NASA Astrophysics Data System (ADS)
Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan
2017-10-01
Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.
Overprompting Science Students Using Adjunct Study Questions.
ERIC Educational Resources Information Center
Holliday, William G.
1983-01-01
The selective attention model was used to explain effects of overprompting students (N=170) provided with study questions adjunct to a complex flow diagram describing scientific cyclical schema. Strongly prompting students to answers of questions was less effective than an unprompted question treatment, suggesting that prompting techniques be used…
ERIC Educational Resources Information Center
Develaki, Maria
2008-01-01
In view of the complex problems of this age, the question of the socio-ethical dimension of science acquires particular importance. We approach this matter from a philosophical and sociological standpoint, looking at such focal concerns as the motivation, purposes and methods of scientific activity, the ambivalence of scientific research and the…
ERIC Educational Resources Information Center
Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan
2017-01-01
Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and…
The Tentative Nature of Scientific Knowledge: Why Should We Teach More about Diabetes Mellitus?
ERIC Educational Resources Information Center
Biermann, Carol A.
1993-01-01
Almost 70 years of scientific research leaves many unanswered questions concerning diabetes mellitus. This disease can be viewed as an illustration of the complexity of biological systems. Textbooks stress normal rather than abnormal physiology and rarely share the difficulties encountered in understanding those abnormal conditions (PR)
Embedding Scientific Integrity and Ethics into the Scientific Process and Research Data Lifecycle
NASA Astrophysics Data System (ADS)
Gundersen, L. C.
2016-12-01
Predicting climate change, developing resources sustainably, and mitigating natural hazard risk are complex interdisciplinary challenges in the geosciences that require the integration of data and knowledge from disparate disciplines and scales. This kind of interdisciplinary science can only thrive if scientific communities work together and adhere to common standards of scientific integrity, ethics, data management, curation, and sharing. Science and data without integrity and ethics can erode the very fabric of the scientific enterprise and potentially harm society and the planet. Inaccurate risk analyses of natural hazards can lead to poor choices in construction, insurance, and emergency response. Incorrect assessment of mineral resources can bankrupt a company, destroy a local economy, and contaminate an ecosystem. This paper presents key ethics and integrity questions paired with the major components of the research data life cycle. The questions can be used by the researcher during the scientific process to help ensure the integrity and ethics of their research and adherence to sound data management practice. Questions include considerations for open, collaborative science, which is fundamentally changing the responsibility of scientists regarding data sharing and reproducibility. The publication of primary data, methods, models, software, and workflows must become a norm of science. There are also questions that prompt the scientist to think about the benefit of their work to society; ensuring equity, respect, and fairness in working with others; and always striving for honesty, excellence, and transparency.
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...
2015-07-14
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
NASA Astrophysics Data System (ADS)
Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.
2017-12-01
A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.
NASA Astrophysics Data System (ADS)
Washington, W. M.
2010-12-01
The development of climate and earth system models has been regarded primarily as the making of scientific tools to study the complex nature of the Earth’s climate. These models have a long history starting with very simple physical models based on fundamental physics in the 1960s and over time they have become much more complex with atmospheric, ocean, sea ice, land/vegetation, biogeochemical, glacial and ecological components. The policy use aspects of these models did not start in the 1960s and 1970s as decision making tools but were used to answer fundamental scientific questions such as what happens when the atmospheric carbon dioxide concentration increases or is doubled. They gave insights into the various interactions and were extensively compared with observations. It was realized that models of the earlier time periods could only give first order answers to many of the fundamental policy questions. As societal concerns about climate change rose, the policy questions of anthropogenic climate change became better defined; they were mostly concerned with the climate impacts of increasing greenhouse gases, aerosols, and land cover change. In the late 1980s, the United Nations set up the Intergovernmental Panel on Climate Change to perform assessments of the published literature. Thus, the development of climate and Earth system models became intimately linked to the need to not only improve our scientific understanding but also answering fundamental policy questions. In order to meet this challenge, the models became more complex and realistic so that they could address these policy oriented science questions such as rising sea level. The presentation will discuss the past and future development of global climate and earth system models for science and policy purposes. Also to be discussed is their interactions with economic integrated assessment models, regional and specialized models such as river transport or ecological components. As an example of one development pathway, the NSF/Department of Energy supported Community Climate System and Earth System Models will be featured in the presentation. Computational challenges will also part of the discussion.
The journey from safe yield to sustainability.
Alley, William M; Leake, Stanley A
2004-01-01
Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.
The Journey from Safe Yield to Sustainability
Alley, W.M.; Leake, S.A.
2004-01-01
Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.
Science questions for the Magellan continuing mission
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Stofan, E. R.
1992-01-01
Magellan has completed two mapping cycles around the planet Venus, returning high resolution synthetic aperture images and altimetry data of over 95 percent of the planet's surface. Venus is dominated by low lying volcanic plains with an impact crater population indicating an average surface age of about 500 million years. Highland regions either tend to be characterized by volcanic shield complexes and rifting or by complex ridged terrain. Successful as the primary mission of Magellan has been, significant scientific questions remain to be addressed with imaging and gravity data that will be collected over the next several years.
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
Beem, Betsi
2012-05-01
This paper argues that information produced and then taken up for policy decision making is a function of a complex interplay within the scientific community and between scientists and the broader policy network who are all grappling with issues in a complex environment with a high degree of scientific uncertainty. The dynamics of forming and re-forming the scientific community are shaped by political processes, as are the directions and questions scientists attend to in their roles as policy advisors. Three factors: 1) social construction of scientific communities, 2) the indeterminacy of science, and 3) demands by policy makers to have concrete information for decision making; are intertwined in the production and dissemination of information that may serve as the basis for policy learning. Through this process, however, what gets learned may not be what is needed to mitigate the problem, be complete in terms of addressing multiple causations, or be correct.
Beliakin, S A; Fokin, Iu N; Kokhan, E P; Frolkin, M N
2009-09-01
There was congested a wide experience of organization and management of scientific work in the 3rd CMCH by Vishnevsky A.A. for a term of more than 40 years. This experience is subjected to generalization, analyze for the purpose of determination of it's priority orientations of improvement. Scientific-methods work in hospital is rated as a complex of measures, organisationaly-planed and coordinated by purpose and reinforcement of scientific schools of the 3rd CMCH by Vishnevsky A.A., as a basis of effective delivery of specialized medical aid. The vector of scientific researches is directed, generally, to solving questions of military and field medicine.
NASA Astrophysics Data System (ADS)
Turrin, M.; Kenna, T. C.
2014-12-01
The new NGSS provide an important opportunity for scientists to develop curriculum that links the practice of science to research-based data in order to improve understanding in areas of science that are both complex and confusing. Our curriculum focuses in particular on the fate and transport of anthropogenic radionuclides. Radioactivity, both naturally occurring and anthropogenic, is highly debated and largely misunderstood, and for large sections of the population is a source of scientific misunderstanding. Developed as part of the international GEOTRACES project which focuses on identifying ocean processes and quantifying fluxes that control the distributions of selected trace elements and isotopes in the ocean, and on establishing the sensitivity of these distributions to changing environmental conditions, the curriculum topic fits nicely into the applied focus of NGSS with both environmental and topical relevance. Our curriculum design focuses on small group discussion driven by questions, yet unlike more traditional curriculum pieces these are not questions posed to the students, rather they are questions posed by the students to facilitate their deeper understanding. Our curriculum design challenges the traditional question/answer memorization approach to instruction as we strive to develop an educational approach that supports the practice of science as well as the NGSS Cross Cutting Concepts and the Science & Engineering Practices. Our goal is for students to develop a methodology they can employ when faced with a complex scientific issue. Through background readings and team discussions they identify what type of information is important for them to know and where to find a reliable source for that information. Framing their discovery around key questions such as "What type of radioactive decay are we dealing with?", "What is the potential half-life of the isotope?", and "What are the pathways of transport of radioactivity?" allows students to evaluate a given condition, to predict an outcome and to better judge the seriousness of an overall situation. While the problem solving skills students are taught are built around a specific case study, they can be broadly applied to a much wider range of topics, areas of study, and other aspects of their lives as new challenges arise, fitting the goals of NGSS.
USA: Economics, Politics, Ideology, Number 7, July 1977.
1977-08-01
viewpoint of one of its domestic political goals. Americans’ attention is artificially distracted from both the real socioeconomic problems and the real...34third basket" cannot be artificially singled out of the broad complex of questions considered in the final act. The questions of war and peace which...scientific advisory staff was stimulated even more by the successful launching of the first Soviet artificial earth satellite, which evoked mass-scale
Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens
2015-11-01
The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years.
ERIC Educational Resources Information Center
Haudek, Kevin C.; Kaplan, Jennifer J.; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students'…
Engineering approximations in welding: Bridging the gap between the speculation and simulation
Robino, Charles V.
2016-01-15
During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less
Engineering approximations in welding: Bridging the gap between the speculation and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, Charles V.
During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less
Climate Change and Cities in Africa: Current Dilemmas and Future Challenges
2014-10-01
naturally emanates from Earth’s atmosphere .8 One piece of scientific evidence of climate change has been an increase in the average global temperature...is just one element of climate change . Atmospheric temperature interacts with other natural systems, such as the oceanic system, in complex ways with...SECURITY CLASSIFICATION OF: How will climate change affect people living in African cities? The answer to this complex question has two interrelated
The difficulties of systematic reviews.
Westgate, Martin J; Lindenmayer, David B
2017-10-01
The need for robust evidence to support conservation actions has driven the adoption of systematic approaches to research synthesis in ecology. However, applying systematic review to complex or open questions remains challenging, and this task is becoming more difficult as the quantity of scientific literature increases. We drew on the science of linguistics for guidance as to why the process of identifying and sorting information during systematic review remains so labor intensive, and to provide potential solutions. Several linguistic properties of peer-reviewed corpora-including nonrandom selection of review topics, small-world properties of semantic networks, and spatiotemporal variation in word meaning-greatly increase the effort needed to complete the systematic review process. Conversely, the resolution of these semantic complexities is a common motivation for narrative reviews, but this process is rarely enacted with the rigor applied during linguistic analysis. Therefore, linguistics provides a unifying framework for understanding some key challenges of systematic review and highlights 2 useful directions for future research. First, in cases where semantic complexity generates barriers to synthesis, ecologists should consider drawing on existing methods-such as natural language processing or the construction of research thesauri and ontologies-that provide tools for mapping and resolving that complexity. These tools could help individual researchers classify research material in a more robust manner and provide valuable guidance for future researchers on that topic. Second, a linguistic perspective highlights that scientific writing is a rich resource worthy of detailed study, an observation that can sometimes be lost during the search for data during systematic review or meta-analysis. For example, mapping semantic networks can reveal redundancy and complementarity among scientific concepts, leading to new insights and research questions. Consequently, wider adoption of linguistic approaches may facilitate improved rigor and richness in research synthesis. © 2017 Society for Conservation Biology.
Key Gaps for Enabling Plant Growth in Future Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony
2017-01-01
Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.
Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R
2012-02-01
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.
Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.
2012-01-01
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427
ERIC Educational Resources Information Center
Inverness Research, 2016
2016-01-01
In facilities throughout the United States and abroad, communities of scientists share infrastructure, instrumentation, and equipment to conduct scientific research. In these large facilities--laboratories, accelerators, telescope arrays, and research vessels--scientists are researching key questions that have the potential to make a significant…
Childhood Trauma Remembered: A Report on the Current Scientific Knowledge Base and Its Applications.
ERIC Educational Resources Information Center
Roth, Susan, Ed.; Friedman, Matthew J., Ed.
1998-01-01
Complex issues are involved in the controversy about memories of childhood sexual abuse. Questions of childhood trauma, traumatic memory, the memory process, clinical issues, and forensic implications are reviewed. This article is condensed and modified from a more comprehensive document prepared by and available from the International Society for…
Practicing What We Preach: Assessing "Critical Thinking" in Organic Chemistry
ERIC Educational Resources Information Center
Stowe, Ryan L.; Cooper, Melanie M.
2017-01-01
Organic chemistry is often promoted as a course designed to cultivate skill in scientific "ways of thinking." Expert organic chemists perceive their field as one in which plausible answers to complex questions are arrived at through analytical thought processes. They draw analogy between problem solving in organic chemistry and diagnosis…
Variability Is Not the Villain: Finding Patterns in Complex Natural Images
ERIC Educational Resources Information Center
Brinton, Brigette Adair; Curran, Mary Carla
2015-01-01
Everyone needs strong observational skills to solve challenging problems and make informed decisions. However, many students expect to find exact answers to their questions by using the internet and do not understand the role of uncertainty, especially in decision making and scientific research. Humans and other animals choose among many options…
[Criteria for determining the category of readiness for military service].
Kulikov, V V; Liufing, A A; Panteleev, A Ia; Koval'skiĭ, O N
1997-12-01
In connection with professionalization of the Armed Forces of Russian Federation there was the necessity of deep study of laws and theoretical bases of the estimation criterion of readiness to the military service of various quota of military personnel. In this article the approaches to the given problem decision are reflected. The authors consider, that the military-medical examination represents complex process of study and estimation of the biomedical and social status of the person, definition of his conformity to conditions of the military service, the correlation of diseases and injuries with military service, but also sanction of other questions with removal of the written conclusion. The scientific development of the methodical approaches to definition of estimation of criteria of readiness category to the military service on the basis of priority of medical criteria over social in peace time becomes now one of the major problem of the military-medical examination. The authors discussed the methodological and theory questions of military-medical examination. These disputable questions require further discussion and scientific substantiation.
An integrated strategy for the planetary sciences: 1995 - 2010
NASA Technical Reports Server (NTRS)
1994-01-01
In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.
NASA Astrophysics Data System (ADS)
Berson, Eric Bruckner
This dissertation introduces the construct of worthwhileness as an important aspect of students' practical epistemologies of science (Sandoval, 2005). Specifically, it examines how students conceptualize what makes a scientific research question worthwhile, through a close analysis of the criteria they use for evaluating scientific research questions. Elementary (n=21) and high school students (n=21) participated in this study. As part of semi-structured interviews, students engaged in three novel tasks designed to elicit the epistemic criteria they use to evaluate scientific research questions in a variety of contexts. Findings indicate that elementary and high school students alike could engage in the practice of evaluating the worth of scientific questions. The criteria they employed included degree of interest, difficulty, and the contribution of questions to knowledge or to solving a problem. The criteria students considered varied by context. Several key differences emerged between the reasoning of the two grade cohorts. High school students tended to place more weight on the contribution of the research question. Also, the criteria reflected in the high school students' judgments of the scientific value of individual questions more closely accorded with the criteria they identified retrospectively as the basis of their judgments. Furthermore, the older cohort more often rationalized the selection and sequence of research questions within a single domain on the basis of epistemic contingency between questions. How students conceptualize what makes a scientific research question worthwhile constitutes a key aspect of students' epistemic reasoning. It is particularly important to understand how students judge the worthwhilness of scientific research questions given the central epistemic role of research questions in scientific inquiry.
Conceptual Tools for Understanding Nature - Proceedings of the 3rd International Symposium
NASA Astrophysics Data System (ADS)
Costa, G.; Calucci, M.
1997-04-01
The Table of Contents for the full book PDF is as follows: * Foreword * Some Limits of Science and Scientists * Three Limits of Scientific Knowledge * On Features and Meaning of Scientific Knowledge * How Science Approaches the World: Risky Truths versus Misleading Certitudes * On Discovery and Justification * Thought Experiments: A Philosophical Analysis * Causality: Epistemological Questions and Cognitive Answers * Scientific Inquiry via Rational Hypothesis Revision * Probabilistic Epistemology * The Transferable Belief Model for Uncertainty Representation * Chemistry and Complexity * The Difficult Epistemology of Medicine * Epidemiology, Causality and Medical Anthropology * Conceptual Tools for Transdisciplinary Unified Theory * Evolution and Learning in Economic Organizations * The Possible Role of Symmetry in Physics and Cosmology * Observational Cosmology and/or other Imaginable Models of the Universe
Surface chemistry and microscopy of food powders
NASA Astrophysics Data System (ADS)
Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire
2017-12-01
Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.
Earth orbital teleoperator systems evaluation
NASA Technical Reports Server (NTRS)
Shields, N. L., Jr.; Slaughter, P. H.; Brye, R. G.; Henderson, D. E.
1979-01-01
The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program.
Socio-scientific reasoning influenced by identities
NASA Astrophysics Data System (ADS)
Simonneaux, Laurence; Simonneaux, Jean
2009-09-01
Based on the comments by Lopez-Facal and Jiménez-Aleixandre, we consider that the cultural identities within Europe interfere with the question of the re-introduction of the Slovenian bear, generating a kind of "discrimination." When the SAQs under debate run against the students' systems of value, it seems that the closer the connection between the SAQs (socially acute questions) and the territorial and cultural identity, the more deeply the associated systems of values are affected; and the more the evidence is denied, the weaker the socio-scientific reasoning becomes. This result shows the importance of attempting to get the students to clarify the values underlying their socio-scientific reasoning. As Sadler observed, there was no transfer of socio-scientific reasoning on the three questions considered; each SAQ, as they are deeply related to social representations and identity, generated a specific line of reasoning balancing more or less each operation. Among various methods of teaching SAQs—problematizing, genetic, doctrinal and praxeological methods--socio-scientific reasoning may be a complex activity of problematization fostering the development of critical thinking. Confronted with the refusal to analyse the evidence in the case of the bear, and because of the nature of SAQs, we explore the notion of tangible proof. We think it relevant to study, together with the students, the processes of investigation used by the actors to establish or disestablish tangible proof on SAQs by analysing the intermediary states of the systems of proof, and possibly the "weak signals" which result in calling for the implementation of the precautionary principle.
Beyond the media: A new strategy for distributing scientific and technical information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preecs, B.L.
Communications media -- newspapers, television, magazines, etc. -- may be the most powerful single influence on modern life. Certainly they are the most important source of information citizens use to form opinions about such complex scientific questions as global warming or nuclear waste cleanup. But commercial news media have built-in limitations on their effectiveness as information sources. Reliance on advertising for revenue means the media are limited in the volume of material they can cover. In addition, the need to attract the largest possible, or the most select, audience for advertisers limits the complexity of information that the media canmore » present. Finally, existing media organizations offer few, if any, ways for users to retrieve past information. These limitations deprive citizens of needed information, increase pressure on political leaders, and create the gridlock over scientific and public policy questions caused by the Not in My Backyard'' snydrome. Fortunately, modern communications technology is changing in ways that allow public policy makers to address these shortenings. Companies now barred from the information business are seeking to enter, existing media companies are looking for new sources of revenue, and new information products are seeking markets. Several changes to existing media and communications policy will be suggested and general principles for building a better overall communications system will be discussed. 18 refs.« less
Barlow, Jos; Ewers, Robert M; Anderson, Liana; Aragao, Luiz E O C; Baker, Tim R; Boyd, Emily; Feldpausch, Ted R; Gloor, Emanuel; Hall, Anthony; Malhi, Yadvinder; Milliken, William; Mulligan, Mark; Parry, Luke; Pennington, Toby; Peres, Carlos A; Phillips, Oliver L; Roman-Cuesta, Rosa Maria; Tobias, Joseph A; Gardner, Toby A
2011-05-01
Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
Domain Specific vs Domain General: Implications for Dynamic Assessment
ERIC Educational Resources Information Center
Kaniel, Shlomo
2010-01-01
The article responds to the need for evidence-based dynamic assessment. The article is divided into two sections: In Part 1 we examine the scientific answer to the question of how far human mental activities and capabilities are domain general (DG) / domain specific (DS). A highly complex answer emerges from the literature review of domains such…
The Effects of Text Analysis on Drafting and Justifying Research Questions
ERIC Educational Resources Information Center
Padilla, Maria Antonia; Solorzano, Wendy Guadalupe; Pacheco, Virginia
2009-01-01
Introduction: A correspondence has been seen between the level at which one can read scientific texts and his/her performance in writing this type of texts. Besides being able to read at the most complex levels, formulating research problems requires explicit training in writing. The objective of the present study was to evaluate whether…
Cultural Value, Measurement and Policy Making
ERIC Educational Resources Information Center
O'Brien, Dave
2015-01-01
No matter what the national context, the question of how to understand the impact of government programmes, particularly in terms of value for money, has emerged as a complex problem to be solved by social scientific management. This article engages with these trends in two ways. It focuses on the UK to understand how these tools and technologies…
Medical innovation versus stem cell tourism.
Lindvall, Olle; Hyun, Insoo
2009-06-26
Stem cell tourism is criticized on grounds of consumer fraud, blatant lack of scientific justification, and patient safety. However, the issues are complex because they invoke questions concerning the limits of acceptable medical innovation and medical travel. Here we discuss these issues and articulate conditions under which "unproven" therapies may be offered to patients outside of regular clinical trials.
NASA Astrophysics Data System (ADS)
McDonnell, J.; Duncan, R. G.; Glenn, S.
2007-12-01
Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials, in which students use real-time-data (RTD) to generate explanations about important ocean phenomena. We will discuss our use of an Instructional Design Model (Gauge 1987) to: 1) assess our audience need, 2) develop an effective collaborative design team, 3) develop and evaluate the instructional product, and 4) implement professional development designed to familiarize teachers with oceans sciences as a context for scientific inquiry.
Was there a Darwinian Revolution? Yes, no, and maybe!
Ruse, Michael
2014-01-01
Was there a Darwinian Revolution and was it but part of the Scientific Revolution? Before Thomas Kuhn's Structure of Scientific Revolutions in 1962, most people thought that there was a Darwinian Revolution, that it was in some sense connected to the Scientific Revolution, but that neither question nor answer was terribly interesting. Then revolutions in science became a matter of intense debate, not so much about their very existence but about their nature. Was there a switch in world-views? Did the facts change? What was the importance of social groups? And so forth. Recently however some students of the history of science have started to argue that the very questions are misconceived and that there cannot have been a Darwinian Revolution and its relationship to the Scientific Revolution is imaginary because there are no such revolutions in science! This paper takes a sympathetic look at these issues, concluding that there is still life in the revolution-in-science issue, that Kuhn's book was seminal and still has things of importance to say, but that matters are more complex and more interesting than we thought back then. Copyright © 2014 Elsevier Ltd. All rights reserved.
What Are We Tracking ... and Why?
NASA Astrophysics Data System (ADS)
Suarez-Sola, I.; Davey, A.; Hourcle, J. A.
2008-12-01
What Are We Tracking ... and Why? It is impossible to define what adequate provenance is without knowing who is asking the question. What determines sufficient provenance information is not a function of the data, but of the question being asked of it. Many of these questions are asked by people not affiliated with the mission and possibly from different disciplines. To plan for every conceivable question would require a significant burden on the data systems that are designed to answer the mission's science objectives. Provenance is further complicated as each system might have a different definition of 'data set'. Is it the raw instrument results? Is it the result of numerical processing? Does it include the associated metadata? Does it include packaging? Depending on how a system defines 'data set', it may not be able to track provenance with sufficient granularity to ask the desired question, or we may end up with a complex web of relationships that significantly increases the system complexity. System designers must also remember that data archives are not a closed system. We need mechanisms for tracking not only the provenance relationships between data objects and the systems that generate them, but also from journal articles back to the data that was used to support the research. Simply creating a mirror of the data used, as done in other scientific disciplines, is unrealistic for terabyte and petabyte scale data sets. We present work by the Virtual Solar Observatory on the assignment of identifiers that could be used for tracking provenance and compare it to other proposed standards in the scientific and library science communities. We use the Solar Dynamics Observatory, STEREO and Hinode missions as examples where the concept of 'data set' breaks many systems for citing data.
NASA Astrophysics Data System (ADS)
Van Booven, Christopher D.
2015-05-01
Building on the 'questioning-based discourse analytical' framework developed by Singapore-based science educator and discourse analyst, Christine Chin, this study investigated the extent to which fifth-grade science teachers' use of questions with either an authoritative or dialogic orientation differentially restricted or expanded the quality and complexity of student responses in the USA. The author analyzed approximately 10 hours of classroom discourse from elementary science classrooms organized around inquiry-based science curricula and texts. Teacher questions and feedback were classified according to their dialogic orientation and contextually inferred structural purpose, while student understanding was operationalized as a dynamic interaction between cognitive process, syntacto-semantic complexity, and science knowledge type. The results of this study closely mirror Chin's and other scholars' findings that the fixed nature of authoritatively oriented questioning can dramatically limit students' opportunities to demonstrate higher order scientific understanding, while dialogically oriented questions, by contrast, often grant students the discursive space to demonstrate a greater breadth and depth of both canonical and self-generated knowledge. However, certain teacher questioning sequences occupying the 'middle ground' between maximal authoritativeness and dialogicity revealed patterns of meaningful, if isolated, instances of higher order thinking. Implications for classroom practice are discussed along with recommendations for future research.
Complexity and demographic explanations of cumulative culture.
Querbes, Adrien; Vaesen, Krist; Houkes, Wybo
2014-01-01
Formal models have linked prehistoric and historical instances of technological change (e.g., the Upper Paleolithic transition, cultural loss in Holocene Tasmania, scientific progress since the late nineteenth century) to demographic change. According to these models, cumulation of technological complexity is inhibited by decreasing--while favoured by increasing--population levels. Here we show that these findings are contingent on how complexity is defined: demography plays a much more limited role in sustaining cumulative culture in case formal models deploy Herbert Simon's definition of complexity rather than the particular definitions of complexity hitherto assumed. Given that currently available empirical evidence doesn't afford discriminating proper from improper definitions of complexity, our robustness analyses put into question the force of recent demographic explanations of particular episodes of cultural change.
Can there be a physics of financial markets? Methodological reflections on econophysics
NASA Astrophysics Data System (ADS)
Huber, Tobias A.; Sornette, Didier
2016-12-01
We address the question whether there can be a physical science of financial markets. In particular, we examine the argument that, given the reflexivity of financial markets (i.e., the feedback mechanism between expectations and prices), there is a fundamental difference between social and physical systems, which demands a new scientific method. By providing a selective history of the mutual cross-fertilization between physics and economics, we reflect on the methodological differences of how models and theories get constructed in these fields. We argue that the novel conception of financial markets as complex adaptive systems is one of the most important contributions of econophysics and show that this field of research provides the methods, concepts, and tools to scientifically account for reflexivity. We conclude by arguing that a new science of economic and financial systems should not only be physics-based, but needs to integrate findings from other scientific fields, so that a truly multi-disciplinary complex systems science of financial markets can be built.
Hiroshima: A Study in Science, Politics and the Ethics of War. Teacher and Student Manuals.
ERIC Educational Resources Information Center
Harris, Jonathan
By focusing on the question of whether it was right or wrong to drop the atomic bomb on Hiroshima, this social studies unit seeks to illuminate the political, military, scientific, and moral complexities involved in making far-reaching decisions today. Sections of the unit use primary materials from American, Japanese, and English sources to…
[The circulation of reflexes in brain research, art and technology. Introductory remarks].
Wübben, Yvonne; Vöhringer, Margarete
2009-03-01
The introduction deals with two main issues: First, it focuses on the question why a history of scientific concepts should not be limited to the analysis of scientific texts alone. Secondly, it shows how the history of the reflex concept gains from looking at various fields such as art, literature and brain research. The crucial role the reflex played in 19th and 20th century and the different meanings it adopted allowed us to conclude with Bruno Latour that the distinction between art and science is in itself historical. Thus, the distinction proves to be of little use for the historiography of complex concepts such as the reflex which rarely appear to be purely scientific.
The depth of fields: Managing focus in the epistemic subcultures of mind and brain science.
Peterson, David
2017-02-01
The 'psy' sciences emerged from the tangled roots of philosophy, physiology, biology and medicine, and these origins have produced heterogeneous fields. Scientists in these areas work in a complex, overlapping ecology of fields that results in the constant co-presence of dissonant theories, methods and research objects. This raises questions regarding how conceptual clarity is maintained. Using the optical metaphor 'depth of field', I show how researchers in all fields marginalize potential threats to routine scientific work by framing them as either too broad and imprecise or too narrow and technical. The appearance of this defocusing and devaluing across sites suggests a general aspect of scientific cognition, rather than a by-product of any specific scientific dispute.
U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource
Provost, Alden M.; Reilly, Thomas E.; Harbaugh, Arlen W.; Pollock, David W.
2009-01-01
Computer models of groundwater systems simulate the flow of groundwater, including water levels, and the transport of chemical constituents and thermal energy. Groundwater models afford hydrologists a framework on which to organize their knowledge and understanding of groundwater systems, and they provide insights water-resources managers need to plan effectively for future water demands. Building on decades of experience, the U.S. Geological Survey (USGS) continues to lead in the development and application of computer software that allows groundwater models to address scientific and management questions of increasing complexity.
Post, Robert
2009-09-01
The question of what constitutional constraints should apply to government efforts to regulate scientific speech is frequently contrasted to the question of what constitutional constraints should apply to government efforts to regulate scientific research. This comment argues that neither question is well formulated for constitutional analysis, which should instead turn on the relationship to constitutional values of specific acts of scientific speech and research.
Complexity and Demographic Explanations of Cumulative Culture
Querbes, Adrien; Vaesen, Krist; Houkes, Wybo
2014-01-01
Formal models have linked prehistoric and historical instances of technological change (e.g., the Upper Paleolithic transition, cultural loss in Holocene Tasmania, scientific progress since the late nineteenth century) to demographic change. According to these models, cumulation of technological complexity is inhibited by decreasing— while favoured by increasing—population levels. Here we show that these findings are contingent on how complexity is defined: demography plays a much more limited role in sustaining cumulative culture in case formal models deploy Herbert Simon's definition of complexity rather than the particular definitions of complexity hitherto assumed. Given that currently available empirical evidence doesn't afford discriminating proper from improper definitions of complexity, our robustness analyses put into question the force of recent demographic explanations of particular episodes of cultural change. PMID:25048625
A self-consistent global emissions inventory spanning 1850 ...
While emissions inventory development has advanced significantly in recent years, the scientific community still lacks a global inventory utilizing consistent estimation approaches spanning multiple centuries. In this analysis, we investigate the strengths and weaknesses of current approaches to effectively address inventory development over not just a global spatial scale but also a timescale spanning two centuries – from early industrialization into the near future. We discuss the need within the scientific community for a dataset such as this and the landscape of questions it would allow the scientific community to address. In particular, we focus on questions that the scientific community cannot adequately address using the currently available techniques and information.We primarily focus on the difficulties and potential obstacles associated with developing an inventory of this scope and magnitude. We discuss many of the hurdles that the field has already overcome and also highlight the challenges that researchers in the field still face. We detail the complexities related to the extent of spatial and temporal scales required for an undertaking of this magnitude. In addition, we point to areas where the community currently lacks the necessary data to move forward. Our analysis focuses on one direction in which the development of global emissions inventories is heading rather than an in-depth analysis of the path of emissions inventory development
ERIC Educational Resources Information Center
Weisberg, Deena Skolnick; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick
2013-01-01
Lillard et al. (2013) concluded that pretend play is not causally related to child outcomes and charged that the field is subject to a "play ethos", whereby research is tainted by a bias to find positive effects of play on child development. In this commentary, we embrace their call for a more solidly scientific approach to questions in this…
Structure de l'univers - quand l'observation guide la théorie... ou pas
NASA Astrophysics Data System (ADS)
Nazé, Yaël
The scientific method is often presented, e.g. to children, as a linear process, starting by a question and ending by the elaboration of a theory, with a few experiments in-between. The reality of the building of science is much more complex, with back-and-forth motions between theories and observations, with some intervention of technology and randomness. This complex process is not always correctly understood and assimilated, even amongst scientists. The hero cult, mixed with some revisionism, still exists despite in-depth historical studies. In this context, it may be useful to comparatively examine the reaction to crucial observations, their interpretation and their impact on the contemporaneous theory development. Four examples are presented here, all linked to the question of the 'construction of the heavens' but at different epochs.
NASA Astrophysics Data System (ADS)
In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute's book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems - the focus of work at SFI - involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, and the Gross National Product (GNP) of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.
1992 annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of workmore » at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.« less
NASA Astrophysics Data System (ADS)
Dinsmore, Daniel L.; Zoellner, Brian P.; Parkinson, Meghan M.; Rossi, Anthony M.; Monk, Mary J.; Vinnachi, Jenelle
2017-05-01
View change about socio-scientific issues has been well studied in the literature, but the change in the complexity of those views has not. In the current study, the change in the complexity of views about a specific scientific topic (i.e. genetically modified organisms; GMOs) and use of evidence in explaining those views was examined in relation to individual factors and type of text (informational, persuasive, or narrative). Undergraduate students completed measures of their prior views about GMOs their epistemic beliefs about the nature of science, and activities related to food consumption. Participants then read either an informational, persuasive, or narrative passage about GMOs and again answered a question related to their views about GMOs. Participants who read the persuasive passage decreased in the complexity of their views, while those who read the narrative and expository passage increased in the complexity of their views. Additionally, while cultural activities related to the complexity of individuals' views during the pretest, these significant differences were not evident at posttest after the text intervention. These findings can be used to help scientists and teachers better understand how to communicate information critical to understanding complex science and environmental issues to the public and their students.
Safari, Leila; Patrick, Jon D
2018-06-01
This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.
Inspiring future experimental scientists through questions related to colour
NASA Astrophysics Data System (ADS)
Fairchild, Mark D.; Melgosa, Manuel
2014-07-01
In general, it can be stated that unfortunately in most countries the number of students interested in traditional scientific disciplines (e.g. physics, chemistry, biology, mathematics, etc.) for his/her future professional careers has considerably decreased during the past years. It is likely that among the reasons of this trend we can find that many students feel that these disciplines are particularly difficult, complex, abstract, and even boring, while they consider applied sciences (e.g. engineering) as much more attractive options to them. Here we aim to attract people of very different ages to traditional scientific disciplines, and promote scientific knowledge, using a set of colour questions related to everyday experiences. From our answers to these questions we hope that people can understand and learn science in a rigorous, relaxed and amusing way, and hopefully they will be inspired to continue exploring on their own. Examples of such colour questions can be found at the free website http://whyiscolor.org from Mark D. Fairchild. For a wider dissemination, most contents of this website have been recently translated into Spanish language by the authors, and published in the book entitled "La tienda de las curiosidades sobre el color" (Editorial University of Granada, Spain, ISBN: 9788433853820). Colour is certainly multidisciplinary, and while it can be said that it is mainly a perception, optics is a key discipline to understand colour stimuli and phenomena. The classical first approach in colour science as the result of the interaction of light, objects, and the human visual system will be also reviewed.
Ergonomics and sustainability: towards an embrace of complexity and emergence.
Dekker, Sidney W A; Hancock, Peter A; Wilkin, Peter
2013-01-01
Technology offers a promising route to a sustainable future, and ergonomics can serve a vital role. The argument of this article is that the lasting success of sustainability initiatives in ergonomics hinges on an examination of ergonomics' own epistemology and ethics. The epistemology of ergonomics is fundamentally empiricist and positivist. This places practical constraints on its ability to address important issues such as sustainability, emergence and complexity. The implicit ethical position of ergonomics is one of neutrality, and its positivist epistemology generally puts value-laden questions outside the parameters of what it sees as scientific practice. We argue, by contrast, that a discipline that deals with both technology and human beings cannot avoid engaging with questions of complexity and emergence and seeking innovative ways of addressing these issues. Ergonomics has largely modelled its research on a reductive science, studying parts and problems to fix. In sustainability efforts, this can lead to mere local adaptations with a negative effect on global sustainability. Ergonomics must consider quality of life globally, appreciating complexity and emergent effects of local relationships.
[How to approach the discipline of "nursing science" in France?].
Lecordier, Didier; Rémy-Largeau, Isabelle; Jovic, Ljiljana
2013-03-01
The last four years have seen the development of supports toward research in nursing and other healthcare professionals' research, along with the fact that, nursing education has become part of university programs. Professional and scientific landscapes are changing and the opening perspectives let glimpse a growing professionalization of nurses' activities but also, raise the question of the nursing science construction in France. By considering interdisciplinary work, as an approach for complex situations of care, by specifying the purpose of the production of nursing scientific knowledge in order to meet the population needs of healthcare, by explaining the purpose of nursing research and theoretical elements that allow its construction, the following article offers an epistemological reflection on the evolution of the profession and on the construction of a nursing scientific discipline in France.
Henney, Adriano M
2012-01-01
Abstract The concept of personalized medicine is not new. It is being discussed with increasing interest in the medical, scientific, and general media because of the availability of advanced scientific and computational technologies, and the promise of the potential to improve the targeting and delivery of novel medicines. It is also being seen as one approach that may have a beneficial impact on reducing health care budgets. But what are the challenges that need to be addressed in its implementation in the clinic? This article poses some provocative questions and suggests some things that need to be considered. PMID:22661132
Kennedy, Theodore A.
2013-01-01
Identifying areas of scientific uncertainty is a critical step in the adaptive management process (Walters, 1986; Runge, Converse, and Lyons, 2011). To identify key areas of scientific uncertainty regarding biologic resources of importance to the Glen Canyon Dam Adaptive Management Program, the Grand Canyon Monitoring and Research Center (GCMRC) convened Knowledge Assessment Workshops in May and July 2005. One of the products of these workshops was a set of strategic science questions that highlighted key areas of scientific uncertainty. These questions were intended to frame and guide the research and monitoring activities conducted by the GCMRC in subsequent years. Questions were developed collaboratively by scientists and managers. The questions were not all of equal importance or merit—some questions were large scale and others were small scale. Nevertheless, these questions were adopted and have guided the research and monitoring efforts conducted by the GCMRC since 2005. A new round of Knowledge Assessment Workshops was convened by the GCMRC in June and October 2011 and January 2012 to determine whether the research and monitoring activities conducted since 2005 had successfully answered some of the strategic science questions. Oral presentations by scientists highlighting research findings were a centerpiece of all three of the 2011–12 workshops. Each presenter was also asked to provide an answer to the strategic science questions that were specific to the presenter’s research area. One limitation of this approach is that these answers represented the views of the handful of scientists who developed the presentations, and, as such, they did not incorporate other perspectives. Thus, the answers provided by presenters at the Knowledge Assessment Workshops may not have accurately captured the sentiments of the broader group of scientists involved in research and monitoring of the Colorado River in Glen and Grand Canyons. Yet a fundamental ingredient of resilient decisionmaking and problem-solving is incorporation of a wide range of perspectives (Carpenter and others, 2009). To ensure that a wide range of scientists had an opportunity to weigh in on the strategic science questions, the GCMRC elicited additional perspectives through written questionnaires. Independently soliciting responses from scientists through questionnaires had the added advantage of allowing all scientists to freely and openly share their views on complex and controversial topics—something which may not have occurred in the group setting of the June 2011 Knowledge Assessment Workshop because of dominance by one or more scientists. The purpose of this report is to document and interpret the questionnaire responses.
Questioning the evidence for a claim in a socio-scientific issue: an aspect of scientific literacy
NASA Astrophysics Data System (ADS)
Roberts, Ros; Gott, Richard
2010-11-01
Understanding the science in a 'socio-scientific issue' is at the heart of the varied definitions of 'scientific literacy'. Many consider that understanding evidence is necessary to participate in decision making and to challenge the science that affects people's lives. A model is described that links practical work, argumentation and scientific literacy which is used as the basis of this research. If students are explicitly taught about evidence does this transfer to students asking questions in the context of a local socio-scientific issue? What do they ask questions about? Sixty-five primary teacher training students were given the pre-test, before being taught the 'concepts of evidence' and applying them in an open-ended investigation and were tested again 15 weeks later. Data were coded using Toulmin's argument pattern (TAP) and the 'concepts of evidence'. After the intervention it was found that, in relation to a socio-scientific issue, they raised significantly more questions specifically about the evidence that lead to the scientists' claims although questions explicitly targeting the quality of the data were still rare. This has implications for curricula that aim for scientific literacy.
Teachers' Integration of Scientific and Engineering Practices in Primary Classrooms
NASA Astrophysics Data System (ADS)
Merritt, Eileen G.; Chiu, Jennie; Peters-Burton, Erin; Bell, Randy
2017-06-01
The Next-Generation Science Standards (NGSS) challenge primary teachers and students to work and think like scientists and engineers as they strive to understand complex concepts. Teachers and teacher educators can leverage what is already known about inquiry teaching as they plan instruction to help students meet the new standards. This cross-case analysis of a multiple case study examined teacher practices in the context of a semester-long professional development course for elementary teachers. We reviewed lessons and teacher reflections, examining how kindergarten and first grade teachers incorporated NGSS scientific and engineering practices during inquiry-based instruction. We found that most of the teachers worked with their students on asking questions; planning and carrying out investigations; analyzing and interpreting data, using mathematics and computational thinking; and obtaining, evaluating and communicating information. Teachers faced challenges in supporting students in developing their own questions that could be investigated and using data collection strategies that aligned with students' development of number sense concepts. Also, some teachers overemphasized the scientific method and lacked clarity in how they elicited and responded to student predictions. Discussion focuses on teacher supports that will be needed as states transition to NGSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas; Schuman, Catherine; Patton, Robert
The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less
,
2009-01-01
In the Southeast, U.S. Geological Survey (USGS) scientists are researching issues through technical studies of water availability and quality, geologic processes (marine, coastal, and terrestrial), geographic complexity, and biological resources. The USGS is prepared to tackle multifaceted questions associated with global climate change and resulting weather patterns such as drought through expert scientific skill, innovative research approaches, and accurate information technology.
Reviewing model application to support animal health decision making.
Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann
2011-04-01
Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.
Out of Bounds? A Critique of the New Policies on Hyperandrogenism in Elite Female Athletes
Karkazis, Katrina; Jordan-Young, Rebecca; Davis, Georgiann; Camporesi, Silvia
2016-01-01
In May 2011, more than a decade after the International Association of Athletics Federations (IAAF) and the International Olympic Committee (IOC) abandoned sex testing, they devised new policies in response to the IAAF’s treatment of Caster Semenya, the South African runner whose sex was challenged because of her spectacular win and powerful physique that fueled an international frenzy questioning her sex and legitimacy to compete as female. These policies claim that atypically high levels of endogenous testosterone in women (caused by various medical conditions) create an unfair advantage and must be regulated. Against the backdrop of Semenya’s case and the scientific and historical complexity of “gender verification” in elite sports, we question the new policies on three grounds: (1) the underlying scientific assumptions; (2) the policymaking process; and (3) the potential to achieve fairness for female athletes. We find the policies in each of these domains significantly flawed and therefore argue they should be withdrawn. PMID:22694023
Artificial muscles' enrichment text: Chemical Literacy Profile of pre-service teachers
NASA Astrophysics Data System (ADS)
Hernani, Ulum, Luthfi Lulul; Mudzakir, Ahmad
2017-08-01
This research aims to determine the profile of chemical literacy abilities of pre-service teachers based on scientific attitudes and scientific competencies in PISA 2015 through individualized learning by using an artificial muscle context based-enrichment book. This research uses descriptive method, involving 20 of the 90 randomly selected population. This research uses a multiple-choice questions instrument. The result of this research are : 1) in the attitude aspects of interest in science and technology, valuing scientific approaches to inquiry, and environmental awareness, the results obtained respectively for 90%, 80%, and 30%. 2) for scientific competence of apply appropriate scientific knowledge, identify models and representations, make appropriate predictions, and explain the potential implications of scientific knowledge for society, the results obtained respectively for 30%, 50%, 60%, and 55%. 3) For scientific competence of identify the question explored in a given scientific study and distinguish questions that could be investigated scientifically, the results obtained respectively for 30 % and 50%. 4) For scientific competence of transform data from one representation to another and draw appropriate conclusions, the results obtained respectively for 60% and 45%. Based on the results, which need to be developed in pre-service chemistry teachers are environmental awareness, apply appropriate scientific knowledge, identify the question explored in a given scientific study, and draw appropriate conclusions.
Lam, Tram Kim; Schully, Sheri D; Rogers, Scott D; Benkeser, Rachel; Reid, Britt; Khoury, Muin J
2013-04-01
In a time of scientific and technological developments and budgetary constraints, the National Cancer Institute's (NCI) Provocative Questions Project offers a novel funding mechanism for cancer epidemiologists. We reviewed the purposes underlying the Provocative Questions Project, present information on the contributions of epidemiologic research to the current Provocative Questions portfolio, and outline opportunities that the cancer epidemiology community might capitalize on to advance a research agenda that spans a translational continuum from scientific discoveries to population health impact.
A new organismal systems biology: how animals walk the tight rope between stability and change.
Padilla, Dianna K; Tsukimura, Brian
2014-07-01
The amount of knowledge in the biological sciences is growing at an exponential rate. Simultaneously, the incorporation of new technologies in gathering scientific information has greatly accelerated our capacity to ask, and answer, new questions. How do we, as organismal biologists, meet these challenges, and develop research strategies that will allow us to address the grand challenge question: how do organisms walk the tightrope between stability and change? Organisms and organismal systems are complex, and multi-scale in both space and time. It is clear that addressing major questions about organismal biology will not come from "business as usual" approaches. Rather, we require the collaboration of a wide range of experts and integration of biological information with more quantitative approaches traditionally found in engineering and applied mathematics. Research programs designed to address grand challenge questions will require deep knowledge and expertise within subfields of organismal biology, collaboration and integration among otherwise disparate areas of research, and consideration of organisms as integrated systems. Our ability to predict which features of complex integrated systems provide the capacity to be robust in changing environments is poorly developed. A predictive organismal biology is needed, but will require more quantitative approaches than are typical in biology, including complex systems-modeling approaches common to engineering. This new organismal systems biology will have reciprocal benefits for biologists, engineers, and mathematicians who address similar questions, including those working on control theory and dynamical systems biology, and will develop the tools we need to address the grand challenge questions of the 21st century. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Climate Contrarianism: Conspiracies, Movable Goalposts, Cherry Picking, and the Galileo Complex
NASA Astrophysics Data System (ADS)
Somerville, R. C.
2012-12-01
How can two well-qualified climate scientists, with similar educational backgrounds and professional careers, come to diametrically opposed conclusions on important research issues that have been the subjects of extensive scientific investigation? This question is illuminated by examining the attitudes and practices that separate mainstream climate researchers and credentialed contrarian scientists. The existence of contrarians, scientists who reject the findings of mainstream researchers, is not confined to climate science. Indeed, in many fields of science, rhetorical arguments have been made by contrarians in order to create the impression that the expert scientific community is divided, and that genuine scientific controversy exists, where in fact there is none. The frequent objective underlying this practice is not to advance the science, but rather to cast doubt on scientific findings because of opposition to policies that might be implemented because of trust in these scientific results. Thus, opposition to cap-and-trade systems, or to carbon taxes, or to government interference with markets, or to ceding national sovereignty via treaties, can all be reasons for calling into question the mainstream scientific result that climate change due to human activities is real and has significant adverse effects. Contrarian scientists in many fields have alleged that they are victims of secretive conspiracies by mainstream scientists. They have also created unrealistic expectations of what research ought to provide, such as by pointing out that all climate models have uncertainties and weaknesses, and therefore no model results deserve serious consideration. They have emphasized weaknesses in papers supporting mainstream findings, and have exaggerated the importance of isolated results, and they have attacked the methods and credibility of mainstream scientists, all in the hope of undermining mainstream findings. They have often sought to portray themselves as independent thinkers and courageous victims of the dominant orthodoxy, reminiscent of Galileo. Understanding the characteristics of scientific contrarianism, and being familiar with its manifestations in many scientific fields, can help to recognize it and to distinguish it from legitimate scientific dissent.
The challenges associated with developing science-based landscape scale management plans
Szaro, Robert C.; Boyce, D.A.; Puchlerz, T.
2005-01-01
Planning activities over large landscapes poses a complex of challenges when trying to balance the implementation of a conservation strategy while still allowing for a variety of consumptive and nonconsumptive uses. We examine a case in southeast Alaska to illustrate the breadth of these challenges and an approach to developing a science-based resource plan. Not only was the planning area, the Tongass National Forest, USA, exceptionally large (approximately 17 million acres or 6.9 million ha), but it also is primarily an island archipelago environment. The water system surrounding and going through much of the forest provides access to facilitate the movement of people, animals, and plants but at the same time functions as a barrier to others. This largest temperate rainforest in the world is an exceptional example of the complexity of managing at such a scale but also illustrates the role of science in the planning process. As we enter the 21st century, the list of questions needing scientific investigation has not only changed dramatically, but the character of the questions also has changed. Questions are contentious, cover broad scales in space and time, and are highly complex and interdependent. The provision of unbiased and objective information to all stakeholders is an important step in informed decision-making.
From science to evidence: the testimony on causation in the Bendectin cases.
Sanders, J
1993-11-01
Critics of American tort law often question the ability of lay jurors to make factual determinations in trials involving complex scientific evidence. In this article, Professor Sanders attempts to refocus tort reform debate by studying how trial procedures themselves contribute to jurors' inability to properly assess scientific evidence. Professor Sanders' analysis centers on trials involving Bendectin, a drug which plaintiffs have claimed caused birth defects in the children of mothers who took it during pregnancy. After noting that the weight of scientific and federal judicial opinion concludes that plaintiffs cannot establish a causal link between Bendectin use and birth defects by a preponderance of the evidence, Professor Sanders analyzes the transcripts of six Bendectin trials to determine why jury verdicts do not comport with the weight of scientific and judicial opinion. Based on his conclusion that trials are incapable of adequately conveying the weight of scientific opinion to a lay jury, he evaluates the ability of various trial reform proposals to ameliorate this problem. Finally he recommends adopting proposals that would facilitate jurors' understanding of scientific evidence and lead to verdicts consistent with the weight of scientific opinion.
Applying New Methods to Diagnose Coral Diseases
Kellogg, Christina A.; Zawada, David G.
2009-01-01
Coral disease, one of the major causes of reef degradation and coral death, has been increasing worldwide since the 1970s, particularly in the Caribbean. Despite increased scientific study, simple questions about the extent of disease outbreaks and the causative agents remain unanswered. A component of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is focused on developing and using new methods to approach the complex problem of coral disease.
ERIC Educational Resources Information Center
Ishiwa, Koto; Sanjose, Vicente; Otero, Jose
2013-01-01
Background: A number of studies report that few questions are asked in classrooms and that many of them are shallow questions. Aims: This study investigates the way in which reading goals determine questioning on scientific texts. Reading goals were manipulated through two different tasks: reading for understanding versus reading to solve a…
2018-05-04
ARL-TR-8359 ● MAY 2018 US Army Research Laboratory Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A...with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions by Arwen H DeCostanza, Amar R Marathe, Addison Bohannon...Enhancing Human–Agent Teaming with Individualized, Adaptive Technologies : A Discussion of Critical Scientific Questions 5a. CONTRACT NUMBER 5b
[Health: an adaptive complex system].
Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis
2012-02-01
This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.
Examining Research Questions on Germination from the Perspective of Scientific Creativity
ERIC Educational Resources Information Center
Demir Kaçan, Sibel
2015-01-01
This study was conducted with the participation of 31 pre-service science teachers. Participants were asked to develop various research questions on germination. The study aims to examine research questions on the subject germination from the perspective of scientific creativity. The research questions were examined using the fluency, science…
Big Science and the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Giudice, Gian Francesco
2012-03-01
The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.
The Inclination to Evil and the Punishment of Crime - from the Bible to Behavioral Genetics
Gold, Azgad; Appelbaum, Paul S.
2012-01-01
The evolving field of behavioral genetics is gradually elucidating the complex interplay between genes and environment. Scientific data pertaining to the behavioral genetics of violent behavior provides a new context for an old dilemma regarding criminal responsibility and punishment: if the inclination to violent behavior is inherent in someone's nature, how should it affect punishment for crime? Should it be considered as a mitigating or an aggravating factor? Given psychiatrists’ increasing involvement in providing testimony on behavioral genetics in the criminal justice system, this paper first provides the necessary background required for understanding how this question arises and reviews the relevant literature. Then, we address this question from the perspective of the Bible and its commentators, in the belief that their insights may enrich the contemporary discussion of this question. PMID:25618278
The inclination to evil and the punishment of crime - from the bible to behavioral genetics.
Gold, Azgad; S Appelbaum, Paul
2014-01-01
The evolving field of behavioral genetics is gradually elucidating the complex interplay between genes and environment. Scientific data pertaining to the behavioral genetics of violent behavior provides a new context for an old dilemma regarding criminal responsibility and punishment: if the inclination to violent behavior is inherent in someone's nature, how should it affect punishment for crime? Should it be considered as a mitigating or an aggravating factor? Given psychiatrists' increasing involvement in providing testimony on behavioral genetics in the criminal justice system, this paper first provides the necessary background required for understanding how this question arises and reviews the relevant literature. Then, we address this question from the perspective of the Bible and its commentators, in the belief that their insights may enrich the contemporary discussion of this question.
NASA Astrophysics Data System (ADS)
Head, James W.
1999-01-01
The Site Selection Process: Site selection as a process can be subdivided into several main elements and these can be represented as the corners of a tetrahedron. Successful site selection outcome requires the interactions between these elements or corners, and should also take into account several other external factors or considerations. In principle, elements should be defined in approximately the following order: (1) major scientific and programmatic goals and objectives: What are the major questions that are being asked, goals that should be achieved, and objectives that must be accomplished. Do programmatic goals (e.g., sample return) differ from mission goals (e.g., precursor to sample return)? It is most helpful if these questions can be placed in the context of site characterization and hypothesis testing (e.g., Was Mars warm and wet in the Noachian? Land at a Noachian-aged site that shows evidence of surface water and characterize it specifically to address this question). Goals and objectives, then, help define important engineering factors such as type of payload, landing regions of interest (highlands, lowlands, smooth, rough, etc.), mobility, mission duration, etc. Goals and objectives then lead to: (2) spacecraft design and engineering landing site constraints: the spacecraft is designed to optimize the areas that will meet the goals and objectives, but this in turn introduces constraints that must be met in the selection of a landing site. Scientific and programmatic goals and objectives also help to define (3), the specific lander scientific payload requirements and capabilities. For example, what observations and experiments are required to address the major questions? How do we characterize the site in reference to the specific questions? Is mobility required and if so, how much? Which experiments are on the spacecraft, which on the rover? The results of these deliberations should lead to a surface exploration strategy, in which the goals and objectives can in principle be achieved through the exploration of a site meeting the basic engineering constraints. Armed with all of this important background information, one can then proceed to (4) the selection of optimum sites to address major scientific and programmatic objectives. Following the successful completion of this process and the selection of a site or region, there is a further step of mission optimization, in which a detailed mission profile and surface exploration plan is developed. In practice, the process never works in a linear fashion. Scientific goals are influenced by ongoing discoveries and developments and simple crystallization of thinking. Programmatic goals are influenced by evolving fiscal constraints, perspectives on program duration, and roles of specific missions in the context of the larger program. Engineering constraints are influenced by evolving fiscal constraints, decisions on hardware design that may have little to do with scientific goals (e.g., lander clearance; size of landing ellipse), and evolving understanding (e.g., assessment of engineering constraint space reveals further the degree to which mission duration is severely influenced by available solar energy and thus latitude). Lander scientific payload is influenced by fiscal constraints, total mass, evolving complexity, technological developments, and a payload selection process that may involve very long-term goals (e.g., human exploration) as well as shorter term scientific and programmatic goals. Site selection activities commonly involve scientists who are actively trying to decipher the complex geology of the crust of Mars and to unravel its geologic history through geological mapping. By the nature of the process, they are thinking in terms of broad morphostratigraphic units which may have multiple possible origins, defined using images with resolutions of many tens to hundreds of meters, and whose surfaces at the scale of the lander and rover are virtually unknown; this approach and effort is crucially important but does not necessarily readily lend itself to integration with the other elements.
The Darwinian revolution: Rethinking its meaning and significance
Ruse, Michael
2009-01-01
The Darwinian revolution is generally taken to be one of the key events in the history of Western science. In recent years, however, the very notion of a scientific revolution has come under attack, and in the specific case of Charles Darwin and his Origin of Species there are serious questions about the nature of the change (if there was such) and the specifically Darwinian input. This article considers these issues by addressing these questions: Was there a Darwinian revolution? That is, was there a revolution at all? Was there a Darwinian revolution? That is, what was the specific contribution of Charles Darwin? Was there a Darwinian revolution? That is, what was the conceptual nature of what occurred on and around the publication of the Origin? I argue that there was a major change, both scientifically and in a broader metaphysical sense; that Charles Darwin was the major player in the change, although one must qualify the nature and the extent of the change, looking particularly at things in a broader historical context than just as an immediate event; and that the revolution was complex and we need the insights of rather different philosophies of scientific change to capture the whole phenomenon. In some respects, indeed, the process of analysis is still ongoing and unresolved. PMID:19528652
Big questions, big science: meeting the challenges of global ecology.
Schimel, David; Keller, Michael
2015-04-01
Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects.
NASA Astrophysics Data System (ADS)
Gleick, P. H.
2006-12-01
Science, government, and society interact in diverse and complex ways, but good scientific information and advice are vital for making sound policy decisions. Recent efforts to discredit or distort science for political agendas raise difficult questions for the scientific community. As a result, there is growing distrust of scientists long held in esteem by the public and a growing misuse of science critical for public policy. This paper will categorize and define more than 20 different kinds of problems that challenge the integrity of science, including logical fallacies, such as Arguments from Ideology, Personal Incredulity, or Ignorance; and deceitful tactics, such as ad hominem attacks, "straw man" mischaracterizations, scientific misconduct, and misuse of facts. Examples from the geophysical sciences and its intersection with the public policy arena will be presented, together with suggestions for strengthening the public trust.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.
Moraes, Fernanda; Góes, Andréa
2016-05-06
The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D L; Bell, J; Estep, D
2008-02-15
Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as themore » high-performance computers on which these codes run. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception. Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those that involve the energy, environmental and national security needs of the country. As the capability of high-performance computers continues to increase, the types of questions that can be answered by applying this huge computational power become more varied and more complex. It will be essential that we find new ways to develop and apply the mathematics necessary to enable the new scientific and engineering discoveries that are needed. In August 2007, a panel of experts in applied, computational and statistical mathematics met for a day and a half in Berkeley, California to understand the mathematical developments required to meet the future science and engineering needs of the DOE. It is important to emphasize that the panelists were not asked to speculate only on advances that might be made in their own research specialties. Instead, the guidance this panel was given was to consider the broad science and engineering challenges that the DOE faces and identify the corresponding advances that must occur across the field of mathematics for these challenges to be successfully addressed. As preparation for the meeting, each panelist was asked to review strategic planning and other informational documents available for one or more of the DOE Program Offices, including the Offices of Science, Nuclear Energy, Fossil Energy, Environmental Management, Legacy Management, Energy Efficiency & Renewable Energy, Electricity Delivery & Energy Reliability and Civilian Radioactive Waste Management as well as the National Nuclear Security Administration. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: (1) Can we predict the operating characteristics of a clean coal power plant? (2) How stable is the plasma containment in a tokamak? (3) How quickly is climate change occurring and what are the uncertainties in the predicted time scales? (4) How quickly can an introduced bio-weapon contaminate the agricultural environment in the US? (5) How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types? (6) How quickly can the United States recover if part of the power grid became inoperable? (7) What are optimal locations and communication protocols for sensing devices in a remote-sensing network? (8) How can new materials be designed with a specified desirable set of properties? In comparing and contrasting these and other questions of importance to DOE, the panel found that while the scientific breadth of the requirements is enormous, a central theme emerges: Scientists are being asked to identify or provide technology, or to give expert analysis to inform policy-makers that requires the scientific understanding of increasingly complex physical and engineered systems. In addition, as the complexity of the systems of interest increases, neither experimental observation nor mathematical and computational modeling alone can access all components of the system over the entire range of scales or conditions needed to provide the required scientific understanding.« less
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.
2009-05-01
Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.
Collective intelligence of the artificial life community on its own successes, failures, and future.
Rasmussen, Steen; Raven, Michael J; Keating, Gordon N; Bedau, Mark A
2003-01-01
We describe a novel Internet-based method for building consensus and clarifying conflicts in large stakeholder groups facing complex issues, and we use the method to survey and map the scientific and organizational perspectives of the artificial life community during the Seventh International Conference on Artificial Life (summer 2000). The issues addressed in this survey included artificial life's main successes, main failures, main open scientific questions, and main strategies for the future, as well as the benefits and pitfalls of creating a professional society for artificial life. By illuminating the artificial life community's collective perspective on these issues, this survey illustrates the value of such methods of harnessing the collective intelligence of large stakeholder groups.
Trends in Social Science: The Impact of Computational and Simulative Models
NASA Astrophysics Data System (ADS)
Conte, Rosaria; Paolucci, Mario; Cecconi, Federico
This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.
Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T
2018-02-15
Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.
Application of the Institution of Exclusive Rights in the Field of Science
NASA Astrophysics Data System (ADS)
Yakovlev, D.; Yushkov, E.; Zanardo, A.; Bogatyreova, M.
2017-01-01
The problem of legal protection of scientific research results is of growing interest nowadays. However, none of the three hitherto existing rights (the right for trade secrets, patent and copyright) is able to fully take into account the characteristics of scientific activities. In Russia, the problem of legal protection of scientific research results has been developed actively since the 50-ies of the last century, in connection with the introduction of the system of state registration of scientific discoveries. A further concept allowed for not only the registration of discoveries, but also the entire array of scientific results. However, theoretical applicability of exclusive rights institutions in the sphere of science remained unstudied. The article describes a new system, which is not fixed in legislation and remains unnoticed by the vast majority of researchers. That is the institution of scientific and positional rights, focused on the recognition procedure of authorship, priority, and other characteristics of intellectual scientific results value. In case of complex intellectual results, comprising scientific results, the recognition of result-oriented exclusive rights proves to be unsustainable. This circumstance urges us to foreground the institution of scientific and positional exclusive rights. Its scope is budget science where non-fee published scientific results are generated. Any exclusive right to use open scientific results is out of the question. The sphere of open (budget) science is dominated by scientific and positional exclusive rights, sanctioned both by the state (S-sanctioned), the bodies of the scientific community (BSC-sanctioned) and scientific community (SC-sanctioned) rights.
Making the Grounds of Scientific Inquiry Visible in the Classroom
ERIC Educational Resources Information Center
Lucas, Deborah; Broderick, Nichole; Lehrer, Richard; Bohanan, Robert
2005-01-01
As every parent knows, children are no slouches at generating questions. But the scientific potential in a child's spontaneous question can easily be lost; children often fail to take the step beyond casual curiosity into systematic inquiry. Questioning is indeed robustly rooted in children's everyday ways of thinking about the world, but serious…
Nektar++: An open-source spectral/ hp element framework
NASA Astrophysics Data System (ADS)
Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J.
2015-07-01
Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/ hp element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/ hp element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.
Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students
ERIC Educational Resources Information Center
Brill, Gilat; Yarden, Anat
2003-01-01
Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…
Impact of delayed information in sub-second complex systems
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.
What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.
NASA Astrophysics Data System (ADS)
Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.
2017-12-01
This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.
US EPA's Ecological Risk Assessment Support Center ...
BackgroundThe ERASC provides technical information and addresses scientific questions of concern or interest on topics relevant to ecological risk assessment at hazardous waste sites for EPA's Office of Solid Waste and Emergency Response (OSWER) personnel and the Office of Resource Conservation and Recovery (ORCR) staff. Requests are channeled to ERASC through the Ecological Risk Assessment Forum (ERAF). To assess emerging and complex scientific issues that require expert judgment, the ERASC relies on the expertise of scientists and engineers located throughout EPA's Office of Research and Development (ORD) labs and centers.ResponseERASC develops responses that reflect the state of the science for ecological risk assessment and also provides a communication point for the distribution of the responses to other interested parties. For further information, contact Ecology_ERASC@epa.gov or call 513-569-7940.
The Aerial Regional-scale Environmental Survey (ARES) Mission to Mars
NASA Technical Reports Server (NTRS)
Levine, J. S.
2005-01-01
ARES is an exploration mission concept for an Aerial Regional-scale Environmental Survey of Mars designed to fly an instrumented platform over the surface of Mars at very low altitudes (1-3 km) for distances of hundreds to thousands of kilometers to obtain scientific data to address fundamental problems in Mars science. ARES helps to fill a gap in the scale and perspective of the Mars Exploration Program and addresses many key COMPLEX/MEPAG questions (e.g., nature and origin of crustal magnetic anomalies) not readily pursued in other parts of the exploration program. ARES supports the human exploration program through key environmental measurements and high-resolution contiguous data essential to reference mission design. Here we describe the major types of scientific goals, candidate instruments, and reference mission profiles.
Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence
Grim, Patrick; Singer, Daniel J.; Fisher, Steven; Bramson, Aaron; Berger, William J.; Reade, Christopher; Flocken, Carissa; Sales, Adam
2014-01-01
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others’, in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient. PMID:24683416
Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence.
Grim, Patrick; Singer, Daniel J; Fisher, Steven; Bramson, Aaron; Berger, William J; Reade, Christopher; Flocken, Carissa; Sales, Adam
2013-12-01
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others', in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient.
Foster, Jamie S; Lemus, Judith D
2015-01-01
Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.
ERIC Educational Resources Information Center
Spooner, William E.
1977-01-01
A Drinking Bird toy is used to stimulate scientific questioning and problem solving. Suggestions are given for using the bird to explore scientific concepts including evaporation, work, systems, density and dynamic equilibrium. 32 questions you can use to stimulate student investigations are listed. (AJ)
None
2018-05-25
2 days of workshops at CERN. Part 1: Scientific communication: many speeches followed by questions and intense discussions: 1. François de Closet "Scientific Progress", 2. Gerhard Moosleiter, 3. H. Meyers "How to create better conditions for scientific communication". Part 2: Science and Communication. A Russian from Moscow speaks about, among other things, the current situation of the scientific press in Russia. Part 3: Conclusions and reports from the day before from different work groups. Part 4: Questions with C. Rubbia and N. Calder and thanks are given.
The Scientific Approach Learning: How prospective science teachers understand about questioning
NASA Astrophysics Data System (ADS)
Wiyanto; Nugroho, S. E.; Hartono
2017-04-01
In the new curriculum, questioning is one of theaspects of scientific approach learning. It means teachers should facilitate students to ask their questions during science learning. The purpose of this research was to reveal the prospective science teachers’ understanding about questioning and how the science teachers implement of that in the scientific approach learning. Data of the prospective science teachers’ understanding was explored from their teaching plan that produced during microteaching. The microteaching is an activity that should be followed by students before they conduct partnership program in school. Data about theimplementation of questioning that conducted by theteacher was be collected by video-assisted observation in junior school science class. The results showed that majority of the prospective science teachers had difficulty to write down in their teaching plan about how to facilitate students to ask their questions, even majority of them understood that questioning is not students’ activity, but it is an activity that should be done by teachers. Based on the observation showed that majority of teachers did not yet implement a learning that facilitates students to ask their questions.
Burkle, Frederick M; Chan, Jimmy T S; Yeung, Richard D S
2013-12-01
The treatment of hunger strikers is always contentious, chaotic and complex. The management is particularly difficult for health professionals as it raises unprecedented clinical, ethical, moral, humanitarian, and legal questions. There are never any easy answers. The current situation of prisoners from the Iraq and Afghanistan Wars currently at the Guantanamo Bay Detention Center in Cuba demands unprecedented transparency, accountability and multilevel coordination to ensure that the rights of the strikers are properly met. There are scant references available in the scientific literature on the emergency management of these tragedies. This historical perspective documents the complex issues faced by emergency physicians in Hong Kong surrounding refugee camp asylum seekers from Vietnam in 1994 and is offered as a useful adjunct in understanding the complex issues faced by emergency health providers and managers.
Okamoto, Janet
2015-03-01
The past decade has seen dramatic shifts in the way that scientific research is conducted as networks, consortia, and large research centers are funded as transdisciplinary, team-based enterprises to tackle complex scientific questions. Key investigators (N = 167) involved in ten health disparities research centers completed a baseline social network and collaboration readiness survey. Collaborative ties existed primarily between investigators from the same center, with just 7 % of ties occurring across different centers. Grants and work groups were the most common types of ties between investigators, with shared presentations the most common tie across different centers. Transdisciplinary research orientation was associated with network position and reciprocity. Center directors/leaders were significantly more likely to form ties with investigators in other roles, such as statisticians and trainees. Understanding research collaboration networks can help to more effectively design and manage future team-based research, as well as pinpoint potential issues and continuous evaluation of existing efforts.
CCSVI and MS: no meaning, no fact.
Baracchini, Claudio; Atzori, Matteo; Gallo, Paolo
2013-03-01
A condition called "chronic cerebrospinal venous insufficiency" (CCSVI) has been postulated to play a role in the pathogenesis of multiple sclerosis (MS). This hypothesis implies that a complex pattern of extracranial venous stenosis determines a venous reflux into the brain of MS patients, followed by increased intravenous pressure, blood-brain barrier breakdown and iron deposition into the brain parenchyma, thus triggering a local inflammatory response. In this review, we critically analyze the scientific basis of CCSVI, the current literature on the relationship between CCSVI and MS, as well as the ultrasound methodology that has been claimed to provide evidence of impaired cerebral venous drainage. We show that no piece of the CCSVI theory has a solid supportive scientific evidence. The CCSVI appears to be a rather alien condition and its existence should be definitely questioned. Finally, no proven (i.e., based on strict scientific methodology and on the rules of evidence-based medicine) therapeutic effect of the "liberation" procedure (unblocking the extracranial venous obstruction using angioplasty) has been shown up to date.
[Qualitative research: which priority for scientific journals?].
Rodella, Stefania
2016-04-01
Quantitative and qualitative approaches in scientific research should not be looked at as separate or even opposed fields of thinking and action, but could rather offer complementary perspectives in order to build appropriate answers to increasingly complex research questions. An open letter recently published by the BMJ and signed by 76 senior academics from 11 countries invite the editors to reconsider their policy of rejecting qualitative research on the grounds of low priority and challenge the journal to develop a proactive, scholarly and pluralistic approach to research that aligns with its stated mission. The contents of the letter, the many voices raised by almost fifty rapid responses and the severe but not closed responses of the editors outline a stimulating debate and hopefully prelude some "change in emphasis", ensuring that all types of research relevant to the mission of the BMJ (as well as other core journals) are considered for publication and providing an evolving landmark for scientific and educational purposes.
ERIC Educational Resources Information Center
Barker, James; Pope, Deborah
2016-01-01
The "working scientifically" strand of the new primary science curriculum for England has re-emphasised the importance of children having opportunities to carry out different types of enquiries to answer their scientific questions. To promote this as an ongoing aim of primary science education, it is equally important for trainee primary…
Lemus, Judith D.
2015-01-01
Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292
Can qualitative research play a role in answering ethical questions in intensive care?
Meunier-Beillard, Nicolas; Ecarnot, Fiona; Rigaud, Jean-Philippe; Quenot, Jean-Pierre
2017-12-01
Scientific and technological progress, as well as increased patient autonomy have profoundly changed the world of healthcare, giving rise to new situations that are increasingly complex and uncertain. Quantitative paradigms, of which the main bastion is evidence-based medicine (EBM), are beginning to reach their limits in daily routine practice of medicine, and new approaches are emerging that can provide novel heuristic perspectives. Qualitative research approaches can be useful for apprehending new areas of knowledge that are fundamental to recent and future developments in intensive care.
Can qualitative research play a role in answering ethical questions in intensive care?
Ecarnot, Fiona; Rigaud, Jean-Philippe; Quenot, Jean-Pierre
2017-01-01
Scientific and technological progress, as well as increased patient autonomy have profoundly changed the world of healthcare, giving rise to new situations that are increasingly complex and uncertain. Quantitative paradigms, of which the main bastion is evidence-based medicine (EBM), are beginning to reach their limits in daily routine practice of medicine, and new approaches are emerging that can provide novel heuristic perspectives. Qualitative research approaches can be useful for apprehending new areas of knowledge that are fundamental to recent and future developments in intensive care. PMID:29302601
van Bemmel, J H
2008-01-01
The purpose of this article is to show that curiosity is the driving force behind all scientific endeavors. The second purpose is to show that all science is constrained on its underlying assumptions. Three examples are used to illustrate the above theses: one from cosmology, the second from biomedical research, and the third from the formalization of human reasoning in a computer. The three examples are supported by quotes from Albert Einstein. Research in cosmology shows that the horizon of our knowledge is continuously expanding but that major scientific questions remain to be solved. The second example from biomedicine explains that the more we discover of the details of living phenomena, the more complex they appear to be. The example involving human reasoning makes clear that the brain is still largely unknown territory. Like Einstein, who said he held 'humble admiration of the illimitable superior spirit who reveals himself in the slight details we are able to perceive with our frail and feeble mind', I have a deep admiration for the Architect who reveals himself in the details that we are privileged to study in our research. As Albert Einstein said: The important thing is not to stop questioning. Curiosity has its own reason for existing.
Protecting personal data in epidemiological research: DataSHIELD and UK law.
Wallace, Susan E; Gaye, Amadou; Shoush, Osama; Burton, Paul R
2014-01-01
Data from individual collections, such as biobanks and cohort studies, are now being shared in order to create combined datasets which can be queried to ask complex scientific questions. But this sharing must be done with due regard for data protection principles. DataSHIELD is a new technology that queries nonaggregated, individual-level data in situ but returns query data in an anonymous format. This raises questions of the ability of DataSHIELD to adequately protect participant confidentiality. An ethico-legal analysis was conducted that examined each step of the DataSHIELD process from the perspective of UK case law, regulations, and guidance. DataSHIELD reaches agreed UK standards of protection for the sharing of biomedical data. All direct processing of personal data is conducted within the protected environment of the contributing study; participating studies have scientific, ethics, and data access approvals in place prior to the analysis; studies are clear that their consents conform with this use of data, and participants are informed that anonymisation for further disclosure will take place. DataSHIELD can provide a flexible means of interrogating data while protecting the participants' confidentiality in accordance with applicable legislation and guidance. © 2014 S. Karger AG, Basel.
Who is my Jung? Memories, Reflections, Prospects.
Stone, Martin
2018-06-01
The author describes his personal and professional journey in relation to the subject of the AJA 40 th anniversary conference, 'Who is my Jung?' The first part of the paper covers his early life and his attempt to bring together two opposing parts within him: valuation of a scientific approach, and an interest in the inner world, dreams and the paranormal. Discussion of his professional life follows, including his relationship with Gerhard Adler, past problems and splits within the Jungian community and the author's attempts to heal these. The value of both remembering and forgetting is questioned. This leads onto ideas that bring value and meaning to his work and life, and which bridge the inner divisions he felt in his early life: notably Jung's focus on applying scientific theory to the mystery of the psyche, his relational attitude (exemplified by the dialectical process and his interest in countertransference) and his theory of synchronicity. Recent discussion in Jungian writing has questioned the nature of synchronistic experiences and explored how they may emerge naturally from complex systems. The paper ends the author's continuing journey with two personal vignettes describing how meaning may emerge from the unconscious. © 2018, The Society of Analytical Psychology.
Biology and data-intensive scientific discovery in the beginning of the 21st century.
Smith, Arnold; Balazinska, Magdalena; Baru, Chaitan; Gomelsky, Mark; McLennan, Michael; Rose, Lynn; Smith, Burton; Stewart, Elizabeth; Kolker, Eugene
2011-04-01
The life sciences are poised at the beginning of a paradigm-changing evolution in the way scientific questions are answered. Data-Intensive Science (DIS) promise to provide new ways of approaching scientific challenges and answering questions. This article is a summary of the life sciences issues and challenges as discussed in the DIS workshop in Seattle, September 19-20, 2010. © Mary Ann Liebert, Inc.
The nature of the (visualization) game: Challenges and opportunities from computational geophysics
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2016-12-01
As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.
NASA Astrophysics Data System (ADS)
Develaki, Maria
2008-09-01
In view of the complex problems of this age, the question of the socio-ethical dimension of science acquires particular importance. We approach this matter from a philosophical and sociological standpoint, looking at such focal concerns as the motivation, purposes and methods of scientific activity, the ambivalence of scientific research and the concomitant risks, and the conflict between research freedom and external socio-political intervention. We then point out the impediments to the effectiveness of cross-disciplinary or broader meetings for addressing these complex problems and managing the associated risks, given the difficulty in communication between experts in different fields and non-experts, difficulties that education is challenged to help resolve. We find that the social necessity of informed decision-making on the basis of cross-disciplinary collaboration is reflected in the newer curricula, such as that of Greece, in aims like the acquisition of cross-subject knowledge and skills, and the ability to make decisions on controversial issues involving value conflicts. The interest and the reflections of the science education community in these matters increase its—traditionally limited—contribution to the theoretical debate on education and, by extension, the value of science education in the education system.
NASA Astrophysics Data System (ADS)
Baztan, J.; Vanderlinden, J. P.; Cordier, M.; Da Cunha, C.; Gaye, N.; Huctin, J. M.; Kane, A.; Quensiere, J.; Remvikos, Y.; Seck, A.
2016-12-01
The cultural dimensions of climate change impacts and adaptation have been increasingly examined in recent years through various disciplinary lenses, exposing a clear need for mainstream natural sciences to address the question of how to incorporate the values of communities facing global changes into their work. With this in mind, the work presented here addresses three main questions: (i) Do community members consider available scientific data and findings credible? Answering this question provides insight into whether available scientific knowledge expresses causal links that are mobilized by affected communities. (ii) Do community members consider available scientific data and findings salient? Answering this question provides insight into whether available scientific knowledge focuses on phenomena that those in affected communities think should receive attention. (iii) Do community members consider available scientific data and findings legitimate? Answering this question provides insight into whether available scientific knowledge expresses what is good, tolerable, and/or acceptable for affected communities. These three questions delve into the ways in which adaptation requires affected individuals and communities to adopt attitudes by integrating/woven from potentially conflicting evidence, relevance, and/or normative claims. These questions also shed light on the links between mainstream sciences and studied affected communities. The research presented here focuses on 2 communities: (i) Uummannaq, an island of 12km2 in a fjord, located along the middle of Greenland's west coast and (ii) Joal-Fadiouth & M'bour area in the wester African's coast, few Km south of Dakar, Senegal. This communication shares the results from field work experiences from ARTiticc's interdisciplinary approach to identifying the needs, values, and representations of the world of the communities, and how to fit these elements into mainstream sciences in order to bridge gaps between communities and research efforts and by doing so, determine the optimal adaptation strategies through which to engage global changes.
Contextual analysis of immunological response through whole-organ fluorescent imaging.
Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C
2013-09-01
As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.
Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry
ERIC Educational Resources Information Center
Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching
2016-01-01
This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…
Abraham, Tara H
2012-06-01
Much scholarship in the history of cybernetics has focused on the far-reaching cultural dimensions of the movement. What has garnered less attention are efforts by cyberneticians such as Warren McCulloch and Norbert Wiener to transform scientific practice in an array of disciplines in the biomedical sciences, and the complex ways these efforts were received by members of traditional disciplines. In a quest for scientific unity that had a decidedly imperialistic flavour, cyberneticians sought to apply practices common in the exact sciences-mainly theoretical modeling-to problems in disciplines that were traditionally defined by highly empirical practices, such as neurophysiology and neuroanatomy. Their efforts were met with mixed, often critical responses. This paper attempts to make sense of such dynamics by exploring the notion of a scientific style and its usefulness in accounting for the contrasts in scientific practice in brain research and in cybernetics during the 1940s. Focusing on two key institutional contexts of brain research and the role of the Rockefeller and Macy Foundations in directing brain research and cybernetics, the paper argues that the conflicts between these fields were not simply about experiment vs. theory but turned more closely on the questions that defined each area and the language used to elaborate answers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students
Brill, Gilat; Yarden, Anat
2003-01-01
Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers suitable for high-school students. Since a scientific paper poses a research question, demonstrates the events that led to the answer, and poses new questions, we attempted to examine the effect of studying through research papers on students' ability to pose questions. Students were asked before, during, and after instruction what they found interesting to know about embryonic development. In addition, we monitored students' questions, which were asked orally during the lessons. Questions were scored according to three categories: properties, comparisons, and causal relationships. We found that before learning through research papers, students tend to ask only questions of the properties category. In contrast, students tend to pose questions that reveal a higher level of thinking and uniqueness during or following instruction with research papers. This change was not observed during or following instruction with a textbook. We suggest that learning through research papers may be one way to provide a stimulus for question-asking by high-school students and results in higher thinking levels and uniqueness. PMID:14673492
Generalized friendship paradox in complex networks: The case of scientific collaboration
NASA Astrophysics Data System (ADS)
Eom, Young-Ho; Jo, Hang-Hyun
2014-04-01
The friendship paradox states that your friends have on average more friends than you have. Does the paradox ``hold'' for other individual characteristics like income or happiness? To address this question, we generalize the friendship paradox for arbitrary node characteristics in complex networks. By analyzing two coauthorship networks of Physical Review journals and Google Scholar profiles, we find that the generalized friendship paradox (GFP) holds at the individual and network levels for various characteristics, including the number of coauthors, the number of citations, and the number of publications. The origin of the GFP is shown to be rooted in positive correlations between degree and characteristics. As a fruitful application of the GFP, we suggest effective and efficient sampling methods for identifying high characteristic nodes in large-scale networks. Our study on the GFP can shed lights on understanding the interplay between network structure and node characteristics in complex networks.
Generalized friendship paradox in complex networks: The case of scientific collaboration
Eom, Young-Ho; Jo, Hang-Hyun
2014-01-01
The friendship paradox states that your friends have on average more friends than you have. Does the paradox “hold” for other individual characteristics like income or happiness? To address this question, we generalize the friendship paradox for arbitrary node characteristics in complex networks. By analyzing two coauthorship networks of Physical Review journals and Google Scholar profiles, we find that the generalized friendship paradox (GFP) holds at the individual and network levels for various characteristics, including the number of coauthors, the number of citations, and the number of publications. The origin of the GFP is shown to be rooted in positive correlations between degree and characteristics. As a fruitful application of the GFP, we suggest effective and efficient sampling methods for identifying high characteristic nodes in large-scale networks. Our study on the GFP can shed lights on understanding the interplay between network structure and node characteristics in complex networks. PMID:24714092
NASA Astrophysics Data System (ADS)
Morgan, P.; Bloom, J. W.
2006-12-01
For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their research experiences and overall expressed a new understanding of science and research.
Pedagogical Affordances of Multiple External Representations in Scientific Processes
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-12-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.
Harmony as Ideology: Questioning the Diversity-Stability Hypothesis.
Nikisianis, Nikos; Stamou, Georgios P
2016-03-01
The representation of a complex but stable, self-regulated and, finally, harmonious nature penetrates the whole history of Ecology, thus contradicting the core of the Darwinian evolution. Originated in the pre-Darwinian Natural History, this representation defined theoretically the various schools of early ecology and, in the context of the cybernetic synthesis of the 1950s, it assumed a typical mathematical form on account of α positive correlation between species diversity and community stability. After 1960, these two aforementioned concepts and their positive correlation were proposed as environmental management tools, in the face of the ecological crisis arising at the time. In the early 1970s, and particularly after May's evolutionary arguments, the consensus around this positive correlation collapsed for a while, only to be promptly restored for the purpose of attaching an ecological value on biodiversity. In this paper, we explore the history of the diversity-stability hypothesis and we review the successive terms that have been used to express community stability. We argue that this hypothesis has been motivated by the nodal ideological presuppositions of order and harmony and that the scientific developments in this field largely correspond to external social pressures. We conclude that the conflict about the diversity-stability relationship is in fact an ideological debate, referring mostly to the way we see nature and society rather than to an autonomous scientific question. From this point of view, we may understand why Ecology's concepts and perceptions may decline and return again and again, forming a pluralistic scientific history.
Drosophila as an In Vivo Model for Human Neurodegenerative Disease
McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.
2015-01-01
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127
Drosophila as an In Vivo Model for Human Neurodegenerative Disease.
McGurk, Leeanne; Berson, Amit; Bonini, Nancy M
2015-10-01
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. Copyright © 2015 by the Genetics Society of America.
Integrating entertainment and scientific rigor to facilitate a co-creation of knowledge
NASA Astrophysics Data System (ADS)
Hezel, Bernd; Broschkowski, Ephraim; Kropp, Jürgen
2013-04-01
The advancing research on the changing climate system and on its impacts has uncovered the magnitude of the expectable societal implications. It therefore created substantial awareness of the problem with stakeholders and the general public. But despite this awareness, unsustainable trends have continued untamed. For a transition towards a sustainable world it is, apparently, not enough to disseminate the "scientific truth" and wait for the people to "understand". In order to remedy this problem it is rather necessary to develop new entertaining formats to communicate the complex topic in an integrated and comprehensive way. Beyond that, it could be helpful to acknowledge that science can only generate part of the knowledge that is necessary for the transformation. The nature of the problem and its deep societal implications call for a co-creation of knowledge by science and society in order to enable change. In this spirit the RAMSES project (Reconciling Adaptation, Mitigation and Sustainable Development for Cities) follows a dialogic communication approach allowing for a co-formulation of research questions by stakeholders. A web-based audio-visual guidance application presents embedded scientific information in an entertaining and intuitive way on the basis of a "complexity on demand" approach. It aims at enabling decision making despite uncertainty and it entails a reframing of the project's research according to applied and local knowledge.
ERIC Educational Resources Information Center
Berson, Eric Bruckner
2012-01-01
This dissertation introduces the construct of "worthwhileness" as an important aspect of students' "practical" epistemologies of science (Sandoval, 2005). Specifically, it examines how students conceptualize what makes a scientific research question worthwhile, through a close analysis of the criteria they use for…
Clement, T Prabhakar
2014-06-01
We propose a rational method for addressing an important question-who deserves to be an author of a scientific article? We review various contentious issues associated with this question and recommend that the scientific community should view authorship in terms of contributions and responsibilities, rather than credits. We propose a new paradigm that conceptually divides a scientific article into four basic elements: ideas, work, writing, and stewardship. We employ these four fundamental elements to modify the well-known International Committee of Medical Journal Editors (ICMJE) authorship guidelines. The modified ICMJE guidelines are then used as the basis to develop an approach to quantify individual contributions and responsibilities in multi-author articles. The outcome of the approach is an authorship matrix, which can be used to answer several nagging questions related to authorship.
From ideas to studies: how to get ideas and sharpen them into research questions.
Vandenbroucke, Jan P; Pearce, Neil
2018-01-01
Where do new research questions come from? This is at best only partially taught in courses or textbooks about clinical or epidemiological research. Methods are taught under the assumption that a researcher already knows the research question and knows which methods will fit that question. Similarly, the real complexity of the thought processes that lead to a scientific undertaking is almost never described in published papers. In this paper, we first discuss how to get an idea that is worth researching. We describe sources of new ideas and how to foster a creative attitude by "cultivating your thoughts". Only a few of these ideas will make it into a study. Next, we describe how to sharpen and focus a research question so that a study becomes feasible and a valid test of the underlying idea. To do this, the idea needs to be "pruned". Pruning a research question means cutting away anything that is unnecessary, so that only the essence remains. This includes determining both the latent and the stated objectives, specific pruning questions, and the use of specific schemes to structure reasoning. After this, the following steps include preparation of a brief protocol, conduct of a pilot study, and writing a draft of the paper including draft tables. Then you are ready to carry out your research.
From ideas to studies: how to get ideas and sharpen them into research questions
Vandenbroucke, Jan P; Pearce, Neil
2018-01-01
Where do new research questions come from? This is at best only partially taught in courses or textbooks about clinical or epidemiological research. Methods are taught under the assumption that a researcher already knows the research question and knows which methods will fit that question. Similarly, the real complexity of the thought processes that lead to a scientific undertaking is almost never described in published papers. In this paper, we first discuss how to get an idea that is worth researching. We describe sources of new ideas and how to foster a creative attitude by “cultivating your thoughts”. Only a few of these ideas will make it into a study. Next, we describe how to sharpen and focus a research question so that a study becomes feasible and a valid test of the underlying idea. To do this, the idea needs to be “pruned”. Pruning a research question means cutting away anything that is unnecessary, so that only the essence remains. This includes determining both the latent and the stated objectives, specific pruning questions, and the use of specific schemes to structure reasoning. After this, the following steps include preparation of a brief protocol, conduct of a pilot study, and writing a draft of the paper including draft tables. Then you are ready to carry out your research. PMID:29563838
Hedfors, Eva
2007-03-01
Ludwik Fleck is remembered for his monograph published in German in 1935. Reissued in 1979 as Genesis and development of a scientific fact Fleck's monograph has been claimed to expound relativistic views of science. Fleck has also been portrayed as a prominent scientist. The description of his production of a vaccine against typhus during World War II, when imprisoned in Buchenwald, is legendary in the scholarly literature. The claims about Fleck's scientific achievements have been justified by referring to his numerous publications in international scientific journals. Though frequently mentioned, these publications have scarcely been studied. The present article discusses differences in interpretation and evaluation of science in relation to the background of the interpreters. For this purpose Fleck's scientific publications have been scrutinized. In conjunction with further sources reflecting the desperate situation at the time in question, the results of the study account for a more restrained picture of Fleck's scientific accomplishments. Furthermore, based on the review of the latter, certain demands characterizing good science could be articulated. The restricted possibilities of those not trained in science or not possessing field specific knowledge, evaluating science are discussed, as are also formal aspects of scientific papers and questions related to research ethics.
The fascinating and complex dynamics of geyser eruptions
Hurwitz, Shaul; Manga, Michael
2017-01-01
Geysers episodically erupt liquid and vapor. Despite two centuries of scientific study, basic questions persist—why do geysers exist? What determines eruption intervals, durations, and heights? What initiates eruptions? Through monitoring eruption intervals, analyzing geophysical data, taking measurements within geyser conduits, performing numerical simulations, and constructing laboratory models, some of these questions have been addressed. Geysers are uncommon because they require a combination of abundant water recharge, magmatism, and rhyolite flows to supply heat and silica, and large fractures and cavities overlain by low-permeability materials to trap rising multiphase and multicomponent fluids. Eruptions are driven by the conversion of thermal to kinetic energy during decompression. Larger and deeper cavities permit larger eruptions and promote regularity by isolating water from weather variations. The ejection velocity may be limited by the speed of sound of the liquid + vapor mixture.
Is Psychiatry Scientific? A Letter to a 21st Century Psychiatry Resident
2013-01-01
During the development of the DSM-5, even the lay press questioned psychiatr's scientific validity. This review provides 21st century psychiatry residents with ways of answering these attacks by defining the concepts and history of psychiatry (a branch of medicine), medicine and science. Psychiatric language has two levels: first, describing symptoms and signs (19th century descriptive psychopathology developed in France and Germany), and second, describing disorders (psychiatric nosology was developed in the early 20th century by Kraepelin and resuscitated by the US neo-Kraepelinian revolution leading to the DSM-III). Science is a complex trial-and-error historical process that can be threatened by those who believe too much in it and disregard its limitations. The most important psychiatric advances, electroconvulsive therapy and major psychopharmacological agents, were discovered by "chance", not by scientific planning. Jaspers's General Psychopathology is a complex 100-year-old book that describes: 1) psychiatric disorders as heterogeneous and 2) psychiatry as a hybrid scientific discipline requiring a combination of understanding (a social science method) and explanation (a natural science method). In the 21st century Berrios reminds us of psychiatry's unfortunate methodological issues due to hybrid symptoms and disorders, some of which are better understood as problems in communication between interacting human beings; in those situations neuroscience methods such as brain imaging make no sense. A new language is needed in psychiatry. East Asian psychiatry residents, who are not particularly attached to the antiquated language currently used, may be particularly equipped for the task of recreating psychiatric language using 21st century knowledge. PMID:24302942
Mack, Natasha; Ramirez, Catalina B; Friedland, Barbara; Nnko, Soori
2013-01-01
Achieving participant comprehension has proven to be one of the most difficult, practical, and ethical challenges of HIV prevention clinical trials. It becomes even more challenging when local languages do not have equivalent scientific and technical vocabularies, rendering communication of scientific concepts in translated documents extremely difficult. Even when bilingual lexicons are developed, there is no guarantee that participants understand the terminology as translated. We conducted twelve focus groups with women of reproductive age in Mwanza, Tanzania to explore the effectiveness of four questioning techniques for: (1) assessing participants' familiarity with existing technical terms and concepts, (2) generating a list of acceptable technical and non-technical terms, (3) testing our definitions of technical terms, and (4) verifying participants' preferences for terms. Focus groups were transcribed, translated, and qualitatively analyzed. A translation process that uses all four questioning techniques in a step-wise approach is an effective way to establish a baseline understanding of participants' familiarity with research terms, to develop and test translatable definitions, and to identify participants' preferred terminology for international HIV clinical research. This may help to ensure that important concepts are not "lost in translation." The results emphasize the importance of using a variety of techniques depending on the level of participant familiarity with research concepts, the existence of colloquial or technical terms in the target language, and the inherent complexity of the terms.
Mack, Natasha; Ramirez, Catalina B.; Friedland, Barbara; Nnko, Soori
2013-01-01
Introduction Achieving participant comprehension has proven to be one of the most difficult, practical, and ethical challenges of HIV prevention clinical trials. It becomes even more challenging when local languages do not have equivalent scientific and technical vocabularies, rendering communication of scientific concepts in translated documents extremely difficult. Even when bilingual lexicons are developed, there is no guarantee that participants understand the terminology as translated. Methods We conducted twelve focus groups with women of reproductive age in Mwanza, Tanzania to explore the effectiveness of four questioning techniques for: (1) assessing participants' familiarity with existing technical terms and concepts, (2) generating a list of acceptable technical and non-technical terms, (3) testing our definitions of technical terms, and (4) verifying participants' preferences for terms. Focus groups were transcribed, translated, and qualitatively analyzed. Results and Discussion A translation process that uses all four questioning techniques in a step-wise approach is an effective way to establish a baseline understanding of participants' familiarity with research terms, to develop and test translatable definitions, and to identify participants' preferred terminology for international HIV clinical research. This may help to ensure that important concepts are not “lost in translation.” The results emphasize the importance of using a variety of techniques depending on the level of participant familiarity with research concepts, the existence of colloquial or technical terms in the target language, and the inherent complexity of the terms. PMID:24040075
Evaluating Scientific Misconceptions and Scientific Literacy in a General Science Course
NASA Astrophysics Data System (ADS)
Courtier, A. M.; Scott, T. J.
2009-12-01
The data used in this study were collected as part of the course assignments for General Education Science (GSci) 101: “Physics, Chemistry, and the Human Experience” at James Madison University. The course covers the basic principles of physics, chemistry, and astronomy. The primary goals of this study were to analyze student responses to general scientific questions, to identify scientific misconceptions, and to evaluate scientific literacy by comparing responses collected from different groups of students and from questions given during the course versus at the end of the course. While this project is focused on general scientific concepts, the misconceptions and patterns identified are particularly relevant for improving pedagogy in the geosciences as this field relies on multidisciplinary knowledge of fundamental physics, chemistry, and astronomy. We discuss differences in the results between the disciplines of physics, chemistry, and astronomy and their implications for general geology education and literacy, emphasizing the following questions: (a) What do students typically get wrong? (b) Did the overall scientific literacy of the students increase throughout the semester? Are the concepts discussed in answers provided at the end of class more accurate than those provided during class? (c) How do the before- and after- class responses change with respect to language and terminology? Did the students use more scientific terminology? Did the students use scientific terminology correctly?
NASA Astrophysics Data System (ADS)
Russell, Thomas L.
Teaching commonly involves asking questions, in sequences that enable a teacher to control the direction and duration of subject-matter discussion, while also maintaining attention and order. The form of questions and their role as means of instruction have received more study and discussion than the function of questions and their role in achieving particular ends of instruction. This study examines qualitatively the function of questions in developing arguments that establish scientific knowledge claims on the basis of reasons and evidence, and thereby suggest a rational attitude toward authority. Peters' (1966) distinction between a teacher's (rational) authority of knowledge and (traditional) authority of position is linked with Toulmin's (1958) pattern for rational arguments to establish a qualitative framework for judging the function of questions in arguments. Episodes from three science lessons are presented in verbatim transcription and analyzed to reveal three different ways in which teachers did not achieve the standard of suggesting a rational attitude toward authority. Question sequences such as these have a clear potential for distorting student understanding of the nature of scientific authority, with possible negative consequences for students' attitudes toward science.Received: 30 November 1981;
ERIC Educational Resources Information Center
Morin, Olivier; Simonneaux, Laurence; Tytler, Russell
2017-01-01
Scientific expertise and outcomes often give rise to controversy. An educational response that equips students to take part in socioscientific discussions is the teaching of Socially Acute Questions (SAQs). Students engaging with SAQs need to engage with socio scientific reasoning, which involves reasoning with evidence from a variety of fields…
Measuring the Level of Complexity of Scientific Inquiries: The LCSI Index
ERIC Educational Resources Information Center
Eilam, Efrat
2015-01-01
The study developed and applied an index for measuring the level of complexity of full authentic scientific inquiry. Complexity is a fundamental attribute of real life scientific research. The level of complexity is an overall reflection of complex cognitive and metacognitive processes which are required for navigating the authentic inquiry…
NASA Astrophysics Data System (ADS)
Dirnbeck, Matthew R.
Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function scores.
NASA Astrophysics Data System (ADS)
Oura, Hiroki
Science is a disciplined practice about knowing puzzling observations and unknown phenomena. Scientific knowledge of the product is applied to develop technological artifacts and solve complex problems in society. Scientific practices are undeniably relevant to our economy, civic activity, and personal lives, and thus public education should help children acquire scientific knowledge and recognize the values in relation to their own lives and civil society. Likewise, developing scientific thinking skills is valuable not only for becoming a scientist, but also for becoming a citizen who is able to critically evaluate everyday information, select and apply only the trustworthy, and make wise judgments in their personal and cultural goals as well as for obtaining jobs that require complex problem solving and creative working in the current knowledge-based economy and rapid-changing world. To develop students' scientific thinking, science instruction should focus not only on scientific knowledge and inquiry processes, but also on its epistemological aspects including the forms of causal explanations and methodological choices along with epistemic aims and values under the social circumstances in focal practices. In this perspective, disciplinary knowledge involves heterogeneous elements including material, cognitive, social, and cultural ones and the formation differs across practices. Without developing such discipline-specific knowledge, students cannot enough deeply engage in scientific "practices" and understand the true values of scientific enterprises. In this interest, this dissertation explores instructional approaches to make student engagement in scientific investigations more authentic or disciplinary. The present dissertation work is comprised of three research questions as stand-alone studies written for separate publication. All of the studies discuss different theoretical aspects related to disciplinary engagement in epidemiologic inquiry and student development in epidemiologic reasoning. The first chapter reviews literature on epistemological instruction and explores theoretical frameworks for epistemically-guided instruction. The second chapter explores methodological strategies to elicit students' disciplinary understanding and demonstrates an approach with a case study in which students engaged in a curriculum unit for an epidemiologic investigation. The last chapter directs the focus into scientific reasoning and demonstrates how the curriculum unit and its scaffolds helped students develop epidemiologic reasoning with a focus on population-based reasoning.
Gender-fair assessment of young gifted students' scientific thinking skills
NASA Astrophysics Data System (ADS)
Dori, Y. J.; Zohar, A.; Fischer-Shachor, D.; Kohan-Mass, J.; Carmi, M.
2018-04-01
This paper describes an Israeli national-level research examining the extent to which admissions of elementary school students to the gifted programmes based on standardised tests are gender-fair. In the research, the gifted students consisted of 275 boys, 128 girls, and additional 80 girls who were admitted to the gifted programme through affirmative action (AA). To assess these young students' scientific thinking skills, also referred to as science practices, open-ended questions of case-based questionnaires were developed. The investigated scientific thinking skills were question posing, explanation, graphing, inquiry, and metacognition. Analysis of the students' responses revealed that gifted girls who entered the programmes through AA performed at the same level as the other gifted students. We found significant differences between the three research groups in question posing and graphing skills. We suggest increasing gender-fairness by revising the standard national testing system to include case-based narratives followed by open-ended questions that assess gifted students' scientific thinking skills. This may diminish the gender inequity expressed by the different number of girls and boys accepted to the gifted programmes. We show that open-ended tools for analysing students' scientific thinking might better serve both research and practice by identifying gifted girls and boys equally well.
Groundwater data network interoperability
Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.
2016-01-01
Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.
1993-01-01
This document briefly describes the use of the CRAY supercomputers that are an integral part of the Supercomputing Network Subsystem of the Central Scientific Computing Complex at LaRC. Features of the CRAY supercomputers are covered, including: FORTRAN, C, PASCAL, architectures of the CRAY-2 and CRAY Y-MP, the CRAY UNICOS environment, batch job submittal, debugging, performance analysis, parallel processing, utilities unique to CRAY, and documentation. The document is intended for all CRAY users as a ready reference to frequently asked questions and to more detailed information contained in the vendor manuals. It is appropriate for both the novice and the experienced user.
Society and the Carbon Cycle: A Social Science Perspective
NASA Astrophysics Data System (ADS)
Romero-Lankao, P.
2017-12-01
Societal activities, actions, and practices affect the carbon cycle and the climate of North America in complex ways. Carbon is a key component for the functioning of croplands, grasslands, forests. Carbon fuels our industry, transportation (vehicles and roadways), buildings, and other structures. Drawing on results from the SOCCR-2, this presentation uses a social science perspective to address three scientific questions. How do human actions and activities affect the carbon cycle? How human systems such as cities, agricultural field and forests are affected by changes in the carbon cycle? How is carbon management enabled and constraint by socio-political dynamics?
At the Origin of the History of Glia.
Fan, Xue; Agid, Yves
2018-06-08
The history of brain science is dominated by the study of neurons. However, there are as many glial cells as neurons in the human brain, their complexity increases during evolution, and glial cells play important roles in brain function, behavior, and neurological disorders. Although neurons and glial cells were first described at the same time in the early 19th century, why did the physiological study of glial cells only begin in the 1950s? What are the scientific breakthroughs and conceptual shifts that determined the history of glial cells in relation to that of neurons? What is the impact of the history of glia on the evolution of neuroscience? In order to answer these questions, we reconstructed the history of glial cells, from their first description until the mid-20th century, by examining the relative role of technical developments and scientific interpretations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
[Constructing images and territories: thinking on the visuality and materiality of remote sensing].
Monteiro, Marko
2015-01-01
This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.
Delusion in general and forensic psychiatry--historical and contemporary aspects.
Hoff, Paul
2006-01-01
Delusion has always been a central topic for psychiatric research with regard to etiology and pathogenesis and to diagnosis, treatment, and forensic relevance. Throughout the history of psychiatry as a scientific discipline, there has been dissent on the issue of whether chronic delusion is a nosological entity of its own or just a specific type of another mental disorder, e.g. schizophrenia, mania, or personality disorder, and there already is a considerable literature on this. This article seeks to elucidate the central lines of thought that have governed the scientific debate on delusions and delusion-associated phenomena since the early 19th century. Special attention is given to the practical relevance of these theoretical considerations for forensic questions and psychiatric research. Due to the complex features of delusions, research in this area may well become paradigmatic for many other complicated psycho(patho)logical phenomena, e.g. consciousness, hallucinations and psychotic depression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In 1989, the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine initiated a major study to examine issues related to scientific responsibility and the conduct of research. This report thoughtfully examines the challenges posed in ensuring that the search for truth reflects adherence to ethical standards. In recent years we have learned that not all scientists adhere to this obligation. Issues of misconduct and integrity in science present complex questions. This report recommends specific actions that all scientists, their institutions, and their sponsors can take to preserve and strengthen the integrity of the researchmore » process and also to deal with allegations of misconduct. The recommendations provide a blueprint for encouraging and safeguarding the intellectual independence that is essential to doing the best science while also providing for fundamental accountability to those who sponsor and support scientific research.« less
Astro Data Science: The Next Generation
NASA Astrophysics Data System (ADS)
Mentzel, Chris
2018-01-01
Astronomers have been at the forefront of data-driven discovery since before the days of Kepler. Using data in the scientific inquiry into the workings of the the universe is the lifeblood of the field. This said, data science is considered a new thing, and researchers from every discipline are rushing to learn data science techniques, train themselves on data science tools, and even leaving academia to become data scientists. It is undeniable that our ability to harness new computational and statistical methods to make sense of today’s unprecedented size, complexity, and fast streaming data is helping scientists make new discoveries. The question now is how to ensure that researchers can employ these tools and use them appropriately. This talk will cover the state of data science as it relates to scientific research and the role astronomers play in its development, use, and training the next generation of astro-data scientists.
The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer
2010-01-01
The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.
Van Drenth, Annemieke
2018-01-01
Historiographies on the phenomenon of "autism" display Leo Kanner and Hans Asperger as the great pioneers. The recent controversy on who was first in "discovering" autism urges research into the question of how scientific discoveries relate to processes of academic reflection and social intervention. The Netherlands provide an interesting case in pioneering work in autism, since Dutch experts described autism in children already in the late 1930s, preceding the first publications on autism in children by Kanner and Asperger. This paper examines the Dutch origins of autism by focusing on Ida Frye's contribution to the teamwork at the Paedological Institute in Nijmegen, which resulted in descriptions of children with autism. The theoretical aim of this paper is to underline the importance of the productive interplay between social interventions and scientific efforts concerning the complex inner world of special children. © 2017 Wiley Periodicals, Inc.
Mechanics of Cellulose Synthase Complexes in Living Plant Cells
NASA Astrophysics Data System (ADS)
Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.
The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.
Horses for courses: analytical tools to explore planetary boundaries
NASA Astrophysics Data System (ADS)
van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark
2016-03-01
There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).
Greek, Ray; Hansen, Lawrence A
2013-11-01
We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
2018-01-01
ABSTRACT This article evaluates the scientific and commercial rationales for the synthesis of horsepox virus. I find that the claimed benefits of using horsepox virus as a smallpox vaccine rest on a weak scientific foundation and an even weaker business case that this project will lead to a licensed medical countermeasure. The combination of questionable benefits and known risks of this dual use research raises serious questions about the wisdom of undertaking research that could be used to recreate variola virus. This analysis also raises important questions about the propriety of a private company sponsoring such dual use research without appropriate oversight and highlights an important gap in United States dual use research regulations. PMID:29569633
Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool
Newman, Dina L.; Snyder, Christopher W.; Fisk, J. Nick; Wright, L. Kate
2016-01-01
Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select–format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all levels of undergraduate biology. Questions for the Central Dogma Concept Inventory (CDCI) tool were developed and iteratively revised based on student language and review by experts. The ability of the CDCI to discriminate between levels of understanding of the central dogma is supported by field testing (N = 54), and large-scale beta testing (N = 1733). Performance on the assessment increased with experience in biology; scores covered a broad range and showed no ceiling effect, even with senior biology majors, and pre/posttesting of a single class focused on the central dogma showed significant improvement. The multiple-select format reduces the chances of correct answers by random guessing, allows students at different levels to exhibit the extent of their knowledge, and provides deeper insight into the complexity of student thinking on each theme. To date, the CDCI is the first tool dedicated to measuring student thinking about the central dogma of molecular biology, and version 5 is ready to use. PMID:27055775
UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, Glenn K.; Yoo, Wucherl; Byna, Suren
I/O efficiency is essential to productivity in scientific computing, especially as many scientific domains become more data-intensive. Many characterization tools have been used to elucidate specific aspects of parallel I/O performance, but analyzing components of complex I/O subsystems in isolation fails to provide insight into critical questions: how do the I/O components interact, what are reasonable expectations for application performance, and what are the underlying causes of I/O performance problems? To address these questions while capitalizing on existing component-level characterization tools, we propose an approach that combines on-demand, modular synthesis of I/O characterization data into a unified monitoring and metricsmore » interface (UMAMI) to provide a normalized, holistic view of I/O behavior. We evaluate the feasibility of this approach by applying it to a month-long benchmarking study on two distinct largescale computing platforms. We present three case studies that highlight the importance of analyzing application I/O performance in context with both contemporaneous and historical component metrics, and we provide new insights into the factors affecting I/O performance. By demonstrating the generality of our approach, we lay the groundwork for a production-grade framework for holistic I/O analysis.« less
Provocative Questions in Cancer: NCI Seminar
science writers' seminar to discuss various aspects of one of NCI’s signature efforts -- the Provocative Questions project. Discussion will focus on the scientific research that surrounds some of these questions.
ERIC Educational Resources Information Center
Cacioppo, John T.; Semin, Gun R.; Berntson, Gary G.
2004-01-01
Scientific realism holds that scientific theories are approximations of universal truths about reality, whereas scientific instrumentalism posits that scientific theories are intellectual structures that provide adequate predictions of what is observed and useful frameworks for answering questions and solving problems in a given domain. These…
Innovating Chinese Herbal Medicine: From Traditional Health Practice to Scientific Drug Discovery.
Gu, Shuo; Pei, Jianfeng
2017-01-01
As one of the major contemporary alternative medicines, traditional Chinese medicine (TCM) continues its influence in Chinese communities and has begun to attract the academic attention in the world of western medicine. This paper aims to examine Chinese herbal medicine (CHM), the essential branch of TCM, from both narrative and scientific perspectives. CHM is a traditional health practice originated from Chinese philosophy and religion, holding the belief of holism and balance in the body. With the development of orthodox medicine and science during the last centuries, CHM also seized the opportunity to change from traditional health practice to scientific drug discovery illustrated in the famous story of the herb-derived drug artemisinin. However, hindered by its culture and founding principles, CHM faces the questions of the research paradigm posed by the convention of science. To address these questions, we discussed two essential questions concerning the relationship of CHM and science, and then upheld the paradigm of methodological reductionism in scientific research. Finally, the contemporary narrative of CHM in the 21st century was discussed in the hope to preserve this medical tradition in tandem with scientific research.
Scientific Assistant Virtual Laboratory (SAVL)
NASA Astrophysics Data System (ADS)
Alaghband, Gita; Fardi, Hamid; Gnabasik, David
2007-03-01
The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.
Lewkowicz, David J
2011-01-01
Since the time of the Greeks, philosophers and scientists have wondered about the origins of structure and function. Plato proposed that the origins of structure and function lie in the organism's nature whereas Aristotle proposed that they lie in its nurture. This nature/nurture dichotomy and the emphasis on the origins question has had a powerful effect on our thinking about development right into modern times. Despite this, empirical findings from various branches of developmental science have made a compelling case that the nature/nurture dichotomy is biologically implausible and, thus, that a search for developmental origins must be replaced by research into developmental processes. This change in focus recognizes that development is an immensely complex, dynamic, embedded, interdependent, and probabilistic process and, therefore, renders simplistic questions such as whether a particular behavioral capacity is innate or acquired scientifically uninteresting.
Lewkowicz, David J.
2011-01-01
Since the time of the Greeks, philosophers and scientists have wondered about the origins of structure and function. Plato proposed that the origins of structure and function lie in the organism's nature whereas Aristotle proposed that they lie in its nurture. This nature/nurture dichotomy and the emphasis on the origins question has had a powerful effect on our thinking about development right into modern times. Despite this, empirical findings from various branches of developmental science have made a compelling case that the nature/nurture dichotomy is biologically implausible and, thus, that a search for developmental origins must be replaced by research into developmental processes. This change in focus recognizes that development is an immensely complex, dynamic, embedded, interdependent, and probabilistic process and, therefore, renders simplistic questions such as whether a particular behavioral capacity is innate or acquired scientifically uninteresting. PMID:21709807
Mason, Julia G.; Rudd, Murray A.; Crowder, Larry B.
2017-01-01
Abstract Understanding and solving complex ocean conservation problems requires cooperation not just among scientific disciplines but also across sectors. A recently published survey that probed research priorities of marine scientists, when provided to ocean stakeholders, revealed some agreement on priorities but also illuminated key differences. Ocean acidification, cumulative impacts, bycatch effects, and restoration effectiveness were in the top 10 priorities for scientists and stakeholder groups. Significant priority differences were that scientists favored research questions about ocean acidification and marine protected areas; policymakers prioritized questions about habitat restoration, bycatch, and precaution; and fisheries sector resource users called for the inclusion of local ecological knowledge in policymaking. These results quantitatively demonstrate how different stakeholder groups approach ocean issues and highlight the need to incorporate other types of knowledge in the codesign of solutions-oriented research, which may facilitate cross-sectoral collaboration. PMID:28533565
Mason, Julia G; Rudd, Murray A; Crowder, Larry B
2017-05-01
Understanding and solving complex ocean conservation problems requires cooperation not just among scientific disciplines but also across sectors. A recently published survey that probed research priorities of marine scientists, when provided to ocean stakeholders, revealed some agreement on priorities but also illuminated key differences. Ocean acidification, cumulative impacts, bycatch effects, and restoration effectiveness were in the top 10 priorities for scientists and stakeholder groups. Significant priority differences were that scientists favored research questions about ocean acidification and marine protected areas; policymakers prioritized questions about habitat restoration, bycatch, and precaution; and fisheries sector resource users called for the inclusion of local ecological knowledge in policymaking. These results quantitatively demonstrate how different stakeholder groups approach ocean issues and highlight the need to incorporate other types of knowledge in the codesign of solutions-oriented research, which may facilitate cross-sectoral collaboration.
2015 Science Mission Directorate Technology Highlights
NASA Technical Reports Server (NTRS)
Seablom, Michael S.
2016-01-01
The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.
SMD Technology Development Story for NASA Annual Technology report
NASA Technical Reports Server (NTRS)
Seablom, Michael S.
2017-01-01
The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.
The research data alliance photon and neutron science interest group
Boehnlein, Amber; Matthews, Brian; Proffen, Thomas; ...
2015-04-01
Scientific research data provides unique challenges that are distinct from classic “Big Data” sources. One common element in research data is that the experiment, observations, or simulation were designed, and data were specifically acquired, to shed light on an open scientific question. The data and methods are usually “owned” by the researcher(s) and the data itself might not be viewed to have long-term scientific significance after the results have been published. Often, the data volume was relatively low, with data sometimes easier to reproduce than to catalog and store. Some data and meta-data were not collected in a digital form,more » or were stored on antiquated or obsolete media. Generally speaking, policies, tools, and management of digital research data have reflected an ad hoc approach that varies domain by domain and research group by research group. This model, which treats research data as disposable, is proving to be a serious limitation as the volume and complexity of research data explodes. Changes are required at every level of scientific research: within the individual groups, and across scientific domains and interdisciplinary collaborations. Enabling researchers to learn about available tools, processes, and procedures should encourage a spirit of cooperation and collaboration, allowing researchers to come together for the common good. In conclusion, these community-oriented efforts provide the potential for targeted projects with high impact.« less
The research data alliance photon and neutron science interest group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehnlein, Amber; Matthews, Brian; Proffen, Thomas
Scientific research data provides unique challenges that are distinct from classic “Big Data” sources. One common element in research data is that the experiment, observations, or simulation were designed, and data were specifically acquired, to shed light on an open scientific question. The data and methods are usually “owned” by the researcher(s) and the data itself might not be viewed to have long-term scientific significance after the results have been published. Often, the data volume was relatively low, with data sometimes easier to reproduce than to catalog and store. Some data and meta-data were not collected in a digital form,more » or were stored on antiquated or obsolete media. Generally speaking, policies, tools, and management of digital research data have reflected an ad hoc approach that varies domain by domain and research group by research group. This model, which treats research data as disposable, is proving to be a serious limitation as the volume and complexity of research data explodes. Changes are required at every level of scientific research: within the individual groups, and across scientific domains and interdisciplinary collaborations. Enabling researchers to learn about available tools, processes, and procedures should encourage a spirit of cooperation and collaboration, allowing researchers to come together for the common good. In conclusion, these community-oriented efforts provide the potential for targeted projects with high impact.« less
What Use Is Science to Animal Welfare?
NASA Astrophysics Data System (ADS)
Webster, A. J. F.
1998-06-01
My concern is to question the quality and utility of science in general and ethology in particular as applied to animal welfare. This topic has in the past provoked me to some severe criticism, for example, 'A lot of well-intended welfare research is neither very good science nor very helpful to the animals.... Too much welfare research is (in my opinion) flawed either because it is oversimplistic, or because it is not so much designed to test preconceptions but to reinforce prejudice' (Webster 1994). Dawkins (1997) has recently responded to this challenge, addressing the question 'Why has there not been more progress in welfare research?' Her response is concerned largely with applied ethology. My own criticism was not directed at ethologists in particular. I was more concerned by the misuse of scientific method by those who seek to obtain a so-called 'objective' measurement of something which they preconceive to be a stress (e.g. measurement of plasma concentrations of cortisol or endorphins in animals following transportation). Here the 'objective' measure frequently becomes the test that gives the answer that they want, and if it fails, then they seek other 'objective' markers until they achieve a set of measurements that supports the subjective impression which they had at the outset. My second main concern is that the welfare state of a sentient animal is a very complex affair and cannot be embraced by any single scientific discipline, be it ethology, physiology, molecular or neurobiology. Unfortunately it is also too complex to be embraced by a single-sentence definition. The best I can do is to suggest that it is determined by the capacity of an animal to sustain physical fitness and avoid mental suffering. The assessment of this is necessarily multidisciplinary.
NASA Astrophysics Data System (ADS)
Shea, Nicole Anne
Science curriculum is often used as a means to train students as future scientists with less emphasis placed on preparing students to reason about issues they may encounter in their daily lives (Feinstein, Allen, & Jenkins, 2013; Roth & Barton, 2004). The general public is required to think scientifically to some degree throughout their life and often across a variety of issues. From an empirical standpoint, we do not have a robust understanding of what scientific knowledge the public finds useful for reasoning about socio-scientific issues in their everyday lives (Feinstein, 2011). We also know very little about how the situational features of an issue influences reasoning strategy (i.e., the use of knowledge to generate arguments). Rapid advances in science - particularly in genetics - increasingly challenge the public to reason about socio-scientific issues. This raises questions about the public's ability to participate knowledgeably in socio-scientific debates, and to provide informed consent for a variety of novel scientific procedures. This dissertation aims to answer the questions: How do individuals use their genetic content knowledge to reason about authentic issues they may encounter in their daily lives? Individuals' scientific knowledge is a critical aspect of scientific literacy, but what scientific literacy looks like in practice as individuals use their content knowledge to reason about issues comprised of different situational features is still unclear. The purpose of this dissertation is to explore what knowledge is actually used by individuals to generate and support arguments about a variety of socio-scientific issues, and how the features of those issues influences reasoning strategy. Three studies were conducted to answer questions reflecting this purpose. Findings from this dissertation provide important insights into what scientific literacy looks like in practice.
Hall, Kara L; Vogel, Amanda L; Huang, Grace C; Serrano, Katrina J; Rice, Elise L; Tsakraklides, Sophia P; Fiore, Stephen M
2018-01-01
Collaborations among researchers and across disciplinary, organizational, and cultural boundaries are vital to address increasingly complex challenges and opportunities in science and society. In addition, unprecedented technological advances create new opportunities to capitalize on a broader range of expertise and information in scientific collaborations. Yet rapid increases in the demand for scientific collaborations have outpaced changes in the factors needed to support teams in science, such as institutional structures and policies, scientific culture, and funding opportunities. The Science of Team Science (SciTS) field arose with the goal of empirically addressing questions from funding agencies, administrators, and scientists regarding the value of team science (TS) and strategies for successfully leading, engaging in, facilitating, and supporting science teams. Closely related fields have rich histories studying teams, groups, organizations, and management and have built a body of evidence for effective teaming in contexts such as industry and the military. Yet few studies had focused on science teams. Unique contextual factors within the scientific enterprise create an imperative to study these teams in context, and provide opportunities to advance understanding of other complex forms of collaboration. This review summarizes the empirical findings from the SciTS literature, which center around five key themes: the value of TS, team composition and its influence on TS performance, formation of science teams, team processes central to effective team functioning, and institutional influences on TS. Cross-cutting issues are discussed in the context of new research opportunities to further advance SciTS evidence and better inform policies and practices for effective TS. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Environmental Biosciences Program Second Quarter Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2004-12-31
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyls (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
Environmental Biosciences Program Quarterly Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2006-10-31
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
Environmental Biosciences Program Fourth Quarter Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2005-06-30
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation s need for new and better approaches to the solution of a complex and expansive array of environment-related health problems.more » The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyles (PCBs), and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
LEARNING TO READ SCIENTIFIC RUSSIAN BY THE THREE QUESTION EXPERIMENTAL (3QX) METHOD.
ERIC Educational Resources Information Center
ALFORD, M.H.T.
A NEW METHOD FOR LEARNING TO READ TECHNICAL LITERATURE IN A FOREIGN LANGUAGE IS BEING DEVELOPED AND TESTED AT THE LANGUAGE CENTRE OF THE UNIVERSITY OF ESSEX, COLCHESTER, ENGLAND. THE METHOD IS CALLED "THREE QUESTION EXPERIMENTAL METHOD (3QX)," AND IT HAS BEEN USED IN THREE COURSES FOR TEACHING SCIENTIFIC RUSSIAN TO PHYSICISTS. THE THREE…
ERIC Educational Resources Information Center
McDonald, Katherine; Patka, Mazna
2012-01-01
From an ethical standpoint, there are questions about the best ways to include adults with intellectual and developmental disabilities in research. Scholarship reflects divergent responses to these enduring questions and values that can be at odds with one another. To deepen our understanding of beliefs in the scientific community about how to…
Climate Change and Everyday Life: Repertoires children use to negotiate a socio-scientific issue
NASA Astrophysics Data System (ADS)
Byrne, Jenny; Ideland, Malin; Malmberg, Claes; Grace, Marcus
2014-06-01
There are only a few studies about how primary school students engage in socio-scientific discussions. This study aims to add to this field of research by focusing on how 9-10-year-olds in Sweden and England handle climate change as a complex environmental socio-scientific issue (SSI), within the context of their own lives and in relation to society at large. It focuses on how different interpretative repertoires were used by the students in discussions to legitimise or question their everyday lifestyles. They discussed four possible options that a government might consider to help reduce carbon dioxide production. Six main repertoires were identified: Everyday life, Self-Interest, Environment, Science and Technology, Society and Justice. The Everyday life repertoire was used when students related their discussion to their everyday lifestyles. Science and technology-related solutions were offered to maintain or improve things, but these were sometimes rather unrealistic. Arguments related to environment and health frequently appeared to have a superior status compared to the others. Findings also highlighted how conflicts between the students were actually productive by bringing in several perspectives to negotiate the solutions. These primary school students were, therefore, able to discuss and negotiate a complex real-world SSI. Students positioned themselves as active contributors to society, using their life experiences and limited knowledge to understand the problems that affected their everyday lives. Honing these skills within a school science community of practice could facilitate primary students' engagement with SSIs and empower them as citizens.
Metacognitive Analysis of Pre-Service Teachers of Chemistry in Posting Questions
NASA Astrophysics Data System (ADS)
Santoso, T.; Yuanita, L.
2017-04-01
Questions addressed to something can induce metacognitive function to monitor a person’s thinking process. This study aims to describe the structure of the level of student questions based on thinking level and chemistry understanding level and describe how students use their metacognitive knowledge in asking. This research is a case study in chemistry learning, followed by 87 students. Results of the analysis revealed that the structure of thinking level of student question consists of knowledge question, understanding and application question, and high thinking question; the structure of chemistry understanding levels of student questions are a symbol, macro, macro-micro, macro-process, micro-process, and the macro-micro-process. The level Questioning skill of students to scientific articles more qualified than the level questioning skills of students to the teaching materials. The analysis result of six student interviews, a student question demonstrate the metacognitive processes with categories: (1) low-level metacognitive process, which is compiled based on questions focusing on a particular phrase or change the words; (2) intermediate level metacognitive process, submission of questions requires knowledge and understanding, and (3) high-level metacognitive process, the student questions posed based on identifying the central topic or abstraction essence of scientific articles.
Key Gaps for Enabling Plant Growth in Future Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony
2017-01-01
Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.
NASA Astrophysics Data System (ADS)
Verschuur, G. L.; Schmelz, J. T.
2018-02-01
A detailed comparison of the full range of PLANCK and Wilkinson Microwave Anisotropy Probe data for small (2° × 2°) areas of sky and the Cosmic Microwave Background Internal Linear Combination (ILC) maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ∼13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question: “to what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the Cosmic Microwave Background small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the Cosmic Microwave Background, or both.
Hierarchically nested river landform sequences
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.
2017-12-01
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.
[The treatment of scientific knowledge in the framework of CITES].
Lanfranchi, Marie-Pierre
2014-03-01
Access to scientific knowledge in the context of CITES is a crucial issue. The effectiveness of the text is indeed largely based on adequate scientific knowledge of CITES species. This is a major challenge: more than 30,000 species and 178 member states are involved. The issue of expertise, however, is not really addressed by the Convention. The question was left to the consideration of the COP. Therefore, the COP has created two ad hoc scientific committees: the Plants Committee and the Animals Committee, conferring upon them an ambitious mandate. The article addresses some important issues at stake which are linked to institutional questions, as well as the mixed record after twenty-five years of practice.
Epistemology and Science Education: A Study of Epistemological Views of Teachers
ERIC Educational Resources Information Center
Apostolou, Alexandros; Koulaidis, Vasilis
2010-01-01
The aim of this paper is to study the epistemological views of science teachers for the following epistemological issues: scientific method, demarcation of scientific knowledge, change of scientific knowledge and the status of scientific knowledge. Teachers' views for each one of these epistemological questions were investigated during…
76 FR 52314 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... invite comments on the question of whether instruments of equivalent scientific value, for the purposes for which the instruments shown below are intended to be used, are being manufactured in the United...
76 FR 15945 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... invite comments on the question of whether instruments of equivalent scientific value, for the purposes for which the instruments shown below are intended to be used, are being manufactured in the United...
Top 10 Research Questions Related to Teaching Games for Understanding.
Memmert, Daniel; Almond, Len; Bunker, David; Butler, Joy; Fasold, Frowin; Griffin, Linda; Hillmann, Wolfgang; Hüttermann, Stefanie; Klein-Soetebier, Timo; König, Stefan; Nopp, Stephan; Rathschlag, Marco; Schul, Karsten; Schwab, Sebastian; Thorpe, Rod; Furley, Philip
2015-01-01
In this article, we elaborate on 10 current research questions related to the "teaching games for understanding" (TGfU) approach with the objective of both developing the model itself and fostering game understanding, tactical decision making, and game-playing ability in invasion and net/wall games: (1) How can existing scientific approaches from different disciplines be used to enhance game play for beginners and proficient players? (2) How can state-of-the-art technology be integrated to game-play evaluations of beginners and proficient players by employing corresponding assessments? (4) How can complexity thinking be utilized to shape day-to-day physical education (PE) and coaching practices? (5) How can game making/designing be helpfully utilized for emergent learning? (6) How could purposeful game design create constraints that enable tactical understanding and skill development through adaptive learning and distributed cognition? (7) How can teacher/coach development programs benefit from game-centered approaches? (8) How can TGfU-related approaches be implemented in teacher or coach education with the goal of facilitating preservice and in-service teachers/coaches' learning to teach and thereby foster their professional development from novices to experienced practitioners? (9) Can the TGfU approach be considered a helpful model across different cultures? (10) Can physical/psychomotor, cognitive, affective/social, and cultural development be fostered via TGfU approaches? The answers to these questions are critical not only for the advancement of teaching and coaching in PE and sport-based clubs, but also for an in-depth discussion on new scientific avenues and technological tools.
Top 10 Research Questions Related to Teaching Games for Understanding
Memmert, Daniel; Almond, Len; Bunker, David; Butler, Joy; Fasold, Frowin; Griffin, Linda; Hillmann, Wolfgang; Hüttermann, Stefanie; Klein-Soetebier, Timo; König, Stefan; Nopp, Stephan; Rathschlag, Marco; Schul, Karsten; Schwab, Sebastian; Thorpe, Rod; Furley, Philip
2015-01-01
In this article, we elaborate on 10 current research questions related to the “teaching games for understanding” (TGfU) approach with the objective of both developing the model itself and fostering game understanding, tactical decision making, and game-playing ability in invasion and net/wall games: (1) How can existing scientific approaches from different disciplines be used to enhance game play for beginners and proficient players? (2) How can state-of-the-art technology be integrated to game-play evaluations of beginners and proficient players by employing corresponding assessments? (4) How can complexity thinking be utilized to shape day-to-day physical education (PE) and coaching practices? (5) How can game making/designing be helpfully utilized for emergent learning? (6) How could purposeful game design create constraints that enable tactical understanding and skill development through adaptive learning and distributed cognition? (7) How can teacher/coach development programs benefit from game-centered approaches? (8) How can TGfU-related approaches be implemented in teacher or coach education with the goal of facilitating preservice and in-service teachers/coaches’ learning to teach and thereby foster their professional development from novices to experienced practitioners? (9) Can the TGfU approach be considered a helpful model across different cultures? (10) Can physical/psychomotor, cognitive, affective/social, and cultural development be fostered via TGfU approaches? The answers to these questions are critical not only for the advancement of teaching and coaching in PE and sport-based clubs, but also for an in-depth discussion on new scientific avenues and technological tools. PMID:26452580
ERIC Educational Resources Information Center
Zelnio, Ryan J.
2013-01-01
This dissertation seeks to contribute to a fuller understanding of how international scientific collaboration has affected national scientific systems. It does this by developing three methodological approaches grounded in social complexity theory and applying them to the evaluation of national scientific systems. The first methodology identifies…
NASA Astrophysics Data System (ADS)
Glennan, Stuart
2009-06-01
Arguments about the relationship between science and religion often proceed by identifying a set of essential characteristics of scientific and religious worldviews and arguing on the basis of these characteristics for claims about a relationship of conflict or compatibility between them. Such a strategy is doomed to failure because science, to some extent, and religion, to a much larger extent, are cultural phenomena that are too diverse in their expressions to be characterized in terms of a unified worldview. In this paper I follow a different strategy. Having offered a loose characterization of the nature of science, I pose five questions about specific areas where religious and scientific worldviews may conflict—questions about the nature of faith, the belief in a God or Gods, the authority of sacred texts, the relationship between scientific and religious conceptions of the mind/soul, and the relationship between scientific and religious understandings of moral behavior. My review of these questions will show that they cannot be answered unequivocally because there is no agreement amongst religious believers as to the meaning of important religious concepts. Thus, whether scientific and religious worldviews conflict depends essentially upon whose science and whose religion one is considering. In closing, I consider the implications of this conundrum for science education.
Children's Question Asking and Curiosity: A Training Study
ERIC Educational Resources Information Center
Jirout, Jamie; Klahr, David
2011-01-01
A primary instructional objective of most early science programs is to foster children's scientific curiosity and question-asking skills (Jirout & Klahr, 2011). However, little is known about the relationship between curiosity, question-asking behavior, and general inquiry skills. While curiosity and question asking are invariably mentioned in…
Good Student Questions in Inquiry Learning
ERIC Educational Resources Information Center
Lombard, François E.; Schneider, Daniel K.
2013-01-01
Acquisition of scientific reasoning is one of the big challenges in education. A popular educational strategy advocated for acquiring deep knowledge is inquiry-based learning, which is driven by emerging "good questions". This study will address the question: "Which design features allow learners to refine questions while preserving…
NASA Astrophysics Data System (ADS)
Strobel-Eisele, Gabi
1996-09-01
School education has long been accustomed to accommodating theories from other scientific disciplines. The paradigm of self-organization provides a complex concept which will stimulate reflection on the phenomenon of "schools" within educational science. Analysis of systems in the light of different theory, motivated by this paradigm, can give a clearer view of the potential and limitations of a modern social system, which is what a school now is. By employing this paradigm, answers can be found to the questions whether schools can deliver education that compensates for family systems, and whether teaching can also provide therapy.
Evans, Angela D.; Lyon, Thomas D.
2010-01-01
Attorneys’ language has been found to influence the accuracy of a child's testimony, with defense attorneys asking more complex questions than the prosecution (Zajac & Hayne, J. Exp Psychol Appl 9:187–195, 2003; Zajac et al. Psychiatr Psychol Law, 10:199–209, 2003). These complex questions may be used as a strategy to influence the jury's perceived accuracy of child witnesses. However, we currently do not know whether the complexity of attorney's questions predict the trial outcome. The present study assesses whether the complexity of questions is related to the trial outcome in 46 child sexual abuse court transcripts using an automated linguistic analysis. Based on the complexity of defense attorney's questions, the trial verdict was accurately predicted 82.6% of the time. Contrary to our prediction, more complex questions asked by the defense were associated with convictions, not acquittals. PMID:18633698
ERIC Educational Resources Information Center
Shemwell, Jonathan T.; Furtak, Erin Marie
2010-01-01
One way to frame science classroom discussion is to engage students in scientific argumentation, an important discourse format within science aimed at coordinating empirical evidence and scientific theory. Framing discussion as scientific argumentation gives clear priority to contributions that are sustained by evidence. We question whether this…
What Does Galileo's Discovery of Jupiter's Moons Tell Us about the Process of Scientific Discovery?
ERIC Educational Resources Information Center
Lawson, Anton E.
2002-01-01
Given that hypothetico-deductive reasoning has played a role in other important scientific discoveries, asks the question whether it plays a role in all important scientific discoveries. Explores and rejects as viable alternatives possible alternative scientific methods such as Baconian induction and combinatorial analysis. Discusses the…
Innovating Chinese Herbal Medicine: From Traditional Health Practice to Scientific Drug Discovery
Gu, Shuo; Pei, Jianfeng
2017-01-01
As one of the major contemporary alternative medicines, traditional Chinese medicine (TCM) continues its influence in Chinese communities and has begun to attract the academic attention in the world of western medicine. This paper aims to examine Chinese herbal medicine (CHM), the essential branch of TCM, from both narrative and scientific perspectives. CHM is a traditional health practice originated from Chinese philosophy and religion, holding the belief of holism and balance in the body. With the development of orthodox medicine and science during the last centuries, CHM also seized the opportunity to change from traditional health practice to scientific drug discovery illustrated in the famous story of the herb-derived drug artemisinin. However, hindered by its culture and founding principles, CHM faces the questions of the research paradigm posed by the convention of science. To address these questions, we discussed two essential questions concerning the relationship of CHM and science, and then upheld the paradigm of methodological reductionism in scientific research. Finally, the contemporary narrative of CHM in the 21st century was discussed in the hope to preserve this medical tradition in tandem with scientific research. PMID:28670279
Waco investigation: analysis of FLIR videotapes
NASA Astrophysics Data System (ADS)
Klasen, Lena M.
2001-09-01
This paper presents some of the image processing techniques that were applied to seek an answer to the question whether agents of the Federal Bureau of Investigation (FBI) directed gunfired against the Branch Davidian complex in the tragic event that took place in Waco, Texas, U.S., 1993. The task for this investigation was to provide a scientific opinion that clarified the cause of the questioned events, or flashes, that can be seen on one of the surveillance videotapes. These flashes were by several experts, concluded to be evidence of gunfire. However, there were many reasons to question the correctness of that conclusion, such as the fact that some of the flashes appeared on a regular basis. The main hypothesis for this work was that the flashes instead were caused by specular solar reflections. The technical approach for this work was to analyze and compare the flashes appearance. By reconstructing the spatial and temporal position of the sensor, the complex and the sun, the geometrical properties was compared to the theoretical appearance of specular solar reflections. The result showed that the flashes seen on the FLIR videotape, were caused by solar or heat reflections from single or multiple objects. Consequently, they could not form evidence of gunfire. Further, the result highlights the importance of considering the characteristics of the imaging system within investigations that utilizes images as information source. This is due to the need of separating real data from other phenomena (such as solar reflections), distortions and artifacts in a correct manner.
Ethics and mental illness research.
Roberts, Laura Weiss
2002-09-01
There are many tasks ahead in the area of ethics and mental illness research. We face unknown challenges in psychiatric genetics projects, studies of psychopharmacological interventions in children, controversial scientific designs (e.g., symptom challenge, medication-free interval), and cross-disciplinary research incorporating goals and methods of health services, epidemiology, and social and behavioral science endeavors. Boundaries between innovative clinical practices and research-related experimentation will become increasingly difficult to distinguish, as will the roles between clinicians, clinical researchers, and basic scientists. Moreover, the institutions and systems in which research occurs are being rapidly and radically revised, raising new questions about oversight responsibilities and standards. Our ability to identify and respond to the ethical questions arising in this uncharted territory will depend on our willingness to self-reflect, to integrate the observations and insights of the past century, to think with great clarity, and to anticipate novel ethical problems that keep company with scientific advancements. It will also depend on data. Empirical study of ethical dimensions of human research is essential to anchor and attune the intuitions and theoretical constructs that we develop. Science and ethics have changed over the past 100 years, as they will over the next century. It is ironic that the ethical acceptability of psychiatric research is so much in question at this time, when it holds so much promise for advancing our understanding of mental illness and its treatment. The tension between the duty to protect vulnerable individuals and the duty to perform human science will continue to grow, as long as ethics and science are seen as separable, opposing forces with different aims championed by different heroes. The profession of psychiatry is poised to move toward a new, more coherent research ethics paradigm in which scientific and ethical issues are recognized as inextricably linked: science as a human activity carries complex ethical meanings and responsibilities, and ethics itself is subject to scrutiny and amenable to scientific inquiry. Building a broader, more versatile, and more effective repertoire of safeguards will be increasingly important, and safeguards, in this view, represent a modest price for the privilege of studying serious illnesses--diseases that cause grave suffering and yet are a source of both vulnerability and strength. In this paradigm, attention to ethics safeguards is no longer understood as a barrier to scientific advancement, but rather as the means by which psychiatric research may be conducted with broad societal support, honorably and, ultimately, with the expectation of bringing benefit to millions of people with mental illness.
ERIC Educational Resources Information Center
Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John
2015-01-01
One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of…
Integrated Science Assessment (ISA) for Sulfur Oxides ...
EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding whether the current standard for oxides of sulfur (SO2) sufficiently protects public health. The Integrated Plan for Review of the Primary NAAQS for SOx U.S. 2: EPA (2007) identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions in completing the NAAQS review.
Philosophical Roots of Cosmology
NASA Astrophysics Data System (ADS)
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
NASA Astrophysics Data System (ADS)
Slater, T. F.; Elfring, L.; Novodvorsky, I.; Talanquer, V.; Quintenz, J.
2007-12-01
Science education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.
The Effects of Video Feedback Coaching for Teachers on Scientific Knowledge of Primary Students
NASA Astrophysics Data System (ADS)
van Vondel, Sabine; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul
2017-04-01
The present study was aimed at investigating the effects of a video feedback coaching intervention for upper-grade primary school teachers on students' cognitive gains in scientific knowledge. This teaching intervention was designed with the use of inquiry-based learning principles for teachers, such as the empirical cycle and the posing of thought-provoking questions. The intervention was put into practice in 10 upper-grade classrooms. The trajectory comprised four lessons, complemented with two premeasures and two postmeasures. The control condition consisted of 11 upper-grade teachers and their students. The success of the intervention was tested using an established standardized achievement test and situated measures. In this way, by means of premeasure and postmeasure questionnaires and video data, an assessment could be made of the change in students' scientific knowledge before, during, and after the intervention. In this study, we primarily focused on the dynamics of students' real-time expressions of scientific knowledge in the classroom. Important indicators of the effect of the intervention were found. Through focusing on the number of explanations and predictions, a significant increase could be seen in the proportion of students' utterances displaying scientific understanding in the intervention condition. In addition, students in the intervention condition more often reasoned on higher complexity levels than students in the control condition. No effect was found for students' scientific knowledge as measured with a standardized achievement test. Implications for future studies are stressed, as well as the importance of enriching the evaluation of intervention studies by focusing on dynamics in the classroom.
Gundersen, Linda C.; Townsend, Randy
2017-01-01
Creating an ethics policy for a large, diverse geosciences organization is a challenge, especially in the midst of the current contentious dialogue in the media related to such issues as climate change, sustaining natural resources, and responding to natural hazards. In 2011, the American Geophysical Union (AGU) took on this challenge, creating an Ethics Task Force to update their ethics policies to better support their new Strategic Plan and respond to the changing scientific research environment. Dialogue with AGU members and others during the course of creating the new policy unveiled some of the following issues to be addressed. Scientific results and individual scientists are coming under intense political and public scrutiny, with the efficacy of the science being questioned. In some cases, scientists are asked to take sides and/or provide opinions on issues beyond their research, impacting their objectivity. Pressure related to competition for funding and the need to publish high quality and quantities of papers has led to recent high profile plagiarism, data fabrication, and conflict of interest cases. The complexities of a continuously advancing digital environment for conducting, reviewing, and publishing science has raised concerns over the ease of plagiarism, fabrication, falsification, inappropriate peer review, and the need for better accessibility of data and methods. Finally, students and scientists need consistent education and encouragement on the importance of ethics and integrity in scientific research. The new AGU Scientific Integrity and Ethics Policy tries to address these issues and provides an inspirational code of conduct to encourage a responsible, positive, open, and honest scientific research environment.
Popularization activities for young children of the scientific activity in the field of environment
NASA Astrophysics Data System (ADS)
Gires, Auguste; Le Gueut, Marie-Agathe; Schertzer, Daniel
2015-04-01
Research projects now rely on various pillars which include of course high level science and equipments, and also communication, outreach and educational activities. This paper focuses on education for young children and present activities that aim at helping them (and their parents!) to grasp some of the complex underlying scientific issues in the field of environment. More generally it helps children to get familiarized with science and scientists, with the hope of enhancing scientific culture and promoting careers in this field. The activities which are part of the popularization effort of the NEW Interreg IV RainGain project (www.raingain.eu) : - Experiments led in classrooms of kinder garden to design and test a disdrometer made of a plate and flour or oil to observe the diversity of rain drop sizes. It simply consists in putting a bit (roughly 1 mm depth) of flour or oil in a plate. The features of the devices based either flour or oil were first studied inside with artificial drops. Then it was tested outside under actual rain. - The writing of scientific book with and for children aged 8-9 years with the help of the editor of the collection. The process leading to the final book is splat in three main successive steps: (i) A 1.5 h interactive session with the researcher and a class of 8-9 year children. They are simply given the general topic of the book few hours before and ask all the questions they have on it and get some answers; (ii) The researcher writes a book in which all the questions raised by children are answered (at least partially). The scientific elements should be inserted in a lively story with few characters. The story should be more than a simple dialogue; a genuine fiction should take place and come first so that children do not even notice they are understanding and learning; (iii) Once children have read the book, there is a second session to get some feedback and possibly edit the manuscript (altering a character, adding some explanations...). After the book is illustrated and published. People involved in these popularization activities will share their feedback.
ObsPy: Establishing and maintaining an open-source community package
NASA Astrophysics Data System (ADS)
Krischer, L.; Megies, T.; Barsch, R.
2017-12-01
Python's ecosystem evolved into one of the most powerful and productive research environment across disciplines. ObsPy (https://obspy.org) is a fully community driven, open-source project dedicated to provide a bridge for seismology into that ecosystem. It does so by offering Read and write support for essentially every commonly used data format in seismology, Integrated access to the largest data centers, web services, and real-time data streams, A powerful signal processing toolbox tuned to the specific needs of seismologists, and Utility functionality like travel time calculations, geodetic functions, and data visualizations. ObsPy has been in constant unfunded development for more than eight years and is developed and used by scientists around the world with successful applications in all branches of seismology. By now around 70 people directly contributed code to ObsPy and we aim to make it a self-sustaining community project.This contributions focusses on several meta aspects of open-source software in science, in particular how we experienced them. During the panel we would like to discuss obvious questions like long-term sustainability with very limited to no funding, insufficient computer science training in many sciences, and gaining hard scientific credits for software development, but also the following questions: How to best deal with the fact that a lot of scientific software is very specialized thus usually solves a complex problem but at the same time can only ever reach a limited pool of developers and users by virtue of it being so specialized? Therefore the "many eyes on the code" approach to develop and improve open-source software only applies in a limited fashion. An initial publication for a significant new scientific software package is fairly straightforward. How to on-board and motivate potential new contributors when they can no longer be lured by a potential co-authorship? When is spending significant time and effort on reusable scientific open-source development a reasonable choice for young researchers? The effort to go from purpose tailored code for a single application resulting in a scientific publication is significantly less compared to generalising and engineering it well enough so it can be used by others.
Questioning the Evidence for a Claim in a Socio-Scientific Issue: An Aspect of Scientific Literacy
ERIC Educational Resources Information Center
Roberts, Ros; Gott, Richard
2010-01-01
Understanding the science in a "socio-scientific issue" is at the heart of the varied definitions of "scientific literacy". Many consider that understanding evidence is necessary to participate in decision making and to challenge the science that affects people's lives. A model is described that links practical work,…
Perspectives of German and US Students as They Make Meaning of Science in Their Everyday Lives
ERIC Educational Resources Information Center
Preczewski, Paul J.; Mittler, Alexandra; Tillotson, John W.
2009-01-01
Scientific literacy is a major educational and political goal worldwide, yet the development and enhancement of scientific literacy is not well understood. In order to better understand scientific literacy at the level of everyday science meaning making and a person's ability to address scientific questions and issues, this study reports on…
Philosophy and Sociology of Science Evolution and History
NASA Astrophysics Data System (ADS)
Rosen, Joe
The following sections are included: * Concrete Versus Abstract Theoretical Models * Introduction: concrete and abstract in kepler's contribution * Einstein's theory of gravitation and mach's principle * Unitary symmetry and the structure of hadrons * Conclusion * Dedication * Symmetry, Entropy and Complexity * Introduction * Symmetry Implies Abstraction and Loss of Information * Broken Symmetries - Imposed or Spontaneous * Symmetry, Order and Information * References * Cosmological Surrealism: More Than "Eternal Reality" Is Needed * Pythagoreanism in atomic, nuclear and particle physics * Introduction: Pythagoreanism as part of the Greek scientific world view — and the three questions I will tackle * Point 1: the impact of Gersonides and Crescas, two scientific anti-Aristotelian rebels * Point 2: Kepler's spheres to Bohr's orbits — Pythagoreanisms at last! * Point 3: Aristotle to Maupertuis, Emmy Noether, Schwinger * References * Paradigm Completion For Generalized Evolutionary Theory With Application To Epistemology * Evolution Fully Generalized * Entropy: Gravity as Model * Evolution and Entropy: Measures of Complexity * Extinctions and a Balanced Evolutionary Paradigm * The Evolution of Human Society - the Age of Information as example * High-Energy Physics and the World Wide Web * Twentieth Century Epistemology has Strong (de facto) Evolutionary Elements * The discoveries towards the beginning of the XXth Century * Summary and Conclusions * References * Evolutionary Epistemology and Invalidation * Introduction * Extinctions and A New Evolutionary Paradigm * Evolutionary Epistemology - Active Mutations * Evolutionary Epistemology: Invalidation as An Extinction * References
NASA Astrophysics Data System (ADS)
Smith, Shirley Mccraw
2003-06-01
The purpose of this research was to investigate students' understanding of interdependency across grade levels. Interdependency concepts selected for this study included food chains, pollination, and seed dispersal. Children's everyday concepts and scientific concepts across grade levels represented the focus of conceptual understanding. The researcher interviewed a total of 24 students across grade levels, six students each from grades 3, 7, and 10, and 6 college students. Data were collected by means of interviews and card sorts. A constructivist theoretical framework formed the groundwork for presenting the focus of this study and for interpreting the results of the interview data. Results were analyzed on the basis of identifying student responses to interview questions as either everyday concepts or as scientific concepts, along with transition through the zone of proximal development (ZPD) by mediation, as developed by Vygotsky. Results revealed that children across grade levels vary in their everyday and scientific understanding of the three interdependency concepts. Results for seed dispersal showed little evidence of understanding for grade 3, that is, seed dispersal was not within the zone of proximal development (ZPD) for grade 3 students. Students in grades 7 and 10 showed a developing transition within the zone of proximal development from everyday to scientific understanding, and college students demonstrated scientific understanding of seed dispersal. For pollination and food chains, results showed that grades 3, 7, and 10 were in transition from everyday to scientific understanding, and all college students demonstrated scientific understanding. The seed dispersal concept proved more complex than pollination and food chains. The findings of this study have implications for classroom teachers. By understanding the dynamic nature of the ZPD continuum for students, teachers can plan instruction to meet the needs of each student.
Scientific consensus, the law, and same sex parenting outcomes.
adams, Jimi; Light, Ryan
2015-09-01
While the US Supreme Court was considering two related cases involving the constitutionality of same-sex marriage, one major question informing that decision was whether scientific research had achieved consensus regarding how children of same-sex couples fare. Determining the extent of consensus has become a key aspect of how social science evidence and testimony is accepted by the courts. Here, we show how a method of analyzing temporal patterns in citation networks can be used to assess the state of social scientific literature as a means to inform just such a question. Patterns of clustering within these citation networks reveal whether and when consensus arises within a scientific field. We find that the literature on outcomes for children of same-sex parents is marked by scientific consensus that they experience "no differences" compared to children from other parental configurations. Copyright © 2015 Elsevier Inc. All rights reserved.
Graeden, Ellie; Kerr, Justin; Sorrell, Erin M.; Katz, Rebecca
2018-01-01
Managing infectious disease requires rapid and effective response to support decision making. The decisions are complex and require understanding of the diseases, disease intervention and control measures, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions, the complexity of current models presents a significant barrier to community-level decision makers in using the outputs of the most scientifically robust methods to support pragmatic decisions about implementing a public health response effort, even for endemic diseases with which they are already familiar. Here, we describe the development of an application available on the internet, including from mobile devices, with a simple user interface, to support on-the-ground decision-making for integrating disease control programs, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap, and which result in significant morbidity and mortality in affected regions. Working with data from countries across sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corresponding prototype tool to provide guidance on how to optimize integration of vertical disease control programs. This method and tool demonstrate significant progress in effectively translating the best available scientific models to support practical decision making on the ground with the potential to significantly increase the efficacy and cost-effectiveness of disease control. Author summary Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control. PMID:29649260
Séguin, Monique; Di Mambro, Mélanie; Desgranges, Annie
2012-01-01
If certain risk factors are known to increase suicidal behaviors, the question is to determine the differential weight of these various risk factors, on which individuals, in which context and in what period of their lives? We have put to test a model that explains different life trajectories leading to suicide. This research allows to surpass a correlation model of identification of risk factors and to target four distinct sub-groups of individuals for whom the developmental history seems quite different. It is clear that suicide is a complex, multidimensional and multilevel issue. Being at the crossroads of many scientific disciplines, psychology may help integrate and connect knowledge with other disciplines in order to clarify the contexts that affect suicidal individuals differently. This knowledge may help in identifying specific prevention interventions that could modify this chain of events leading ultimately to suicide.
Serious science games, social selves and complex nature of possible selves
NASA Astrophysics Data System (ADS)
Khan, Mubina Schroeder
2012-12-01
Margaret Beier, Leslie Miller, and Shu Wang's paper, Science games and the development of possible selves examines the effects of game-playing in a serious scientific game on science possible selves identity creation, utilizing a possible selves identification instrument they created. This paper continues the discussion that Beier and colleagues start in the paper by calling into question both the idea that a predictive model of science career choice can be attained by serious science game-playing and the nature of the instrument created and used by Beier and her colleagues to identify participants' creation of science possible selves. Recommendations include incorporating the idea of possible selves as being complex, dynamic and intertwined with self-concept in interpreting their findings and casting a wider net to capture the phenomena of their participants' identities and experiences by potentially making use of possible selves identification methodologies from the career training arena.
Bioinformatics: perspectives for the future.
Costa, Luciano da Fontoura
2004-12-30
I give here a very personal perspective of Bioinformatics and its future, starting by discussing the origin of the term (and area) of bioinformatics and proceeding by trying to foresee the development of related issues, including pattern recognition/data mining, the need to reintegrate biology, the potential of complex networks as a powerful and flexible framework for bioinformatics and the interplay between bio- and neuroinformatics. Human resource formation and market perspective are also addressed. Given the complexity and vastness of these issues and concepts, as well as the limited size of a scientific article and finite patience of the reader, these perspectives are surely incomplete and biased. However, it is expected that some of the questions and trends that are identified will motivate discussions during the IcoBiCoBi round table (with the same name as this article) and perhaps provide a more ample perspective among the participants of that conference and the readers of this text.
Stereoscopy in Static Scientific Imagery in an Informal Education Setting: Does It Matter?
NASA Astrophysics Data System (ADS)
Price, C. Aaron; Lee, H.-S.; Malatesta, K.
2014-12-01
Stereoscopic technology (3D) is rapidly becoming ubiquitous across research, entertainment and informal educational settings. Children of today may grow up never knowing a time when movies, television and video games were not available stereoscopically. Despite this rapid expansion, the field's understanding of the impact of stereoscopic visualizations on learning is rather limited. Much of the excitement of stereoscopic technology could be due to a novelty effect, which will wear off over time. This study controlled for the novelty factor using a variety of techniques. On the floor of an urban science center, 261 children were shown 12 photographs and visualizations of highly spatial scientific objects and scenes. The images were randomly shown in either traditional (2D) format or in stereoscopic format. The children were asked two questions of each image—one about a spatial property of the image and one about a real-world application of that property. At the end of the test, the child was asked to draw from memory the last image they saw. Results showed no overall significant difference in response to the questions associated with 2D or 3D images. However, children who saw the final slide only in 3D drew more complex representations of the slide than those who did not. Results are discussed through the lenses of cognitive load theory and the effect of novelty on engagement.
Nobes, Gavin; Panagiotaki, Georgia
2007-11-01
When children are asked to draw the Earth they often produce intriguing pictures in which, for example, people seem to be standing on a flat disc or inside a hollow sphere. These drawings, and children's answers to questions, have been interpreted as indicating that children construct naïve, theory-like mental models of the Earth (e.g. Vosniadou & Brewer, 1992). However, recent studies using different methods have found little or no evidence of these mental models, and report that many young children have some scientific knowledge of the Earth. To examine the reasons for these contrasting findings, adults (N=350) were given the drawing task previously given to 5-year-old children. Fewer than half of the adults' pictures were scientific, and 15% were identical to children's 'naïve' drawings. Up to half of the answers to questions (e.g. 'Where do people live?') were non-scientific. Open-ended questions and follow-up interviews revealed that non-scientific responses were given because adults found the apparently simple task confusing and challenging. Since children very probably find it even more difficult, these findings indicate that children's non-scientific responses, like adults', often result from methodological problems with the task. These results therefore explain the discrepant findings of previous research, and support the studies which indicate that children do not have naïve mental models of the Earth.
ERIC Educational Resources Information Center
Morrison, Adrian R.
1999-01-01
Relates personal experiences conducting scientific research on the brain mechanisms of rapid eye movement (REM) sleep. Argues that solutions to scientific questions can come from strange sources. Contains 13 references. (WRM)
Guseva Canu, Irina; Schulte, Paul A; Riediker, Michael; Fatkhutdinova, Liliya; Bergamaschi, Enrico
2018-02-01
Engineered nanomaterials (ENMs) raise questions among the scientific community and public health authorities about their potential risks to human health. Studying a prospective cohort of workers exposed to ENMs would be considered the gold standard for identifying potential health effects of nanotechnology and confirming the 'no effect' levels derived from cellular and animal models. However, because only small, cross-sectional studies have been conducted in the past 5 years, questions remain about the health risks of ENMs. This essay addresses the scientific, methodological, political and regulatory issues that make epidemiological research in nanotechnology-exposed communities particularly complex. Scientific challenges include the array of physicochemical parameters and ENM production conditions, the lack of universally accepted definitions of ENMs and nanotechnology workers, and the lack of information about modes of action, target organs and likely dose-response functions of ENMs. Standardisation of data collection and harmonisation of research protocols are needed to eliminate misclassification of exposures and health effects. Forming ENM worker cohorts from a combination of smaller cohorts and overcoming selection bias are also challenges. National or international registries for monitoring the exposures and health of ENM workers would be helpful for epidemiological studies, but the creation of such a registry and ENM worker cohorts will require political support and dedicated funding at the national and international levels. Public authorities and health agencies should consider carrying out an ENM awareness campaign to educate and engage all stakeholders and concerned communities in discussion of such a project. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Natural products in modern life science.
Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders
2010-06-01
With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science.
Any Questions? Want to Stimulate Student Curiosity? Let Them Ask Questions!
ERIC Educational Resources Information Center
Weiss, Tarin Harrar
2013-01-01
Of the eight scientific practices highlighted in "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas," the first is for students to develop abilities to ask questions and define problems (NRC 2012). Constructing a range of questions about an object or phenomenon validates not only what students have…
Technology-Enhanced Learning in Science (TELS)
NASA Astrophysics Data System (ADS)
Linn, Marcia
2006-12-01
The overall research question addressed by the NSF-funded echnologyEnhanced Learning in Science (TELS) Center is whether interactive scientific visualizations embedded in high quality instructional units can be used to increase pre-college student learning in science. The research draws on the knowledge integration framework to guide the design of instructional modules, professional development activities, and assessment activities. This talk reports on results from the first year where 50 teachers taught one of the 12 TELS modules in over 200 classes in 16 diverse schools. Assessments scored with the knowledge integration rubric showed that students made progress in learning complex physics topics such as electricity, mechanics, and thermodynamics. Teachers encountered primarily technological obstacles that the research team was able to address prior to implementation. Powerful scientific visualizations required extensive instructional supports to communicate to students. Currently, TELS is refining the modules, professional development, and assessments based on evidence from the first year. Preliminary design principles intended to help research teams build on the findings will be presented for audience feedback and discussion.
Current bioethical issues in parasitology.
Boury, D; Dei-Cas, E
2008-09-01
Parasitic diseases constitute the most common infections among the poorest billion people, entailing high mortality rates and leading to long-term infirmities and poverty. Although the setting-up of public health programs implies many ethical consequences, the range of specific questions in parasitology that can be attributed to bioethics remains, to a large extent, unexplored. From the present analysis, it emerged three main issues which characterize ethical stakes in parasitology: accounting the complexity of the field of intervention, putting the principle of justice into practice and managing the changing context of research. From the research angle, medical parasitology-mycology, as other biological disciplines, is undergoing tensions derived from biological reductionism. Thanks to its links with the history and philosophy of the sciences, bioethics can help to clarify them and to explain the growing hold that technologies have over scientific thinking. On the whole, researchers as well as clinicians are called on to assume a specific responsibility, proportional to their competence and their place in the making of scientific, health, economic and social decisions.
Barrett, R. F.; Crozier, P. S.; Doerfler, D. W.; ...
2014-09-28
Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of miniapps has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively representmore » these performance issues. We applied this methodology to four miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, ''Under what conditions does a miniapp represent a key performance characteristic in a full app?''« less
Establishing lunar resource viability
NASA Astrophysics Data System (ADS)
Carpenter, J.; Fisackerly, R.; Houdou, B.
2016-11-01
Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, Mark J.
This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.
Integrated Science Assessment (ISA) for Carbon Monoxide ...
EPA announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA's decision regarding whether the current standards for CO sufficiently protect public health and the environment. The Integrated Plan for Review of the NAAQS for CO {U.S. EPA, 2008 #8615} identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that it, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions during the NAAQS review:
Innovative Climate Communication Strategies: What Sticks?
NASA Astrophysics Data System (ADS)
Fitzpatrick, M. F.; Heid, M.; Spanger-Siegfried, E.; Sideris, J.; Sanford, T. J.; Nurnberger, L.; Huertas, A.; Ekwurzel, B.; Cleetus, R.; Cell, K.
2013-12-01
A unique aspect of our work at the Union of Concerned Scientists (UCS) is the melding of scientific research and a robust communications initiative to bring salient information to decision makers and the public. Over the years, we have tried many different strategies to convey complex scientific information in an effective and appealing way, from movie stars to hope psychology, from dire warnings to academic appeals. But now that we are seeing climate impacts locally and climate change is no longer a future reality, what new vision do we need to support ongoing education? In this session we will present some of the techniques we have used to convey climate science concepts including our use of metaphors, data visualization, photography, blogs, social media, video, and public outreach events. Realizing that messages that stick are those that contain powerful narrative and speak to the emotional centers of our brains, we use innovative infographics as well as personal stories to encourage people to care about creating a healthier, cleaner planet. Reaching new audiences using unexpected messengers is a key focus. Some of the questions we will explore are: What metrics can we use to determine the efficacy of these tools? What are the best ways to convey urgency without a sense of hopelessness? How can we improve our communication at a time when action on climate is a necessity? Research shows infographics convey concepts much more easily and quickly than text alone, as our brains are wired to process visual scenes. Making complex scientific information accessible to the non-specialist public involves creativity and excellent data visualization.
Put Me in Coach: A Commentary on the RPSD Exchange.
ERIC Educational Resources Information Center
Hardman, Michael L.
2003-01-01
This commentary discusses principles concerning requirements for scientifically based research under No Child Left Behind: scientific inquiry begins with important research questions, not specific methodologies; the logic that scientifically based research equates with randomized controlled trials will result in research and practice disconnects;…
International Conference: Milky Way Surveys: The Structure and Evolution of Our Galaxy
NASA Technical Reports Server (NTRS)
Clemens, Dan
2004-01-01
We were granted NASA support for partial sponsorship of an international conference on Galactic science, held June 15-17, 2003 and hosted by the Institute for Astrophysical Research at Boston University. This conference, entitled 'Milky Way Surveys: The Structure and Evolution of Our Galaxy' drew some 125 scientific experts, researchers, and graduate students to Boston to: (1) Present large area survey plans and findings; (2) Discuss important remaining questions and puzzles in Galactic science; and (3) To inform and excite students and researchers about the potential for using large area survey databases to address key Galactic science questions. An international Scientific Organizing Committee for this conference crafted a tightly packed two-day conference designed to highlight many recent and upcoming large area surveys (including 2MASS, SDSS, MSX, VLA-HI, GRS, and SIRTF/GLIMPSE) and current theoretical understandings and questions. By bringing together experts in the conduct of Galactic surveys and leading theorists, new ways of attacking long-standing scientific questions were encouraged. The titles of most of the talks and posters presented are attached to the end of this report.
2009-01-01
Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts. PMID:19723816
ERIC Educational Resources Information Center
Wilson, Kristy J.; Rigakos, Bessie
2016-01-01
The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology,…
Fate of manganese associated with the inhalation of welding fumes: potential neurological effects.
Antonini, James M; Santamaria, Annette B; Jenkins, Neil T; Albini, Elisa; Lucchini, Roberto
2006-05-01
Welding fumes are a complex mixture composed of different metals. Most welding fumes contain a small percentage of manganese. There is an emerging concern among occupational health officials about the potential neurological effects associated with the exposure to manganese in welding fumes. Little is known about the fate of manganese that is complexed with other metals in the welding particles after inhalation. Depending on the welding process and the composition of the welding electrode, manganese may be present in different oxidation states and have different solubility properties. These differences may affect the biological responses to manganese after the inhalation of welding fumes. Manganese intoxication and the associated neurological symptoms have been reported in individual cases of welders who have been exposed to high concentrations of manganese-containing welding fumes due to work in poorly ventilated areas. However, the question remains as to whether welders who are exposed to low levels of welding fumes over long periods of time are at risk for the development of neurological diseases. For the most part, questions remain unanswered. There is still paucity of adequate scientific reports on welders who suffered significant neurotoxicity, hence there is a need for well-designed epidemiology studies that combine complete information on the occupational exposure of welders with both behavioral and biochemical endpoints of neurotoxicity.
The Implications of Interstellar Dust for the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Schmelz, Joan T.; Verschuur, Gerrit
2018-01-01
A detailed comparison of the full range of PLANCK and WMAP data for small (2 deg by 2 deg) areas of sky and the Cosmic Microwave Background (CMB) ILC maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ~13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question, “To what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the CMB small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the CMB, or both.
Constructing Acceptable RWM Approaches: The Politics of Participation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laes, E.; Bombaerts, G.
2006-07-01
Public participation in a complex technological issue such as the management of radioactive waste needs to be based on a simultaneous construction of scientific, ethical and socio-political foundations. Confronting this challenge is in no way straightforward. The problem is not only that the 'hard' technocrats downplay the importance of socio-political and ethical factors; also, our 'soft' ethical vocabularies (e.g. Habermasian 'discourse ethics') seem to be ill-equipped for tackling such complex questions (in terms of finding concrete solutions). On the other hand, professionals in the field, confronted with a (sometimes urgent) need for finding workable solutions, cannot wait for armchair philosophersmore » to formulate the correct academic answers to their questions. Different public participation and communication models have been developed and tested in real-world conditions, for instance in the Belgian 'partnership approach' to the siting of a low-level waste management facility. Starting from the confrontation of theoretical outlooks and pragmatic solutions, this paper identifies a number of 'dilemmas of participation' that can only be resolved by inherently political choices. Successfully negotiating these dilemmas is of course difficult and conditional on many contextual factors, but nevertheless at the end of the paper an attempt is made to sketch the contours of three possible future scenarios (each with their own limits and possibilities). (authors)« less
How to Cool the Planet by Jeff Goodell
NASA Astrophysics Data System (ADS)
Goodell, J.
2010-12-01
How to Cool the Planet is a narrative about the radical and controversial world of geoengineering - the deliberate, large-scale manipulation of the earth’s climate to reduce the risk of global warming. Unlike other books on this subject, it is not a polemic or historical review. It is the story of the author, a best-selling author and journalist for the New York Times Magazine, Rolling Stone, and other publications, to answer a not-so-simple question: is geoengineering a crazy idea or not? To answer this question, the author sets out on a quest to talk with - and test the sanity of - the leading scientists in this field, from David Keith, a physicist at the University of Calgary, to James Lovelock, independent scientist best known for his Gaia theory. Along the way, Goodell explores the science behind ideas like cloud brightening and the injection of sulfur particles into the stratosphere to deflect sunlight. But he is equally interested in the moral and ethical issues behind these ideas, as well the hopes and fears of the scientists who are exploring them. In the end, the book is a kind of radical experiment itself, exploring the not just the complexities of an emerging field of science, but the complexities of communicating such audacious thinking to non-scientific readers.
Mental models as indicators of scientific thinking
NASA Astrophysics Data System (ADS)
Derosa, Donald Anthony
One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models with respect to content. There was no significant difference in the frequency of explanative information expressed by either group. Both groups scored poorly on the problem solving transfer problems. The average score for the constructivist group was 30% and the average score for the transmissional group was 34%. A significant correlation was found between the frequency of explanative information and scores on the problem-solving transfer questions, r = 0.766. Conclusion. The subjects exhibited difficulty in formulating and applying mental models to effectively answer problem solving transfer questions regardless of the context in which the subjects were taught. The results call into question the extent to which students have been taught to use mental models and more generally, the extent to which their prior academic experience has encouraged them to develop an awareness of scientific thinking skills. Implications of the study suggest further consideration of mental modeling in science education reform and the deliberate integration of an awareness of scientific thinking skills in the development of science curricula.
Foo, Jong Yong Abdiel; Wilson, Stephen James
2012-12-01
The growing emphasis on the importance of publishing scientific findings in the academic world has led to increasing prevalence of potentially significant publications in which scientific and ethical rigour may be questioned. This has not only hindered research progress, but also eroded public trust in all scientific advances. In view of the increasing concern and the complexity of research misconduct, the Committee on Publication Ethics (COPE) was established in 1997 to manage cases with ethical implications. In order to review the outcomes of cases investigated by COPE, a total of 408 cases that had been managed by COPE were successfully extracted and analysed with respect to 7 distinct criteria. The results obtained indicate that the number of ethical implications per case has not changed significantly (p > 0.01) since the year COPE was instigated. Interestingly, the number of ethical cases, and to some extent, research misconduct, is not diminishing. Therefore, journal editors and publishers need to work closely together with COPE to inculcate adoption of appropriate research ethics and values in younger researchers while discouraging others from lowering standards. It is hoped that with a more concerted effort from the academic community and better public awareness, there will be fewer incidences of ethically and scientifically challenged publications. The ultimate aim being to enhance the quality of published works with concomittant public trust in the results.
The scientific argumentation profile of physics teacher candidate in Surabaya
NASA Astrophysics Data System (ADS)
Ain, T. N.; Wibowo, H. A. C.; Rohman, A.; Deta, U. A.
2018-03-01
The ability of scientific argumentation is an essential factor that must be mastered by physics teacher candidate as a requirement in explaining good and accurate scientific concepts. In the process of arguing, students develop explanations or persuade colleagues to support their hypotheses, express doubts, ask questions, relate alternative answers, and confirm what is unknown to develop the ability to provide rational and scientific explanations. The design of this research is descriptive qualitative with the subject of research is 20 undergraduate students of Physics Education Department in Surabaya. The research instrument consists of four casuistic questions related to the concept of kinematics. The argumentation pattern of physics teacher candidate is coded using Toulmin's argumentation pattern. The results show that the student’s ability in providing scientific argument is at the level of providing claims with the support of a weak warrant. The students are not able to provide excellent rebuttals. In each case given, the student can give a good claim statement in answering the questions. However, the concept used to support the claim is not correct. This case causes the warrant used to support the claim is weak. Students also do not analyse other facts that affect the system. Students have not reached a higher level because the understanding of physics is not deep enough.
Bahri, Priya; Fogd, Julianna; Morales, Daniel; Kurz, Xavier
2017-05-02
The benefit-risk balance of vaccines is regularly debated by the public, but the utility of media monitoring for regulatory bodies is unclear. A media monitoring study was conducted at the European Medicines Agency (EMA) concerning human papillomavirus (HPV) vaccines during a European Union (EU) referral procedure assessing the potential causality of complex regional pain syndrome (CRPS) and postural orthostatic tachycardia syndrome (POTS) reported to the authorities as suspected adverse reactions. To evaluate the utility of media monitoring in real life, prospective real-time monitoring of worldwide online news was conducted from September to December 2015 with inductive content analysis, generating 'derived questions'. The evaluation was performed through the validation of the predictive capacity of these questions against journalists' queries, review of the EMA's public statement and feedback from EU regulators. A total of 4230 news items were identified, containing personal stories, scientific and policy/process-related topics. Explicit and implicit concerns were identified, including those raised due to lack of knowledge or anticipated once more information would be published. Fifty derived questions were generated and categorised into 12 themes. The evaluation demonstrated that providing the media monitoring findings to assessors and communicators resulted in (1) confirming that public concerns regarding CRPS and POTS would be covered by the assessment; (2) meeting specific information needs proactively in the public statement; (3) predicting all queries from journalists; and (4) altering the tone of the public statement with respectful acknowledgement of the health status of patients with CRSP or POTS. The study demonstrated the potential utility of media monitoring for regulatory bodies to support communication proactivity and preparedness, intended to support trusted safe and effective vaccine use. Derived questions seem to be a familiar and effective format for presenting media monitoring results in the scientific-regulatory environment. It is suggested that media monitoring could form part of regular surveillance for medicines of high public interest. Future work is recommended to develop efficient monitoring strategies for that purpose.
Introduction to the LaRC central scientific computing complex
NASA Technical Reports Server (NTRS)
Shoosmith, John N.
1993-01-01
The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.
ERIC Educational Resources Information Center
Hasson, Eilat; Yarden, Anat
2012-01-01
Inquiry is essentially a process in which research questions are asked and an attempt is made to find the answers. However, the formulation of operational research questions of the sort used in authentic scientific inquiry is not a trivial task. Here, we set out to explore the possible influence of separating the research question from the…
The Relevance of Science in a "Black Box" Technological World
ERIC Educational Resources Information Center
Abrahams, Ian; Constantinou, Marina; Fotou, Nikolaos; Potterton, Bev
2017-01-01
This article questions the need for relatively shallow, widespread, scientific literacy across a broad range of topics if it lacks the conceptual depth, and/or intellectual rigour, to provide any basis for rational, scientifically informed choices. We suggest that "functional," widespread scientific literacy should only be taught in key…
The Scientific Library Presents “How to Get Published in a Research Journal” on May 16 | Poster
When aiming to publish a scientific work, every writer should consider the following questions: - Do you know the best way to structure a scientific paper? - Have you identified the most appropriate journal? - Do you understand the peer-review process?
Rump, B; Cornelis, C; Woonink, F; VAN Steenbergen, J; Verweij, M; Hulscher, M
2017-05-01
Typing techniques are laboratory methods used in outbreak management to investigate the degree to which microbes found within an outbreak are related. Knowledge about relational patterns between microbes benefits outbreak management, but inevitably also tells us something about the relational patterns of the people hosting them. Since the technique is often used without explicit consent of all individuals involved, this may raise ethical questions. The aim of this study was to unravel the complex ethical deliberation of professionals over the use of such techniques. We organised group discussions (n = 3) with Dutch outbreak managers (n = 23). The topic list was based on previously identified ethical issues and discussions were analysed for recurrent themes. We found that outbreak managers first and foremost reflect on the balance of individual harm with public health benefit. This key question was approached by way of discussing four more specific ethical themes: (1) justification of governmental intervention, (2) responsibility to prevent infections, (3) scientific uncertainty and (4) legal consequences. The themes found in this study, rephrased into accessible questions, represent the shared ethical understanding of professionals and can help to articulate the ethical dimensions of using molecular science in response to infectious disease outbreaks.
CO2 studies remain key to understanding a future world.
Becklin, Katie M; Walker, S Michael; Way, Danielle A; Ward, Joy K
2017-04-01
Contents 34 I. 34 II. 36 III. 37 IV. 37 V. 38 38 References 38 SUMMARY: Characterizing plant responses to past, present and future changes in atmospheric carbon dioxide concentration ([CO 2 ]) is critical for understanding and predicting the consequences of global change over evolutionary and ecological timescales. Previous CO 2 studies have provided great insights into the effects of rising [CO 2 ] on leaf-level gas exchange, carbohydrate dynamics and plant growth. However, scaling CO 2 effects across biological levels, especially in field settings, has proved challenging. Moreover, many questions remain about the fundamental molecular mechanisms driving plant responses to [CO 2 ] and other global change factors. Here we discuss three examples of topics in which significant questions in CO 2 research remain unresolved: (1) mechanisms of CO 2 effects on plant developmental transitions; (2) implications of rising [CO 2 ] for integrated plant-water dynamics and drought tolerance; and (3) CO 2 effects on symbiotic interactions and eco-evolutionary feedbacks. Addressing these and other key questions in CO 2 research will require collaborations across scientific disciplines and new approaches that link molecular mechanisms to complex physiological and ecological interactions across spatiotemporal scales. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
ERIC Educational Resources Information Center
Odom, Arthur Louis; Bell, Clare V.
2011-01-01
Teachers as well as students often have difficulty formulating good research questions because not all questions lend themselves to scientific investigation. The following is a guide for high-school and college life-science teachers to help students define question types central to biological field studies. The mayfly nymph was selected as the…
Improving Chinese Junior High School Students' Ability to Ask Critical Questions
ERIC Educational Resources Information Center
Huang, Xiao; Lederman, Norman G.; Cai, Chaojing
2017-01-01
The present study explores ways to enhance students' question-asking ability (i.e., the ability to ask critical questions), which is the premise of scientific inquiry and a precondition for effective science teaching. A survey of junior high school students in Zhejiang province in China showed that students' questioning behavior was not well…
Questions Asked by Primary Student Teachers about Observations of a Science Demonstration
ERIC Educational Resources Information Center
Ahtee, Maija; Juuti, Kalle; Lavonen, Jari; Suomela, Liisa
2011-01-01
Teacher questioning has a central role in guiding pupils to learn to make scientific observations and inferences. We asked 110 primary student teachers to write down what kind of questions they would ask their pupils about a demonstration. Almost half of the student teachers posed questions that were either inappropriate or presupposed that the…
Active learning machine learns to create new quantum experiments.
Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J
2018-02-06
How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.
Artificial Intelligence in Medical Practice: The Question to the Answer?
Miller, D Douglas; Brown, Eric W
2018-02-01
Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nobre, José; Cabral, Tiago; Cabral, João; Gomes, Ana
2014-05-01
The Complex pegmatite - apelitic of Cabecinha corresponds to an isolated ridge that reaches 933 meters, located in the middle zone of transition between the Hesperian massif and the Cova da Beira being located in the NE central part of Portugal, more specifically in the Mountainous region of the province of Beira Alta, council of Sabugal. This complex lies embedded in porphyritic granites with terms of switching to a medium-grained granite rich in sodium feldspars in which they are muscovite granite intrusions. The lodes have pegmatites with NE-SW orientation, presenting phases of predominantly quartz crystallization with multiple parageneses. The inclusions observed are veins filonianian secondary. Some veins have structural discontinuity due to further their training tectonics. The apelitico material is basic in nature engaging in descontinuiddes of pegmatite material, showing no preferred orientation. The petrological characteristics of the area in question provide the appearance of motivating exotic landforms of scientific interest. These landforms, over time, have motivated the popular level the emergence of various myths, thus contributing to the enrichment of the local cultural heritage. This study proceeded to the geological and geomorphological mapping an area of about 6945,350 m2 with a maximum length of 182 m. The huge patent mineralogical, petrological and geomorphological level geodiversity, allied to the structural complexity and associated cultural heritage, allow geoconservation strategies and recovery, using new multimedia technologies including use of QR codes and 3D. All this geological framework and environment becomes an asset for the scientific, educational and economic development of the region. On the other hand, it has the vital Importance in the context of the strategy of forming a geological park, in the point of view of tourism, research and interpretation.
A Scientific Rationale for Mobility in Planetary Environments
NASA Astrophysics Data System (ADS)
1999-01-01
For the last several decades, the COMmittee on Planetary and Lunar EXploration (COMPLEX) has advocated a systematic approach to exploration of the solar system; that is, the information and understanding resulting from one mission provide the scientific foundations that motivate subsequent, more elaborate investigations. COMPLEX's 1994 report, An Integrated Strategy for the Planetary Sciences: 1995-2010,1 advocated an approach to planetary studies emphasizing "hypothesizing and comprehending" rather than "cataloging and categorizing." More recently, NASA reports, including The Space Science Enterprise Strategic Plan' and, in particular, Mission to the Solar System: Exploration and Discovery-A Mission and Technology Roadmap, 3 have outlined comprehensive plans for planetary exploration during the next several decades. The missions outlined in these plans are both generally consistent with the priorities outlined in the Integrated Strategy and other NRC reports,4,5 and are replete with examples of devices embodying some degree of mobility in the form of rovers, robotic arms, and the like. Because the change in focus of planetary studies called for in the Integrated Strategy appears to require an evolutionary change in the technical means by which solar system exploration missions are conducted, the Space Studies Board charged COMPLEX to review the science that can be uniquely addressed by mobility in planetary environments. In particular, COMPLEX was asked to address the following questions: 1. What are the practical methods for achieving mobility? 2. For surface missions, what are the associated needs for sample acquisition? 3. What is the state of technology for planetary mobility in the United States and elsewhere, and what are the key requirements for technology development? 4. What terrestrial field demonstrations are required prior to spaceflight missions?
NASA Technical Reports Server (NTRS)
Anderson, James G.; DeSouza-Machado, Sergio; Strow, L. Larrabee
2002-01-01
Research supported under this grant was aimed at attacking unanswered scientific questions that lie at the intersection of radiation, dynamics, chemistry, and climate. Considerable emphasis was placed on scientific collaboration and the innovative development of instruments required to address these issues. Specific questions include water vapor distribution in the tropical troposphere, atmospheric radiation, thin cirrus clouds, stratosphere-troposphere exchange, and correlative science with satellite observations.
Rigour in quantitative research.
Claydon, Leica Sarah
2015-07-22
This article which forms part of the research series addresses scientific rigour in quantitative research. It explores the basis and use of quantitative research and the nature of scientific rigour. It examines how the reader may determine whether quantitative research results are accurate, the questions that should be asked to determine accuracy and the checklists that may be used in this process. Quantitative research has advantages in nursing, since it can provide numerical data to help answer questions encountered in everyday practice.
da Silva, Luiz Vicente Ribeiro Ferreira; Ferreira, Flavia de Aguiar; Reis, Francisco José Caldeira; de Britto, Murilo Carlos Amorim; Levy, Carlos Emilio; Clark, Otavio; Ribeiro, José Dirceu
2013-01-01
Evidence-based techniques have been increasingly used in the creation of clinical guidelines and the development of recommendations for medical practice. The use of levels of evidence allows the reader to identify the quality of scientific information that supports the recommendations made by experts. The objective of this review was to address current concepts related to the clinical impact, diagnosis, and treatment of Pseudomonas aeruginosa infections in patients with cystic fibrosis. For the preparation of this review, the authors defined a group of questions that would be answered in accordance with the principles of PICO–an acronym based on questions regarding the Patients of interest, Intervention being studied, Comparison of the intervention, and Outcome of interest. For each question, a structured review of the literature was performed using the Medline database in order to identify the studies with the methodological design most appropriate to answering the question. The questions were designed so that each of the authors could write a response. A first draft was prepared and discussed by the group. Recommendations were then made on the basis of the level of scientific evidence, in accordance with the classification system devised by the Oxford Centre for Evidence-Based Medicine, as well as the level of agreement among the members of the group. PMID:24068273
Music cognition and the cognitive sciences.
Pearce, Marcus; Rohrmeier, Martin
2012-10-01
Why should music be of interest to cognitive scientists, and what role does it play in human cognition? We review three factors that make music an important topic for cognitive scientific research. First, music is a universal human trait fulfilling crucial roles in everyday life. Second, music has an important part to play in ontogenetic development and human evolution. Third, appreciating and producing music simultaneously engage many complex perceptual, cognitive, and emotional processes, rendering music an ideal object for studying the mind. We propose an integrated status for music cognition in the Cognitive Sciences and conclude by reviewing challenges and big questions in the field and the way in which these reflect recent developments. Copyright © 2012 Cognitive Science Society, Inc.
Application of imaging spectrometer data to the Kings-Kaweah ophiolite melange
NASA Technical Reports Server (NTRS)
Mustard, John F.; Pieters, Carle M.
1988-01-01
The Kings-Kaweah ophiolite melange in east-central California is thought to be an obducted oceanic fracture zone and provides the rare opportunity to examine in detail the complex nature of this type of terrain. It is anticipated that the distribution and abundance of components in the melange can be used to determine the relative importance of geologic processes responsible for the formation of fracture zone crust. Laboratory reflectance spectra of field samples indicate that the melange components have distinct, diagnostic absorptions at visible to near-infrared wavelengths. The spatial and spectral resolution of AVIRIS is ideally suited for addressing important scientific questions concerning the Kings-Kaweah ophiolite melange and fracture zones in general.
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.
1993-01-01
The use of the CONVEX computers that are an integral part of the Supercomputing Network Subsystems (SNS) of the Central Scientific Computing Complex of LaRC is briefly described. Features of the CONVEX computers that are significantly different than the CRAY supercomputers are covered, including: FORTRAN, C, architecture of the CONVEX computers, the CONVEX environment, batch job submittal, debugging, performance analysis, utilities unique to CONVEX, and documentation. This revision reflects the addition of the Applications Compiler and X-based debugger, CXdb. The document id intended for all CONVEX users as a ready reference to frequently asked questions and to more detailed information contained with the vendor manuals. It is appropriate for both the novice and the experienced user.
Rossell, David
2016-01-01
Big Data brings unprecedented power to address scientific, economic and societal issues, but also amplifies the possibility of certain pitfalls. These include using purely data-driven approaches that disregard understanding the phenomenon under study, aiming at a dynamically moving target, ignoring critical data collection issues, summarizing or preprocessing the data inadequately and mistaking noise for signal. We review some success stories and illustrate how statistical principles can help obtain more reliable information from data. We also touch upon current challenges that require active methodological research, such as strategies for efficient computation, integration of heterogeneous data, extending the underlying theory to increasingly complex questions and, perhaps most importantly, training a new generation of scientists to develop and deploy these strategies. PMID:27722040
Ethics Workshop Sheds Light on Gray Areas
NASA Astrophysics Data System (ADS)
Townsend, Randy; Williams, Billy
2014-02-01
AGU's Scientific Integrity and Professional Ethics Workshop at the 2013 Fall Meeting, held on 9 December, highlighted the courageous conversations necessary to navigate through questions of scientific integrity and professional ethics. Participants debated real-world scenarios surrounding authorship, data management, plagiarism, and conflicts of interest. These discussions emphasized the importance of preserving scientific integrity and the responsibility of each member to uphold the standards of scientific conduct.
ERIC Educational Resources Information Center
Craddock, Jaih B.
2017-01-01
The aim of this article is to address some of the questions Dr. Paula S. Nurius presents in her article, "Innovation and Emerging Scientific Careers: Is Social Work Prepared to Compete in Today?s Scientific Marketplace?" Specifically, this article will focus on what we can do to better prepare our emerging research scholars to be…
NASA Astrophysics Data System (ADS)
McQuaide, Glenn G.
2006-12-01
Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual enrichment. Conceptual enrichment occurs through addition of new knowledge, and then examining prior knowledge through the perspective of this new knowledge. In the field of science, enrichment reinforces complex concepts when multiple, convergent lines of supporting evidences point to the same rational scientific conclusion.
75 FR 53271 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... structure of biological macromolecules, which will be observed under cryogenic conditions. Justification for...
77 FR 25960 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... imaging biological and other materials samples. Justification for Duty-Free Entry: There are no...
Rubella: Questions and Answers
... of special precautions. Does the MMR vaccine cause autism? There is no scientific evidence that measles, MMR, ... other vaccine causes or increases the risk of autism. The question about a possible link between MMR ...
Interview Questions with Bentham Scientific
NASA Technical Reports Server (NTRS)
Mather, John C.
2013-01-01
John Mather answers questions for an interview for the Bentham Science Newsletter. He covers topics ranging from his childhood, his professional career and his thoughts on research, technology and today's scientists and engineers.
NASA Astrophysics Data System (ADS)
Zydney, Janet Mannheimer; Grincewicz, Amy
2011-12-01
This study investigated the connection between the use of video cases within a multimedia learning environment and students' inquiry into a socio-scientific problem. The software program was designed based on principles from the Cognitive Flexibility Theory (CFT) and incorporated video cases of experts with differing perspectives. Seventy-nine 10th-grade students in an urban high school participated in this study. After watching the expert videos, students generated investigative questions and reflected on how their ideas changed over time. This study found a significant correlation between the time students spent watching the expert videos and their ability to consider the problem's perspectives as well as their ability to integrate these perspectives within their questions. Moreover, problem-solving ability and time watching the videos were detected as possible influential predictors of students' consideration of the problem's perspectives within their questions. Although students watched all video cases in equivalent ways, one of the video cases, which incorporated multiple perspectives as opposed to just presenting one perspective, appeared most influential in helping students integrate the various perspectives into their own thinking. A qualitative analysis of students' reflections indicated that many students appreciated the complexity, authenticity, and ethical dimensions of the problem. It also revealed that while the majority of students thought critically about the problem, some students still had naïve or simplistic ways of thinking. This study provided some preliminary evidence that offering students the opportunity to watch videos of different perspectives may influence them to think in alternative ways about a complex problem.
Towards a study of synoptic-scale variability of the California current system
NASA Technical Reports Server (NTRS)
1985-01-01
A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.
Computational chemistry in pharmaceutical research: at the crossroads.
Bajorath, Jürgen
2012-01-01
Computational approaches are an integral part of pharmaceutical research. However, there are many of unsolved key questions that limit the scientific progress in the still evolving computational field and its impact on drug discovery. Importantly, a number of these questions are not new but date back many years. Hence, it might be difficult to conclusively answer them in the foreseeable future. Moreover, the computational field as a whole is characterized by a high degree of heterogeneity and so is, unfortunately, the quality of its scientific output. In light of this situation, it is proposed that changes in scientific standards and culture should be seriously considered now in order to lay a foundation for future progress in computational research.
NASA Astrophysics Data System (ADS)
Bezruchko, Konstantin; Davidov, Albert
2009-01-01
In the given article scientific and technical complex for modeling, researching and testing of rocket-space vehicles' power installations which was created in Power Source Laboratory of National Aerospace University "KhAI" is described. This scientific and technical complex gives the opportunity to replace the full-sized tests on model tests and to reduce financial and temporary inputs at modeling, researching and testing of rocket-space vehicles' power installations. Using the given complex it is possible to solve the problems of designing and researching of rocket-space vehicles' power installations efficiently, and also to provide experimental researches of physical processes and tests of solar and chemical batteries of rocket-space complexes and space vehicles. Scientific and technical complex also allows providing accelerated tests, diagnostics, life-time control and restoring of chemical accumulators for rocket-space vehicles' power supply systems.
Arsenic-Based Life: An Active Learning Assignment for Teaching Scientific Discourse
ERIC Educational Resources Information Center
Johnson, R. Jeremy
2017-01-01
Among recent high profile scientific debates was the proposal that life could exist with arsenic in place of phosphorous in its nucleic acids and other biomolecules. Soon after its initial publication, scientists across diverse disciplines began to question this extraordinary claim. Using the original article, its claims, its scientific support,…
ERIC Educational Resources Information Center
Pramling, Niklas; Saljo, Roger
2007-01-01
The article reports an empirical study of how authors in popular science magazines attempt to render scientific knowledge intelligible to wide audiences. In bridging the two domains of "popular" and "scientific" knowledge, respectively, metaphor becomes central. We ask the empirical question of what metaphors are used when communicating about…
A Comparative Study on Scientific Misconduct between Korean and Japanese Science Gifted Students
ERIC Educational Resources Information Center
Lee, Jiwon; Kim, Jung Bog; Isozaki, Tetsuo
2017-01-01
The scientific integrity, perceptions of scientific misconduct, and students' needs in the research ethics education of Korean and Japanese gifted students were analyzed to address three questions. First, how well do students practice research ethics in their research? Second, how do students perceive scientists' misconduct? Third, do students…
ERIC Educational Resources Information Center
Fusulier, Bernard; Barbier, Pascal; Dubois-Shaik, Farah
2017-01-01
Men and women remain in unequal positions in coping with their scientific and academic careers. Several of the mechanisms dissuading or preventing women from pursuing scientific careers have already been described in the literature: women getting stuck with paltry, undervalued tasks, thus manufacturing a "sticky floor"; structuring the…
Public Understanding of Climate Change in the United States
ERIC Educational Resources Information Center
Weber, Elke U.; Stern, Paul C.
2011-01-01
This article considers scientific and public understandings of climate change and addresses the following question: Why is it that while scientific evidence has accumulated to document global climate change and scientific opinion has solidified about its existence and causes, U.S. public opinion has not and has instead become more polarized? Our…
ERIC Educational Resources Information Center
Lilienfeld, Scott O.; Ammirati, Rachel; David, Michal
2012-01-01
Like many domains of professional psychology, school psychology continues to struggle with the problem of distinguishing scientific from pseudoscientific and otherwise questionable clinical practices. We review evidence for the scientist-practitioner gap in school psychology and provide a user-friendly primer on science and scientific thinking for…
NASA Astrophysics Data System (ADS)
Nurlaila, L.; Sriyati, S.; Riandi
2017-02-01
The purpose of this research is to describe the profile of misconceptions and scientific argumentation ability using Diagnostic Question Cluster (DQCs) of molecular genetics concept. This research use descriptive research method and biology education students as a research subject. The Instrument that used in this research are DQCs, sheets interviews, observations, and field notes. The DQCs tested by writing and oral that used to analyze misconceptions and scientific argumentation ability. Sheets interviews, observations and field notes, are used to analyze the possible factors causing misconceptions and scientific argumentation ability. The results showed that misconception of molecular genetics are: DNA (23.75%), genes (18.75%) of chromosomes (15%) and protein synthesis (5.5%). The pattern of the highest misconceptions owned Misconception-Understand Partial. The average scientific argumentation ability is 55% and still categorized warrant (W). The pattern of the scientific argumentation abilities formed is level 2 to level 2 that consists of the arguments in the form of a claim with a counter claim that accompanied by data, collateral (warrant) or support (backing) but does not contain a disclaimer (rebutal).
Enhancing Scientific Communication Through an Undergraduate Biology and Journalism Partnership.
Schwingel, Johanna M
2018-01-01
Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk. This was followed by a peer interview with a student in a journalism course, in which the biology students needed to comprehend the article to effectively communicate it to the journalism students, and the journalism students needed to ask questions about an unfamiliar, technical topic. Next, the biology students wrote a summary of their article for a scientific audience. Finally, the students presented a figure from the article to their peers in a scientific, Bio-Minute format. The biology-journalism partnership allowed biology students to develop their ability to communicate scientific information and journalism students their ability to ask appropriate questions and establish a base of knowledge from which to write.
Inconclusive evidence of Juniperus virginiana recovery following sulfur pollution reductions
Paul G. Schaberg; Gary J. Hawley; Shelly A. Rayback; Joshua M. Halman; Alexandra M. Kosiba
2014-01-01
Thomas et al. (1) address a question of great scientific interest: have pollution reductions mandated by the Clean Air Act improved forest health and productivity? Although answers to this question are of great importance, various aspects of this work limit its ability to address this question.
Complex dynamics of our economic life on different scales: insights from search engine query data.
Preis, Tobias; Reith, Daniel; Stanley, H Eugene
2010-12-28
Search engine query data deliver insight into the behaviour of individuals who are the smallest possible scale of our economic life. Individuals are submitting several hundred million search engine queries around the world each day. We study weekly search volume data for various search terms from 2004 to 2010 that are offered by the search engine Google for scientific use, providing information about our economic life on an aggregated collective level. We ask the question whether there is a link between search volume data and financial market fluctuations on a weekly time scale. Both collective 'swarm intelligence' of Internet users and the group of financial market participants can be regarded as a complex system of many interacting subunits that react quickly to external changes. We find clear evidence that weekly transaction volumes of S&P 500 companies are correlated with weekly search volume of corresponding company names. Furthermore, we apply a recently introduced method for quantifying complex correlations in time series with which we find a clear tendency that search volume time series and transaction volume time series show recurring patterns.
Mapping ethical and social aspects of cancer biomarkers.
Blanchard, Anne
2016-12-25
Cancer biomarkers represent a revolutionary advance toward personalised cancer treatment, promising therapies that are tailored to subgroups of patients sharing similar generic traits. Notwithstanding the optimism driving this development, biomarkers also present an array of social and ethical questions, as witnessed in sporadic debates across different literatures. This review article seeks to consolidate these debates in a mapping of the complex terrain of ethical and social aspects of cancer biomarker research. This mapping was undertaken from the vantage point offered by a working cancer biomarker research centre called the Centre for Cancer Biomarkers (CCBIO) in Norway, according to a dialectic move between the literature and discussions with researchers and practitioners in the laboratory. Starting in the lab, we found that, with the exception of some classical bioethical dilemmas, researchers regarded many issues relative to the ethos of the biomarker community; how the complexity and uncertainty characterising biomarker research influence their scientific norms of quality. Such challenges to the ethos of cancer research remain largely implicit, outside the scope of formal bioethical enquiry, yet form the basis for other social and ethical issues. Indeed, looking out from the lab we see how questions of complexity, uncertainty and quality contribute to debates around social and global justice; undermining policies for the prioritisation of care, framing the stratification of those patients worthy of treatment, and limiting global access to this highly sophisticated research. We go on to discuss biomarker research within the culturally-constructed 'war on cancer' and highlight an important tension between the expectations of 'magic bullets' and the complexity and uncertainty faced in the lab. We conclude by arguing, with researchers in the CCBIO, for greater reflexivity and humility in cancer biomarker research and policy. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
Solar-Terrestrial Science Strategy Workshop
NASA Technical Reports Server (NTRS)
Banks, Peter M. (Editor); Roberts, William T. (Editor); Kropp, Jack (Editor)
1989-01-01
The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program.
The importance of scientific literacy to OCRWM's mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, G.P.
1990-01-01
The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (CRWM) has the unique mission of finding a permanent solution to the nation's high-level radioactive waste management problems. This paper explores a vital question: will OCRWM have sufficient scientific and technical resources as well as a sufficient level of public support to carry out its mission An affirmative answer to this question will require that adequate numbers of science and engineering students enter the field of radioactive waste management and that overall scientific literacy also be enhanced. This paper outlines current activities and programs within DOE and OCRWMmore » to increase scientific literacy and to recruit and develop scientists and engineers. While this paper offers only a summary inspection of the issues surrounding the solution of developing and maintaining the human technical capabilities to carry forth OCRWM's mission, it is meant to initiate a continuing examination by the American Nuclear Society, DOE, and professional and technical societies of fundamental scientific education issues.« less
NASA Astrophysics Data System (ADS)
Haefner, Leigh Ann; Zembal-Saul, Carla
This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.
Integrated Science Assessment (ISA) for Carbon Monoxide ...
EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Carbon Monoxide (CO). This report is EPA’s latest evaluation of the scientific literature on the potential human health and welfare effects associated with ambient exposures to CO. The development of this document is part of the Agency's periodic review of the national ambient air quality standards (NAAQS) for CO. The recently completed CO ISA and supplementary annexes, in conjunction with additional technical and policy assessments developed by EPA’s Office of Air and Radiation, will provide the scientific basis to inform EPA decisions related to the review of the current CO NAAQS. The integrated Plan for Review of the National Ambient Air Quality Standards for Carbon Monoxide (U.S. EPA, 2008, 193995) identifies key policy-relevant questions that provide a framework for this assessment of the scientific evidence. These questions frame the entire review of the NAAQS for CO and thus are informed by both science and policy considerations. The ISA organizes, presents, and integrates the scientific evidence which is considered along with findings from risk analyses and policy considerations to help the U.S. Environmental Protection Agency (EPA) address these questions during the NAAQS review.
Ishiwa, Koto; Sanjosé, Vicente; Otero, José
2013-09-01
A number of studies report that few questions are asked in classrooms and that many of them are shallow questions. This study investigates the way in which reading goals determine questioning on scientific texts. Reading goals were manipulated through two different tasks: reading for understanding versus reading to solve a problem. A total of 183 university students. In the first and third questioning experiments, the participants read two short texts. Students in one condition were instructed to understand the texts, whereas in the alternative condition they had to read texts to solve a problem. Students were instructed to write down any questions they might have about the texts. The questions were categorized according to the type of underlying obstacle: associative, explanatory, or predictive. The second experiment used a think-aloud methodology to identify the mental representations generated by the students. The two questioning experiments show that the questions asked depend on the reading goals. Significantly more explanation questions were asked in the understanding condition than in the problem-solving condition. Also, the two conditions were found to have a different influence on the generation of association and explanation questions. Very few prediction questions were asked in either condition. The think-aloud experiment revealed that the mental representations attempted by readers under the two conditions were indeed different. In conclusion, the experiments showed that, given a certain textual input, readers' questions depend on the reading goals associated with tasks. © 2012 The British Psychological Society.
Environmental Biosciences Program Quarterly Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2007-07-31
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
Environmental Biosciences Program Report for Year 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2007-04-30
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
Environmental Biosciences Report for Year 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2007-10-31
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
Environmental Biosciences Quarterly Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence C. Mohr, M.D.
2007-01-31
In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. Themore » intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.« less
How research-prioritization exercises affect conservation policy.
Rudd, Murray A
2011-10-01
Conservation scientists are concerned about the apparent lack of impact their research is having on policy. By better aligning research with policy needs, conservation science might become more relevant to policy and increase its real-world salience in the conservation of biological diversity. Consequently, some conservation scientists have embarked on a variety of exercises to identify research questions that, if answered, would provide the evidence base with which to develop and implement effective conservation policies. I synthesized two existing approaches to conceptualizing research impacts. One widely used approach classifies the impacts of research as conceptual, instrumental, and symbolic. Conceptual impacts occur when policy makers are sensitized to new issues and change their beliefs or thinking. Instrumental impacts arise when scientific research has a direct effect on policy decisions. The use of scientific research results to support established policy positions are symbolic impacts. The second approach classifies research issues according to whether scientific knowledge is developed fully and whether the policy issue has been articulated clearly. I believe exercises to identify important research questions have objectives of increasing the clarity of policy issues while strengthening science-policy interactions. This may facilitate the transmission of scientific knowledge to policy makers and, potentially, accelerate the development and implementation of effective conservation policy. Other, similar types of exercises might also be useful. For example, identification of visionary science questions independent of current policy needs, prioritization of best practices for transferring scientific knowledge to policy makers, and identification of questions about human values and their role in political processes could all help advance real-world conservation science. It is crucial for conservation scientists to understand the wide variety of ways in which their research can affect policy and be improved systematically. ©2011 Society for Conservation Biology.
Equivalence of complex drug products: advances in and challenges for current regulatory frameworks.
Hussaarts, Leonie; Mühlebach, Stefan; Shah, Vinod P; McNeil, Scott; Borchard, Gerrit; Flühmann, Beat; Weinstein, Vera; Neervannan, Sesha; Griffiths, Elwyn; Jiang, Wenlei; Wolff-Holz, Elena; Crommelin, Daan J A; de Vlieger, Jon S B
2017-11-01
Biotechnology and nanotechnology provide a growing number of innovator-driven complex drug products and their copy versions. Biologics exemplify one category of complex drugs, but there are also nonbiological complex drug products, including many nanomedicines, such as iron-carbohydrate complexes, drug-carrying liposomes or emulsions, and glatiramoids. In this white paper, which stems from a 1-day conference at the New York Academy of Sciences, we discuss regulatory frameworks in use worldwide (e.g., the U.S. Food and Drug Administration, the European Medicines Agency, the World Health Organization) to approve these complex drug products and their follow-on versions. One of the key questions remains how to assess equivalence of these complex products. We identify a number of points for which consensus was found among the stakeholders who were present: scientists from innovator and generic/follow-on companies, academia, and regulatory bodies from different parts of the world. A number of topics requiring follow-up were identified: (1) assessment of critical attributes to establish equivalence for follow-on versions, (2) the need to publish scientific findings in the public domain to further progress in the field, (3) the necessity to develop worldwide consensus regarding nomenclature and labeling of these complex products, and (4) regulatory actions when substandard complex drug products are identified. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
Students' conceptions of evidence during a university introductory forensic science course
NASA Astrophysics Data System (ADS)
Yeshion, Theodore Elliot
Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are offered for undergraduate science teachers, science teaching programs, and future research.
Integrated Science Assessment (ISA) for Sulfur Oxides ...
EPA announced the availability of the external review draft of the Integrated Science Assessment for Sulfur Oxides– Health Criteria for public comment and independent peer review in a November 24, 2015 Federal Register Notice. This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The Integrated Plan for Review of the Primary NAAQS for SOx U.S. 2: EPA (2007) identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions in completing the NAAQS review.
Benestan, Laura Marilyn; Ferchaud, Anne-Laure; Hohenlohe, Paul A; Garner, Brittany A; Naylor, Gavin J P; Baums, Iliana Brigitta; Schwartz, Michael K; Kelley, Joanna L; Luikart, Gordon
2016-07-01
The boom of massive parallel sequencing (MPS) technology and its applications in conservation of natural and managed populations brings new opportunities and challenges to meet the scientific questions that can be addressed. Genomic conservation offers a wide range of approaches and analytical techniques, with their respective strengths and weaknesses that rely on several implicit assumptions. However, finding the most suitable approaches and analysis regarding our scientific question are often difficult and time-consuming. To address this gap, a recent workshop entitled 'ConGen 2015' was held at Montana University in order to bring together the knowledge accumulated in this field and to provide training in conceptual and practical aspects of data analysis applied to the field of conservation and evolutionary genomics. Here, we summarize the expertise yield by each instructor that has led us to consider the importance of keeping in mind the scientific question from sampling to management practices along with the selection of appropriate genomics tools and bioinformatics challenges. © 2016 John Wiley & Sons Ltd.
Barnfield, Sarah; Pitts, Alison Clara; Kalaria, Raj; Allan, Louise; Tullo, Ellen
2017-01-01
Why did we do this study? It can be difficult for scientists to communicate their research findings to the public. This is partly due to the complexity of translating scientific language into words that the public understand. Further, it may be hard for the public to find out about and locate information about research studies. We aimed to adapt some scientific articles about the links between dementia and stroke into lay summaries to be displayed online for the general public. How did we do it? We collaborated with five people from a volunteer organisation, VOICENorth. They took part in two group discussions about studies reporting on the link between dementia and stroke, and selected four studies to translate into lay summaries and display on a website. We discussed the layout and language of the summaries and made adaptations to make them more understandable to the general public. What did we find? We were able to work with members of the public to translate research findings into lay summaries suitable for a general audience. We made changes to language and layout including the use of 'question and answer' style layouts, the addition of a reference list of scientific terms, and removing certain words. What does this mean? Working with members of the public is a realistic way to create resources that improve the accessibility of research findings to the wider public. Background Scientific research is often poorly understood by the general public and difficult for them to access. This presents a major barrier to disseminating and translating research findings. Stroke and dementia are both major public health issues, and research has shown lifestyle measures help to prevent them. This project aimed to select a series of studies from the Newcastle Cognitive Function after Stroke cohort (COGFAST) and create lay summaries comprehensible and accessible to the public. Methods We used a focus group format to collaborate with five members of the public to review COGFAST studies, prioritise those of most interest to the wider public, and modify the language and layout of the selected lay summaries. Focus groups were audio-taped and the team used the data to make iterative amendments, as suggested by members of the public, to the summaries and to a research website. We calculated the Flesch reading ease and Flesch-Kincaid grade level for each summary before and after the changes were made. Results In total, we worked with five members of the public in two focus groups to examine draft lay summaries, created by researchers, relating to eight COGFAST studies. Members of the public prioritised four COGFAST lay summaries according to the importance of the topic to the general public. We made a series of revisions to the summaries including the use of 'question and answer' style layouts, the addition of a glossary, and the exclusion of scientific jargon. Group discussion highlighted that lay summaries should be engaging, concise and comprehensible. We incorporated suggestions from members of the public into the design of a study website to display the summaries. The application of existing quantitative tools to estimate readability resulted in an apparently paradoxical increase in complexity of the lay summaries following the changes made. Conclusion This study supports previous literature demonstrating challenges in creating generic guidelines for researchers to create lay summaries. Existing quantitative metrics to assess readability may be inappropriate for assessing scientific lay summaries. We have shown it is feasible and successful to involve members of the public to create lay summaries to communicate the findings of complex scientific research. Trial registration Not applicable to the lay summary project.
75 FR 23669 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... invite comments on the question of whether instruments of equivalent scientific value, for the purposes... biological interactions at the nano scale. Justification for Duty-Free Entry: There are no instruments of the...
To appreciate variation between scientists: A perspective for seeing science's vitality
NASA Astrophysics Data System (ADS)
Wong, E. David
2002-05-01
At the heart of theoretical and practical ideas about science education is an image of scientific work. This image draws attention to particular features of scientific work, which then guides scholarship and pedagogy in science education. In the field of science education, much discussion in this vein focuses on the question, What is the nature of science? Most images of science found in education, psychology, and philosophy emerge from conceptual and methodological perspectives that emphasize norms, conventions, and broad trends. Some groups are motivated to distinguish science from other activities while some groups work in the opposite direction and blur the lines between science and others ways of knowing. Underlying both perspectives is an implicit focus on general qualities common to groups or subgroups (e.g. believing that ideas are subject to change, explanations demand evidence, science is a complex social activities, etc.). I propose that the vital qualities of science are best illuminated by just the opposite process: by appreciating the uncommon, rather than common, features. By attending to individual variation, we are more likely to understand what makes science a creative, motivating, and deeply personal enterprise. In addition, appreciating these variations reveals judgment, creativity, adaptation - the hallmark of scientific work. Implications of this perspective for science education are discussed.
Artists Make the Invisible VIsible
NASA Astrophysics Data System (ADS)
Burko, D.
2013-12-01
As artists cross academic boundaries with increasing frequency to investigate, observe, and translate our environment and its complex processes - scientific institutions and museums are bringing this new activity to the attention of the public. The Chemical Heritage Foundation (CHF) is one organization pioneering this effort with its yearlong art exhibition Sensing Change featuring eight nationally recognized artists. CHF is using the exhibition as a framework within which to question the artists' motivations for creating works dedicated to local and global environmental change. They also explore the tools each artists uses and the artists' efforts to engage the public. In addition to the exhibition, CHF is scheduling "related programming and scholarship that explore daily shifts in our environment and long-term climate change; the visualization of data and largely invisible natural processes; and the potential role of art in science communication.' To that end they have developed an interactive web site that features the following: 1) video interviews with each of the eight artists 2) oral histories from a broad selection of atmospheric scientists on our ever evolving understanding of air 3) histories of the scientific instruments in the CHF collection that measure environmental and atmospheric data My presentation will review these elements and serve as a template to hopefully inspire the adaptation of this model by other scientific and educational bodies.
NASA Astrophysics Data System (ADS)
Michalsky, Tova
2013-07-01
This study investigated the effectiveness of cognitive-metacognitive versus motivational components of the IMPROVE self-regulatory model, used while reading scientific texts, for 10th graders' scientific literacy and self-regulated learning (SRL). Three treatment groups (N = 198) received one type of self-addressable questions while reading scientific texts: cognitive-metacognitive (CogMet), motivational (Mot), or combined (CogMetMot). Control group received no self-addressed questions (noSRL). One measure assessed scientific literacy, and two measures assessed SRL: (a) as an aptitude-pre/post questionnaires assessing self-perceived SRL, and (b) as an event-audiotaping participants' thinking-aloud SRL behaviors in real-time learning experiences and data coding illustrating SRL changes. Findings indicated that treatment groups significantly outperformed the non-treatment group. No differences emerged between CogMet and Mot, whereas fully combined SRL support (CogMetMot) was most effective. Theoretical and practical implications of this preliminary study are discussed.
Exobiology and Future Mars Missions
NASA Technical Reports Server (NTRS)
Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)
1989-01-01
Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.
Frequently Asked Questions about Cell Phones and Your Health
... Contact Us Calendar Employment Frequently Asked Questions about Cell Phones and Your Health Recommend on Facebook Tweet ... cell phones and your health. Can using a cell phone cause cancer? There is no scientific evidence ...
ERIC Educational Resources Information Center
Akyürek, Erkan; Afacan, Özlem
2018-01-01
This study was conducted to determine the problems faced by graduate students when conducting scientific research and to make suggestions for solving these problems. The research model was a case study. Semi-structured interviews were conducted with participants in the study with questions about the problems encountered during scientific research…
Science Teaching as Educational Interrogation of Scientific Research
ERIC Educational Resources Information Center
Ginev, Dimitri
2013-01-01
The main argument of this article is that science teaching based on a pedagogy of questions is to be modeled on a hermeneutic conception of scientific research as a process of the constitution of texts. This process is spelled out in terms of hermeneutic phenomenology. A text constituted by scientific practices is at once united by a hermeneutic…
Flow of Scientific and Technical Information: The Results of a Recent Major Investigation.
ERIC Educational Resources Information Center
Goodman, A. F.
Characterized were the scientific and technical information needs of 1,500 scientists and engineers from 73 companies, 8 research institutes, and 2 universities; and the flow of scientific and technical information (flow process) inherent in satisfying these needs. Interviewers asked 63 questions in the subject areas of (1) the user of scientific…
ERIC Educational Resources Information Center
Haefner, Leigh A.; Friedrichsen, Patricia Meis; Zembal-Saul, Carla
2006-01-01
The National Science Education Standards (National Research Council [NRC], 1996) call for a greater emphasis on scientific inquiry in K-12 science classes. The Inquiry Standards recommend that students be engaged with scientific questions in which they collect and interpret data, give priority to evidence to construct explanations, test those…
How would photons describe natural phenomena based upon their physical experiences?
NASA Astrophysics Data System (ADS)
Roychoudhuri, Chandrasekhar
2013-10-01
The question posed in the title represents an impossible approach to scientific investigation, but the approach is like a subjectivist. Obviously, photons cannot express their views; neither can we ask directly any scientific questions to the photons. The purpose is to draw the attention of the reader that even our strongly mathematically driven scientific enterprise is full of subjectivism when we start dissecting our thinking process. First, we frame questions in our mind to understand a natural phenomenon we have been observing. Let us not forget that framing the question determine the answer. The answers guide us to frame the foundational hypotheses to build a theory to "explain" the phenomenon under study. Our mind is a product of biological evolutionary requirements; which is further re-programmed by strong human social cultures. In other words, human constructed theories cannot spontaneously become rigorously objective, unless we consciously make them so. We need to develop a methodology of scientific thinking that will automatically force us to make repeated iterative corrections in generating questions as objectively as possible. Those questions will then guide us to re-construct the foundational hypotheses and re-frame the working theories. We are proposing that we add Interaction Process Mapping Epistemology (IPM-E) as a necessary extra thinking tool; which will complement the prevailing Measurable Data Modeling Epistemology (MDM-E). We believe that ongoing interaction processes in nature represent reality ontology. So the iterative application of IPM-E, along with MDM-E, will keep us along the route of ontological reality. We apply this prescription to reveal the universal property, Non-Interaction of Waves, which we have been neglecting for centuries. Using this property, we demonstrate that a large number of ad hoc hypotheses from Classical-, QM-, Relativity- and Astro-Physics can be easily modified to make physics more causal and understandable through common sense logics.
NASA Astrophysics Data System (ADS)
Meehan, Casey R.
Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz and Thompson, 1990) serves as the theoretical framework for this qualitative analysis in which I ask the question how do U.S. secondary school curricula and teachers deal with the disparity between the overwhelming scientific consensus and the lay-public's skepticism regarding global warming? I analyzed nine widely used social studies and science textbooks, eight sets of supplemental materials about global warming produced by a range of not-for-profit and governmental organizations, and interviewed fourteen high school teachers who had experience teaching formal lessons about global warming in their content area. Findings suggest: 1) the range of global warming content within social studies and science textbooks and supplemental curricula reflects the spectrum of conceptualizations found among members of the U.S. public; 2) global warming curricula communicate only a narrow range of strategies for dealing with global warming and its associated threats; and 3) social studies and science teachers report taking a range of stances about global warming in their classroom, but sometimes the stance they put forth to their students does not align with their personal beliefs about global warming. The findings pose a troubling conundrum. Some of the global warming curricula treat the cause of global warming--a question that is not scientifically controversial--as a question with multiple and competing "right" answers. At the same time, much of curricula position how we should address global warming--a question that is legitimately controversial--as a question with one correct answer despite there being many reasonable responses. Finally, I present the implications this conundrum has for teaching about global warming in a politically polarized atmosphere.
Fostering and Measuring General Scientific Reasoning Expertise at the Second Year Level
NASA Astrophysics Data System (ADS)
Jones, F. M.; Jellinek, M.; Bostock, M. G.
2010-12-01
Geoscience faculty members often debate about the definition and development of scientific expertise. Some will argue it emerges at the graduate level, others that novice students can develop relevant skills. The debate hinges on definitions of “expertise”, “scientific skills” and how these abilities are assessed. We present data from a second year geoscience course specifically designed to help research scientists foster generic skills associated with critical scientific thinking, presentation, and framing of scientific arguments and questions. To develop the course, key characteristics that professional scientists exhibit were identified from the literature and our experience. These are the abilities to: a) read critically; b) succinctly summarize and communicate; c) pose insightful questions; d) use and discuss models, data and their relationships; and e) work effectively as part of a team. To help with learning and assessment of these skills in students who do not yet have significant discipline-specific background, classroom practices were chosen so that students must think and act more like professional scientists. These include use of some team-based learning strategies, replacing exams with quizzes and projects, mixing team-teaching with solo-teaching, discursive rather than didactic instruction, and use of diverse topics representative of research in our Department. Specific strategies employed which enable “master geoscientists” to actively guide and assess novices as they practice desired skills are: homework involving reading, writing abstracts and posing questions for one or two articles each week, pre-post testing of model based reasoning abilities, interaction with guest scientists, and oral and poster presentations on topics chosen by students. Results of collecting data over two terms of using these general and specific strategies include: 1. Abstract writing skills improved during the first two thirds of the course, then leveled off in the last third. 2. The types of questions students posed depended on article type, and questions became more articulate during the course. Also, after adjusting pedagogy for the second year, questions were more discussion oriented rather than focusing on clarifying content of articles. Despite some precedent in the literature, defining how to assess question type and quality was found to be challenging, and we continue to investigate assessment of question posing as one measure of expertise. 3. Pre-post testing showed that students improved their abilities to recognize, distinguish and reason about relevant models, data and their relationships for each topic. 4. Survey responses showed students benefit from, and appreciate, opportunities to practice their communication and discussion skills, assess those of their peers, and work in teams. In conclusion, after working on this course for two terms, we show that second year students can measurably improve their mastery of generic scientific skills exhibited by professional geoscientists. Research continues on how these skills depend upon pedagogy and choice of topics, and how to assess them.
The Development of Paranormal Belief Scale (PBS) for Science Education in the Context of Turkey
ERIC Educational Resources Information Center
Sen, Mehmet; Yesilyurt, Ezgi
2014-01-01
Present study aims to translate and develop Paranormal Belief Questions (Rice, 2003) measuring students' non-scientific beliefs which threat science education. Original version of these questions was asked in Southern Focus Poll (1998). 17 questions about paranormal beliefs were administered to 114 university students from different departments.…
"Reading an Object": Developing Effective Scientific Inquiry Using Student Questions
ERIC Educational Resources Information Center
Hynes-Berry, Mary; Berry, Gordon
2014-01-01
We explore the power of allowing students to construct their own conceptual understanding as they "read an object" in a series of guided inquiry steps, developing their own questions about the object. Their ownership of questions increases the learner's engagement and results in more efficacious learning and meets the standards of…
Men ask more questions than women at a scientific conference
Sutherland, William J.; Johnston, Alison
2017-01-01
Gender inequity in science and academia, especially in senior positions, is a recognised problem. The reasons are poorly understood, but include the persistence of historical gender ratios, discrimination and other factors, including gender-based behavioural differences. We studied participation in a professional context by observing question-asking behaviour at a large international conference with a clear equality code of conduct that prohibited any form of discrimination. Accounting for audience gender ratio, male attendees asked 1.8 questions for each question asked by a female attendee. Amongst only younger researchers, male attendees also asked 1.8 questions per female question, suggesting the pattern cannot be attributed to the temporary problem of demographic inertia. We link our findings to the ‘chilly’ climate for women in STEM, including wider experiences of discrimination likely encountered by women throughout their education and careers. We call for a broader and coordinated approach to understanding and addressing the barriers to women and other under-represented groups. We encourage the scientific community to recognise the context in which these gender differences occur, and evaluate and develop methods to support full participation from all attendees. PMID:29036191
Men ask more questions than women at a scientific conference.
Hinsley, Amy; Sutherland, William J; Johnston, Alison
2017-01-01
Gender inequity in science and academia, especially in senior positions, is a recognised problem. The reasons are poorly understood, but include the persistence of historical gender ratios, discrimination and other factors, including gender-based behavioural differences. We studied participation in a professional context by observing question-asking behaviour at a large international conference with a clear equality code of conduct that prohibited any form of discrimination. Accounting for audience gender ratio, male attendees asked 1.8 questions for each question asked by a female attendee. Amongst only younger researchers, male attendees also asked 1.8 questions per female question, suggesting the pattern cannot be attributed to the temporary problem of demographic inertia. We link our findings to the 'chilly' climate for women in STEM, including wider experiences of discrimination likely encountered by women throughout their education and careers. We call for a broader and coordinated approach to understanding and addressing the barriers to women and other under-represented groups. We encourage the scientific community to recognise the context in which these gender differences occur, and evaluate and develop methods to support full participation from all attendees.
JPRS Report, Science & Technology, USSR: Science and Technology Policy.
1988-03-03
accordance with the Kazakhstan Regional Scientific Research Program, which is called upon to unite scientific development of a basic and applied nature...Resources for 1986-1990 and the Period to 2000." The institute is a part of the union Avtogennyye protsessy Scientific Technical Complex and the...republic Tsvetnaya metallurgiya Scientific Technical Complex and is participating in the work of the creative youth collective for the automation of
Authorship in scientific publications: analysis and recommendations.
Hess, Christian W; Brückner, Christian; Kaiser, Tony; Mauron, Alex; Wahli, Walter; Wenzel, Uwe Justus; Salathé, Michelle
2015-01-01
In 2008, a Swiss Academies of Arts and Sciences working group chaired by Professor Emilio Bossi issued a "Memorandum on scientific integrity and the handling of misconduct in the scientific context", together with a paper setting out principles and procedures concerning integrity in scientific research. In the Memorandum, unjustified claims of authorship in scientific publications are referred to as a form of scientific misconduct - a view widely shared in other countries. In the Principles and Procedures, the main criteria for legitimate authorship are specified, as well as the associated responsibilities. It is in fact not uncommon for disputes about authorship to arise with regard to publications in fields where research is generally conducted by teams rather than individuals. Such disputes may concern not only the question who is or is not to be listed as an author but also, frequently, the precise sequence of names, if the list is to reflect the various authors' roles and contributions. Subjective assessments of the contributions made by the individual members of a research group may differ substantially. As scientific collaboration - often across national boundaries - is now increasingly common, ensuring appropriate recognition of all parties is a complex matter and, where disagreements arise, it may not be easy to reach a consensus. In addition, customs have changed over the past few decades; for example, the practice of granting "honorary" authorship to an eminent researcher - formerly not unusual - is no longer considered acceptable. It should be borne in mind that the publications list has become by far the most important indicator of a researcher's scientific performance; for this reason, appropriate authorship credit has become a decisive factor in the careers of young researchers, and it needs to be managed and protected accordingly. At the international and national level, certain practices have therefore developed concerning the listing of authors and the obligations of authorship. The Scientific Integrity Committee of the Swiss Academies of Arts and Sciences has collated the relevant principles and regulations and formulated recommendations for authorship in scientific publications. These should help to prevent authorship disputes and offer guidance in the event of conflicts.
ERIC Educational Resources Information Center
Baker, Victor R.
1984-01-01
Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…
Scientific Approaches | Office of Cancer Clinical Proteomics Research
CPTAC employs two complementary scientific approaches, a "Targeting Genome to Proteome" (Targeting G2P) approach and a "Mapping Proteome to Genome" (Mapping P2G) approach, in order to address biological questions from data generated on a sample.
Krueger, Darcy A; Northrup, Hope
2013-10-01
Tuberous sclerosis complex is a genetic disorder affecting every organ system, but disease manifestations vary significantly among affected individuals. The diverse and varied presentations and progression can be life-threatening with significant impact on cost and quality of life. Current surveillance and management practices are highly variable among region and country, reflective of the fact that last consensus recommendations occurred in 1998 and an updated, comprehensive standard is lacking that incorporates the latest scientific evidence and current best clinical practices. The 2012 International Tuberous Sclerosis Complex Consensus Group, comprising 79 specialists from 14 countries, was organized into 12 separate subcommittees, each led by a clinician with advanced expertise in tuberous sclerosis complex and the relevant medical subspecialty. Each subcommittee focused on a specific disease area with important clinical management implications and was charged with formulating key clinical questions to address within its focus area, reviewing relevant literature, evaluating the strength of data, and providing a recommendation accordingly. The updated consensus recommendations for clinical surveillance and management in tuberous sclerosis complex are summarized here. The recommendations are relevant to the entire lifespan of the patient, from infancy to adulthood, including both individuals where the diagnosis is newly made as well as individuals where the diagnosis already is established. The 2012 International Tuberous Sclerosis Complex Consensus Recommendations provide an evidence-based, standardized approach for optimal clinical care provided for individuals with tuberous sclerosis complex. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
How Do You Answer the Life on Mars Question? Use Multiple Small Landers Like Beagle 2
NASA Technical Reports Server (NTRS)
Gibson, Everett K.; Pillinger, C. T.; Wright, I. P.; Hurst, S. J.; Richter, L.; Sims, M. R.
2012-01-01
To address one of the most important questions in planetary science Is there life on Mars? The scientific community must turn to less costly means of exploring the surface of the Red Planet. The United Kingdom's Beagle 2 Mars lander concept was a small meter-size lander with a scientific payload constituting a large proportion of the flown mass designed to supply answers to the question about life on Mars. A possible reason why Beagle 2 did not send any data was that it was a one-off attempt to land. As Steve Squyres said at the time: "It's difficult to land on Mars - if you want to succeed you have to send two of everything".
NASA Astrophysics Data System (ADS)
Harris, Christopher J.; Phillips, Rachel S.; Penuel, William R.
2012-11-01
Prior research has shown that orchestrating scientific discourse in classrooms is difficult and takes a great deal of effort on the part of teachers. In this study, we examined teachers' instructional moves to elicit and develop students' ideas and questions as they orchestrated discourse with their fifth grade students during a learner-centered environmental biology unit. The unit materials included features meant to support teachers in eliciting and working with students' ideas and questions as a source for student-led investigations. We present three contrasting cases of teachers to highlight evidence that shows teachers' differing strategies for eliciting students' ideas and questions, and for developing their ideas, questions and questioning skills. Results from our cross case analysis provide insight into the ways in which teachers' enactments enabled them to work with students' ideas and questions to help advance learning. Consistent with other studies, we found that teachers could readily elicit ideas and questions but experienced challenges in helping students develop them. Findings suggest a need for more specified supports, such as specific discourse strategies, to help teachers attend to student thinking. We explore implications for curricular tools and discuss a need for more examples of effective discourse moves for use by teachers in orchestrating scientific discourse.
NASA Astrophysics Data System (ADS)
Tiedeman, C. R.; Goode, D. J.; Shapiro, A. M.; Lacombe, P. J.; Chapelle, F. H.; Bradley, P. M.; Imbrigiotta, T. E.; Williams, J. H.; Curtis, G. P.; Hsieh, P. A.
2008-12-01
At the former Naval Air Warfare Center (NAWC) in West Trenton NJ, the U.S. Geological Survey, in cooperation with the U.S. Navy and under support from the Strategic Environmental Research and Development Program (SERDP), is investigating the fate, transport, and remediation of trichloroethylene (TCE) and its daughter products in dipping, fractured mudstones underlying the site. TCE concentrations in ground water are as high as ~100 mg/L. Objectives of multidisciplinary research at the NAWC include (1) understanding the physical, chemical, and microbiological processes and properties affecting the fate, transport, and removal of chlorinated solvents in fractured rocks, (2) assessing the efficiency of different remediation methods (pump and treat, natural and enhanced biodegradation), and (3) transferring the results to help remediate other contaminated fractured rock aquifers. There are numerous scientific and technical challenges to meeting these goals, including the extreme spatial variability of flow and transport properties at the NAWC and the complex distribution of contaminants, geochemical constituents, and microorganisms in fractures and the rock matrix. In addition, there are management challenges that are equally important to address in order to achieve a successful research program. These include balancing the requirements of the many parties involved at the site, including researchers, the site owner, and regulatory agencies; and ensuring that limited research funds are directed towards work that addresses the most important scientific questions as well as stakeholder concerns. Strategies for the scientific challenges at NAWC include developing a carefully planned program to characterize spatial variability in rock properties and groundwater constituents so that the data obtained are applicable to solving research questions focused on remediation. Strategies for the management challenges include fostering open lines of communication among all parties and conferring with the U.S. Environmental Protection Agency to ensure that our research is relevant to remediation at Superfund and other hazardous waste sites with chlorinated solvent contamination of fractured rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, Mark J.
2015-06-01
This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.
Experimenting with theoretical motor neuroscience.
Ajemian, Robert; Hogan, Neville
2010-11-01
Motor neuroscience is well over 100 years old, with seminal work such as G. T. Fritz and E. Hitzig's discovery of motor cortex occurring in 1870. Theoretical motor neuroscience has been ongoing for at least the last 50 years. How mature a scientific discipline is motor neuroscience? Are experimentalists and theoreticians working together productively to help the field progress? This article addresses these questions by advancing the following theses. Motor neuroscience remains at a descriptive stage due to the incredible complexity of the problem to be solved. The proliferation of models--and distinct modeling camps--stems from the absence of unifying conceptual constructs. To advance the field, theoreticians must rely more heavily on the concept of falsification by producing models that lend themselves to clear experimental testing.
NETTAB 2012 on "Integrated Bio-Search"
2014-01-01
The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement. PMID:24564635
The Scientific Creationist Challenge to the Treatment of Evolution in the Public School Curriculum.
ERIC Educational Resources Information Center
Kube-McDowell, Michael P.
The purpose of the study was to identify and analyze the scientific elements of the creationist position, and to provide information and recommendations to educators facing the question of adding creationism to the science curriculum. The claim that creationism is of equal scientific status with evolution is examined in the first part of the…
The thrill of scientific discovery and leadership with my group
Greco, Valentina
2016-01-01
My group and I feel tremendously honored to be recognized with the 2016 Early Career Life Scientist Award from the American Society for Cell Biology. In this essay I share the scientific questions that my lab has been excitedly pursuing since starting in August 2009 and the leadership behaviors we have adopted that enable our collective scientific productivity. PMID:27799490
The Scientific Method Ain't What It Used to Be
ERIC Educational Resources Information Center
Herreid, Clyde Freeman
2010-01-01
Remember the time when all you had to do was memorize these five steps: ask a question, formulate a hypothesis, perform experiment, collect data, and draw conclusions? And you received full credit for defining the scientific method. Well, those days are gone. This article discusses why the "scientific method ain't what it used to be." (Contains 2…
ERIC Educational Resources Information Center
Kim, Mijung; Roth, Wolff-Michael
2008-01-01
In this paper we argue that scientific literacy ought to be rethought in that it involves ethics as its core element. Considering the fact that science education has addressed ethical dilemmas of Science, Technology, Society and Environment (STSE) issues, it is worthwhile to question what the ethics of scientific knowledge mean in terms of their…
Scientific misconduct and science ethics: a case study based approach.
Consoli, Luca
2006-07-01
The Schön misconduct case has been widely publicized in the media and has sparked intense discussions within and outside the scientific community about general issues of science ethics. This paper analyses the Report of the official Committee charged with the investigation in order to show that what at first seems to be a quite uncontroversial case, turns out to be an accumulation of many interesting and non-trivial questions (of both ethical and philosophical interest). In particular, the paper intends to show that daily scientific practices are structurally permeated by chronic problems; this has serious consequences for how practicing scientists assess their work in general, and scientific misconduct in particular. A philosophical approach is proposed that sees scientific method and scientific ethics as inextricably interwoven. Furthermore, the paper intends to show that the definition of co-authorship that the members of the Committee use, although perhaps clear in theory, proves highly problematic in practice and raises more questions that it answers. A final plea is made for a more self-reflecting attitude of scientists as far as the moral and methodological profile of science is concerned as a key element for improving not only their scientific achievements, but also their assessment of problematic cases.
Kumar, Prashant; Thakur, Praveen K; Bansod, Baban Ks; Debnath, Sanjit K
2017-10-16
Groundwater contamination assessment is a challenging task due to inherent complex dynamisms associated with the groundwater. DRASTIC is a very widely used rapid regional tool for the assessment of vulnerability of groundwater to contamination. DRASTIC has many lacunas in the form of subjectivities associated with weights and ratings of its hydro-geological parameters, and, therefore, the accuracy of the DRASTIC-based vulnerability map is questioned. The present study demonstrates the optimisation of the DRASTIC parameters along with a scientific consideration to the anthropogenic factors causing groundwater contamination. The resulting scientific consistent weights and ratings to DRASTIC parameters assist in the development of a very precise groundwater vulnerability map highlighting different zones of different gravity of contamination. One of the most important aspects of this study is that we have considered the impact of vadose zone in a very comprehensive manner by considering every sub-surface layer from the earth surface to the occurrence of groundwater. The study area for our experiment is Fatehgarh Sahib district of Punjab which is facing several groundwater issues.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Antonellis, J.; Impey, C.; CATS
2010-01-01
Data from a twenty-year investigation into the science literacy of undergraduates (see Impey et al., this meeting) was used to explore responses to questions, derived from policy driven projects (e.g. NSF Science Indicators). Responses from almost 10,000 undergraduate students enrolled in introductory astronomy courses from 1989 to 2009 have been analyzed based on students’ responses to forced-choice and open-ended science literacy questions as well as Likert scale belief questions about science and technology. Science literacy questions were scored based on work by Miller (1998, 2004). In addition, we developed an extensive emergent coding scheme for the four open-ended science questions. Unique results as well as trends in the student data based on subgroups of codes are presented. Responses to belief questions were categorized, using theoretically derived categories, remodeled and confirmed through factor analysis, into five main categories; belief in life on other planets, faith-based beliefs, belief in unscientific phenomena, general attitude toward science and technology, and ethical considerations. Analysis revealed that demographic information explained less than 10% of the overall variance in students’ forced-answer scientific literacy scores. We present how students’ beliefs in these categories relate to their scientific literacy scores. You can help! Stop by our poster and fill out a new survey that will give us important parallel information to help us continue to analyze our valuable data set. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
Volume and Value of Big Healthcare Data.
Dinov, Ivo D
Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions.
What is psychiatry? Co-producing complexity in mental health
Pickersgill, Martyn
2012-01-01
What is psychiatry? Such a question is increasingly important to engage with in light of the development of new diagnostic frameworks that have wide-ranging and international clinical and societal implications. I suggest in this reflective essay that ‘psychiatry' is not a singular entity that enjoins consistent forms of critique along familiar axes; rather, it is a heterogeneous assemblage of interacting material and symbolic elements (some of which endure, and some of which are subject to innovation). In underscoring the diversity of psychiatry, I seek to move towards further sociological purchase on what remains a contested and influential set of discourses and practices. This approach foregrounds the relationships between scientific knowledge, biomedical institutions, social action and subjective experience; these articulations co-produce both psychiatry and each other. One corollary of this emphasis on multiplicity and incoherence within psychiatric theory, research and practice, is that critiques which elide this complexity are rendered problematic. Engagements with psychiatry are, I argue, best furthered by recognising its multifaceted nature. PMID:23226975
Foundations of translational ecology
Enquist, Carolyn A. F.; Jackson, Stephen T.; Garfin, Gregg M.; Davis, Frank W.; Gerber, Leah R.; Littell, Jeremy; Tank, Jennifer L.; Terando, Adam; Wall, Tamara U.; Halpern, Benjamin S.; Morelli, Toni L.; Hiers, J. Kevin; McNie, Elizabeth; Stephenson, Nathan L.; Williamson, Matthew A.; Woodhouse, Connie A.; Yung, Laurie; Brunson, Mark W.; Hall, Kimberly R.; Hallett, Lauren M.; Lawson, Dawn M.; Moritz, Max A.; Nydick, Koren R.; Pairis, Amber; Ray, Andrea J.; Regan, Claudia M.; Safford, Hugh D.; Schwartz, Mark W.; Shaw, M. Rebecca
2017-01-01
Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context‐specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use‐driven, actionable science. Moreover, addressing research questions that arise from on‐the‐ground management issues – as opposed to the top‐down or expert‐oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long‐term, sustained engagement between partners.
Virtual immunology: software for teaching basic immunology.
Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio
2013-01-01
As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available free of charge in Portuguese and English, which can be used by teachers and students in physiology, immunology, and cellular biology classes. We discuss the development of the initial two modules: "Organs and Lymphoid Tissues" and "Inflammation" and the use of interactive activities to provide microscopic and macroscopic understanding in immunology. Students, both graduate and undergraduate, were questioned along with university level professors about the quality of the software and intuitiveness of use, facility of navigation, and aesthetic organization using a Likert scale. An overwhelmingly satisfactory result was obtained with both students and immunology teachers. Programs such as "Virtual Immunology" are offering more interactive, multimedia approaches to complex scientific principles that increase student motivation, interest, and comprehension. © 2013 by The International Union of Biochemistry and Molecular Biology.
Volume and Value of Big Healthcare Data
Dinov, Ivo D.
2016-01-01
Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions. PMID:26998309
Nitric oxide bioavailability in the microcirculation: insights from mathematical models.
Tsoukias, Nikolaos M
2008-11-01
Over the last 30 years nitric oxide (NO) has emerged as a key signaling molecule involved in a number of physiological functions, including in the regulation of microcirculatory tone. Despite significant scientific contributions, fundamental questions about NO's role in the microcirculation remain unanswered. Mathematical modeling can assist in investigations of microcirculatory NO physiology and address experimental limitations in quantifying vascular NO concentrations. The number of mathematical models investigating the fate of NO in the vasculature has increased over the last few years, and new models are continuously emerging, incorporating an increasing level of complexity and detail. Models investigate mechanisms that affect NO availability in health and disease. They examine the significance of NO release from nonendothelial sources, the effect of transient release, and the complex interaction of NO with other substances, such as heme-containing proteins and reactive oxygen species. Models are utilized to test and generate hypotheses for the mechanisms that regulate NO-dependent signaling in the microcirculation.
Using Mobile Devices to Facilitate Student Questioning in a Large Undergraduate Science Class
ERIC Educational Resources Information Center
Crompton, Helen; Burgin, Stephen R.; De Paor, Declan G.; Gregory, Kristen
2018-01-01
Asking scientific questions is the first practice of science and engineering listed in the Next Generation Science Standards. However, getting students to ask unsolicited questions in a large class can be difficult. In this qualitative study, undergraduate students sent SMS text messages to the instructor who received them on his mobile phone and…
An outline of planetary geoscience. [philosophy
NASA Technical Reports Server (NTRS)
1977-01-01
A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.
The Complexity of Primary Care Psychology: Theoretical Foundations.
Smit, E H; Derksen, J J L
2015-07-01
How does primary care psychology deal with organized complexity? Has it escaped Newtonian science? Has it, as Weaver (1991) suggests, found a way to 'manage problems with many interrelated factors that cannot be dealt by statistical techniques'? Computer simulations and mathematical models in psychology are ongoing positive developments in the study of complex systems. However, the theoretical development of complex systems in psychology lags behind these advances. In this article we use complexity science to develop a theory on experienced complexity in the daily practice of primary care psychologists. We briefly answer the ontological question of what we see (from the perspective of primary care psychology) as reality, the epistemological question of what we can know, the methodological question of how to act, and the ethical question of what is good care. Following our empirical study, we conclude that complexity science can describe the experienced complexity of the psychologist and offer room for personalized client-centered care. Complexity science is slowly filling the gap between the dominant reductionist theory and complex daily practice.
NASA Astrophysics Data System (ADS)
Ortega-Rodríguez, M.; Solís-Sánchez, H.; Boza-Oviedo, E.; Chaves-Cruz, K.; Guevara-Bertsch, M.; Quirós-Rojas, M.; Vargas-Hernández, S.; Venegas-Li, A.
2017-04-01
We assess the scientific value of Oppenheimer's research on black holes in order to explain its neglect by the scientific community, and even by Oppenheimer himself. Looking closely at the scientific culture and conceptual belief system of the 1930s, the present article seeks to supplement the existing literature by enriching the explanations and complicating the guiding questions. We suggest a rereading of Oppenheimer as a figure both more intriguing for the history of astrophysics and further ahead of his time than is commonly supposed.
The effectiveness and costs of comprehensive geriatric evaluation and management.
Wieland, Darryl
2003-11-01
Comprehensive geriatric assessment (CGA) is a multidimensional interdisciplinary diagnostic process focused on determining a frail elderly person's medical, psychological, and functional capabilities in order to develop a coordinated and integrated plan for treatment and long-term follow-up. Geriatrics interventions building on CGA are defined from their historical emergence to the present day in a discussion of their complexity, goals and normative components. Through literature review, questions of the effectiveness and costs of these interventions are addressed. Evidence of effectiveness is derived from individual trials and, particularly, recent systematic reviews. While the trial evidence lends support to the proposition that geriatric interventions can be effective, the results have not been uniform. Review of meta-regression studies suggests that much of this outcome variability is related to identifiable program design parameters. In particular, targeting the frail, an interdisciplinary team structure with clinical control of care, and long-term follow-up, tend to be associated with effective programs. Answers to cost-effectiveness questions also vary and are more rare. With some exceptions, existing evidence as exists suggest that geriatrics interventions can be effective without raising total costs of care. Despite the attention given to these questions in recent years, there is still much room for clinical and scientific advance as we move to better understand what CGA interventions do well and in whom.
Using the Virtual Vee Map for Inquiry with Geoscience Research Data
NASA Astrophysics Data System (ADS)
Rutherford, S.
2009-04-01
The Vee Map is a method by which any teacher can implement guided inquiry in their classroom. It was originally designed to work with classic laboratories. However, Coffman and Riggs (2006) used the idea so that students could gather online scientific data to answer a research question. This is known as the "Virtual Vee Map" because the scientific data collected is online or virtual. Students have great difficulty with designing and conducting a research project. They also are not able to work with scientific data. Many organizations are now making their scientific data available for use by the educational community. However, many educators and students have found geoscience data difficult to find and use. Ledley et al. (2008) suggests that organizations use educationally relevant review criteria for their data sites. As part of a National Oceanic and Atmosphere Administration (NOAA) research project, a website was developed using the Great Lakes Environmental Research Laboratory's (GLERL) scientific data about the Great Lakes. This data was made available such that pre-service Earth Science elementary teachers could design a research question for use with the Virtual Vee Map's guided inquiry approach.
An Easy & Fun Way to Teach about How Science "Works": Popularizing Haack's Crossword-Puzzle Analogy
ERIC Educational Resources Information Center
Pavlova, Iglika V.; Lewis, Kayla C.
2013-01-01
Science is a complex process, and we must not teach our students overly simplified versions of "the" scientific method. We propose that students can uncover the complex realities of scientific thinking by exploring the similarities and differences between solving the familiar crossword puzzles and scientific "puzzles."…
Echoes That Never Were: American Mobile Intercontinental Ballistic Missiles, 1956-1983
2006-05-11
research, develop, operate, maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific ...maintain, and sustain complex technological systems , ICBMs were--and remain--a system blending technical matters, scientific laws, economic...technological system that blended scientific laws, economic realities, political forces, and social concerns that included environmentalism and
NASA Astrophysics Data System (ADS)
Sugarman, Hannah R.; Impey, C.; Buxner, S.; Antonellis, J.
2010-01-01
Our survey used to collect data during a twenty-year long investigation into the science literacy of undergraduates (see Impey et al., this meeting), contains several questions addressing how students conceptualize astrology, and other pseudoscientific ideas. This poster presents findings from the quantitative analysis of some of these question responses from almost 10,000 undergraduate students enrolled in introductory astronomy courses from 1989 to 2009. The results from our data reveal that a large majority of students (78%) and half of science majors (52%) consider astrology either "very” or "sort of” scientific. Students performed comparatively better on all other pseudoscientific questions, demonstrating that belief in astrology is pervasive and deeply entrenched. We compare our results to those obtained by the NSF Science Indicators series, and suggest possible reasons for the high susceptibility to belief in astrology. These findings call into question whether our education system is adequately preparing students to be scientifically literate adults. You can help! Stop by our poster and fill out a new survey that will give us important parallel information to help us continue to analyze our valuable data set. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
A Deficiency of Credulousness.
ERIC Educational Resources Information Center
Brewer, Richard
1992-01-01
Asks the question: how does society assist citizens to stop deluding themselves with ESP, UFOs, astrology, polygraphy, water dowsing, channeling, and all manner of New Age gimcrackery? Supplies an answer: educators should emphasize instruction in probability models and scientific inference, while imparting an appropriate, scientific skepticism to…
SCIENTIFIC FOUNDATION FOR RISK ASSESSMENTS TO PROTECT NON-TARGET PLANTS FROM HERBICIDES
SCIENCE QUESTIONS:
EPA's Office of Pesticides Programs (OPP) requires scientifically credible information and methods to assess health and ecological risks from chemical pesticides. However the suite of standard bioassays and approaches available to OPP to determine these ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... scientific or historical research problems; or b. Historical or ethnographic data, or discoveries of material... the study of significant scientific or historical research questions, and d. The recent history of the...
Molecular gastronomy, a scientific look at cooking.
This, Hervé
2009-05-19
Food preparation is such a routine activity that we often do not question the process. For example, why do we cook as we do? Why do we eat certain foods and avoid other perfectly edible ingredients? To help answer these questions, it is extremely important to study the chemical changes that food undergoes during preparation; even simply cutting a vegetable can lead to enzymatic reactions. For many years, these molecular transformations were neglected by the food science field. In 1988, the scientific discipline called "molecular gastronomy" was created, and the field is now developing in many countries. Its many applications fall into two categories. First, there are technology applications for restaurants, for homes, or even for the food industry. In particular, molecular gastronomy has led to "molecular cooking", a way of food preparation that uses "new" tools, ingredients, and methods. According to a British culinary magazine, the three "top chefs" of the world employ elements of molecular cooking. Second, there are educational applications of molecular gastronomy: new insights into the culinary processes have led to new culinary curricula for chefs in many countries such as France, Canada, Italy, and Finland, as well as educational programs in schools. In this Account, we focus on science, explain why molecular gastronomy had to be created, and consider its tools, concepts, and results. Within the field, conceptual tools have been developed in order to make the necessary studies. The emphasis is on two important parts of recipes: culinary definitions (describing the objective of recipes) and culinary "precisions" (information that includes old wives' tales, methods, tips, and proverbs, for example). As for any science, the main objective of molecular gastronomy is, of course, the discovery of new phenomena and new mechanisms. This explains why culinary precisions are so important: cooks of the past could see, but not interpret, phenomena that awaited scientific studies. For French cuisine alone, more than 25,000 culinary precisions have been collected since 1980. The study of the organization of dishes was improved by the introduction of a formalism called "complex disperse systems/nonperiodical organization of space" (CDS/NPOS). CDS describes the colloidal materials from which the parts of a dish are made; NPOS provides an overall description of a dish. This formalism has proven useful for the study of both scientific (examining phenomena to arrive at a mechanism) and technological (using the results of science to improve technique) applications. For example, it can be used to describe the physical structure of dishes (science) but also to examine the characteristics of classical French sauces (technology). Many questions still remain in the field of molecular gastronomy. For example, one "Holy Grail" of the field is the prediction of physical, biological, chemical, and organoleptic properties of systems from their CDS/NPOS formula. Another issue to be worked out is the relationship between compound migration in food and chemical modifications of those migrating compounds. These questions will likely keep scientists busy in the near future.
Information extraction from full text scientific articles: where are the keywords?
Shah, Parantu K; Perez-Iratxeta, Carolina; Bork, Peer; Andrade, Miguel A
2003-05-29
To date, many of the methods for information extraction of biological information from scientific articles are restricted to the abstract of the article. However, full text articles in electronic version, which offer larger sources of data, are currently available. Several questions arise as to whether the effort of scanning full text articles is worthy, or whether the information that can be extracted from the different sections of an article can be relevant. In this work we addressed those questions showing that the keyword content of the different sections of a standard scientific article (abstract, introduction, methods, results, and discussion) is very heterogeneous. Although the abstract contains the best ratio of keywords per total of words, other sections of the article may be a better source of biologically relevant data.
Deane-Coe, Kirsten K; Sarvary, Mark A; Owens, Thomas G
2017-01-01
In an undergraduate introductory biology laboratory course, we used a summative assessment to directly test the learning objective that students will be able to apply course material to increasingly novel and complex situations. Using a factorial framework, we developed multiple true-false questions to fall along axes of novelty and complexity, which resulted in four categories of questions: familiar content and low complexity (category A); novel content and low complexity (category B); familiar content and high complexity (category C); and novel content and high complexity (category D). On average, students scored more than 70% on all questions, indicating that the course largely met this learning objective. However, students scored highest on questions in category A, likely because they were most similar to course content, and lowest on questions in categories C and D. While we anticipated students would score equally on questions for which either novelty or complexity was altered (but not both), we observed that student scores in category C were lower than in category B. Furthermore, students performed equally poorly on all questions for which complexity was higher (categories C and D), even those containing familiar content, suggesting that application of course material to increasingly complex situations is particularly challenging to students. © 2017 K. K. Deane-Coe et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Maloney, Krisellen; Kemp, Jan H.
2015-01-01
There has been longstanding debate about whether the level of complexity of questions received at reference desks and via online chat services requires a librarian's expertise. Continued decreases in the number and complexity of reference questions have all but ended the debate; many academic libraries no longer staff service points with…
"Do-It-Ourselves Science": Case Studies of Volunteer-Initiated Citizen Science Involvement
NASA Astrophysics Data System (ADS)
Raddick, Jordan; Bracey, G.; Gay, P. L.
2009-05-01
Galaxy Zoo is a citizen science website in which members of the public volunteer to classify galaxies, thereby helping astronomers conduct publishable research into galaxy morphologies and environments. Although the site was originally created to answer a few specific questions, some members of the community - both scientists and volunteers - have spontaneously developed an interest in a wider variety of questions. Volunteers have pursued answers to these questions with guidance from professional astronomers; in completing these projects, volunteers have independently used some of the same data viewing and analysis tools that professional astronomers use, and have even developed their own online tools. They have created their own research questions and their own plans for data analysis, and are planning to write scientific papers with the results to be submitted to peer-reviewed scientific journals. Volunteers have identified a number of such projects. These volunteer-initiated projects have extended the scientific reach of Galaxy Zoo, while also giving volunteers first-hand experience with the process of science. We are interested in the process by which volunteers become interested in volunteer-initiated projects, and what tasks they participate in, both initially and as their involvement increases. What motivates a volunteer to become involved in a volunteer-initiated project? How does his or her motivation change with further involvement? We are conducting a program of qualitative education research into these questions, using as data sources the posts that volunteers have made to the Galaxy Zoo forum and transcripts of interviews with volunteers.
ERIC Educational Resources Information Center
Frede, Valerie; Nobes, Gavin; Frappart, Soren; Panagiotaki, Georgia; Troadec, Bertrand; Martin, Alan
2011-01-01
Studies of children's knowledge of the Earth have led to very different conclusions: some appear to show that children construct their own, non-scientific "theories" (mental models) of the flat, hollow or dual Earth. Others indicate that many young children have some understanding of the spherical (scientific) Earth, and that their…
Assessment of Scientific Reasoning as an Institutional Outcome
2016-04-01
expertise in the outcome domain. Student achievement of the Scientific Reasoning and Principles of Science was assessed in the 2012- 13 academic year by...scientific reasoning assessment. Overall, students were weakest when answering questions related to (a) proportional reasoning , (b) isolation of...variables, and (c) if-then reasoning . These findings are being incorporates into redesign of the core curriculum to enhance continuity among science courses
Can Industrial Physics Avoid Being Creatively Destroyed?
NASA Astrophysics Data System (ADS)
Hass, Kenneth C.
2004-03-01
Opportunities abound for physics and physicists to remain vital contributors to industrial innovation throughout the 21st century. The key questions are whether those trained in physics are sufficiently willing and flexible to continuously enhance their value to their companies by adapting to changing business priorities and whether business leaders are sufficiently enlightened to recognize and exploit the unique skills and creativity that physicists often provide. "Industrial physics" today is more diverse than ever, and answers to the above questions will vary with sector, company, and even individual physicists. Such heterogeneity creates new challenges for the physics community in general, which may need to undergo significant cultural change to maintain strong ties between physicists in industry, academia, and government. Insights from the emerging science of complex systems will be used to emphasize the importance of realistic mental models for the interactions between science and technology and the pathways from scientific advance to successful commercialization. Examples will be provided of the ongoing value of physics-based research in the auto industry and of the growing importance of interdisciplinary approaches to the technical needs of industry.
Biomedical semantics in the Semantic Web
2011-01-01
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570
Biomedical semantics in the Semantic Web.
Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott
2011-03-07
The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.
Game theory and environmental disputes
NASA Astrophysics Data System (ADS)
Lambert, Alan
1983-09-01
The courts have provided the traditional battleground for conflicts between environmental interest groups and those whose actions in some way have an adverse impact on the environment The judicial process is a time-consuming one in which all sides usually must concede to some points. Environmental disputes involve complex scientific issues which the court system is not set up to comprehend, so that the process gives the parties to a dispute the sense of having lost control of their own destinies. An increasing number of parties to environmental disputes are turning to negotiation, or mediation, as an alternative in which they can be active parties in the settlement-making process rather than the victims of a court-imposed solution When do the parties to a dispute choose a negotiated settlement over a court battle? To what extent does each party make the concessions necessary to reach an agreement? These questions can be answered by the game theory that provides a model for analyzing the negotiation process. This paper will apply game theory to two environmental conflict cases A series of questions pertinent to the analysis of all environmental disputes will be raised
Hyphenated hydrology: Multidisciplinary evolution of water resource science
NASA Astrophysics Data System (ADS)
McCurley, K. 4553; Jawitz, J. W.
2016-12-01
Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-20th century. While hydrology may have evolved from the singular viewpoint of a more rigid physical or engineering science, modern water resource related questions have forced adaptation toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution have been foreseen by prominent expert hydrologists, though their narrative descriptions were not substantially quantified. This study addresses that gap by directly measuring and inspecting the words that hydrologists use to define and describe their research endeavors. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerges. Word frequency and term concurrence reveal the dynamic timing of the lateral movement of hydrology across multiple disciplines and a deepening of scientific discourse with respect to traditional hydrologic questions. This study concludes that formerly exotic disciplines are increasingly modifying hydrology, prompting new insights as well as inspiring unconventional perspectives on old questions.
Alexandrov, Andrei V; Hennerici, Michael G
2013-01-01
A scientific presentation is a professional way to share your observation, introduce a hypothesis, demonstrate and interpret the results of a study, or summarize what is learned or to be studied on the subject. PRESENTATION METHODS: Commonly, presentations at major conferences include podium (oral, platform), poster or lecture, and if selected one should be prepared to Plan from the start (place integral parts of the presentation in logical sequence); Reduce the amount of text and visual aids to the bare minimum; Elucidate (clarify) methods; Summarize results and key messages; Effectively deliver; Note all shortcomings, and Transform your own and the current thinking of others. We provide tips on how to achieve this. PRESENTATION RESULTS: After disclosing conflicts, if applicable, start with a brief summary of what is known and why it is required to investigate the subject. State the research question or the purpose of the lecture. For original presentations follow a structure: Introduction, Methods, Results, Conclusions. Invest a sufficient amount of time or poster space in describing the study methods. Clearly organize and deliver the results or synopsis of relevant studies. Include absolute numbers and simple statistics before showing advanced analyses. Remember to present one point at a time. Stay focused. Discuss study limitations. In a lecture or a podium talk or when standing by your poster, always think clearly, have a logical plan, gain audience attention, make them interested in your subject, excite their own thinking about the problem, listen to questions and carefully weigh the evidence that would justify the punch-line. Rank scientific evidence in your presentation appropriately. What may seem obvious may turn erroneous or more complex. Rehearse your presentation before you deliver it at a conference. Challenge yourself to dry runs with your most critically thinking colleagues. When the time comes, ace it with a clear mind, precise execution and fund of knowledge. Copyright © 2013 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas
2013-01-01
Data analysis requires subtle probability reasoning to answer questions like "What is the chance of event A occurring, given that event B was observed?" This generic question arises in discussions of many intriguing scientific questions such as "What is the probability that an adolescent weighs between 120 and 140 pounds given that…
ERIC Educational Resources Information Center
Bay, Jacquie L.; Fohoko, Fehi; La'Akulu, Mumui; Leota, Ofa; Pulotu, Lesieli; Tu'Ipuloto, Sina; Tutoe, Salesi; Tovo, Oliveti; Vekoso, Ana; Pouvalu, Emeli H.
2016-01-01
Questioning is central to the development of scientific and health literacies. In exploring this concept, Tongan science teachers hypothesized that their ability to use and encourage questioning presented challenges in the context of Tongan social and cultural norms. This study set out to develop a peer-to-peer protocol to enable teachers to…
Komar, Debra
2008-09-01
In genocide, victims must represent an ethnic, racial, religious or national group. But is victim identity a question of science or law? Must victims be a socially recognized group or can group identity exist solely in the mind of the perpetrator? This question is relevant to the on-going crisis in Darfur. The "Arab-on-African" violence depicted in the media encompasses identities not shared by Darfurians. This study details an evaluation of victim identity in Darfur, based on field research and literature review. Darfurians are defined by subsistence strategy and economic groups are not protected under genocide law. Whether Darfur is genocide depends on whether victims must conform to scientific group classifications or need only be defined by their relationship to the perpetrators.
Research Design Options for Intervention Studies.
Lobo, Michele A; Kagan, Sarah H; Corrigan, John D
2017-07-01
To review research designs for rehabilitation. Single-case, observational, and qualitative designs are highlighted in terms of recent advances and ability to answer important scientific questions about rehabilitation. Single-case, observational, and qualitative designs can be conducted in a systematic and rigorous manner that provides important information that cannot be acquired using more common designs, such as randomized controlled trials. These less commonly used designs may be more feasible and effective in answering many research questions in the field of rehabilitation. Researchers should consider these designs when selecting the optimal design to answer their research questions. We should improve education about the advantages and disadvantages of existing research designs to enable more critical analysis of the scientific literature we read and review to avoid undervaluing studies not within more commonly used categories.
Thinking Scientifically: Understanding Measurement and Errors
ERIC Educational Resources Information Center
Alagumalai, Sivakumar
2015-01-01
Thinking scientifically consists of systematic observation, experiment, measurement, and the testing and modification of research questions. In effect, science is about measurement and the understanding of causation. Measurement is an integral part of science and engineering, and has pertinent implications for the human sciences. No measurement is…
Cinderella Separates a Mixture
ERIC Educational Resources Information Center
Streller, Sabine
2014-01-01
Scientific investigations are usually introduced to children by referring to phenomena and occurrences that they already know about from their environment. The goal is that children learn to understand everyday observations and experiences from a scientific perspective, pose questions, express and test simple hypotheses by planning and performing…
Is There Scientific Consensus on Acid Rain? -- Excerpts from Six Governmental Reports.
ERIC Educational Resources Information Center
Environmental Education Report and Newsletter, 1986
1986-01-01
Compiles a series of direct quotations from six governmental reports that reflect a scientific consensus on major aspects of acid deposition. Presents the statements in a question and answer format. Also reviews the sources, extent, and effects of acid rain. (ML)
Challenges in Elevated CO2 Experiments on Forests
USDA-ARS?s Scientific Manuscript database
Current forest Free Air CO2 Enrichment (FACE) experiments are reaching completion. It is the time to define the scientific goals and priorities of future experimental facilities. The overarching issues are three-fold: first, which are the most urgent scientific questions and which technological aspe...
Argumentation Key to Communicating Climate Change to the Public
NASA Astrophysics Data System (ADS)
Bleicher, R. E.; Lambert, J. L.
2012-12-01
Argumentation plays an important role in how we communicate climate change science to the public and is a key component integrated throughout the Next Generation Science Standards. A scientific argument can be described as a disagreement between explanations with data being used to justify each position. Argumentation is social process where two or more individuals construct and critique arguments (Kuhn & Udell, 2003; Nussbaum, 1997). Sampson, Grooms, and Walker's (2011) developed a framework for understanding the components of a scientific argument. The three components start with a claim (a conjecture, conclusion, explanation, or an answer to a research question). This claim must fit the evidence (observations that show trends over time, relationships between variables or difference between groups). The evidence must be justified with reasoning (explains how the evidence supports the explanation and whey it should count as support). In a scientific argument, or debate, the controversy focuses on how data were collected, what data can or should be included, and what inferences can be made based on a set of evidence. Toulmin's model (1969) also includes rebutting or presenting an alternative explanation supported by counter evidence and reasoning of why the alternative is not the appropriate explanation for the question of the problem. The process of scientific argumentation should involve the construction and critique of scientific arguments, one that involves the consideration of alternative hypotheses (Lawson, 2003). Scientific literacy depends as much on the ability to refute and recognize poor scientific arguments as much as it does on the ability to present an effective argument based on good scientific data (Osborne, 2010). Argument is, therefore, a core feature of science. When students learn to construct a sound scientific argument, they demonstrate critical thinking and a mastery of the science being taught. To present a convincing argument in support of climate change, students must have a sound foundation in the science underlying it. One place to lay this foundation is in the high school science classroom. For students to gain a good conceptual understanding of climate change science, teachers need a sound understanding of climate change and effective resources to teach it to students. Teacher professional development opportunities are required to provide this background as well as establish collaborative curriculum planning opportunities on the school site (Shulman, 2007). Various strategies for and challenges of implementing argumentation with preservice and practicing teachers will be discussed in this session, as well as ways that argumentation skills can help the broader public evaluate claims of climate skeptics. In the field of argumentation theory, Goodwin (2010) has designed a strategy for developing the ability to make effective scientific arguments. The goal is to establish trust even when there is strong disagreement. At the core, a student fully acknowledges the uncertainty involved in the complex science underlying climate change. This has the effect of establishing some degree of trust. In other words, teachers or students trying to explain climate change to others might be perceived as more trustworthy if they openly declare that there are degrees of uncertainty in different aspects of climate change science (American Meteorological Society, 2011).
ERIC Educational Resources Information Center
DeSantis, Larisa; DeSantis, Derek
2017-01-01
This article describes a lesson in which high school biology, ecology, environmental science, anatomy, and physiology students can devise hypotheses and test them with scientific data, identify unanswered questions, and design an additional study to answer those questions. This module connects students with exciting research and current science…
NASA Technical Reports Server (NTRS)
Baker, V. R.
1985-01-01
Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.
NASA Technical Reports Server (NTRS)
Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke
1991-01-01
The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.
Stapleton, John J
2007-01-01
Journal club is a structured meeting that is required at a residency program, which is designated to train residents in the necessary skills to evaluate and apply scientific literature critically to clinical decision making. A successful journal club is one in which residents develop competency in evaluating the scientific literature for evidence-based answers that can be applied to clinical questions. The objective in establishing a successful journal club is to build a forum for residents to formulate answers to their clinical questions through the development of essential critical appraisal skills. This article discusses the setting, format, content, and purpose of a successful journal club.
NASA Astrophysics Data System (ADS)
Soreghan, G. S.; Cohen, A. S.
2013-11-01
A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.
[Causation in the court: the complex case of malignant mesothelioma].
Lageard, Giovanni
2011-01-01
The aim of this paper is to carry out an analysis of the legal evolution in Italy of the assessment of causation i.e. cause and effect, in oncological diseases, a question taken into consideration by the High Court almost exclusively with reference to pleural mesothelioma. The most debated question when defining the causal association between asbestos exposure and mesothelioma is the possible role that any multiple potentially causative exposures could assume in the induction and development of the disease, and in particular the role of any asbestos exposure over the successive employment periods. Indeed, this is a subject on which, to date, no agreement has yet been reached in scientific doctrine: these divergences bear important practical significance from a legal point of view, since sustaining one thesis or another may constitute determining factors when ascertaining responsibility for individuals who, in the past, had decisional statuses in the workplace. Jurisprudence in the High Court took on an oscillating position on this question as from the early 2000s, which was divided into those who sustained the thesis of the relevance of any asbestos exposure over the successive employment periods and those who were of a different opinion, i.e. only the first exposure period has relevant causative effect. The point under discussion concerns, in particular, the adequacy of a probabilistic law only governing such a question. An important turning point was made in the year 2010 when two sentences were announced in the High Court, reiterating, in strict compliance with the principles affirmed by the United Sections in 2002, that a judge cannot, and must not, be satisfied with a general causation, but must rather reach a judgment on the basis of an individual causation. In particular, not only did the second of these two sentences recognise the multifactorial nature of mesothelioma, something which had almost always been denied in jurisprudence in the past, but it also established some very clear legal principles of law. Essentially, when ascertaining the causation, a judge should verify whether or not there is a sufficiently well established scientific law covering the question and whether such a law is universal or probabilistic. Should the latter be the case, then it is necessary to establish if the accelerating effect has been determined in the case in question, on the basis of the factual acquisitions. We must now wait for the concrete application of these principles by juridical bodies.
Jonas, Wayne B; Crawford, Cindy; Hilton, Lara; Elfenbaum, Pamela
2017-01-01
Answering the question of "what works" in healthcare can be complex and requires the careful design and sequential application of systematic methodologies. Over the last decade, the Samueli Institute has, along with multiple partners, developed a streamlined, systematic, phased approach to this process called the Scientific Evaluation and Review of Claims in Health Care (SEaRCH™). The SEaRCH process provides an approach for rigorously, efficiently, and transparently making evidence-based decisions about healthcare claims in research and practice with minimal bias. SEaRCH uses three methods combined in a coordinated fashion to help determine what works in healthcare. The first, the Claims Assessment Profile (CAP), seeks to clarify the healthcare claim and question, and its ability to be evaluated in the context of its delivery. The second method, the Rapid Evidence Assessment of the Literature (REAL © ), is a streamlined, systematic review process conducted to determine the quantity, quality, and strength of evidence and risk/benefit for the treatment. The third method involves the structured use of expert panels (EPs). There are several types of EPs, depending on the purpose and need. Together, these three methods-CAP, REAL, and EP-can be integrated into a strategic approach to help answer the question "what works in healthcare?" and what it means in a comprehensive way. SEaRCH is a systematic, rigorous approach for evaluating healthcare claims of therapies, practices, programs, or products in an efficient and stepwise fashion. It provides an iterative, protocol-driven process that is customized to the intervention, consumer, and context. Multiple communities, including those involved in health service and policy, can benefit from this organized framework, assuring that evidence-based principles determine which healthcare practices with the greatest promise are used for improving the public's health and wellness.
Predictive hypotheses are ineffectual in resolving complex biochemical systems.
Fry, Michael
2018-03-20
Scientific hypotheses may either predict particular unknown facts or accommodate previously-known data. Although affirmed predictions are intuitively more rewarding than accommodations of established facts, opinions divide whether predictive hypotheses are also epistemically superior to accommodation hypotheses. This paper examines the contribution of predictive hypotheses to discoveries of several bio-molecular systems. Having all the necessary elements of the system known beforehand, an abstract predictive hypothesis of semiconservative mode of DNA replication was successfully affirmed. However, in defining the genetic code whose biochemical basis was unclear, hypotheses were only partially effective and supplementary experimentation was required for its conclusive definition. Markedly, hypotheses were entirely inept in predicting workings of complex systems that included unknown elements. Thus, hypotheses did not predict the existence and function of mRNA, the multiple unidentified components of the protein biosynthesis machinery, or the manifold unknown constituents of the ubiquitin-proteasome system of protein breakdown. Consequently, because of their inability to envision unknown entities, predictive hypotheses did not contribute to the elucidation of cation theories remained the sole instrument to explain complex bio-molecular systems, the philosophical question of alleged advantage of predictive over accommodative hypotheses became inconsequential.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling.
Ganju, Neil K; Brush, Mark J; Rashleigh, Brenda; Aretxabaleta, Alfredo L; Del Barrio, Pilar; Grear, Jason S; Harris, Lora A; Lake, Samuel J; McCardell, Grant; O'Donnell, James; Ralston, David K; Signell, Richard P; Testa, Jeremy M; Vaudrey, Jamie M P
2016-03-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O'Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy; Vaudrey, Jamie M. P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675
Tools for Observation: Art and the Scientific Process
NASA Astrophysics Data System (ADS)
Pettit, E. C.; Coryell-Martin, M.; Maisch, K.
2015-12-01
Art can support the scientific process during different phases of a scientific discovery. Art can help explain and extend the scientific concepts for the general public; in this way art is a powerful tool for communication. Art can aid the scientist in processing and interpreting the data towards an understanding of the concepts and processes; in this way art is powerful - if often subconscious - tool to inform the process of discovery. Less often acknowledged, art can help engage students and inspire scientists during the initial development of ideas, observations, and questions; in this way art is a powerful tool to develop scientific questions and hypotheses. When we use art as a tool for communication of scientific discoveries, it helps break down barriers and makes science concepts less intimidating and more accessible and understandable for the learner. Scientists themselves use artistic concepts and processes - directly or indirectly - to help deepen their understanding. Teachers are following suit by using art more to stimulate students' creative thinking and problem solving. We show the value of teaching students to use the artistic "way of seeing" to develop their skills in observation, questioning, and critical thinking. In this way, art can be a powerful tool to engage students (from elementary to graduate) in the beginning phase of a scientific discovery, which is catalyzed by inquiry and curiosity. Through qualitative assessment of the Girls on Ice program, we show that many of the specific techniques taught by art teachers are valuable for science students to develop their observation skills. In particular, the concepts of contour drawing, squinting, gesture drawing, inverted drawing, and others can provide valuable training for student scientists. These art techniques encourage students to let go of preconceptions and "see" the world (the "data") in new ways they help students focus on both large-scale patterns and small-scale details.
Designing Better Scaffolding in Teaching Complex Systems with Graphical Simulations
NASA Astrophysics Data System (ADS)
Li, Na
Complex systems are an important topic in science education today, but they are usually difficult for secondary-level students to learn. Although graphic simulations have many advantages in teaching complex systems, scaffolding is a critical factor for effective learning. This dissertation study was conducted around two complementary research questions on scaffolding: (1) How can we chunk and sequence learning activities in teaching complex systems? (2) How can we help students make connections among system levels across learning activities (level bridging)? With a sample of 123 seventh-graders, this study employed a 3x2 experimental design that factored sequencing methods (independent variable 1; three levels) with level-bridging scaffolding (independent variable 2; two levels) and compared the effectiveness of each combination. The study measured two dependent variables: (1) knowledge integration (i.e., integrating and connecting content-specific normative concepts and providing coherent scientific explanations); (2) understanding of the deep causal structure (i.e., being able to grasp and transfer the causal knowledge of a complex system). The study used a computer-based simulation environment as the research platform to teach the ideal gas law as a system. The ideal gas law is an emergent chemical system that has three levels: (1) experiential macro level (EM) (e.g., an aerosol can explodes when it is thrown into the fire); (2) abstract macro level (AM) (i.e., the relationships among temperature, pressure and volume); (3) micro level (Mi) (i.e., molecular activity). The sequencing methods of these levels were manipulated by changing the order in which they were delivered with three possibilities: (1) EM-AM-Mi; (2) Mi-AM-EM; (3) AM-Mi-EM. The level-bridging scaffolding variable was manipulated on two aspects: (1) inserting inter-level questions among learning activities; (2) two simulations dynamically linked in the final learning activity. Addressing the first research question, the Experiential macro-Abstract macro-Micro (EM-AM-Mi) sequencing method, following the "concrete to abstract" principle, produced better knowledge integration while the Micro-Abstract macro-Experiential macro (Mi-AM-EM) sequencing method, congruent with the causal direction of the emergent system, produced better understanding of the deep causal structure only when level-bridging scaffolding was provided. The Abstract macro-Micro-Experiential macro (AM-Mi-EM) sequencing method produced worse performance in general, because it did not follow the "concrete to abstract" principle, nor did it align with the causal structure of the emergent system. As to the second research question, the results showed that level-bridging scaffolding was important for both knowledge integration and understanding of the causal structure in learning the ideal gas law system.
Classroom Critters and the Scientific Method.
ERIC Educational Resources Information Center
Kneidel, Sally
This resource book presents 37 behavioral experiments that can be performed with commonly-found classroom animals including hamsters, gerbils, mice, goldfish, guppies, anolis lizards, kittens, and puppies. Each experiment explores the five steps of the scientific method: (1) Question; (2) Hypothesis; (3) Methods; (4) Result; and (5) Conclusion.…
The Place of "Mysticism" and "Occultism" in the Scientific Orientation.
ERIC Educational Resources Information Center
Read, Allen Walker
1983-01-01
Twelve propositions to help deal scientifically with cults and the unexplained are presented and discussed. The guru relationship is unhealthy. Sound teaching should foster an independence and freedom of the individual to think for him or herself and to question teachings of the teacher. (RM)
Frequently Asked Questions | DOepatents
OSTI? Where can I find information about doing business with DOE? How can I find additional information Scientific and Technical Information (OSTI) to demonstrate the Department's contribution to scientific the patent application, full text, and other descriptive information accessible to the public. New
Serendipity and Scientific Discovery.
ERIC Educational Resources Information Center
Rosenman, Martin F.
1988-01-01
The discovery of penicillin is cited in a discussion of the role of serendipity as it relates to scientific discovery. The importance of sagacity as a personality trait is noted. Successful researchers have questioning minds, are willing to view data from several perspectives, and recognize and appreciate the unexpected. (JW)
What We've Learned about Assessing Hands-On Science.
ERIC Educational Resources Information Center
Shavelson, Richard J.; Baxter, Gail P.
1992-01-01
A recent study compared hands-on scientific inquiry assessment to assessments involving lab notebooks, computer simulations, short-answer paper-and-pencil problems, and multiple-choice questions. Creating high quality performance assessments is a costly, time-consuming process requiring considerable scientific and technological know-how. Improved…
Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick; Maier, Raina M; Gandolfi, A Jay
2014-01-01
A research project that is only expert-driven may ignore the role of local knowledge in research, give low priority to the development of a comprehensive communication strategy to engage the community, and may not deliver the results of the study to the community in an effective way. Objective To demonstrate how a research program can respond to a community research need, establish a community-academic partnership, and build a co-created citizen science program. Methods A place-based, community-driven project was designed where academics and community members maintained a reciprocal dialogue, and together, we: 1) defined the question for study, 2) gathered information, 3) developed hypotheses, 3) designed data collection methodologies, 4) collected environmental samples (soil, irrigation water, and vegetables), 5) interpreted data, 6) disseminated results and translated results into action, and 7) discussed results and asked new questions. Results The co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels). Public participation in scientific research improved environmental health assessment, information transfer, and risk communication efforts. Furthermore, incorporating the community in the scientific process produced both individual learning outcomes and community-level outcomes. Conclusions This approach illustrates the benefits of a community-academic co-created citizen-science program in addressing the complex problems that arise in communities neighboring a contaminated site. Such a project can increase the community's involvement in risk communication and decision-making, which ultimately has the potential to help mitigate exposure and thereby reduce associated risk. PMID:25954473
Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick; Maier, Raina M; Gandolfi, A Jay
2015-01-01
A research project that is only expert-driven may ignore the role of local knowledge in research, give low priority to the development of a comprehensive communication strategy to engage the community, and may not deliver the results of the study to the community in an effective way. To demonstrate how a research program can respond to a community research need, establish a community-academic partnership, and build a co-created citizen science program. A place-based, community-driven project was designed where academics and community members maintained a reciprocal dialogue, and together, we: 1) defined the question for study, 2) gathered information, 3) developed hypotheses, 3) designed data collection methodologies, 4) collected environmental samples (soil, irrigation water, and vegetables), 5) interpreted data, 6) disseminated results and translated results into action, and 7) discussed results and asked new questions. The co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels). Public participation in scientific research improved environmental health assessment, information transfer, and risk communication efforts. Furthermore, incorporating the community in the scientific process produced both individual learning outcomes and community-level outcomes. This approach illustrates the benefits of a community-academic co-created citizen-science program in addressing the complex problems that arise in communities neighboring a contaminated site. Such a project can increase the community's involvement in risk communication and decision-making, which ultimately has the potential to help mitigate exposure and thereby reduce associated risk.
Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool.
Newman, Dina L; Snyder, Christopher W; Fisk, J Nick; Wright, L Kate
2016-01-01
Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select-format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all levels of undergraduate biology. Questions for the Central Dogma Concept Inventory (CDCI) tool were developed and iteratively revised based on student language and review by experts. The ability of the CDCI to discriminate between levels of understanding of the central dogma is supported by field testing (N= 54), and large-scale beta testing (N= 1733). Performance on the assessment increased with experience in biology; scores covered a broad range and showed no ceiling effect, even with senior biology majors, and pre/posttesting of a single class focused on the central dogma showed significant improvement. The multiple-select format reduces the chances of correct answers by random guessing, allows students at different levels to exhibit the extent of their knowledge, and provides deeper insight into the complexity of student thinking on each theme. To date, the CDCI is the first tool dedicated to measuring student thinking about the central dogma of molecular biology, and version 5 is ready to use. © 2016 D. L. Newman et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Biomedical ontologies: toward scientific debate.
Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C
2011-01-01
Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.
NASA Astrophysics Data System (ADS)
Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.
2017-08-01
Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.
Science and Faith: Discussing Astronomy Research with Religious Audiences
NASA Astrophysics Data System (ADS)
Koekemoer, Anton M.
2006-12-01
An important component of our outreach as research astronomers involves interaction with the religious community. From my personal perspective, being an active research astronomer who is also a practicing Christian, I am sometimes invited to present the latest astronomical research to church audiences and other religious groups; belonging to both communities thereby provides a valuable means of contributing to the dialogue between science and religion. These opportunities can be used to explain that science and religion are not necessarily in conflict but can be considered to be quite complementary. For instance, an important aspect of religion deals with the purpose of our existence, while science is more focussed on providing physical explanations for what we observe in the world, using a well-defined scientific process. Hence, religious believers need not necessarily abandon their faith in order to accept mainstream scientific research; these address very different and complementary aspects of our existence. Recent ideas such as Intelligent Design attempt to address the scientific method, but do not address the ultimate religious question of purpose and do not contribute towards reconciling science and religion in this sense. Ultimately, every individual arrives at their own understanding of this rather complex interplay; I will present some personal reflections on general approaches for discussing mainstream astronomical research with religious audiences, aimed at helping to advance the dialogue between religion and science in general.
Happy creativity: Listening to happy music facilitates divergent thinking.
Ritter, Simone M; Ferguson, Sam
2017-01-01
Creativity can be considered one of the key competencies for the twenty-first century. It provides us with the capacity to deal with the opportunities and challenges that are part of our complex and fast-changing world. The question as to what facilitates creative cognition-the ability to come up with creative ideas, problem solutions and products-is as old as the human sciences, and various means to enhance creative cognition have been studied. Despite earlier scientific studies demonstrating a beneficial effect of music on cognition, the effect of music listening on creative cognition has remained largely unexplored. The current study experimentally tests whether listening to specific types of music (four classical music excerpts systematically varying on valance and arousal), as compared to a silence control condition, facilitates divergent and convergent creativity. Creativity was higher for participants who listened to 'happy music' (i.e., classical music high on arousal and positive mood) while performing the divergent creativity task, than for participants who performed the task in silence. No effect of music was found for convergent creativity. In addition to the scientific contribution, the current findings may have important practical implications. Music listening can be easily integrated into daily life and may provide an innovative means to facilitate creative cognition in an efficient way in various scientific, educational and organizational settings when creative thinking is needed.
Happy creativity: Listening to happy music facilitates divergent thinking
Ferguson, Sam
2017-01-01
Creativity can be considered one of the key competencies for the twenty-first century. It provides us with the capacity to deal with the opportunities and challenges that are part of our complex and fast-changing world. The question as to what facilitates creative cognition—the ability to come up with creative ideas, problem solutions and products—is as old as the human sciences, and various means to enhance creative cognition have been studied. Despite earlier scientific studies demonstrating a beneficial effect of music on cognition, the effect of music listening on creative cognition has remained largely unexplored. The current study experimentally tests whether listening to specific types of music (four classical music excerpts systematically varying on valance and arousal), as compared to a silence control condition, facilitates divergent and convergent creativity. Creativity was higher for participants who listened to ‘happy music’ (i.e., classical music high on arousal and positive mood) while performing the divergent creativity task, than for participants who performed the task in silence. No effect of music was found for convergent creativity. In addition to the scientific contribution, the current findings may have important practical implications. Music listening can be easily integrated into daily life and may provide an innovative means to facilitate creative cognition in an efficient way in various scientific, educational and organizational settings when creative thinking is needed. PMID:28877176
Junior, Garibaldi Dantas Gurgel
2014-01-01
Health Sector Reform and Social Determinants of Health are central issues for the current international policy debate, considering the turbulent scenario and the threat of economic recession in a global scale. Although these themes have been discussed for a long time, three major issues still calls the attention of the scientific community and health policymakers. The first one is the matter of how to approach scientifically the intricate connections between them in order to understand the consequences of policies for healthcare services, once this debate will become much more tensioned in the coming years. The second one is the lack of explanatory frameworks to investigate the policies of reform strategies, simultaneously observed in a variety of countries within distinct health services, which aim to achieve multiple and contradictory goals vis-à-vis the so-called social determinants of health. The third one is the challenge that governments face in developing and sustaining equitable health services, bearing in mind the intense political dispute behind the health sector reform processes. This article discusses an all-embracing theoretical and methodological scheme to address these questions. The aim is to connect macro- and middle-range theories to examine Social Determinants and Health Sector Reform interdependent issues, with view to developing new knowledge and attaining scientific understanding upon the role of universal and equitable healthcare systems, in order to avoid deepening economic crises.
Rodríguez-Ocaña, E
2005-12-01
The relations between the scientific and the social domains in the particular case of malaria had developed at three levels. The first one operates around the transformation of malaria into an escapable disease and the combined efforts of parasitology and entomology are mixed with the growing development of the concept of social medicine. The second one deals with the rhythm and the content of the measures taken to fight the disease in each concerned country; in that case, very peculiar site-time coordinates ask precise questions. At the same level can be placed the differences in the campaigns led against malaria in colonies and in the mainland, differences that it would be misleading to approach on the sole side of social determinism. Finally the third level corresponds to the complexity of the relationships between the international and the local domains, as present from the birth of "Office International d'Hygiène de la Société des Nations" and the involvement of the Rockefeller Foundation where two strategic positions can be detected opposing people minoring problems and those seeking for eradication, who indeed were opponents at the level of the scientific direction, but also originate within the socio-professional boundary of the members of each group, respectively.
Providing Opportunities for Argumentation in Science Exam Settings
ERIC Educational Resources Information Center
Swanson, Lauren; Solorza, Ruben; Fissore, Cinzia
2018-01-01
This article explores undergraduates' efforts to engage in scientific argumentation during exam settings. Thirteen undergraduate students enrolled in an environmental science course completed exams with questions linked around a central theme. Three types of questions were used, including those that prompted students to construct scientific…
Ethical questions for resource managers.
G.H. Reeves; D.L. Bottom; M.H. Brookes
1992-01-01
The decisions of natural resource managers are not simply scientific issues but involve fundamental questions of ethics. Conflicts in fisheries management, forestry, and other applied sciences arise from social and economic factors that affect natural resource values. Administrative processes, cost-benefit analyses, and various management "myths" have been...
ALKALI-ACTIVATED SLAG CEMENTS AS A SUSTAINABLE BUILDING MATERIAL
The overall goal of this project is to develop and characterize alkali-activated slag cements with minimal carbon footprints, as well as to answer scientific questions that have yet to be satisfactorily addressed by prior research. These questions include the final disposition...
The Historical Approach to Science Teaching.
ERIC Educational Resources Information Center
Brouwer, Wytze; Singh, Amar
1983-01-01
Advantages of using an historical approach in teaching physics are discussed, focusing on the questioning techniques that a teacher can adopt in analyzing a particular episode or concept in the history of physics. Questions related to a theory's reception among the scientific community are also discussed. (JN)
Science Language Accommodation in Elementary School Read-Alouds
NASA Astrophysics Data System (ADS)
Glass, Rory; Oliveira, Alandeom W.
2014-03-01
This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity, open up an alternate channel of communication, namely oral discussion. By doing so, teachers grant students access to a simplified linguistic input, a strategy designed to promote student comprehension of the textual contents of children's science books. It was found that nearly half (46%) of the read-aloud time was allotted to discussions with an increased percentage of less sophisticated words and reduced use of more sophisticated vocabulary than found in the books through communicative strategies such as simplified rewording, simplified definition, and simplified questioning. Further, aloud reading of more linguistically complex books required longer periods of discussion and an increased degree of teacher oral input and accommodation. We also found evidence of reversed simplification (i.e. sophistication), leading to student uptake of scientific language. The main significance of this study is that it reveals that teacher talk serves two often competing pedagogical functions (accessible communication of scientific information to students and promotion of student acquisition of the specialized language of science). It also underscores the importance of giving analytical consideration to the simplification-sophistication dimension of science classroom discourse as well as the potential of computer-based analysis of classroom discourse to inform science teaching.
Reflections On The Feasibility and Implications of The Eu Water Framework Directive
NASA Astrophysics Data System (ADS)
Bauwens, W.; Goethals, P. L. M.
The Water Framework Directive (WFD) raises a lot of challenges: the complexity of the text and the diversity of possible solutions to the problems, the timetable for implementation, the incomplete technical and scientific basis, the limitation of human and financial resources,... The paper addresses a number of the key challenges from a technical-scientific, socio-economic and ethical point of view. From a technical-scientific point of view, the major problems are related to the def- inition of the reference conditions and to the simulation tools that will be needed to predict the impact of the River Basin Management Plans. The proper definition of the system of objectives (the reference conditions and the al- lowed deviation from those conditions) throughout the EU has to be considered as one of the key issues of the WFD and remains to be done. Extensive research is actually carried out, both with respect to the conceptual considerations as with respect to the definition of the ecological status. The emphasis that the 5th Research Framework Programme put on the development of integrated simulation models illustrates the need for a further development of such tools. While many models exist for dealing with sub-components of the system (flows, point pollution sources, diffuse pollution, ecosystem models,...) the integration and the adequate model structure and process representation remain major scientific issues. Especially the link between the physico-chemistry and the ecosystem modelling can still be considered to be in its infancy. More research is also needed on the issues of the calibration and the uncertainty of such complex integrated models. It should also be mentioned that the actual - and future - quality monitoring programs in most countries are by far insufficient for the calibration of complex, dynamic quality models. The objective of the WFD is to obtain, in all water bodies in the EU, an ecological quality that is close to the reference or pristine conditions. The rationale behind this definition of the objective is that it allows a harmonisation of the regulation in the EU, hereby accounting for the large diversity of climatologic and geo-physical conditions in the different regions. A fundamental issue that has been neglected when opting for this definition, however, relates to the role of men in the environment. As a conse- 1 quence, regions with an inhabitant density of 500 inhabitants per square km (ISQ) have to reach the same objectives as regions with a density of 50 ISQ. The full cost of the implementation of the WFD is yet unknown, but it will be high to very high, depending on the final definition of the objectives. With respect to the latter, it would be good to keep in mind the economic principle of the lesser return. While the WFD recognises that the water problems should be dealt with in an in- tegrated and holistic way, one may wonder if the integrated approach should not be applied to the environment as a whole. From this point of view, and accounting for the limited resources available, the setting of the objectives with regard to the water environment to an extremely high level may be questioned. The question that hereby arises relates to the definition of the priorities with regard to the allocation of the lim- ited resources for the different environmental problems in and outside the EU. Finally, one should be attentive to the consequences of the WFD on the socio- economic situation and priorities in the EU, in the candidate countries and in the developing world. Especially with regard to developing countries, one can indeed ob- serve that the environmental policy of the EU is used more and more as an economic weapon. Imposing the WFD on these countries would pose severe ethical questions. 2
The creation of the world--according to science.
Brustein, Ram; Kupferman, Judy
2012-01-01
How was the world created? This question has received attention from many perspectives including religion, culture, philosophy, mysticism, and science. While it may not seem like a query amenable to scientific measurement, it has led scientists to pose fascinating ideas and observations including the Big Bang, the concept of inflation, the fact that most of the universe is made up of dark matter and dark energy that can not be perceived, and more. Scientists cannot claim to know the definitive answer, but they can approach the question from a scientific viewpoint. This begins by examining data, which, thanks to new technology, yields more information than has been previously available. Using novel scientific methods and techniques to analyze the data, fresh perspectives concerning the creation of the world have emerged. This process and its main findings will be described.
Translational research in infectious disease: current paradigms and challenges ahead
Fontana, Judith M.; Alexander, Elizabeth; Salvatore, Mirella
2012-01-01
In recent years, the biomedical community has witnessed a rapid scientific and technological evolution following the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology, to the “holistic” approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics and other “omics” have become the predominant tools by which large amounts of data are amassed, analyzed and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been steadily decreasing, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this paper we will review, in a non-inclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field. PMID:22633095
Happy Little Crater on Mercury
2017-12-08
It looks like even the craters on Mercury have heard of Bob Ross! The central peaks of this complex crater have formed in such a way that it resembles a smiling face. This image is oriented so north is toward the bottom. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Steck, R; Epari, D R; Schuetz, M A
2010-07-01
The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Evers-Kiebooms, G; Welkenhuysen, M; Claes, E; Decruyenaere, M; Denayer, L
2000-09-01
Increasing knowledge about the human genome has resulted in the availability of a steadily increasing number of predictive DNA-tests for two major categories of diseases: neurogenetic diseases and hereditary cancers. The psychological complexity of predictive testing for these late onset diseases requires careful consideration. It is the main aim of the present paper to describe this psychological complexity, which necessitates an adequate and systematic multidisciplinary approach, including psychological counselling, as well as ongoing education of professionals and of the general public. Predictive testing for neurogenetic diseases--in an adequate counselling context--so far elicits optimism regarding the short- and mid-term impact of the predictive test result. The psychosocial impact has been most widely studied for Huntington's disease. Longitudinal studies are of the utmost importance in evaluating the long-term impact of predictive testing for neurogenetic diseases on the tested person and his/her family. Given the more recent experience with predictive DNA-testing for hereditary cancers, fewer published scientific data are available. Longitudinal research on the mid- and long-term psychological impact of the predictive test result is essential. Decision making regarding health surveillance or preventive surgery after being detected as a carrier of one of the relevant mutations should receive special attention. Tailoring the professional approach--inside and outside genetic centres--to the families' needs is a continuous challenge. Even if a continuous effort is made, several important questions remain unanswered, last but not least the question regarding the best strategy to guarantee that the availability of predictive genetic testing results in a reduction of suffering caused by genetic disease and in an improvement of the quality of life of families confronted with genetic disease.
Perceptual and Physiological Responses to Jackson Pollock's Fractals
Taylor, Richard P.; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M.
2011-01-01
Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility – are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns. PMID:21734876
How to write a critically appraised topic (CAT).
Sadigh, Gelareh; Parker, Robert; Kelly, Aine Marie; Cronin, Paul
2012-07-01
Medical knowledge and the volume of scientific articles published have expanded rapidly over the past 50 years. Evidence-based practice (EBP) has developed to help health practitioners get more benefit from the increasing volume of information to solve complex health problems. A format for sharing information in EBP is the critically appraised topic (CAT). A CAT is a standardized summary of research evidence organized around a clinical question, aimed at providing both a critique of the research and a statement of the clinical relevance of results. In this review, we explain the five steps involved in writing a CAT for a clinical purpose ("Ask," "Search," "Appraise," "Apply," and "Evaluate") and introduce some of the useful electronic resources available to help in creating CATs. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cook, J.; Jacobs, P.; Nuccitelli, D.
2014-12-01
Laypeople use expert opinion as a mental shortcut to form views on complex scientific issues. This heuristic is particularly relevant in the case of climate change, where perception of consensus is one of the main predictors of public support for climate action. A low public perception of consensus (around 60% compared to the actual 97% consensus) is a significant stumbling block to meaningful climate action, underscoring the importance of closing the "consensus gap". However, some scientists question the efficacy or appropriateness of emphasizing consensus in climate communication. I'll summarize the social science research examining the importance and effectiveness of consensus messaging. I'll also present several case studies of consensus messaging employed by the team of communicators at the Skeptical Science website.
Davies, Gail; Burgess, Jacquelin
2004-12-01
This paper presents analysis of citizen encounters with specialists in a deliberative process, called Deliberative Mapping, which explored options for addressing the shortage of organs for transplantation in the UK. There is a rich theoretical literature about the extent to which citizens are competent to question the knowledge claims of specialists in complex decision-making processes, suggesting the trustworthiness of scientific expertise will depend on the qualities of social interaction in face-to-face dialogue, but little empirical analysis of specific encounters. This paper presents evidence of how citizens located specialist expertise in making judgements about the legitimacy and credibility of specialist knowledge claims, in ways that reflect differences in epistemic procedures valued by the panels of men and women in this process.
Haudek, Kevin C.; Kaplan, Jennifer J.; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students’ thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation–funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community. PMID:21633063
Haudek, Kevin C; Kaplan, Jennifer J; Knight, Jennifer; Long, Tammy; Merrill, John; Munn, Alan; Nehm, Ross; Smith, Michelle; Urban-Lurain, Mark
2011-01-01
Concept inventories, consisting of multiple-choice questions designed around common student misconceptions, are designed to reveal student thinking. However, students often have complex, heterogeneous ideas about scientific concepts. Constructed-response assessments, in which students must create their own answer, may better reveal students' thinking, but are time- and resource-intensive to evaluate. This report describes the initial meeting of a National Science Foundation-funded cross-institutional collaboration of interdisciplinary science, technology, engineering, and mathematics (STEM) education researchers interested in exploring the use of automated text analysis to evaluate constructed-response assessments. Participants at the meeting shared existing work on lexical analysis and concept inventories, participated in technology demonstrations and workshops, and discussed research goals. We are seeking interested collaborators to join our research community.
Geoinformatics 2007: data to knowledge
Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.
2007-01-01
Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling.
Stuckler, David; Ruskin, Gary; McKee, Martin
2018-02-01
Statements on conflicts of interest provide important information for readers of scientific papers. There is now compelling evidence from several fields that papers reporting funding from organizations that have an interest in the results often generate different findings from those that do not report such funding. We describe the findings of an analysis of correspondence between representatives of a major soft drinks company and scientists researching childhood obesity. Although the studies report no influence by the funder, the correspondence describes detailed exchanges on the study design, presentation of results and acknowledgement of funding. This raises important questions about the meaning of standard statements on conflicts of interest.
NASA Astrophysics Data System (ADS)
McKnight, D. M.
2012-12-01
In all the fields of earth and environmental science, the pursuit of a research question on a topic that has captured one's interest represents both an exciting challenge and a serious responsibility. There is currently a great need to expand knowledge of many aspects of our changing world. Nonetheless, the scientific community, like other communities, has its own culture and values that can seem to be at odds with one's personal motivation and values. Further, it can seem that scientific institutions are organized in a manner to present a set of hurdles that must be cleared in the pursuit of research questions and dissemination of results. One strategy as a scientist is to deal with this community and its cultural constraints on one's own terms. For example, the scientific community has become necessarily focused on review and assessment in the distribution of limited research resources. Further, rankings to assess impact of journals and tracking of citations are being used commonly in assessing success in research. In mentoring interactions there is an opportunity to share experiences of persistence through the publication process, as new findings cannot make a difference unless they are published. One way to deal with the flaws in these metrics is to remain attuned to one's own sense of the intrinsic value and excitement of the research question being studied, and not lose track of the value of forward progress on tough questions, progress that may not be suitable for the high profile journals with a broad scope. In mentoring, it may be as important to convey that it is possible to have a rewarding scientific career by actively choosing when to compromise, to take risks or to go your own way, as to help students learn research techniques. Possible starting points for such discussions are the old spaghetti westerns starring Clint Eastwood.
Maignen, François; Osipenko, Leeza; Pinilla-Dominguez, Pilar; Crowe, Emily
2017-03-01
The primary objective of the study was to analyse the proposed clinical development and economic evaluation plans for investigational medicinal products for which pharmaceutical companies have sought health technology assessment (HTA) scientific advice (SA). We have selected and analysed all the scientific advice procedures undertaken by National Institute for Health and Care Excellence (NICE) SA between 1 January 2009 and 3 December 2015 for investigational medicinal products. We have mapped the questions asked by the companies and the areas of advice highlighted in the advice reports to the sections of the NICE methods guide to the technology appraisals (2013). An overwhelming proportion of SA procedures have addressed questions related to the clinical development and specifically the main pivotal efficacy studies. Approximately a quarter of the questions relate to the approaches to economic evaluation. Questions raised in European Medicines Agency-HTA procedures generally focus on clinical efficacy issues whereas cost-effectiveness ones tend to dominate in NICE-only procedures. Our analysis shows that the issues mostly discussed in the HTA SA are the choice of comparator, the generalisability of the clinical trial evidence to the NHS practice and the impact of the clinical trial outcomes on quality of life and survival. Less disagreement with the developers' plans was seen in the choice of clinical endpoints, population definition, position of the technology in the treatment pathway and study design. Scientific advice is designed to improve the quality of evidence and approaches to evidence generation for future regulatory approval and HTA evaluation. Our experience to date suggests that payer requirements are inconsistently integrated in the clinical development programmes. More efforts should be dedicated to demonstrating the clinical value of new medicinal products to patients and key decision-makers.
Ambiguous Science and the Visual Representation of the Real
ERIC Educational Resources Information Center
Newbold, Curtis Robert
2012-01-01
The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in…
ERIC Educational Resources Information Center
Beke, Tamás
2009-01-01
The professional blog is a weblog that on the whole meets the requirements of scientific publication. In my opinion it bears a resemblance to digital notice boards, where the competent specialists of the given branch of science can place their ideas, questions, possible solutions and can raise problems. Its most important function can be…
Evaluating Research in Career and Technical Education Using Scientifically-Based Research Standards
ERIC Educational Resources Information Center
Gemici, Sinan; Rojewski, Jay W.
2007-01-01
The recent emphasis on scientifically-based research (SBR) as the government's favored research paradigm has direct implications for career and technical education (CTE). From a practical standpoint, federal funds will now be appropriated exclusively on scholars' readiness and ability to engage the "right" research questions. While the…
Research and management issues in large-scale fire modeling
David L. Peterson; Daniel L. Schmoldt
2000-01-01
In 1996, a team of North American fire scientists and resource managers convened to assess the effects of fire disturbance on ecosystems and to develop scientific recommendations for future fire research and management activities. These recommendations - elicited with the Analytic Hierarchy Process - include numerically ranked scientific and managerial questions and...
ERIC Educational Resources Information Center
Marusic, Mirko; Slisko, Josip
2012-01-01
The Lawson Classroom Test of Scientific Reasoning (LCTSR) was used to gauge the relative effectiveness of three different methods of pedagogy, "Reading, Presenting, and Questioning" (RPQ), "Experimenting and Discussion" (ED), and "Traditional Methods" (TM), on increasing students' level of scientific thinking. The…
Conceptual Level of Understanding about Sound Concept: Sample of Fifth Grade Students
ERIC Educational Resources Information Center
Bostan Sarioglan, Ayberk
2016-01-01
In this study, students' conceptual change processes related to the sound concept were examined. Study group was comprises of 325 fifth grade middle school students. Three multiple-choice questions were used as the data collection tool. At the data analysis process "scientific response", "scientifically unacceptable response"…
Visual Invention and the Composition of Scientific Research Graphics: A Topological Approach
ERIC Educational Resources Information Center
Walsh, Lynda
2018-01-01
This report details the second phase of an ongoing research project investigating the visual invention and composition processes of scientific researchers. In this phase, four academic researchers completed think-aloud protocols as they composed graphics for research presentations; they also answered follow-up questions about their visual…
Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool
ERIC Educational Resources Information Center
Newman, Dina L.; Snyder, Christopher W.; Fisk, J. Nick; Wright, L. Kate
2016-01-01
Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select--format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all…
Positivist Dogmas, Rhetoric, and the Education Science Question
ERIC Educational Resources Information Center
Howe, Kenneth R.
2009-01-01
Explicit versions of positivism were cast off some time ago in philosophy, but a tacit form continues to thrive in education research, exemplified by the "new scientific orthodoxy" codified in the National Research Council's "Scientific Research in Education" (2002) and reinforced in the American Educational Research Association's "Standards for…
Program on Public Conceptions of Science, Newsletter 14.
ERIC Educational Resources Information Center
Shelanski, Vivien, Ed.
Three special features related to increasing attention given to the relationships between scientific and social, political, moral and legal issues are presented. One article is presented which questions whether the traditional scientific norms provided adequate guidance for scientists in their interaction with public officials, the news media, and…
Rethinking Meta-Analysis: Applications for Air Pollution Data and Beyond
Goodman, Julie E; Petito Boyce, Catherine; Sax, Sonja N; Beyer, Leslie A; Prueitt, Robyn L
2015-01-01
Meta-analyses offer a rigorous and transparent systematic framework for synthesizing data that can be used for a wide range of research areas, study designs, and data types. Both the outcome of meta-analyses and the meta-analysis process itself can yield useful insights for answering scientific questions and making policy decisions. Development of the National Ambient Air Quality Standards illustrates many potential applications of meta-analysis. These applications demonstrate the strengths and limitations of meta-analysis, issues that arise in various data realms, how meta-analysis design choices can influence interpretation of results, and how meta-analysis can be used to address bias and heterogeneity. Reviewing available data from a meta-analysis perspective can provide a useful framework and impetus for identifying and refining strategies for future research. Moreover, increased pervasiveness of a meta-analysis mindset—focusing on how the pieces of the research puzzle fit together—would benefit scientific research and data syntheses regardless of whether or not a quantitative meta-analysis is undertaken. While an individual meta-analysis can only synthesize studies addressing the same research question, the results of separate meta-analyses can be combined to address a question encompassing multiple data types. This observation applies to any scientific or policy area where information from a variety of disciplines must be considered to address a broader research question. PMID:25969128
Role of Scientific Societies in International Collaboration
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.
2007-12-01
Geophysical research increasingly requires global multidisciplinary approaches. Understanding how deeply interrelated are Earth components and processes, population growth, increased needs of mineral and energy resources, global impact of human activities, and view of our planet as an interconnected system emphasizes the need of international cooperation. International research collaboration has an immense potential and is needed for further development of Earth science research and education. The Union Session is planned to provide a forum for analysis and discussion of the status of research and education of geosciences in developing countries, international collaboration programs and new initiatives for promoting and strengthening scientific cooperation. A theme of particular relevance in the analyses and discussions is the role of scientific societies in international collaboration. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities. They may further assist communities in developing countries in providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. What else can be done? This is a complex subject and scientific societies may not be seen independently from the many factors involved in research and education. Developing countries present additional challenges resulting from limited economic resources and social and political problems, while urgently requiring improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources, and identification of major problems and needs. What are the major limitations and needs in research and postgraduate education in developing countries? What and how should international collaboration do? What are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions from analyses and examples in Latin America. We concentrate on current situation, size and characteristics of research community, education programs, facilities, economic support, and bilateral and multinational collaborations, and then move to perspectives for future development in an international context.
Artificial intelligence support for scientific model-building
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1992-01-01
Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.
NASA Astrophysics Data System (ADS)
Thweatt, A. M.; Giardino, J. R.; Schroeder, C.
2014-12-01
Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify their ideas, make claims, present arguments, and record and present findings. Students have acquired the skills to be considered scientifically literate and capable of learning. A poster demonstrating the tie between Scientific Literacy and Inquiry-Based Writing has been produced and distributed widely around campus.
ERIC Educational Resources Information Center
Ashbrook, Peggy
2006-01-01
Young children do science exploration and observation every day in their play. They spontaneously engage in parts of the scientific inquiry process--wondering, asking a question, planning how to answer the question, documenting their work, thinking about what happened, and sharing their results with others. Conducting an entire experiment is…
40 CFR 164.50 - Prehearing conference and primary discovery.
Code of Federal Regulations, 2012 CFR
2012-07-01
... possibility of obtaining stipulations of fact and documents which will avoid unnecessary delay; (4) Matters of... any party desires that questions of scientific fact be referred to a committee designated by the National Academy of Sciences. (2) Preparation of questions. On determining an affirmative intent, the...
40 CFR 164.50 - Prehearing conference and primary discovery.
Code of Federal Regulations, 2011 CFR
2011-07-01
... possibility of obtaining stipulations of fact and documents which will avoid unnecessary delay; (4) Matters of... any party desires that questions of scientific fact be referred to a committee designated by the National Academy of Sciences. (2) Preparation of questions. On determining an affirmative intent, the...
40 CFR 164.50 - Prehearing conference and primary discovery.
Code of Federal Regulations, 2010 CFR
2010-07-01
... possibility of obtaining stipulations of fact and documents which will avoid unnecessary delay; (4) Matters of... any party desires that questions of scientific fact be referred to a committee designated by the National Academy of Sciences. (2) Preparation of questions. On determining an affirmative intent, the...
40 CFR 164.50 - Prehearing conference and primary discovery.
Code of Federal Regulations, 2013 CFR
2013-07-01
... possibility of obtaining stipulations of fact and documents which will avoid unnecessary delay; (4) Matters of... any party desires that questions of scientific fact be referred to a committee designated by the National Academy of Sciences. (2) Preparation of questions. On determining an affirmative intent, the...
40 CFR 164.50 - Prehearing conference and primary discovery.
Code of Federal Regulations, 2014 CFR
2014-07-01
... possibility of obtaining stipulations of fact and documents which will avoid unnecessary delay; (4) Matters of... any party desires that questions of scientific fact be referred to a committee designated by the National Academy of Sciences. (2) Preparation of questions. On determining an affirmative intent, the...
This virtual FIFRA SAP meeting will be discus questions on Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways
Data structures and organisation: Special problems in scientific applications
NASA Astrophysics Data System (ADS)
Read, Brian J.
1989-12-01
In this paper we discuss and offer answers to the following questions: What, really, are the benifits of databases in physics? Are scientific databases essentially different from conventional ones? What are the drawbacks of a commercial database management system for use with scientific data? Do they outweigh the advantages? Do databases systems have adequate graphics facilities, or is a separate graphics package necessary? SQL as a standard language has deficiencies, but what are they for scientific data in particular? Indeed, is the relational model appropriate anyway? Or, should we turn to object oriented databases?
Energy Exascale Earth System Model (E3SM) Project Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, D.
The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.
NeuroLex.org: an online framework for neuroscience knowledge
Larson, Stephen D.; Martone, Maryann E.
2013-01-01
The ability to transmit, organize, and query information digitally has brought with it the challenge of how to best use this power to facilitate scientific inquiry. Today, few information systems are able to provide detailed answers to complex questions about neuroscience that account for multiple spatial scales, and which cross the boundaries of diverse parts of the nervous system such as molecules, cellular parts, cells, circuits, systems and tissues. As a result, investigators still primarily seek answers to their questions in an increasingly densely populated collection of articles in the literature, each of which must be digested individually. If it were easier to search a knowledge base that was structured to answer neuroscience questions, such a system would enable questions to be answered in seconds that would otherwise require hours of literature review. In this article, we describe NeuroLex.org, a wiki-based website and knowledge management system. Its goal is to bring neurobiological knowledge into a framework that allows neuroscientists to review the concepts of neuroscience, with an emphasis on multiscale descriptions of the parts of nervous systems, aggregate their understanding with that of other scientists, link them to data sources and descriptions of important concepts in neuroscience, and expose parts that are still controversial or missing. To date, the site is tracking ~25,000 unique neuroanatomical parts and concepts in neurobiology spanning experimental techniques, behavioral paradigms, anatomical nomenclature, genes, proteins and molecules. Here we show how the structuring of information about these anatomical parts in the nervous system can be reused to answer multiple neuroscience questions, such as displaying all known GABAergic neurons aggregated in NeuroLex or displaying all brain regions that are known within NeuroLex to send axons into the cerebellar cortex. PMID:24009581
Component Technology for High-Performance Scientific Simulation Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epperly, T; Kohn, S; Kumfert, G
2000-11-09
We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less
[Use of Simulated Pacients in Psychiatry].
Corso, Silvia J Franco; Delgado, Marta Beatriz; Gómez-Restrepo, Carlos
2012-01-01
Scientific advances and the complexity of human knowledge generate a constant need for creating new tools intended to facilitate learning in an agreeable and lasting form. Simulated patients are one of such tools in medical education. Standardized or simulated patients are actors or people vigorously trained to represent a medical history or, if possible, specific physical findings with the purpose of using such representations as an educational and evaluating supplement in clinic practice. The use of simulated patients has been very well received, particularly in the psychiatric field; however, its usefulness in areas such as psychotherapy or evaluation of residents remains questionable. A search was made in PubMed with the MESH words ("Psychiatry/education" and "Patient Simulation"); a search was also made in LILACS and scholar Google using similar words. Simulated patients are widely used throughout the world in the psychiatry field and their usefulness as an academic tool for pre-graduate students is confirmed in most of the literature reviewed. One of the main benefits of the use of this kind of patients is the acquisition of specific abilities (e.g.: medical history recording); nevertheless, its efficacy in more complex experiences like psychotherapy or certification of psychiatry residents is questioned. Notwithstanding the controversy, most of the literature reviewed confirms the benefits and acceptance of this methodology in the formation of students and psychiatrists. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Beyond the realism debate: The metaphysics of 'racial' distinctions.
Lemeire, Olivier
2016-10-01
The current metaphysical race debate is very much focused on the realism question whether races exist. In this paper I argue against the importance of this question. Philosophers, biologists and anthropologists expect that answering this question will tell them something substantive about the metaphysics of racial classifications, and will help them to decide whether it is justified to use racial categories in scientific research and public policy. I argue that there are two reasons why these expectations are not fulfilled. First of all, the realism question about race leads to a very broad philosophical debate about the semantics of general terms and the criteria for real kinds, rather than to a debate about the metaphysics of racial categories specifically. Secondly, there is a type of race realism that is so toothless that it is almost completely uninformative about the metaphysics of race. In response to these worries, I argue that the metaphysical race debate should rather be focused on the question in what way and to what extent 'racial' distinctions can ground the epistemic practices of various scientific disciplines. I spell out what I mean by this, and go on to demonstrate that trying to answer this question leads to a more fruitful metaphysical debate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramstead, Maxwell J. D.; Badcock, Paul B.; Friston, Karl J.
2018-03-01
First and foremost, we sincerely thank our commentators for their incisive and thought-provoking responses [1-14] to our metatheory of living systems; namely, variational neuroethology (VNE) [15]. We appreciated the critical insights, questions, suggestions, and proposals for future research. We were also pleased to see signs of a fruitful dialectic between different perspectives - unexpectedly, some of our commentators addressed others' questions and concerns; suggesting that VNE might enable productive scientific discourse and inspire new, multidisciplinary research questions. There were also friendly critics, who helpfully questioned the coherence and validity of VNE, and motivated us to revisit key issues.
NASA Astrophysics Data System (ADS)
Heidmann, Ilona; Milde, Jutta
2014-05-01
The research about the fate and behavior of engineered nanoparticles in the environment is despite its wide applications still in the early stages. 'There is a high level of scientific uncertainty in nanoparticle research' is often stated in the scientific community. Knowledge about these uncertainties might be of interest to other scientists, experts and laymen. But how could these uncertainties be characterized and are they communicated within the scientific literature and the mass media? To answer these questions, the current state of scientific knowledge about scientific uncertainty through the example of environmental nanoparticle research was characterized and the communication of these uncertainties within the scientific literature is compared with its media coverage in the field of nanotechnologies. The scientific uncertainty within the field of environmental fate of nanoparticles is by method uncertainties and a general lack of data concerning the fate and effects of nanoparticles and their mechanisms in the environment, and by the uncertain transferability of results to the environmental system. In the scientific literature, scientific uncertainties, their sources, and consequences are mentioned with different foci and to a different extent. As expected, the authors in research papers focus on the certainty of specific results within their specific research question, whereas in review papers, the uncertainties due to a general lack of data are emphasized and the sources and consequences are discussed in a broader environmental context. In the mass media, nanotechnology is often framed as rather certain and positive aspects and benefits are emphasized. Although reporting about a new technology, only in one-third of the reports scientific uncertainties are mentioned. Scientific uncertainties are most often mentioned together with risk and they arise primarily from unknown harmful effects to human health. Environmental issues itself are seldom mentioned. Scientific uncertainties, sources, and consequences have been most widely discussed in the review papers. Research papers and mass media tend to emphasize more the certainty of their scientific results or the benefits of the nanotechnology applications. Neither the broad spectrum nor any specifications of uncertainties have been communicated. This indicates that there has been no effective dialogue over scientific uncertainty with the public so far.
ERIC Educational Resources Information Center
Science Teacher, 2005
2005-01-01
This article features questions regarding logarithmic functions and hair growth. The first question is, "What is the underlying natural phenomenon that causes the natural log function to show up so frequently in scientific equations?" There are two reasons for this. The first is simply that the logarithm of a number is often used as a replacement…
Linus Pauling and the scientific debate over fallout hazards.
Jolly, J Christopher
2002-12-01
From 1954 to 1963, numerous scientists engaged in a public debate over the possible hazards from radioactive fallout from nuclear weapons testing. Nobel laureate Linus Pauling, a California Institute of Technology chemist, was one of the most prominent. His scientific papers relating to the fallout debate reveal many of the scientific, social and political issues involved in the controversy. Although the public controversy ended after the signing of the 1963 Limited Test Ban Treaty, many of the scientific questions about the possible hazards of low-level radiation remain under debate within the scientific community. Moreover, the fallout debate was a prototype of current controversies over environmental and public-health hazards.
From Scientific Object to Commemorated Victim: the Children of the Spiegelgrund
Weindling, Paul
2015-01-01
The legacy of German medical research in the era of National Socialism remains contentious, as regards identification of victims, and the appropriate handling of scientific specimens. These questions are acutely posed by the scientific slides, brain sections, and other body parts of victims, who were killed for research. These slides continued to be held by Austrian and German scientific institutes in the second half of the twentieth century. That scientists continued research on these slides between 1945 and the late1980s suggests a disassociation of guilt and responsibility for the deaths of the victims by the German scientific community. PMID:24779110
Physical oceanography and tracer chemistry of the southern ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report considers technical and scientific developments and research questions in studies of the Southern Ocean since its predecessor, /open quotes/Southern Ocean Dynamics--A Strategy for Scientific Exploration 1973-1983/close quotes/ was published. The summary lists key research questions in Southern Ocean oceanography. Chapter 1 describes how Southern Ocean research has evolved to provide the basis for timely research toward more directed objectives. Chapter 2 recommends four research programs, encompassing many of the specific recommendations that follow. Appendix A provides the scientific background and Reference/Bibliography list for this report for: on air-sea-ice interaction; the Antarctic Circumpolar Current; water mass conversion; chemical tracermore » oceanography; and numerical modeling of the Southern Ocean. Appendix B describes the satellite-based observation systems expected to be active during the next decade. Appendix C is a list of relevant reports published during 1981-1987. 146 refs.« less
How to Write Articles that Get Published
2014-01-01
Publications are essential for sharing knowledge, and career advancement. Writing a research paper is a challenge. Most graduate programmes in medicine do not offer hands-on training in writing and publishing in scientific journals. Beginners find the art and science of scientific writing a daunting task. ‘How to write a scientific paper?, Is there a sure way to successful publication ?’ are the frequently asked questions. This paper aims to answer these questions and guide a beginner through the process of planning, writing, and correction of manuscripts that attract the readers and satisfies the peer reviewers. A well-structured paper in lucid and correct language that is easy to read and edit, and strictly follows the instruction to the authors from the editors finds favour from the readers and avoids outright rejection. Making right choice of journal is a decision critical to acceptance. Perseverance through the peer review process is the road to successful publication. PMID:25386508
Polunovsky, Vitaly A.; Hershey, John W.B.; Sonenberg, Nahum
2013-01-01
We introduce here the inaugural issue of the new scientific journal Translation. The overarching aim of this endeavor is to establish a new forum for a broad spectrum of research in the area of protein synthesis in living systems ranging from structural biochemical, evolutionary and regulatory aspects of translation to the fundamental questions related to post-translational control of somatic phenomena in multicellular organisms including human behavior and health. The journal will publish high quality research articles, provide novel insights, ask provocative questions and discuss new hypothesis in this emerging field. Launching a new journal is always challenging. We hope that strong criteria for the peer-review process, transparency of the editorial policy and the scientific reputation of its founders, editors and editorial board assure the success of Translation; and we rely on continuing support of the scientific community in all aspects of the journal’s activity. PMID:26824021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less
Considerations for Infectious Disease Research Studies Using Animals
Colby, Lesley A; Quenee, Lauriane E; Zitzow, Lois A
2017-01-01
Animal models are vital in understanding the transmission and pathogenesis of infectious organisms and the host immune response to infection. In addition, animal models are essential in vaccine and therapeutic drug development and testing. Prior to selecting an animal model to use when studying an infectious agent, the scientific team must determine that sufficient in vitro and ex vivo data are available to justify performing research in an animal model, that ethical considerations are addressed, and that the data generated from animal work will add useful information to the body of scientific knowledge. Once it is established that an animal should be used, the questions become ‘Which animal model is most suitable?’ and ‘Which experimental design issues should be considered?’ The answers to these questions take into account numerous factors, including scientific, practical, welfare, and regulatory considerations, which are the focus of this article. PMID:28662751
[Writing and publication of a medical article].
Salmi, L R
1999-11-01
To advance in their strategies to manage patients, clinicians need new research results. To be accessible, medical research must be published. Writing and publishing medical articles should respect principles that are described in this article. Good writing is based on a logical organization and the application of scientific style. Organization according to the IMRD structure (Introduction, Methods, Results, Discussion) allows one to present the reasons for and objectives of the study (Introduction), details on whatever has been done to answer the question (Methods), data on the actual study population and answers to the main question (Results), and a critical appraisal of these results, given the limits of the study and current knowledge (Discussion). The main elements of scientific style are precision, clarity, fluidity and concision. Finally, submitting a paper to a scientific journal implies presenting the work in a covering letter and respecting rules for formatting a manuscript (order of presentation, typography, etc.).
Student’s profile about science literacy in Surakarta
NASA Astrophysics Data System (ADS)
Nur’aini, D.; Rahardjo, S. B.; Elfi Susanti, V. H.
2018-05-01
This research was conducted to find out student’s initial profile of science literacy. The method used was descriptive with 46 students as subjects. The instrument used is science literacy question referring to PISA 2015. Data processing technique used are scoring on each question, changing the score values, grouping the level subjects obtain based on the value and conclusion. Competencies measure in this test are explaining scientific phenomena, interpretation of data and evidence scientifically, and evaluate and design scientific inquiry. The results of the three competencies are 30,87%, 40,20% and 24,90%. Achievement level of science literacy achieved by students in level 1 47,82%, level 2 33,82%, level 3 42,93%, level 4 26,50%, level 5 21,73%. Based on the result of research, it can be concluded that the ability of science literacy students in Surakarta relatively low.
Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models
NASA Astrophysics Data System (ADS)
Pallant, Amy; Lee, Hee-Sun
2015-04-01
Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.
ERIC Educational Resources Information Center
Dinsmore, Daniel L.; Zoellner, Brian P.; Parkinson, Meghan M.; Rossi, Anthony M.; Monk, Mary J.; Vinnachi, Jenelle
2017-01-01
View change about socio-scientific issues has been well studied in the literature, but the change in the complexity of those views has not. In the current study, the change in the complexity of views about a specific scientific topic (i.e. genetically modified organisms; GMOs) and use of evidence in explaining those views was examined in relation…
Re-Visions of Psychology: Feminism as a Paradigm of Scientific Inquiry.
ERIC Educational Resources Information Center
Brownell, Arlene
An intellectual revolution is described in which the logic-centered, value-free model that has served as the foundation for paradigms in psychology is being reevaluated. As part of the intellectual revolution, feminism is presented as a paradigm of scientific inquiry meeting Thomas Kuhn's definition. The question is posed of whether psychologists…
ERIC Educational Resources Information Center
Spencer, Tamara
2011-01-01
In recent years, researchers have called into question the efficacy of prescribed commercial curricula in early childhood classrooms (Genishi & Dyson, 2009). Despite these concerns, federally funded initiatives and such findings as those presented in the Report of the National Early Literacy Panel continue to promote scientifically based…
Thomas L. Griffiths: Award for Distinguished Scientific Early Career Contributions to Psychology
ERIC Educational Resources Information Center
American Psychologist, 2012
2012-01-01
Presents a short biography of one of the winners of the American Psychological Association's Award for Distinguished Scientific Early Career Contributions to Psychology (2012). Thomas L. Griffiths won the award for bringing mathematical precision to the deepest questions in human learning, reasoning, and concept formation. In his pioneering work,…
Analysing Teachers' Operations When Teaching Students: What Constitutes Scientific Theories?
ERIC Educational Resources Information Center
Holmqvist, Mona O.; Olander, Clas
2017-01-01
The aim of the study is to analyse teachers' efforts to develop secondary school students' knowledge and argumentation skills of what constitutes scientific theories. The analysis is based on Leontiev's three-level structure of activity (activity, action, and operation), as these levels correspond to the questions why, what, and how content is…
ERIC Educational Resources Information Center
Balluerka, Nekane
1995-01-01
Effects of 3 different instructional aids on the acquisition of information from a scientific passage were studied with 104 Spanish undergraduates. Written instructions, preparing a written outline, and seeing an illustration all led to higher performance. The outline condition led to the highest performance for questions requiring information…
ERIC Educational Resources Information Center
Carlhed, Carina
2017-01-01
The article is a critical sociological analysis of current transnational practices on creating comparable measurements of dropout and completion in higher education and the consequences for the conditions of scientific knowledge production on the topic. The analysis revolves around questions of epistemological, methodological and symbolic types…
Crayfish Behavior: Observing Arthropods to Learn about Science & Scientific Inquiry
ERIC Educational Resources Information Center
Rop, Charles J.
2010-01-01
This is a set of animal behavior investigations in which students will practice scientific inquiry as they observe crayfish, ask questions, and discuss territoriality, social interactions, and other behaviors. In doing this, they hone their skills of observation, learn to record and analyze data, control for variables, write hypotheses, make…
Vitalism and the Darwin Debate
ERIC Educational Resources Information Center
Henderson, James
2012-01-01
There are currently both scientific and public debates surrounding Darwinism. In the scientific debate, the details of evolution are in dispute, but not the central thesis of Darwin's theory; in the public debate, Darwinism itself is questioned. I concentrate on the public debate because of its direct impact on education in the United States. Some…
This research paper uses case analysis methods to understand why participants engage in this innovative approach public participation in scientific research, and what they hope that will mean for their community. The research questions that guide this analysis are: 1) what factor...
Scientific Knowledge Suppresses but Does Not Supplant Earlier Intuitions
ERIC Educational Resources Information Center
Shtulman, Andrew; Valcarcel, Joshua
2012-01-01
When students learn scientific theories that conflict with their earlier, naive theories, what happens to the earlier theories? Are they overwritten or merely suppressed? We investigated this question by devising and implementing a novel speeded-reasoning task. Adults with many years of science education verified two types of statements as quickly…
Cross Cultural Exchange to Support Reasoning about Socio-Scientific Sustainability Issues
ERIC Educational Resources Information Center
Morin, Olivier; Tytler, Russell; Barraza, Laura; Simonneaux, Laurence; Simonneaux, Jean
2013-01-01
In this article, we describe a project on reasoning about socio-scientific issues (SSIs), involving French and Australian pre-service science teachers engaged in on-line discussion and development of a wiki. In the research, we developed frameworks for looking at the quality of reasoning about "socially acute" sustainability questions.…
ERIC Educational Resources Information Center
Berzonsky, William A.; Richardson, Katherine D.
2008-01-01
Accessibility of online scientific literature continues to expand due to the advent of scholarly databases and search engines. Studies have shown that undergraduates favor using online scientific literature to address research questions, but they often do not have the skills to assess the validity of research articles. Undergraduates generally are…
Report of the Terrestrial Bodies Science Working Group. Volume 7: The Galilean satellites
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Beckman, J. C.; Chapman, C. R.; Coroniti, F. V.; Johnson, T. V.; Malin, M. C.
1977-01-01
The formational and evolutionary history of natural satellites, their mineralogical composition and other phenomena of scientific interest are discussed. Key scientific questions about IO, Ganymede, Callisto, and Europa are posed and the measurements and instruments required for a Galilean satellite lander in the 1980's are described.
Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science
NASA Astrophysics Data System (ADS)
Bybee, Rodger; McCrae, Barry
2011-01-01
International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.
Ogden, Rob
2010-09-01
Wildlife DNA forensics is receiving increasing coverage in the popular press and has begun to appear in the scientific literature in relation to several different fields. Recognized as an applied subject, it rests on top of very diverse scientific pillars ranging from biochemistry through to evolutionary genetics, all embedded within the context of modern forensic science. This breadth of scope, combined with typically limited resources, has often left wildlife DNA forensics hanging precariously between human DNA forensics and academics keen to seek novel applications for biological research. How best to bridge this gap is a matter for regular debate among the relatively few full-time practitioners in the field. The decisions involved in establishing forensic genetic services to investigate wildlife crime can be complex, particularly where crimes involve a wide range of species and evidential questions. This paper examines some of the issues relevant to setting up a wildlife DNA forensics laboratory based on experiences of working in this area over the past 7 years. It includes a discussion of various models for operating individual laboratories as well as options for organizing forensic testing at higher national and international levels.
Floods in a changing climate: a review.
Hunt, J C R
2002-07-15
This paper begins with an analysis of flooding as a natural disaster for which the solutions to the environmental, social and economic problems are essentially those of identifying and overcoming hazards and vulnerability, reducing risk and damaging consequences. Long-term solutions to flooding problems, especially in a changing climate, should be sought in the wider context of developing more sustainable social organization, economics and technology. Then, developments are described of how scientific understanding, supported by practical modelling, is leading to predictions of how human-induced changes to climatic and geological conditions are likely to influence flooding over at least the next 300 years, through their influences on evaporation, precipitation, run-off, wind storm and sea-level rise. Some of the outstanding scientific questions raised by these problems are highlighted, such as the statistical and deterministic prediction of extreme events, the understanding and modelling of mechanisms that operate on varying length- and time-scales, and the complex interactions between biological, ecological and physical problems. Some options for reducing the impact of flooding by new technology include both improved prediction and monitoring with computer models, and remote sensing, flexible and focused warning systems, and permanent and temporary flood-reduction systems.
Toward mapping the biology of the genome.
Chanock, Stephen
2012-09-01
This issue of Genome Research presents new results, methods, and tools from The ENCODE Project (ENCyclopedia of DNA Elements), which collectively represents an important step in moving beyond a parts list of the genome and promises to shape the future of genomic research. This collection sheds light on basic biological questions and frames the current debate over the optimization of tools and methodological challenges necessary to compare and interpret large complex data sets focused on how the genome is organized and regulated. In a number of instances, the authors have highlighted the strengths and limitations of current computational and technical approaches, providing the community with useful standards, which should stimulate development of new tools. In many ways, these papers will ripple through the scientific community, as those in pursuit of understanding the "regulatory genome" will heavily traverse the maps and tools. Similarly, the work should have a substantive impact on how genetic variation contributes to specific diseases and traits by providing a compendium of functional elements for follow-up study. The success of these papers should not only be measured by the scope of the scientific insights and tools but also by their ability to attract new talent to mine existing and future data.
NASA Astrophysics Data System (ADS)
Favors, J.; Cauffman, S.; Ianson, E.; Kaye, J. A.; Friedl, L.; Green, D. S.; Lee, T. J.; Murphy, K. J.; Turner, W.
2017-12-01
NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, and technology development. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations with technical and non-technical expertise. This presentation will focus on a new commercial and non-profit partnership effort being undertaken by ESD to integrate expertise unique to these sectors with expertise at NASA to jointly achieve what neither group could alone. Highlights will include case study examples of joint work with perspectives from both NASA and the partner, building interdisciplinary teams with diverse backgrounds but common goals (e.g., economics and Earth observations for valuing natural capital), partnership successes and challenges in the co-production of science and applications, utilizing partner networks to amplify project outcomes, and how involving partners in defining the project scope drives novel and unique scientific and decision-making questions to arise.
Data Sharing in Astrobiology: The Astrobiology Habitable Environments Database (AHED)
NASA Technical Reports Server (NTRS)
Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R.; Downs, Robert; Blake, D.; Fonda, M.
2017-01-01
Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.
Data Sharing in Astrobiology: the Astrobiology Habitable Environments Database (AHED)
NASA Technical Reports Server (NTRS)
Lafuente, B.; Bristow, T.; Stone, N.; Pires, A.; Keller, R. M.; Downs, R. T.; Blake, D.; Fonda, M.
2017-01-01
Astrobiology is a multidisciplinary area of scientific research focused on studying the origins of life on Earth and the conditions under which life might have emerged elsewhere in the universe. NASA uses the results of Astrobiology research to help define targets for future missions that are searching for life elsewhere in the universe. The understanding of complex questions in Astrobiology requires integration and analysis of data spanning a range of disciplines including biology, chemistry, geology, astronomy and planetary science. However, the lack of a centralized repository makes it difficult for Astrobiology teams to share data and benefit from resultant synergies. Moreover, in recent years, federal agencies are requiring that results of any federally funded scientific research must be available and useful for the public and the science community. The Astrobiology Habitable Environments Database (AHED), developed with a consolidated group of astrobiologists from different active research teams at NASA Ames Research Center, is designed to help to address these issues. AHED is a central, high-quality, long-term data repository for mineralogical, textural, morphological, inorganic and organic chemical, isotopic and other information pertinent to the advancement of the field of Astrobiology.
A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science.
Faghmous, James H; Kumar, Vipin
2014-09-01
Global climate change and its impact on human life has become one of our era's greatest challenges. Despite the urgency, data science has had little impact on furthering our understanding of our planet in spite of the abundance of climate data. This is a stark contrast from other fields such as advertising or electronic commerce where big data has been a great success story. This discrepancy stems from the complex nature of climate data as well as the scientific questions climate science brings forth. This article introduces a data science audience to the challenges and opportunities to mine large climate datasets, with an emphasis on the nuanced difference between mining climate data and traditional big data approaches. We focus on data, methods, and application challenges that must be addressed in order for big data to fulfill their promise with regard to climate science applications. More importantly, we highlight research showing that solely relying on traditional big data techniques results in dubious findings, and we instead propose a theory-guided data science paradigm that uses scientific theory to constrain both the big data techniques as well as the results-interpretation process to extract accurate insight from large climate data .