complexities and capacity of the infrastructure, there is an increased emphasis of transparency of the approach and robustness of the methods over the full reproducibility. Furthermore, with large volume data management, it is increasingly difficult to store the historical versions of all model and derived data. Instead, the emphasis is on the ability to access the updated products and the reliability by which both previous outcomes are still relevant and can be updated for the new information. We will discuss these challenges and some of the approaches underway that are being used to address these issues.

  19. Methodological Problems of Nanotechnoscience

    NASA Astrophysics Data System (ADS)

    Gorokhov, V. G.

    Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.

  20. Connecting Provenance with Semantic Descriptions in the NASA Earth Exchange (NEX)

    NASA Astrophysics Data System (ADS)

    Votava, P.; Michaelis, A.; Nemani, R. R.

    2012-12-01

    NASA Earth Exchange (NEX) is a data, modeling and knowledge collaboratory that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform. Some of the main goals of NEX are transparency and repeatability and to that extent we have been adding components that enable tracking of provenance of both scientific processes and datasets produced by these processes. As scientific processes become more complex, they are often developed collaboratively and it becomes increasingly important for the research team to be able to track the development of the process and the datasets that are produced along the way. Additionally, we want to be able to link the processes and the datasets developed on NEX to an existing information and knowledge, so that the users can query and compare the provenance of any dataset or process with regard to the component-specific attributes such as data quality, geographic location, related publications, user comments and annotations etc. We have developed several ontologies that describe datasets and workflow components available on NEX using the OWL ontology language as well as a simple ontology that provides linking mechanism to the collected provenance information. The provenance is captured in two ways - we utilize existing provenance infrastructure of VisTrails, which is used as a workflow engine on NEX, and we extend the captured provenance using the PROV data model expressed through the PROV-O ontology. We do this in order to link and query the provenance easier in the context of the existing NEX information and knowledge. The captured provenance graph is processed and stored using RDFlib with MySQL backend that can be queried using either RDFLib or SPARQL. As a concrete example, we show how this information is captured during anomaly detection process in large satellite datasets.

  1. Communicating about bioenergy sustainability.

    PubMed

    Dale, Virginia H; Kline, Keith L; Perla, Donna; Lucier, Al

    2013-02-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives to foster sustainability.

  2. Interdisciplinarity, Climate, and Change

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2016-12-01

    Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs Develop and support boundary institutions that span research, monitoring, prototype development and practice but recognize both the benefits and the limits of co-production Design more comprehensive metrics for evaluation to combat perceptions that interdisciplinary work is only a sideline to a traditional academic career.

  3. A Scientific Rationale for Mobility in Planetary Environments

    NASA Astrophysics Data System (ADS)

    1999-01-01

    For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?

  4. 77 FR 6784 - Proposed Information Collection; Comment Request; Scientific Research, Exempted Fishing, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... research activity after its completion. II. Method of Collection Information may be submitted on paper or... Collection; Comment Request; Scientific Research, Exempted Fishing, and Exempted Activity Submissions AGENCY... collection. Fishery regulations do not generally affect scientific research activities conducted by a...

  5. Space Archaeology: Attribute, Object, Task and Method

    NASA Astrophysics Data System (ADS)

    Wang, Xinyuan; Guo, Huadong; Luo, Lei; Liu, Chuansheng

    2017-04-01

    Archaeology takes the material remains of human activity as the research object, and uses those fragmentary remains to reconstruct the humanistic and natural environment in different historical periods. Space Archaeology is a new branch of the Archaeology. Its study object is the humanistic-natural complex including the remains of human activities and living environments on the earth surface. The research method, space information technologies applied to this complex, is an innovative process concerning archaeological information acquisition, interpretation and reconstruction, and to achieve the 3-D dynamic reconstruction of cultural heritages by constructing the digital cultural-heritage sphere. Space archaeology's attribute is highly interdisciplinary linking several areas of natural and social and humanities. Its task is to reveal the history, characteristics, and patterns of human activities in the past, as well as to understand the evolutionary processes guiding the relationship between human and their environment. This paper summarizes six important aspects of space archaeology and five crucial recommendations for the establishment and development of this new discipline. The six important aspects are: (1) technologies and methods for non-destructive detection of archaeological sites; (2) space technologies for the protection and monitoring of cultural heritages; (3) digital environmental reconstruction of archaeological sites; (4) spatial data storage and data mining of cultural heritages; (5) virtual archaeology, digital reproduction and public information and presentation system; and (6) the construction of scientific platform of digital cultural-heritage sphere. The five key recommendations for establishing the discipline of Space Archaeology are: (1) encouraging the full integration of the strengths of both archaeology and museology with space technology to promote the development of space technologies' application for cultural heritages; (2) a new disciplinary framework for guiding current researches on space technologies for cultural heritages required; (3) the large cultural heritages desperately need to carrying out the key problems research of the theory-technology-application integration to obtain essential and overall scientific understanding of heritages; (4) focusing planning and implementation of major scientific programs on earth observation for cultural heritage, including those relevant to the development of theory and methods, technology combination and applicability, impact assessments and virtual reconstruction; and (5) taking full advantage of cultural heritages and earth observation sciences to strengthen space archaeology for improvements and refinements in both disciplinary practices and theoretical development. Several case studies along the ancient Silk Road were given to demonstrate the potential benefits of space archaeology.

  6. Scientific Reasoning and Epistemological Commitments: Coordination of Theory and Evidence among College Science Students

    ERIC Educational Resources Information Center

    Zeineddin, Ava; Abd-El-Khalick, Fouad

    2010-01-01

    Reasoning skills are major contributors to academic and everyday life success. Epistemological commitments (ECs) are believed to underlie reasoning processes and, when considered, could do much in delineating the complex nature of scientific reasoning. This study examined the relationship between ECs and scientific reasoning among college science…

  7. Improving Scientific Voice in the Science Communication Center at UT Knoxville

    ERIC Educational Resources Information Center

    Hirst, Russel

    2013-01-01

    Many science students believe that scientific writing is most impressive (and most professionally acceptable) when impersonal, dense, complex, and packed with jargon. In particular, they have the idea that legitimate scientific writing must suppress the subjectivity of the human voice. But science students can mature into excellent writers whose…

  8. Representing spatial and temporal complexity in ecohydrological models: a meta-analysis focusing on groundwater - surface water interactions

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan

    2016-04-01

    Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and <15% covered more than one process (e.g. heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of <5m. The primary scientific and technological limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or simplifications scientists apply to investigate the GW-SW ecohydrological interface. We investigated the type of modelling approaches applied across different scales (site, reach, catchment, nested catchments) and assessed the simplifications in environmental conditions and complexity that are commonly made in model configuration. Understanding the theoretical concepts that underpin these current modelling approaches is critical for scientists to develop measures to derive predictions from realistic environmental conditions at management relevant scales and establish best-practice modelling approaches for improving the scientific understanding and management of the GW-SW interface. Additionally, the assessment of current modelling approaches informs our proposed framework for the progress of GW-SW models in the future. The framework presented aims to increase future scientific, technological and management integration and the identification of research priorities to allow spatial and temporal complexity to be better incorporated into GW-SW models.

  9. Individual Uncertainty and the Uncertainty of Science: The Impact of Perceived Conflict and General Self-Efficacy on the Perception of Tentativeness and Credibility of Scientific Information.

    PubMed

    Flemming, Danny; Feinkohl, Insa; Cress, Ulrike; Kimmerle, Joachim

    2015-01-01

    We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople's understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48), we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61) was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS). The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that scientific writers should consider how to present scientific results when compiling pertinent texts.

  10. Individual Uncertainty and the Uncertainty of Science: The Impact of Perceived Conflict and General Self-Efficacy on the Perception of Tentativeness and Credibility of Scientific Information

    PubMed Central

    Flemming, Danny; Feinkohl, Insa; Cress, Ulrike; Kimmerle, Joachim

    2015-01-01

    We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople’s understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48), we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61) was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS). The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that scientific writers should consider how to present scientific results when compiling pertinent texts. PMID:26648902

  11. 50 CFR 600.315 - National Standard 2-Scientific Information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...., abundance, environmental, catch statistics, market and trade trends) provide time-series information on... comment should be solicited at appropriate times during the review of scientific information... information or the promise of future data collection or analysis. In some cases, due to time constraints...

  12. Predicting and controlling risks from human exposures to vibration and mechanical shock: flag waving and flag weaving.

    PubMed

    Griffin, Michael J

    2015-01-01

    At work or in leisure activities, many people are exposed to vibration or mechanical shocks associated with risks of injury or disease. This paper identifies information that can be used to decide whether there may be a risk from exposure to hand-transmitted vibration or whole-body vibration and shock, and suggests actions that can control the risks. The complex and time-varying nature of human exposures to vibration and shock, the complexity of the different disorders and uncertainty as to the mechanisms of injury and the factors influencing injury have prevented the definition of dose-response relationships well proven by scientific study. It is necessary to wave a flag indicating when there is a need to control risks from exposure to vibration and shock while scientific enquiry provides understanding needed to weave a better flag. It is concluded that quantifying exposure severity is often neither necessary nor sufficient to either identify risks or implement measures that control the risks. The identification of risks associated with exposure to vibration and mechanical shock cannot, and need not, rely solely on the quantification of exposure severity. Qualitative methods can provide a sufficient indication of the need for control measures, which should not be restricted to reducing standardised measures of exposure severity.

  13. Knowledge environments representing molecular entities for the virtual physiological human.

    PubMed

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  14. Knowledge and Beliefs about Reproductive Anatomy and Physiology among Mexican-Origin Women in the U.S.A: Implications for Effective Oral Contraceptive Use

    PubMed Central

    Amastae, Jon; Potter, Joseph E.; Hopkins, Kristine; Grossman, Daniel

    2013-01-01

    Inherent in many reproductive health and family planning programmes is the problematic assumption that the body, its processes, and modifications to it are universally experienced in the same way. This paper addresses contraceptive knowledge and beliefs among Mexican-origin women, based upon data gathered by the qualitative component of the Border Contraceptive Access Study. Open-ended interviews explored the perceived mechanism of action of the pill, side effects, non-contraceptive benefits, and general knowledge of contraception. Findings revealed complex connections between traditional and scientific information. Use of medical terms (“hormone”) illustrated attempts to integrate new information with existing knowledge and belief systems. Conclusions address concerns that existing information and services may not be sufficient if population-specific knowledge and beliefs are not assessed and addressed. Findings can contribute to the development of effective education, screening, and reproductive health services. PMID:23464742

  15. Marine habitat mapping, classification and monitoring in the coastal North Sea: Scientific vs. stakeholder interests

    NASA Astrophysics Data System (ADS)

    Hass, H. Christian; Mielck, Finn; Papenmeier, Svenja; Fiorentino, Dario

    2016-04-01

    Producing detailed maps of the seafloor that include both, water depth and simple textural characteristics has always been a challenge to scientists. In this context, marine habitat maps are an essential tool to comprehend the complexity, the spatial distribution and the ecological status of different seafloor types. The increasing need for more detail demands additional information on the texture of the sediment, bedforms and information on benthic sessile life. For long time, taking samples and videos/photographs followed by interpolation over larger distances was the only feasible way to gain information about sedimentary features such as grain-size distribution and bedforms. While ground truthing is still necessary, swath systems such as multibeam echo sounders (MBES) and sidescan sonars (SSS), as well as single beam acoustic ground discrimination systems (AGDS) became available to map the seafloor area-wide (MBES, SSS), fast and in great detail. Where area-wide measurements are impossible or unavailable point measurements are interpolated, classified and modeled. To keep pace with environmental change in the highly dynamic coastal areas of the North Sea (here: German Bight) monitoring that utilizes all of the mentioned techniques is a necessity. Since monitoring of larger areas is quite expensive, concepts for monitoring strategies were developed in scientific projects such as "WIMO" ("Scientific monitoring concepts for the German Bight, SE North Sea"). While instrumentation becomes better and better and interdisciplinary methods are being developed, the gap between basic scientific interests and stakeholder needs often seem to move in opposite directions. There are two main tendencies: the need to better understand nature systems (for theoretical purposes) and the one to simplify nature (for applied purposes). Science trends to resolve the most detail in highest precision employing soft gradients and/or fuzzy borders instead of crisp demarcations and classifications of habitats wherever this is suitable. At the same time e.g. the European authorities put much effort into the standardization of habitat classifications (e.g. EUNIS) which is essentially a massive reduction of the information content. While standardization is a necessary and important task aiming at aiding e.g. the public authorities in protecting and managing marine habitats, much information is lost on the way without actually knowing its role in explaining the natural system. In this study we show examples from various coastal areas of the North Sea concerning raw data, processed data, interpolated, modeled and classified data. We compare classifications and evaluate the information contents as well as the entropy change across the data processing stages.

  16. Recognizing Students' Scientific Reasoning: A Tool for Categorizing Complexity of Reasoning During Teaching by Inquiry

    PubMed Central

    Grady, Julia

    2010-01-01

    Teaching by inquiry is touted for its potential to encourage students to reason scientifically. Yet, even when inquiry teaching is practiced, complexity of students' reasoning may be limited or unbalanced. We describe an analytic tool for recognizing when students are engaged in complex reasoning during inquiry teaching. Using classrooms that represented “best case scenarios” for inquiry teaching, we adapted and applied a matrix to categorize the complexity of students' reasoning. Our results revealed points when students' reasoning was quite complex and occasions when their reasoning was limited by the curriculum, instructional choices, or students' unprompted prescription. We propose that teachers use the matrix as a springboard for reflection and discussion that takes a sustained, critical view of inquiry teaching practice. PMID:21113314

  17. Study of the comprehension of the scientific method by members of a university health research laboratory.

    PubMed

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  18. Study of the comprehension of the scientific method by members of a university health research laboratory

    PubMed Central

    Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.

    2012-01-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427

  19. Mind the gap! Lessons from science-based stakeholder dialogue in climate-adapted management of wetlands.

    PubMed

    Grygoruk, Mateusz; Rannow, Sven

    2017-01-15

    Effective stakeholder involvement is crucial for the management of protected areas, especially when new challenges like adaptation to climate change need to be addressed. Under these circumstances, science-based stakeholder involvement is required. However, there is often a gap between the information produced by science and the need for information from stakeholders. Along with the design and implementation of adaptive management strategies and policies, efforts must be taken to adjust messages about conservation and adaptation issues, to make them easier to understand, relevant and acceptable for stakeholders. In this paper, the experience of closing the gap between scientific information and the user needs of stakeholders in the Biebrza Valley is documented. The requirements of efficient stakeholder dialogue and the raising of awareness are then indicated. We conclude that many attempts to raise awareness of environmental conservation require improvements. Messages often need to be adjusted for different stakeholders and their various perception levels to efficiently anticipate the potential impacts of the changing climate on ecosystem management. We also revealed that the autonomous adaptation measures implemented by stakeholders to mitigate impacts of climatic change often contradict adaptive management planned and implemented by environmental authorities. We conclude that there is a demand for boundary spanners that can build a bridge between complex scientific outputs and stakeholder needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experiencing new forms of genetic choice: findings from an ethnographic study of preimplantation genetic diagnosis.

    PubMed

    Roberts, Celia; Franklin, Sarah

    2004-12-01

    Contemporary scientific and clinical knowledges and practices continue to make available new forms of genetic information, and to create new forms of reproductive choice. For example, couples at high risk of passing on a serious genetic condition to their offspring in Britain today have the opportunity to use Preimplantation Genetic Diagnosis (PGD) to select embryos that are unaffected by serious genetic disease. This information assists these couples in making reproductive choices. This article presents an analysis of patients' experiences of making the decision to undertake PGD treatment and of making reproductive choices based on genetic information. We present qualitative interview data from an ethnographic study of PGD based in two British clinics which indicate how these new forms of genetic choice are experienced by patients. Our data suggest that PGD patients make decisions about treatment in a complex way, taking multiple variables into account, and maintaining ongoing assessments of the multiple costs of engaging with PGD. Patients are aware of broader implications of their decisions, at personal, familial, and societal levels, as well as clinical ones. Based on these findings we argue that the ethical and social aspects of PGD are often as innovative as the scientific and medical aspects of this technique, and that in this sense, science cannot be described as "racing ahead" of society.

Top