Sample records for complex signalling networks

  1. Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling

    PubMed Central

    Sato, Masanao; Tsuda, Kenichi; Wang, Lin; Coller, John; Watanabe, Yuichiro; Glazebrook, Jane; Katagiri, Fumiaki

    2010-01-01

    Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii) negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a “sector-switching” network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. PMID:20661428

  2. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project

    PubMed Central

    McDonough, Ian M.; Nashiro, Kaoru

    2014-01-01

    An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130

  3. Weak signal transmission in complex networks and its application in detecting connectivity.

    PubMed

    Liang, Xiaoming; Liu, Zonghua; Li, Baowen

    2009-10-01

    We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.

  4. Towards the understanding of network information processing in biology

    NASA Astrophysics Data System (ADS)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  5. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks

    NASA Astrophysics Data System (ADS)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  6. The Robustness of a Signaling Complex to Domain Rearrangements Facilitates Network Evolution

    PubMed Central

    Sato, Paloma M.; Yoganathan, Kogulan; Jung, Jae H.; Peisajovich, Sergio G.

    2014-01-01

    The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. PMID:25490747

  7. Digital Signal Processing and Control for the Study of Gene Networks

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  8. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  9. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  10. Pulse-firing winner-take-all networks

    NASA Technical Reports Server (NTRS)

    Meador, Jack L.

    1991-01-01

    Winner-take-all (WTA) neural networks using pulse-firing processing elements are introduced. In the pulse-firing WTA (PWTA) networks described, input and activation signal shunting is controlled by one shared lateral inhibition signal. This organization yields an O(n) area complexity that is convenient for integrated circuit implementation. Appropriately specified network parameters allow for the accurate continuous evaluation of inputs using a signal representation compatible with established pulse-firing neural network implementations.

  11. Logic-Based Models for the Analysis of Cell Signaling Networks†

    PubMed Central

    2010-01-01

    Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks. PMID:20225868

  12. Evolution of SH2 domains and phosphotyrosine signalling networks

    PubMed Central

    Liu, Bernard A.; Nash, Piers D.

    2012-01-01

    Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907

  13. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  14. Modeling fluctuations in default-mode brain network using a spiking neural network.

    PubMed

    Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko

    2012-08-01

    Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.

  15. Comment on "A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation": building a model of the mTOR signaling network with a potentially faulty tool.

    PubMed

    Manning, Brendan D

    2012-07-10

    In their study published in Science Signaling (Research Article, 27 March 2012, DOI: 10.1126/scisignal.2002469), Dalle Pezze et al. tackle the dynamic and complex wiring of the signaling network involving the protein kinase mTOR, which exists within two distinct protein complexes (mTORC1 and mTORC2) that differ in their regulation and function. The authors use a combination of immunoblotting for specific phosphorylation events and computational modeling. The primary experimental tool employed is to monitor the autophosphorylation of mTOR on Ser(2481) in cell lysates as a surrogate for mTOR activity, which the authors conclude is a specific readout for mTORC2. However, Ser(2481) phosphorylation occurs on both mTORC1 and mTORC2 and will dynamically change as the network through which these two complexes are connected is manipulated. Therefore, models of mTOR network regulation built using this tool are inherently imperfect and open to alternative explanations. Specific issues with the main conclusion made in this study, involving the TSC1-TSC2 (tuberous sclerosis complex 1 and 2) complex and its potential regulation of mTORC2, are discussed here. A broader goal of this Letter is to clarify to other investigators the caveats of using mTOR Ser(2481) phosphorylation in cell lysates as a specific readout for either of the two mTOR complexes.

  16. The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing

    PubMed Central

    Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan

    2017-01-01

    Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014

  17. Responses to olfactory signals reflect network structure of flower-visitor interactions.

    PubMed

    Junker, Robert R; Höcherl, Nicole; Blüthgen, Nico

    2010-07-01

    1. Network analyses provide insights into the diversity and complexity of ecological interactions and have motivated conclusions about community stability and co-evolution. However, biological traits and mechanisms such as chemical signals regulating the interactions between individual species--the microstructure of a network--are poorly understood. 2. We linked the responses of receivers (flower visitors) towards signals (flower scent) to the structure of a highly diverse natural flower-insect network. For each interaction, we define link temperature--a newly developed metric--as the deviation of the observed interaction strength from neutrality, assuming that animals randomly interact with flowers. 3. Link temperature was positively correlated to the specific visitors' responses to floral scents, experimentally examined in a mobile olfactometer. Thus, communication between plants and consumers via phytochemical signals reflects a significant part of the microstructure in a complex network. Negative as well as positive responses towards floral scents contributed to these results, where individual experience was important apart from innate behaviour. 4. Our results indicate that: (1) biological mechanisms have a profound impact on the microstructure of complex networks that underlies the outcome of aggregate statistics, and (2) floral scents act as a filter, promoting the visitation of some flower visitors, but also inhibiting the visitation of others.

  18. Application of complex discrete wavelet transform in classification of Doppler signals using complex-valued artificial neural network.

    PubMed

    Ceylan, Murat; Ceylan, Rahime; Ozbay, Yüksel; Kara, Sadik

    2008-09-01

    In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.

  19. Human Age Recognition by Electrocardiogram Signal Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dasgupta, Hirak

    2016-12-01

    The objective of this work is to make a neural network function approximation model to detect human age from the electrocardiogram (ECG) signal. The input vectors of the neural network are the Katz fractal dimension of the ECG signal, frequencies in the QRS complex, male or female (represented by numeric constant) and the average of successive R-R peak distance of a particular ECG signal. The QRS complex has been detected by short time Fourier transform algorithm. The successive R peak has been detected by, first cutting the signal into periods by auto-correlation method and then finding the absolute of the highest point in each period. The neural network used in this problem consists of two layers, with Sigmoid neuron in the input and linear neuron in the output layer. The result shows the mean of errors as -0.49, 1.03, 0.79 years and the standard deviation of errors as 1.81, 1.77, 2.70 years during training, cross validation and testing with unknown data sets, respectively.

  20. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping

    PubMed Central

    Wessel, Jan R.; Aron, Adam R.

    2014-01-01

    Much research has modeled action-stopping using the stop-signal task (SST), in which an impending response has to be stopped when an explicit stop-signal occurs. A limitation of the SST is that real-world action-stopping rarely involves explicit stop-signals. Instead, the stopping-system engages when environmental features match more complex stopping goals. For example, when stepping into the street, one monitors path, velocity, size, and types of objects; and only stops if there is a vehicle approaching. Here, we developed a task in which participants compared the visual features of a multidimensional go-stimulus to a complex stopping-template, and stopped their go-response if all features matched the template. We used independent component analysis of EEG data to show that the same motor inhibition brain network that explains action-stopping in the SST also implements motor inhibition in the complex-stopping task. Furthermore, we found that partial feature overlap between go-stimulus and stopping-template lead to motor slowing, which also corresponded with greater stopping-network activity. This shows that the same brain system for action-stopping to explicit stop-signals is recruited to slow or stop behavior when stimuli match a complex stopping goal. The results imply a generalizability of the brain’s network for simple action-stopping to more ecologically valid scenarios. PMID:25270603

  1. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    PubMed

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  2. Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian

    2018-09-01

    Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.

  3. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration.

    PubMed

    Straube, Ronny

    2017-12-01

    Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  5. Modeling of the ground-to-SSFMB link networking features using SPW

    NASA Technical Reports Server (NTRS)

    Watson, John C.

    1993-01-01

    This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.

  6. Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits.

    PubMed

    Engström, Maria; Landtblom, Anne-Marie; Karlsson, Thomas

    2013-01-01

    Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network [involving the anterior insular cortex (AIC) and the anterior cingulate cortex (ACC)] might be of particular importance to working memory tasks that require complex, effortful processing. Healthy participants (n = 26) and participants suffering from working memory problems related to the Kleine-Levin syndrome (KLS) (a specific form of periodic idiopathic hypersomnia; n = 18) participated in the study. Participants were further divided into a high- and low-capacity group, according to performance on a working memory task (listening span). In a functional magnetic resonance imaging (fMRI) study, participants were administered the reading span complex working memory task tapping cognitive effort. The fMRI-derived blood oxygen level dependent (BOLD) signal was modulated by (1) effort in both the central executive and the salience network and (2) capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive) network so that high-capacity participants evidence a lower signal and possibly hence a larger dynamic response.

  7. Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits

    PubMed Central

    Engström, Maria; Landtblom, Anne-Marie; Karlsson, Thomas

    2013-01-01

    Despite the interest in the neuroimaging of working memory, little is still known about the neurobiology of complex working memory in tasks that require simultaneous manipulation and storage of information. In addition to the central executive network, we assumed that the recently described salience network [involving the anterior insular cortex (AIC) and the anterior cingulate cortex (ACC)] might be of particular importance to working memory tasks that require complex, effortful processing. Method: Healthy participants (n = 26) and participants suffering from working memory problems related to the Kleine–Levin syndrome (KLS) (a specific form of periodic idiopathic hypersomnia; n = 18) participated in the study. Participants were further divided into a high- and low-capacity group, according to performance on a working memory task (listening span). In a functional magnetic resonance imaging (fMRI) study, participants were administered the reading span complex working memory task tapping cognitive effort. Principal findings: The fMRI-derived blood oxygen level dependent (BOLD) signal was modulated by (1) effort in both the central executive and the salience network and (2) capacity in the salience network in that high performers evidenced a weaker BOLD signal than low performers. In the salience network there was a dichotomy between the left and the right hemisphere; the right hemisphere elicited a steeper increase of the BOLD signal as a function of increasing effort. There was also a stronger functional connectivity within the central executive network because of increased task difficulty. Conclusion: The ability to allocate cognitive effort in complex working memory is contingent upon focused resources in the executive and in particular the salience network. Individual capacity during the complex working memory task is related to activity in the salience (but not the executive) network so that high-capacity participants evidence a lower signal and possibly hence a larger dynamic response. PMID:23616756

  8. Advanced Fault Diagnosis Methods in Molecular Networks

    PubMed Central

    Habibi, Iman; Emamian, Effat S.; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670

  9. Flipping the NF-κB Switch in Macrophages | Center for Cancer Research

    Cancer.gov

    A critical component of the innate immune system, macrophages respond to diverse microbes by recognizing certain molecular patterns, such as the Gram-negative bacteria product lipopolysaccharide (LPS), via Toll-like receptors. Receptor activation stimulates a complex signaling network that involves, among others, the NF-κB pathway. The complexity of this network has hampered researchers’ understanding of how macrophages resolve conflicting signals to determine when to mount an immune response.

  10. Complexity in neuronal noise depends on network interconnectivity.

    PubMed

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).

  11. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    PubMed Central

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  12. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network.

    PubMed

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-07-12

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.

  13. Tumor-induced perturbations of cytokines and immune cell networks.

    PubMed

    Burkholder, Brett; Huang, Ren-Yu; Burgess, Rob; Luo, Shuhong; Jones, Valerie Sloane; Zhang, Wenji; Lv, Zhi-Qiang; Gao, Chang-Yu; Wang, Bao-Ling; Zhang, Yu-Ming; Huang, Ruo-Pan

    2014-04-01

    Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  15. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2017-03-01

    Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.

  16. mAKAP – A Master Scaffold for Cardiac Remodeling

    PubMed Central

    Passariello, Catherine L.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2014-01-01

    Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or ‘signalosomes’ are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2 and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy. PMID:25551320

  17. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    PubMed Central

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  18. Retinal Connectomics: Towards Complete, Accurate Networks

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott

    2013-01-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  19. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle.

    PubMed

    Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo

    2018-06-19

    MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.

  20. Analysis and Design of Complex Network Environments

    DTIC Science & Technology

    2014-02-01

    entanglements among un- measured variables. This “potential entanglement ” type of network complexity is previously unaddressed in the literature, yet it...Appreciating the power of structural representations that allow for potential entanglement among unmeasured variables to simplify network inference problems...rely on the idea of subsystems and allows for potential entanglement among unmeasured states. As a result, inferring a system’s signal structure

  1. Smad Signaling Dynamics: Insights from a Parsimonious Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, H. S.; Shankaran, Harish

    2008-09-09

    The molecular mechanisms that transmit information from cell surface receptors to the nucleus are exceedingly complex; thus, much effort has been expended in developing computational models to understand these processes. A recent study on modeling the nuclear-cytoplasmic shuttling of Smad2-Smad4 complexes in response to transforming growth factor β (TGF-β) receptor activation has provided substantial insight into how this signaling network translates the degree of TGF-β receptor activation (input) into the amount of nuclear Smad2-Smad4 complexes (output). The study addressed this question by combining a simple, mechanistic model with targeted experiments, an approach that proved particularly powerful for exploring the fundamentalmore » properties of a complex signaling network. The mathematical model revealed that Smad nuclear-cytoplasmic dynamics enables a proportional, but time-delayed coupling between the input and the output. As a result, the output can faithfully track gradual changes in the input, while the rapid input fluctuations that constitute signaling noise are dampened out.« less

  2. Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity.

    PubMed

    Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong

    2018-01-01

    Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.

  3. Magnetoencephalographic imaging of deep corticostriatal network activity during a rewards paradigm.

    PubMed

    Kanal, Eliezer Y; Sun, Mingui; Ozkurt, Tolga E; Jia, Wenyan; Sclabassi, Robert

    2009-01-01

    The human rewards network is a complex system spanning both cortical and subcortical regions. While much is known about the functions of the various components of the network, research on the behavior of the network as a whole has been stymied due to an inability to detect signals at a high enough temporal resolution from both superficial and deep network components simultaneously. In this paper, we describe the application of magnetoencephalographic imaging (MEG) combined with advanced signal processing techniques to this problem. Using data collected while subjects performed a rewards-related gambling paradigm demonstrated to activate the rewards network, we were able to identify neural signals which correspond to deep network activity. We also show that this signal was not observable prior to filtration. These results suggest that MEG imaging may be a viable tool for the detection of deep neural activity.

  4. Automatic QRS complex detection using two-level convolutional neural network.

    PubMed

    Xiang, Yande; Lin, Zhitao; Meng, Jianyi

    2018-01-29

    The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.

  5. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  6. Pharmacodynamic Assay Panel for Monitoring Phospho-Signaling Networks | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The DNA damage response (DDR) is a highly regulated signal transduction network that orchestrates the temporal and spatial organization of protein complexes required to repair (or tolerate) DNA damage (e.g., nucleotide excision repair, base excision repair, homologous recombination, non-homologous end joining, post-replication repair).

  7. Networking at the Protein Society symposium.

    PubMed

    McKnight, C James; Cordes, Matthew H J

    2005-10-01

    From the complex behavior of multicomponent signaling networks to the structures of large protein complexes and aggregates, questions once viewed as daunting are now being tackled fearlessly by protein scientists. The 19th Annual Symposium of the Protein Society in Boston highlighted the maturation of systems biology as applied to proteins.

  8. Polarity-specific high-level information propagation in neural networks.

    PubMed

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  9. Polarity-specific high-level information propagation in neural networks

    PubMed Central

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472

  10. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways.

    PubMed

    Hardy, Simon; Robillard, Pierre N

    2008-01-15

    Cellular signaling networks are dynamic systems that propagate and process information, and, ultimately, cause phenotypical responses. Understanding the circuitry of the information flow in cells is one of the keys to understanding complex cellular processes. The development of computational quantitative models is a promising avenue for attaining this goal. Not only does the analysis of the simulation data based on the concentration variations of biological compounds yields information about systemic state changes, but it is also very helpful for obtaining information about the dynamics of signal propagation. This article introduces a new method for analyzing the dynamics of signal propagation in signaling pathways using Petri net theory. The method is demonstrated with the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulation network. The results constitute temporal information about signal propagation in the network, a simplified graphical representation of the network and of the signal propagation dynamics and a characterization of some signaling routes as regulation motifs.

  11. Identification of critical regulatory genes in cancer signaling network using controllability analysis

    NASA Astrophysics Data System (ADS)

    Ravindran, Vandana; Sunitha, V.; Bagler, Ganesh

    2017-05-01

    Cancer is characterized by a complex web of regulatory mechanisms which makes it difficult to identify features that are central to its control. Molecular integrative models of cancer, generated with the help of data from experimental assays, facilitate use of control theory to probe for ways of controlling the state of such a complex dynamic network. We modeled the human cancer signaling network as a directed graph and analyzed it for its controllability, identification of driver nodes and their characterization. We identified the driver nodes using the maximum matching algorithm and classified them as backbone, peripheral and ordinary based on their role in regulatory interactions and control of the network. We found that the backbone driver nodes were key to driving the regulatory network into cancer phenotype (via mutations) as well as for steering into healthy phenotype (as drug targets). This implies that while backbone genes could lead to cancer by virtue of mutations, they are also therapeutic targets of cancer. Further, based on their impact on the size of the set of driver nodes, genes were characterized as indispensable, dispensable and neutral. Indispensable nodes within backbone of the network emerged as central to regulatory mechanisms of control of cancer. In addition to probing the cancer signaling network from the perspective of control, our findings suggest that indispensable backbone driver nodes could be potentially leveraged as therapeutic targets. This study also illustrates the application of structural controllability for studying the mechanisms underlying the regulation of complex diseases.

  12. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  13. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  14. Protein intrinsic disorder in plants.

    PubMed

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  15. Protein intrinsic disorder in plants

    PubMed Central

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A.; Solano, Roberto

    2013-01-01

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks. PMID:24062761

  16. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingchun; Yang, Feng; Fu, Yi

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signalingmore » pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.« less

  17. Constrained target controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Guo, Wei-Feng; Zhang, Shao-Wu; Wei, Ze-Gang; Zeng, Tao; Liu, Fei; Zhang, Jingsong; Wu, Fang-Xiang; Chen, Luonan

    2017-06-01

    It is of great theoretical interest and practical significance to study how to control a system by applying perturbations to only a few driver nodes. Recently, a hot topic of modern network researches is how to determine driver nodes that allow the control of an entire network. However, in practice, to control a complex network, especially a biological network, one may know not only the set of nodes which need to be controlled (i.e. target nodes), but also the set of nodes to which only control signals can be applied (i.e. constrained control nodes). Compared to the general concept of controllability, we introduce the concept of constrained target controllability (CTC) of complex networks, which concerns the ability to drive any state of target nodes to their desirable state by applying control signals to the driver nodes from the set of constrained control nodes. To efficiently investigate the CTC of complex networks, we further design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more efficiently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can efficiently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.

  18. Maneuvering in the Complex Path from Genotype to Phenotype

    NASA Astrophysics Data System (ADS)

    Strohman, Richard

    2002-04-01

    Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.

  19. A toolbox for discrete modelling of cell signalling dynamics.

    PubMed

    Paterson, Yasmin Z; Shorthouse, David; Pleijzier, Markus W; Piterman, Nir; Bendtsen, Claus; Hall, Benjamin A; Fisher, Jasmin

    2018-06-18

    In an age where the volume of data regarding biological systems exceeds our ability to analyse it, many researchers are looking towards systems biology and computational modelling to help unravel the complexities of gene and protein regulatory networks. In particular, the use of discrete modelling allows generation of signalling networks in the absence of full quantitative descriptions of systems, which are necessary for ordinary differential equation (ODE) models. In order to make such techniques more accessible to mainstream researchers, tools such as the BioModelAnalyzer (BMA) have been developed to provide a user-friendly graphical interface for discrete modelling of biological systems. Here we use the BMA to build a library of discrete target functions of known canonical molecular interactions, translated from ordinary differential equations (ODEs). We then show that these BMA target functions can be used to reconstruct complex networks, which can correctly predict many known genetic perturbations. This new library supports the accessibility ethos behind the creation of BMA, providing a toolbox for the construction of complex cell signalling models without the need for extensive experience in computer programming or mathematical modelling, and allows for construction and simulation of complex biological systems with only small amounts of quantitative data.

  20. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    PubMed

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  1. XML Encoding of Features Describing Rule-Based Modeling of Reaction Networks with Multi-Component Molecular Complexes

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2011-01-01

    Multi-state molecules and multi-component complexes are commonly involved in cellular signaling. Accounting for molecules that have multiple potential states, such as a protein that may be phosphorylated on multiple residues, and molecules that combine to form heterogeneous complexes located among multiple compartments, generates an effect of combinatorial complexity. Models involving relatively few signaling molecules can include thousands of distinct chemical species. Several software tools (StochSim, BioNetGen) are already available to deal with combinatorial complexity. Such tools need information standards if models are to be shared, jointly evaluated and developed. Here we discuss XML conventions that can be adopted for modeling biochemical reaction networks described by user-specified reaction rules. These could form a basis for possible future extensions of the Systems Biology Markup Language (SBML). PMID:21464833

  2. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network

    PubMed Central

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-01-01

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault’s characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault’s characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal’s features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear’s weak fault features. PMID:28773148

  3. Networking switches for smart functions using copper signaling and dynamic heteroleptic complexation.

    PubMed

    Schmittel, Michael

    2018-04-17

    This personal frontier account describes our recent progress in networking nanoswitches to generate emergent functions, such as catalytic machinery, and identifies the key impediments in mastering the paradigm shift from pure compounds to smart mixtures. A crucial challenge is the setup of reliable signaling protocols that are based on highly selective metal ion translocation and metal-ligand receptor events.

  4. Flipping the NF-κB Switch in Macrophages | Center for Cancer Research

    Cancer.gov

    A critical component of the innate immune system, macrophages respond to diverse microbes by recognizing certain molecular patterns, such as the Gram-negative bacteria product lipopolysaccharide (LPS), via Toll-like receptors. Receptor activation stimulates a complex signaling network that involves, among others, the NF-κB pathway. The complexity of this network has hampered

  5. Neural signal registration and analysis of axons grown in microchannels

    NASA Astrophysics Data System (ADS)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  6. Deep space network Mark 4A description

    NASA Technical Reports Server (NTRS)

    Wallace, R. J.; Burt, R. W.

    1986-01-01

    The general system configuration for the Mark 4A Deep Space Network is described. The arrangement and complement of antennas at the communications complexes and subsystem equipment at the signal processing centers are described. A description of the Network Operations Control Center is also presented.

  7. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    PubMed Central

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  8. Empirical modeling for intelligent, real-time manufacture control

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoshu

    1994-01-01

    Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.

  9. The SH2 Domain–Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes

    PubMed Central

    Liu, Bernard A.; Shah, Eshana; Jablonowski, Karl; Stergachis, Andrew; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks. PMID:22155787

  10. Detecting complexes from edge-weighted PPI networks via genes expression analysis.

    PubMed

    Zhang, Zehua; Song, Jian; Tang, Jijun; Xu, Xinying; Guo, Fei

    2018-04-24

    Identifying complexes from PPI networks has become a key problem to elucidate protein functions and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity. Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization. We propose a novel method to identify complexes on PPI networks, based on different co-expression information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI networks. Then, we propose some significant features, such as graph information and gene expression analysis, to filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two experimental yeast PPI networks. On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS network, our method has F-Measure and S n values of 0.3774 and 0.3453. Comparing to existing methods, our method improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, S n value by at least 0.0771. Experiments show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI networks, with the prediction quality improved in terms of evaluation criteria.

  11. Pattern recognition tool based on complex network-based approach

    NASA Astrophysics Data System (ADS)

    Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir

    2013-02-01

    This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.

  12. Visibility in the topology of complex networks

    NASA Astrophysics Data System (ADS)

    Tsiotas, Dimitrios; Charakopoulos, Avraam

    2018-09-01

    Taking its inspiration from the visibility algorithm, which was proposed by Lacasa et al. (2008) to convert a time-series into a complex network, this paper develops and proposes a novel expansion of this algorithm that allows generating a visibility graph from a complex network instead of a time-series that is currently applicable. The purpose of this approach is to apply the idea of visibility from the field of time-series to complex networks in order to interpret the network topology as a landscape. Visibility in complex networks is a multivariate property producing an associated visibility graph that maps the ability of a node "to see" other nodes in the network that lie beyond the range of its neighborhood, in terms of a control-attribute. Within this context, this paper examines the visibility topology produced by connectivity (degree) in comparison with the original (source) network, in order to detect what patterns or forces describe the mechanism under which a network is converted to a visibility graph. The overall analysis shows that visibility is a property that increases the connectivity in networks, it may contribute to pattern recognition (among which the detection of the scale-free topology) and it is worth to be applied to complex networks in order to reveal the potential of signal processing beyond the range of its neighborhood. Generally, this paper promotes interdisciplinary research in complex networks providing new insights to network science.

  13. Coarse-graining and self-dissimilarity of complex networks

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Levitt, Reuven; Kashtan, Nadav; Milo, Ron; Itzkovitz, Michael; Alon, Uri

    2005-01-01

    Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit module made of many gates. We apply our approach also to a mammalian protein signal-transduction network, to find a simplified coarse-grained network with three main signaling channels that resemble multi-layered perceptrons made of cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are “self-dissimilar,” with different network motifs at each level. The present approach may be used to simplify a variety of directed and nondirected, natural and designed networks.

  14. Data-based reconstruction of complex geospatial networks, nodal positioning and detection of hidden nodes

    PubMed Central

    Su, Ri-Qi; Wang, Wen-Xu; Wang, Xiao; Lai, Ying-Cheng

    2016-01-01

    Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified. PMID:26909187

  15. Pinning impulsive control algorithms for complex network

    NASA Astrophysics Data System (ADS)

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-01

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  16. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    PubMed

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Evolution of synthetic signaling scaffolds by recombination of modular protein domains.

    PubMed

    Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G

    2015-06-19

    Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.

  18. Overarching framework for data-based modelling

    NASA Astrophysics Data System (ADS)

    Schelter, Björn; Mader, Malenka; Mader, Wolfgang; Sommerlade, Linda; Platt, Bettina; Lai, Ying-Cheng; Grebogi, Celso; Thiel, Marco

    2014-02-01

    One of the main modelling paradigms for complex physical systems are networks. When estimating the network structure from measured signals, typically several assumptions such as stationarity are made in the estimation process. Violating these assumptions renders standard analysis techniques fruitless. We here propose a framework to estimate the network structure from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we propose a rigorous mathematical theory that underlies this framework. Based on this theory, we present a highly efficient algorithm and the corresponding statistics that are immediately sensibly applicable to measured signals. We demonstrate its performance in a simulation study. In experiments of transitions between vigilance stages in rodents, we infer small network structures with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key to understand and diagnose numerous diseases such as dementia. We argue that the suggested framework combines features that other approaches followed so far lack.

  19. Genome network medicine: innovation to overcome huge challenges in cancer therapy.

    PubMed

    Roukos, Dimitrios H

    2014-01-01

    The post-ENCODE era shapes now a new biomedical research direction for understanding transcriptional and signaling networks driving gene expression and core cellular processes such as cell fate, survival, and apoptosis. Over the past half century, the Francis Crick 'central dogma' of single n gene/protein-phenotype (trait/disease) has defined biology, human physiology, disease, diagnostics, and drugs discovery. However, the ENCODE project and several other genomic studies using high-throughput sequencing technologies, computational strategies, and imaging techniques to visualize regulatory networks, provide evidence that transcriptional process and gene expression are regulated by highly complex dynamic molecular and signaling networks. This Focus article describes the linear experimentation-based limitations of diagnostics and therapeutics to cure advanced cancer and the need to move on from reductionist to network-based approaches. With evident a wide genomic heterogeneity, the power and challenges of next-generation sequencing (NGS) technologies to identify a patient's personal mutational landscape for tailoring the best target drugs in the individual patient are discussed. However, the available drugs are not capable of targeting aberrant signaling networks and research on functional transcriptional heterogeneity and functional genome organization is poorly understood. Therefore, the future clinical genome network medicine aiming at overcoming multiple problems in the new fields of regulatory DNA mapping, noncoding RNA, enhancer RNAs, and dynamic complexity of transcriptional circuitry are also discussed expecting in new innovation technology and strong appreciation of clinical data and evidence-based medicine. The problematic and potential solutions in the discovery of next-generation, molecular, and signaling circuitry-based biomarkers and drugs are explored. © 2013 Wiley Periodicals, Inc.

  20. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  1. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the addition of a small rectangular electrode into the ring-shaped electrode was effective for the simultaneous measurement of whole-cell-network signals and single-cell/small-cluster signals on a local site in the cell network, and for the pacing by electrical stimulation of cardiomyocyte networks.

  2. The effects of PI3K-mediated signalling on glioblastoma cell behaviour.

    PubMed

    Langhans, Julia; Schneele, Lukas; Trenkler, Nancy; von Bandemer, Hélène; Nonnenmacher, Lisa; Karpel-Massler, Georg; Siegelin, Markus D; Zhou, Shaoxia; Halatsch, Marc-Eric; Debatin, Klaus-Michael; Westhoff, Mike-Andrew

    2017-11-29

    The PI3K/Akt/mTOR signalling network is activated in almost 90% of all glioblastoma, the most common primary brain tumour, which is almost invariably lethal within 15 months of diagnosis. Despite intensive research, modulation of this signalling cascade has so far yielded little therapeutic benefit, suggesting that the role of the PI3K network as a pro-survival factor in glioblastoma and therefore a potential target in combination therapy should be re-evaluated. Therefore, we used two distinct pharmacological inhibitors that block signalling at different points of the cascade, namely, GDC-0941 (Pictilisib), a direct inhibitor of the near apical PI3K, and Rapamycin which blocks the side arm of the network that is regulated by mTOR complex 1. While both substances, at concentrations where they inhibit their primary target, have similar effects on proliferation and sensitisation for temozolomide-induced apoptosis, GDC-0941 appears to have a stronger effect on cellular motility than Rapamycin. In vivo GDC-0941 effectively retards growth of orthotopic transplanted human tumours in murine brains and significantly prolongs mouse survival. However, when looking at genetically identical cell populations that are in alternative states of differentiation, i.e. stem cell-like cells and their differentiated progeny, a more complex picture regarding the PI3K/Akt/mTOR pathway emerges. The pathway is differently regulated in the alternative cell populations and, while it contributes to the increased chemo-resistance of stem cell-like cells compared to differentiated cells, it only contributes to the motility of the latter. Our findings are the first to suggest that within a glioblastoma tumour the PI3K network can have distinct, cell-specific functions. These have to be carefully considered when incorporating inhibition of PI3K-mediated signals into complex combination therapies.

  3. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    PubMed

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-09

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles.

  4. A General theory of Signal Integration for Fault-Tolerant Dynamic Distributed Sensor Networks

    DTIC Science & Technology

    1993-10-01

    related to a) the architecture and fault- tolerance of the distributed sensor network, b) the proper synchronisation of sensor signals, c) the...Computational complexities of the problem of distributed detection. 5) Issues related to recording of events and synchronization in distributed sensor...Intervals for Synchronization in Real Time Distributed Systems", Submitted to Electronic Encyclopedia. 3. V. G. Hegde and S. S. Iyengar "Efficient

  5. Analysis of structural patterns in the brain with the complex network approach

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Kharchenko, Alexander A.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization in the neural networks in the cases of normal and pathological activity.

  6. The Bio-Logic and machinery of plant morphogenesis.

    PubMed

    Niklas, Karl J

    2003-04-01

    Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.

  7. Exploiting Bounded Signal Flow for Graph Orientation Based on Cause-Effect Pairs

    NASA Astrophysics Data System (ADS)

    Dorn, Britta; Hüffner, Falk; Krüger, Dominikus; Niedermeier, Rolf; Uhlmann, Johannes

    We consider the following problem: Given an undirected network and a set of sender-receiver pairs, direct all edges such that the maximum number of "signal flows" defined by the pairs can be routed respecting edge directions. This problem has applications in communication networks and in understanding protein interaction based cell regulation mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation algorithms and tractable special cases. We take the viewpoint of parameterized algorithmics and examine several parameters related to the maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case. We examine the value of these parameters for several real-world network instances. For many relevant cases, the NP-hard problem can be solved to optimality. In this way, parameterized analysis yields both deeper insight into the computational complexity and practical solving strategies.

  8. How Genetics Has Helped Piece Together the MAPK Signaling Pathway.

    PubMed

    Ashton-Beaucage, Dariel; Therrien, Marc

    2017-01-01

    Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.

  9. Controlling Complex Systems and Developing Dynamic Technology

    NASA Astrophysics Data System (ADS)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit complex dynamics (e.g. both short- and long-term changes in conductivity) in response to applied voltage signals. Characterization of these atomic switch networks (ASNs) brought out interesting parallels to biological neural networks, including power-law scaling in the statistics of electrical signal propagation and dynamic self-organization of differentiated subnetworks. A reservoir computing (RC) strategy was employed to utilize measurements of electrical signals dynamically generated in ASNs to perform time-series memory and manipulation tasks including a parity test and arbitrary waveform generation. These results represent the useful integration of a complex network into a dynamic physical RC device.

  10. Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling

    PubMed Central

    Creixell, Pau; Schoof, Erwin M.; Simpson, Craig D.; Longden, James; Miller, Chad J.; Lou, Hua Jane; Perryman, Lara; Cox, Thomas R.; Zivanovic, Nevena; Palmeri, Antonio; Wesolowska-Andersen, Agata; Helmer-Citterich, Manuela; Ferkinghoff-Borg, Jesper; Itamochi, Hiroaki; Bodenmiller, Bernd; Erler, Janine T.; Turk, Benjamin E.; Linding, Rune

    2015-01-01

    Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks. PMID:26388441

  11. Digest: Context matters: The effects of light environment and female presence on the structure of wolf spider courtship displays.

    PubMed

    Fialko, Kristina

    2018-05-01

    Does variation in the environment in which a signal is presented affect the components of a complex, ritualized animal display? Using a signal phenotype network, Rosenthal et al. (2018) found that light and female presence alter the structure of wolf spider courtship displays, providing evidence that complex signaling behaviors may be modified depending on the social and environmental context. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  12. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network.

    PubMed

    Lautz, Jonathan D; Brown, Emily A; VanSchoiack, Alison A Williams; Smith, Stephen E P

    2018-05-27

    Cells utilize dynamic, network level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of preexisting multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  14. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    DOE PAGES

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; ...

    2016-01-19

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less

  15. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less

  16. Major technological innovations introduced in the large antennas of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  17. Complexity Analysis and Algorithms for Optimal Resource Allocation in Wireless Networks

    DTIC Science & Technology

    2012-09-01

    independent orthogonal signaling such as OFDM . The general formulation will exploit the concept of ‘interference alignment’ which is known to provide...substantial rate gain over OFDM signalling for general interference channels. We have successfully analyzed the complexity to characterize the optimal...categories: PaperReceived Gennady Lyubeznik, Zhi-Quan Luo, Meisam Razaviyayn. On the degrees of freedom achievable through interference alignment in a MIMO

  18. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks

    PubMed Central

    Ollivier, Julien F.; Soyer, Orkun S.

    2016-01-01

    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612

  19. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    PubMed Central

    Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  20. Single-cell resolution of intracellular T cell Ca2+ dynamics in response to frequency-based H2O2 stimulation.

    PubMed

    Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L

    2017-03-01

    Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.

  1. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web.

    PubMed

    Dittrich, A; Gautrey, H; Browell, D; Tyson-Capper, A

    2014-12-01

    The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.

  2. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems.

    PubMed

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.

  3. APG: an Active Protein-Gene Network Model to Quantify Regulatory Signals in Complex Biological Systems

    PubMed Central

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354

  4. From molecular noise to behavioural variability in a single bacterium

    NASA Astrophysics Data System (ADS)

    Korobkova, Ekaterina; Emonet, Thierry; Vilar, Jose M. G.; Shimizu, Thomas S.; Cluzel, Philippe

    2004-04-01

    The chemotaxis network that governs the motion of Escherichia coli has long been studied to gain a general understanding of signal transduction. Although this pathway is composed of just a few components, it exhibits some essential characteristics of biological complexity, such as adaptation and response to environmental signals. In studying intracellular networks, most experiments and mathematical models have assumed that network properties can be inferred from population measurements. However, this approach masks underlying temporal fluctuations of intracellular signalling events. We have inferred fundamental properties of the chemotaxis network from a noise analysis of behavioural variations in individual bacteria. Here we show that certain properties established by population measurements, such as adapted states, are not conserved at the single-cell level: for timescales ranging from seconds to several minutes, the behaviour of non-stimulated cells exhibit temporal variations much larger than the expected statistical fluctuations. We find that the signalling network itself causes this noise and identify the molecular events that produce it. Small changes in the concentration of one key network component suppress temporal behavioural variability, suggesting that such variability is a selected property of this adaptive system.

  5. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.

    PubMed

    Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping

    2011-03-01

    Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated.

  6. Crosstalk and the evolvability of intracellular communication.

    PubMed

    Rowland, Michael A; Greenbaum, Joseph M; Deeds, Eric J

    2017-07-10

    Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is unclear what pressures drove the evolution of this architecture. We explore the hypothesis that crosstalk allows different cell types, each expressing a specific subset of signalling proteins, to activate different outputs when faced with the same inputs, responding differently to the same environment. We find that the pressure to generate diversity leads to the evolution of networks with extensive crosstalk. Using available data, we find that human tissues exhibit higher levels of diversity between cell types than networks with random expression patterns or networks with no crosstalk. We also find that crosstalk and differential expression can influence drug activity: no protein has the same impact on two tissues when inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our work indicates that consideration of cellular context will likely be crucial for targeting signalling networks.

  7. A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.

    PubMed

    Ness, Robert O; Sachs, Karen; Mallick, Parag; Vitek, Olga

    2018-06-21

    Machine learning methods for learning network structure are applied to quantitative proteomics experiments and reverse-engineer intracellular signal transduction networks. They provide insight into the rewiring of signaling within the context of a disease or a phenotype. To learn the causal patterns of influence between proteins in the network, the methods require experiments that include targeted interventions that fix the activity of specific proteins. However, the interventions are costly and add experimental complexity. We describe an active learning strategy for selecting optimal interventions. Our approach takes as inputs pathway databases and historic data sets, expresses them in form of prior probability distributions on network structures, and selects interventions that maximize their expected contribution to structure learning. Evaluations on simulated and real data show that the strategy reduces the detection error of validated edges as compared with an unguided choice of interventions and avoids redundant interventions, thereby increasing the effectiveness of the experiment.

  8. Multisensor fusion for 3-D defect characterization using wavelet basis function neural networks

    NASA Astrophysics Data System (ADS)

    Lim, Jaein; Udpa, Satish S.; Udpa, Lalita; Afzal, Muhammad

    2001-04-01

    The primary objective of multi-sensor data fusion, which offers both quantitative and qualitative benefits, has the ability to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from two sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The two sensors measure the axial and circumferential components of the MFL. Data is fused at the signal level. If the flux is oriented axially, the samples of the axial signal are measured along a direction parallel to the flaw, while the circumferential signal is measured in a direction that is perpendicular to the flaw. The two signals are combined as the real and imaginary components of a complex valued signal. Signals from an array of sensors are arranged in contiguous rows to obtain a complex valued image. A boundary extraction algorithm is used to extract the defect areas in the image. Signals from the defect regions are then processed to minimize noise and the effects of lift-off. Finally, a wavelet basis function (WBF) neural network is employed to map the complex valued image appropriately to obtain the geometrical profile of the defect. The feasibility of the approach was evaluated using the data obtained from the MFL inspection of natural gas transmission pipelines. Results show the effectiveness of the approach.

  9. CBL-CIPK network for calcium signaling in higher plants

    NASA Astrophysics Data System (ADS)

    Luan, Sheng

    Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.

  10. Regulation of mTORC1 by PI3K signaling.

    PubMed

    Dibble, Christian C; Cantley, Lewis C

    2015-09-01

    The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Slow feature analysis: unsupervised learning of invariances.

    PubMed

    Wiskott, Laurenz; Sejnowski, Terrence J

    2002-04-01

    Invariant features of temporally varying signals are useful for analysis and classification. Slow feature analysis (SFA) is a new method for learning invariant or slowly varying features from a vectorial input signal. It is based on a nonlinear expansion of the input signal and application of principal component analysis to this expanded signal and its time derivative. It is guaranteed to find the optimal solution within a family of functions directly and can learn to extract a large number of decorrelated features, which are ordered by their degree of invariance. SFA can be applied hierarchically to process high-dimensional input signals and extract complex features. SFA is applied first to complex cell tuning properties based on simple cell output, including disparity and motion. Then more complicated input-output functions are learned by repeated application of SFA. Finally, a hierarchical network of SFA modules is presented as a simple model of the visual system. The same unstructured network can learn translation, size, rotation, contrast, or, to a lesser degree, illumination invariance for one-dimensional objects, depending on only the training stimulus. Surprisingly, only a few training objects suffice to achieve good generalization to new objects. The generated representation is suitable for object recognition. Performance degrades if the network is trained to learn multiple invariances simultaneously.

  12. Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network

    PubMed Central

    Sun, Shuguo; Irvine, Kenneth D.

    2016-01-01

    The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated, and to define their respective contributions in vivo. PMID:27268910

  13. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    NASA Astrophysics Data System (ADS)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  14. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  15. Hypoxia induces a phase transition within a kinase signaling network in cancer cells

    PubMed Central

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B.; Shin, Young Shik; Mischel, Paul S.; Levine, R. D.; Heath, James R.

    2013-01-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)—a critical component of hypoxic signaling and a compelling cancer drug target—is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier’s principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  16. The signaling petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks.

    PubMed

    Ruths, Derek; Muller, Melissa; Tseng, Jen-Te; Nakhleh, Luay; Ram, Prahlad T

    2008-02-29

    Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks, and provide insights into the trends of molecules' activity-levels in response to an external stimulus, based solely on the network's connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental observations.

  17. The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks

    PubMed Central

    Ruths, Derek; Muller, Melissa; Tseng, Jen-Te; Nakhleh, Luay; Ram, Prahlad T.

    2008-01-01

    Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks, and provide insights into the trends of molecules' activity-levels in response to an external stimulus, based solely on the network's connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental observations. PMID:18463702

  18. GFT centrality: A new node importance measure for complex networks

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Chakraborty, Abhishek; Manoj, B. S.

    2017-12-01

    Identifying central nodes is very crucial to design efficient communication networks or to recognize key individuals of a social network. In this paper, we introduce Graph Fourier Transform Centrality (GFT-C), a metric that incorporates local as well as global characteristics of a node, to quantify the importance of a node in a complex network. GFT-C of a reference node in a network is estimated from the GFT coefficients derived from the importance signal of the reference node. Our study reveals the superiority of GFT-C over traditional centralities such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and Google PageRank centrality, in the context of various arbitrary and real-world networks with different degree-degree correlations.

  19. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    PubMed

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  20. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals

    NASA Astrophysics Data System (ADS)

    Johnsson, Roger

    2006-11-01

    Methods to measure and monitor the cylinder pressure in internal combustion engines can contribute to reduced fuel consumption, noise and exhaust emissions. As direct measurements of the cylinder pressure are expensive and not suitable for measurements in vehicles on the road indirect methods which measure cylinder pressure have great potential value. In this paper, a non-linear model based on complex radial basis function (RBF) networks is proposed for the reconstruction of in-cylinder pressure pulse waveforms. Input to the network is the Fourier transforms of both engine structure vibration and crankshaft speed fluctuation. The primary reason for the use of Fourier transforms is that different frequency regions of the signals are used for the reconstruction process. This approach also makes it easier to reduce the amount of information that is used as input to the RBF network. The complex RBF network was applied to measurements from a 6-cylinder ethanol powered diesel engine over a wide range of running conditions. Prediction accuracy was validated by comparing a number of parameters between the measured and predicted cylinder pressure waveform such as maximum pressure, maximum rate of pressure rise and indicated mean effective pressure. The performance of the network was also evaluated for a number of untrained running conditions that differ both in speed and load from the trained ones. The results for the validation set were comparable to the trained conditions.

  1. Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons

    PubMed Central

    Torres, Joaquin J.; Elices, Irene; Marro, J.

    2015-01-01

    We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest. PMID:25799449

  2. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  3. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  4. Growing knowledge of the mTOR signaling network.

    PubMed

    Huang, Kezhen; Fingar, Diane C

    2014-12-01

    The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less

  6. An Algebraic Approach to Inference in Complex Networked Structures

    DTIC Science & Technology

    2015-07-09

    44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07

  7. Recent Coselection in Human Populations Revealed by Protein–Protein Interaction Network

    PubMed Central

    Qian, Wei; Zhou, Hang; Tang, Kun

    2015-01-01

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein–protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. PMID:25532814

  8. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?

    PubMed

    Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R

    2018-03-16

    Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.

  9. The brain as a "hyper-network": the key role of neural networks as main producers of the integrated brain actions especially via the "broadcasted" neuroconnectomics.

    PubMed

    Agnati, Luigi F; Marcoli, Manuela; Maura, Guido; Woods, Amina; Guidolin, Diego

    2018-06-01

    Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the "core components" of the brain hyper-network that has as special "nodes" the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.

  10. Decoding the spatial signatures of multi-scale climate variability - a climate network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.

    2017-12-01

    During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.

  11. Model identification of signal transduction networks from data using a state regulator problem.

    PubMed

    Gadkar, K G; Varner, J; Doyle, F J

    2005-03-01

    Advances in molecular biology provide an opportunity to develop detailed models of biological processes that can be used to obtain an integrated understanding of the system. However, development of useful models from the available knowledge of the system and experimental observations still remains a daunting task. In this work, a model identification strategy for complex biological networks is proposed. The approach includes a state regulator problem (SRP) that provides estimates of all the component concentrations and the reaction rates of the network using the available measurements. The full set of the estimates is utilised for model parameter identification for the network of known topology. An a priori model complexity test that indicates the feasibility of performance of the proposed algorithm is developed. Fisher information matrix (FIM) theory is used to address model identifiability issues. Two signalling pathway case studies, the caspase function in apoptosis and the MAP kinase cascade system, are considered. The MAP kinase cascade, with measurements restricted to protein complex concentrations, fails the a priori test and the SRP estimates are poor as expected. The apoptosis network structure used in this work has moderate complexity and is suitable for application of the proposed tools. Using a measurement set of seven protein concentrations, accurate estimates for all unknowns are obtained. Furthermore, the effects of measurement sampling frequency and quality of information in the measurement set on the performance of the identified model are described.

  12. Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network.

    PubMed

    Sun, Shuguo; Irvine, Kenneth D

    2016-09-01

    The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated and to define their respective contributions in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Reward processing in the value-driven attention network: reward signals tracking cue identity and location.

    PubMed

    Anderson, Brian A

    2017-03-01

    Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a network of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of the two. This study examines reward signals during the cued reward training phase commonly used to generate value-driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention network, in addition to regions typically implicated in reward processing. Further examination of these reward signals within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and information about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The results reveal teaching signals within the value-driven attention network during associative reward learning, and further suggest functional specialization within different regions of this network during the acquisition of an integrated representation of stimulus value. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-02

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  15. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    PubMed

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  16. From time-series to complex networks: Application to the cerebrovascular flow patterns in atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Scarsoglio, Stefania; Cazzato, Fabio; Ridolfi, Luca

    2017-09-01

    A network-based approach is presented to investigate the cerebrovascular flow patterns during atrial fibrillation (AF) with respect to normal sinus rhythm (NSR). AF, the most common cardiac arrhythmia with faster and irregular beating, has been recently and independently associated with the increased risk of dementia. However, the underlying hemodynamic mechanisms relating the two pathologies remain mainly undetermined so far; thus, the contribution of modeling and refined statistical tools is valuable. Pressure and flow rate temporal series in NSR and AF are here evaluated along representative cerebral sites (from carotid arteries to capillary brain circulation), exploiting reliable artificially built signals recently obtained from an in silico approach. The complex network analysis evidences, in a synthetic and original way, a dramatic signal variation towards the distal/capillary cerebral regions during AF, which has no counterpart in NSR conditions. At the large artery level, networks obtained from both AF and NSR hemodynamic signals exhibit elongated and chained features, which are typical of pseudo-periodic series. These aspects are almost completely lost towards the microcirculation during AF, where the networks are topologically more circular and present random-like characteristics. As a consequence, all the physiological phenomena at the microcerebral level ruled by periodicity—such as regular perfusion, mean pressure per beat, and average nutrient supply at the cellular level—can be strongly compromised, since the AF hemodynamic signals assume irregular behaviour and random-like features. Through a powerful approach which is complementary to the classical statistical tools, the present findings further strengthen the potential link between AF hemodynamic and cognitive decline.

  17. A G protein alpha null mutation confers prolificacy potential in maize

    DOE PAGES

    Urano, Daisuke; Jackson, David; Jones, Alan M.

    2015-05-06

    Plasticity in plant development is controlled by environmental signals through largely unknown signalling networks. Signalling coupled by the heterotrimeric G protein complex underlies various developmental pathways in plants. The morphology of two plastic developmental pathways, root system architecture and female inflorescence formation, was quantitatively assessed in a mutant compact plant 2 (ct2) lacking the alpha subunit of the heterotrimeric G protein complex in maize. The ct2 mutant partially compensated for a reduced shoot height by increased total leaf number, and had far more ears, even in the presence of pollination signals. Lastly, the maize heterotrimeric G protein complex is importantmore » in some plastic developmental traits in maize. In particular, the maize Gα subunit is required to dampen the overproduction of female inflorescences.« less

  18. Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.

    PubMed

    Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N

    2017-01-01

    The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.

  19. Complexity measures of the central respiratory networks during wakefulness and sleep

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin; Curran, Aidan K.; Akay, Metin

    2008-06-01

    Since sleep is known to influence respiratory activity we studied whether the sleep state would affect the complexity value of the respiratory network output. Specifically, we tested the hypothesis that the complexity values of the diaphragm EMG (EMGdia) activity would be lower during REM compared to NREM. Furthermore, since REM is primarily generated by a homogeneous population of neurons in the medulla, the possibility that REM-related respiratory output would be less complex than that of the awake state was also considered. Additionally, in order to examine the influence of neuron vulnerabilities within the rostral ventral medulla (RVM) on the complexity of the respiratory network output, we inhibited respiratory neurons in the RVM by microdialysis of GABAA receptor agonist muscimol. Diaphragm EMG, nuchal EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) were recorded from five unanesthetized chronically instrumented intact piglets (3-10 days old). Complexity of the diaphragm EMG (EMGdia) signal during wakefulness, NREM and REM was evaluated using the approximate entropy method (ApEn). ApEn values of the EMGdia during NREM and REM sleep were found significantly (p < 0.05 and p < 0.001, respectively) lower than those of awake EMGdia after muscimol inhibition. In the absence of muscimol, only the differences between REM and wakefulness ApEn values were found to be significantly different.

  20. Strategies for Increasing Pancreatic Tumor Immunogenicity

    PubMed Central

    Johnson, Burles A.; Yarchoan, Mark; Lee, Valerie; Laheru, Daniel A.; Jaffee, Elizabeth M.

    2017-01-01

    Immunotherapy has changed the standard of care for multiple deadly cancers including lung, head and neck, gastric, and some colorectal cancers. However, single agent immunotherapy has had little effect in pancreatic adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single agent immunotherapies. In this review, we discuss differences between immunotherapy sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are drugable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. PMID:28373364

  1. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  2. Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics

    PubMed Central

    2009-01-01

    Background The epidermal growth factor receptor (EGFR) signaling pathway plays a key role in regulation of cellular growth and development. While highly studied, it is still not fully understood how the signal is orchestrated. One of the reasons for the complexity of this pathway is the extensive network of inter-connected components involved in the signaling. In the aim of identifying critical mechanisms controlling signal transduction we have performed extensive analysis of an executable model of the EGFR pathway using the stochastic pi-calculus as a modeling language. Results Our analysis, done through simulation of various perturbations, suggests that the EGFR pathway contains regions of functional redundancy in the upstream parts; in the event of low EGF stimulus or partial system failure, this redundancy helps to maintain functional robustness. Downstream parts, like the parts controlling Ras and ERK, have fewer redundancies, and more than 50% inhibition of specific reactions in those parts greatly attenuates signal response. In addition, we suggest an abstract model that captures the main control mechanisms in the pathway. Simulation of this abstract model suggests that without redundancies in the upstream modules, signal transduction through the entire pathway could be attenuated. In terms of specific control mechanisms, we have identified positive feedback loops whose role is to prolong the active state of key components (e.g., MEK-PP, Ras-GTP), and negative feedback loops that help promote signal adaptation and stabilization. Conclusions The insights gained from simulating this executable model facilitate the formulation of specific hypotheses regarding the control mechanisms of the EGFR signaling, and further substantiate the benefit to construct abstract executable models of large complex biological networks. PMID:20028552

  3. Monitoring of the orbital position of geostationary satellite by spatially separated reception of signals of digital satellite television

    NASA Astrophysics Data System (ADS)

    Kaliuzhnyi, M. P.; Bushuev, F. I.; Sibiriakova, Ye. S.; Shulga, O. V.; Shakun, L. S.; Bezrukovs, V.; Kulishenko, V. F.; Moskalenko, S. S.; Malynovsky, Ye. V.; Balagura, O. A.

    2017-02-01

    The results of the determination of the geostationary satellite "Eutelsat-13B" orbital position obtained during 2015-2016 years using European stations' network for reception of DVB-S signals from the satellite are presented. The network consists of five stations located in Ukraine and Latvia. The stations are equipped with a radio engineering complex developed by the RI "MAO". The measured parameter is a time difference of arrival (TDOA) of the DVB-S signals to the stations of the network. The errors of TDOA determination and satellite coordinates, obtained using a numerical model of satellite motion, are equal ±2.6 m and ±35 m respectively. Software implementation of the numerical model is taken from the free space dynamics library OREKIT.

  4. Signalling maps in cancer research: construction and data analysis

    PubMed Central

    Kondratova, Maria; Sompairac, Nicolas; Barillot, Emmanuel; Zinovyev, Andrei

    2018-01-01

    Abstract Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented. PMID:29688383

  5. The use of network analysis to study complex animal communication systems: a study on nightingale song.

    PubMed

    Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke

    2014-06-22

    The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the 'small-world' character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval.

  6. The use of network analysis to study complex animal communication systems: a study on nightingale song

    PubMed Central

    Weiss, Michael; Hultsch, Henrike; Adam, Iris; Scharff, Constance; Kipper, Silke

    2014-01-01

    The singing of song birds can form complex signal systems comprised of numerous subunits sung with distinct combinatorial properties that have been described as syntax-like. This complexity has inspired inquiries into similarities of bird song to human language; but the quantitative analysis and description of song sequences is a challenging task. In this study, we analysed song sequences of common nightingales (Luscinia megarhynchos) by means of a network analysis. We translated long nocturnal song sequences into networks of song types with song transitions as connectors. As network measures, we calculated shortest path length and transitivity and identified the ‘small-world’ character of nightingale song networks. Besides comparing network measures with conventional measures of song complexity, we also found a correlation between network measures and age of birds. Furthermore, we determined the numbers of in-coming and out-going edges of each song type, characterizing transition patterns. These transition patterns were shared across males for certain song types. Playbacks with different transition patterns provided first evidence that these patterns are responded to differently and thus play a role in singing interactions. We discuss potential functions of the network properties of song sequences in the framework of vocal leadership. Network approaches provide biologically meaningful parameters to describe the song structure of species with extremely large repertoires and complex rules of song retrieval. PMID:24807258

  7. Preconditioning electromyographic data for an upper extremity model using neural networks

    NASA Technical Reports Server (NTRS)

    Roberson, D. J.; Fernjallah, M.; Barr, R. E.; Gonzalez, R. V.

    1994-01-01

    A back propagation neural network has been employed to precondition the electromyographic signal (EMG) that drives a computational model of the human upper extremity. This model is used to determine the complex relationship between EMG and muscle activation, and generates an optimal muscle activation scheme that simulates the actual activation. While the experimental and model predicted results of the ballistic muscle movement are very similar, the activation function between the start and the finish is not. This neural network preconditions the signal in an attempt to more closely model the actual activation function over the entire course of the muscle movement.

  8. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?

    PubMed

    Guillas, Isabelle; Puyaubert, Juliette; Baudouin, Emmanuel

    2013-09-12

    Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL-NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ.

  9. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  10. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.

  11. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    USGS Publications Warehouse

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson

    2017-01-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  12. Complex networks of functional connectivity in a wetland reconnected to its floodplain

    NASA Astrophysics Data System (ADS)

    Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson W.

    2017-07-01

    Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a "biotic filter," shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.

  13. Optimal Near-Hitless Network Failure Recovery Using Diversity Coding

    ERIC Educational Resources Information Center

    Avci, Serhat Nazim

    2013-01-01

    Link failures in wide area networks are common and cause significant data losses. Mesh-based protection schemes offer high capacity efficiency but they are slow, require complex signaling, and instable. Diversity coding is a proactive coding-based recovery technique which offers near-hitless (sub-ms) restoration with a competitive spare capacity…

  14. Multi-channels coupling-induced pattern transition in a tri-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Wu, Fuqiang; Wang, Ya; Ma, Jun; Jin, Wuyin; Hobiny, Aatef

    2018-03-01

    Neurons in nerve system show complex electrical behaviors due to complex connection types and diversity in excitability. A tri-layer network is constructed to investigate the signal propagation and pattern formation by selecting different coupling channels between layers. Each layer is set as different states, and the local kinetics is described by Hindmarsh-Rose neuron model. By changing the number of coupling channels between layers and the state of the first layer, the collective behaviors of each layer and synchronization pattern of network are investigated. A statistical factor of synchronization on each layer is calculated. It is found that quiescent state in the second layer can be excited and disordered state in the third layer is suppressed when the first layer is controlled by a pacemaker, and the developed state is dependent on the number of coupling channels. Furthermore, the collapse in the first layer can cause breakdown of other layers in the network, and the mechanism is that disordered state in the third layer is enhanced when sampled signals from the collapsed layer can impose continuous disturbance on the next layer.

  15. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim.

    PubMed

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.

  16. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions†

    PubMed Central

    Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.

    2012-01-01

    Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037

  17. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.

    PubMed

    Wang, Yuan; Wang, Yao; Lui, Yvonne W

    2018-05-18

    Dynamic Causal Modeling (DCM) is an advanced biophysical model which explicitly describes the entire process from experimental stimuli to functional magnetic resonance imaging (fMRI) signals via neural activity and cerebral hemodynamics. To conduct a DCM study, one needs to represent the experimental stimuli as a compact vector-valued function of time, which is hard in complex tasks such as book reading and natural movie watching. Deep learning provides the state-of-the-art signal representation solution, encoding complex signals into compact dense vectors while preserving the essence of the original signals. There is growing interest in using Recurrent Neural Networks (RNNs), a major family of deep learning techniques, in fMRI modeling. However, the generic RNNs used in existing studies work as black boxes, making the interpretation of results in a neuroscience context difficult and obscure. In this paper, we propose a new biophysically interpretable RNN built on DCM, DCM-RNN. We generalize the vanilla RNN and show that DCM can be cast faithfully as a special form of the generalized RNN. DCM-RNN uses back propagation for parameter estimation. We believe DCM-RNN is a promising tool for neuroscience. It can fit seamlessly into classical DCM studies. We demonstrate face validity of DCM-RNN in two principal applications of DCM: causal brain architecture hypotheses testing and effective connectivity estimation. We also demonstrate construct validity of DCM-RNN in an attention-visual experiment. Moreover, DCM-RNN enables end-to-end training of DCM and representation learning deep neural networks, extending DCM studies to complex tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Identifying critical transitions and their leading biomolecular networks in complex diseases.

    PubMed

    Liu, Rui; Li, Meiyi; Liu, Zhi-Ping; Wu, Jiarui; Chen, Luonan; Aihara, Kazuyuki

    2012-01-01

    Identifying a critical transition and its leading biomolecular network during the initiation and progression of a complex disease is a challenging task, but holds the key to early diagnosis and further elucidation of the essential mechanisms of disease deterioration at the network level. In this study, we developed a novel computational method for identifying early-warning signals of the critical transition and its leading network during a disease progression, based on high-throughput data using a small number of samples. The leading network makes the first move from the normal state toward the disease state during a transition, and thus is causally related with disease-driving genes or networks. Specifically, we first define a state-transition-based local network entropy (SNE), and prove that SNE can serve as a general early-warning indicator of any imminent transitions, regardless of specific differences among systems. The effectiveness of this method was validated by functional analysis and experimental data.

  19. Inferring causal molecular networks: empirical assessment through a community-based effort.

    PubMed

    Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-04-01

    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

  20. A Continuum Model of Actin Waves in Dictyostelium discoideum

    PubMed Central

    Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.

    2013-01-01

    Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312

  1. Signalling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a subst...

  2. Brain signal complexity rises with repetition suppression in visual learning.

    PubMed

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Formal modeling and analysis of ER-α associated Biological Regulatory Network in breast cancer.

    PubMed

    Khalid, Samra; Hanif, Rumeza; Tareen, Samar H K; Siddiqa, Amnah; Bibi, Zurah; Ahmad, Jamil

    2016-01-01

    Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER- α ) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. In-silico based discrete and continuous modeling of ER- α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER- α , IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER- α , IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.

  4. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    PubMed

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  5. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  6. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  7. Noninvasive fetal QRS detection using an echo state network and dynamic programming.

    PubMed

    Lukoševičius, Mantas; Marozas, Vaidotas

    2014-08-01

    We address a classical fetal QRS detection problem from abdominal ECG recordings with a data-driven statistical machine learning approach. Our goal is to have a powerful, yet conceptually clean, solution. There are two novel key components at the heart of our approach: an echo state recurrent neural network that is trained to indicate fetal QRS complexes, and several increasingly sophisticated versions of statistics-based dynamic programming algorithms, which are derived from and rooted in probability theory. We also employ a standard technique for preprocessing and removing maternal ECG complexes from the signals, but do not take this as the main focus of this work. The proposed approach is quite generic and can be extended to other types of signals and annotations. Open-source code is provided.

  8. Response Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm

    PubMed Central

    Blizzard, Shawn; Fierro-Rojas, Adriela; Fallah, Mazyar

    2017-01-01

    Actions are informed by the complex interactions of response execution and inhibition networks. These networks integrate sensory information with internal states and behavioral goals to produce an appropriate action or to update an ongoing action. Recent investigations have shown that, behaviorally, attention is captured through a hierarchy of colors. These studies showed how the color hierarchy affected visual processing. To determine whether the color hierarchy can be extended to higher level executive functions such as response execution and inhibition, we conducted several experiments using the stop-signal task (SST). In the first experiment, we modified the classic paradigm so that the go signals could vary in task-irrelevant color, with an auditory stop signal. We found that the task-irrelevant color of the go signals did not differentially affect response times. In the second experiment we determined that making the color of the go signal relevant for response selection still did not affect reaction times(RTs) and, thus, execution. In the third experiment, we modified the paradigm so that the stop signal was a task relevant change in color of the go signal. The mean RT to the red stop signal was approximately 25 ms faster than to the green stop signal. In other words, red stop signals facilitated response inhibition more than green stop signals, however, there was no comparative facilitation of response execution. These findings suggest that response inhibition, but not execution, networks are sensitive to differences in color salience. They also suggest that the color hierarchy is based on attentional networks and not simply on early sensory processing. PMID:28101011

  9. Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks.

    PubMed

    Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Wu, Zhongying; Zhou, Peng; Tian, Yu; Ren, Fang; Yu, Jinyi; Ge, Dawei; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan

    2015-12-14

    In this paper, we propose a cost-effective, energy-saving mode-division-multiplexing passive optical network (MDM-PON) scheme utilizing self-homodyne detection for high-speed/capacity access network based on low modal-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). In the proposed scheme, one of the spatial modes is used to transmit a portion of signal carrier (namely pilot-tone) as the local oscillator (LO), while the others are used for signal-bearing channels. At the receiver, the pilot-tone and the signal can be separated without strong crosstalk and sent to the receiver for coherent detection. The spectral efficiency (SE) is significantly enhanced when multiple spatial channels are used. Meanwhile, the self-homodyne detection scheme can effectively suppress laser phase noise, which relaxes the requirement for the lasers line-width at the optical line terminal or optical network units (OLT/ONUs). The digital signal processing (DSP) at the receiver is also simplified since it removes the need for frequency offset compensation and complex phase correction, which reduces the computational complexity and energy consumption. Polarization division multiplexing (PDM) that offers doubled SE is also supported by the scheme. The proposed scheme is scalable to multi-wavelength application when wavelength MUX/DEMUX is utilized. Utilizing the proposed scheme, we demonstrate a proof of concept 4 × 40-Gb/s orthogonal frequency division multiplexing (OFDM) transmission over 55-km FMF using low modal-crosstalk two-mode FMF and MUX/DEMUX with error free operation. Compared with back to back case, less than 1-dB Q-factor penalty is observed after 55-km FMF of the four channels. Signal power and pilot-tone power are also optimized to achieve the optimal transmission performance.

  10. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?

    PubMed Central

    Guillas, Isabelle; Puyaubert, Juliette; Baudouin, Emmanuel

    2013-01-01

    Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL–NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ. PMID:24062754

  11. Dynamic decomposition of spatiotemporal neural signals

    PubMed Central

    2017-01-01

    Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039

  12. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    PubMed

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  13. Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc; Barrat, Alain; Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2004-04-01

    We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.

  14. The tangled web of non-canonical Wnt signalling in neural migration.

    PubMed

    Clark, Charlotte E J; Nourse, C Cathrin; Cooper, Helen M

    2012-01-01

    In all multicellular animals, successful embryogenesis is dependent on the ability of cells to detect the status of the local environment and respond appropriately. The nature of the extracellular environment is communicated to the intracellular compartment by ligand/receptor interactions at the cell surface. The Wnt canonical and non-canonical signalling pathways are found in the most primitive metazoans, and they play an essential role in the most fundamental developmental processes in all multicellular organisms. Vertebrates have expanded the number of Wnts and Frizzled receptors and have additionally evolved novel Wnt receptor families (Ryk, Ror). The multiplicity of potential interactions between Wnts, their receptors and downstream effectors has exponentially increased the complexity of the signal transduction network. Signalling through each of the Wnt pathways, as well as crosstalk between them, plays a critical role in the establishment of the complex architecture of the vertebrate central nervous system. In this review, we explore the signalling networks triggered by non-canonical Wnt/receptor interactions, focussing on the emerging roles of the non-conventional Wnt receptors Ryk and Ror. We describe the role of these pathways in neural tube formation and axon guidance where Wnt signalling controls tissue polarity, coordinated cell migration and axon guidance via remodelling of the cytoskeleton. Copyright © 2012 S. Karger AG, Basel.

  15. Analyzing the causation of a railway accident based on a complex network

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Li, Ke-Ping; Luo, Zi-Yan; Zhou, Jin

    2014-02-01

    In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.

  16. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  17. Lightweight filter architecture for energy efficient mobile vehicle localization based on a distributed acoustic sensor network.

    PubMed

    Kim, Keonwook

    2013-08-23

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.

  18. Attacking a Nexus of the Oncogenic Circuitry by Reversing Aberrant eIF4F-Mediated Translation

    PubMed Central

    Bitterman, Peter B.; Polunovsky, Vitaly A.

    2012-01-01

    Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one-by-one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system. When hyperactivated by apical oncogenic signals, the eIF4F-driven translational apparatus selectively switches the translational repertoire of a cell towards malignancy. This central integrative role of pathologically activated eIF4F has motivated the development of small molecule inhibitors to correct its function. A genome-wide, systems-level means to objectively evaluate the pharmacological response to therapeutics targeting eIF4F remains an unmet challenge. PMID:22572598

  19. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    PubMed

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  20. Exhaustive analysis of the modular structure of the spliceosomal assembly network: a petri net approach.

    PubMed

    Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina

    2011-01-01

    Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier. Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.

  1. Exhaustive analysis of the modular structure of the spliceosomal assembly network: a Petri net approach.

    PubMed

    Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina

    2010-01-01

    Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier.Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.

  2. Analysis and Design of Complex Networks

    DTIC Science & Technology

    2014-12-02

    systems. 08-NOV-10, . : , Barlas Oguz, Venkat Anantharam. Long range dependent Markov chains with applications , Information Theory and Applications ...JUL-12, . : , Michael Krishnan, Ehsan Haghani, Avideh Zakhor. Packet Length Adaptation in WLANs with Hidden Nodes and Time-Varying Channels, IEEE... WLAN networks with multi-antenna beam-forming nodes. VII. Use of busy/idle signals for discovering optimum AP association VIII

  3. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs

    PubMed Central

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators. PMID:19851479

  4. Integrative systems control approach for reactivating Kaposi's sarcoma-associated herpesvirus (KSHV) with combinatory drugs.

    PubMed

    Sun, Chien-Pin; Usui, Takane; Yu, Fuqu; Al-Shyoukh, Ibrahim; Shamma, Jeff; Sun, Ren; Ho, Chih-Ming

    2009-01-01

    Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is well-suited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.

  5. Mechanically induced intercellular calcium communication in confined endothelial structures.

    PubMed

    Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin

    2013-03-01

    Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Plant hormone signaling during development: insights from computational models.

    PubMed

    Oliva, Marina; Farcot, Etienne; Vernoux, Teva

    2013-02-01

    Recent years have seen an impressive increase in our knowledge of the topology of plant hormone signaling networks. The complexity of these topologies has motivated the development of models for several hormones to aid understanding of how signaling networks process hormonal inputs. Such work has generated essential insights into the mechanisms of hormone perception and of regulation of cellular responses such as transcription in response to hormones. In addition, modeling approaches have contributed significantly to exploring how spatio-temporal regulation of hormone signaling contributes to plant growth and patterning. New tools have also been developed to obtain quantitative information on hormone distribution during development and to test model predictions, opening the way for quantitative understanding of the developmental roles of hormones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Optimal information transfer in enzymatic networks: A field theoretic formulation

    NASA Astrophysics Data System (ADS)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.

  8. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    NASA Astrophysics Data System (ADS)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  9. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.

    PubMed

    Terfve, Camille; Cokelaer, Thomas; Henriques, David; MacNamara, Aidan; Goncalves, Emanuel; Morris, Melody K; van Iersel, Martijn; Lauffenburger, Douglas A; Saez-Rodriguez, Julio

    2012-10-18

    Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context.

  10. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms

    PubMed Central

    2012-01-01

    Background Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Results Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Conclusions Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context. PMID:23079107

  11. Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.

    PubMed

    Conzelmann, Holger; Gilles, Ernst-Dieter

    2008-01-01

    Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.

  12. A deep learning approach for fetal QRS complex detection.

    PubMed

    Zhong, Wei; Liao, Lijuan; Guo, Xuemei; Wang, Guoli

    2018-04-20

    Non-invasive foetal electrocardiography (NI-FECG) has the potential to provide more additional clinical information for detecting and diagnosing fetal diseases. We propose and demonstrate a deep learning approach for fetal QRS complex detection from raw NI-FECG signals by using a convolutional neural network (CNN) model. The main objective is to investigate whether reliable fetal QRS complex detection performance can still be obtained from features of single-channel NI-FECG signals, without canceling maternal ECG (MECG) signals. A deep learning method is proposed for recognizing fetal QRS complexes. Firstly, we collect data from set-a of the PhysioNet/computing in Cardiology Challenge database. The sample entropy method is used for signal quality assessment. Part of the bad quality signals is excluded in the further analysis. Secondly, in the proposed method, the features of raw NI-FECG signals are normalized before they are fed to a CNN classifier to perform fetal QRS complex detection. We use precision, recall, F-measure and accuracy as the evaluation metrics to assess the performance of fetal QRS complex detection. The proposed deep learning method can achieve relatively high precision (75.33%), recall (80.54%), and F-measure scores (77.85%) compared with three other well-known pattern classification methods, namely KNN, naive Bayes and SVM. the proposed deep learning method can attain reliable fetal QRS complex detection performance from the raw NI-FECG signals without canceling MECG signals. In addition, the influence of different activation functions and signal quality assessment on classification performance are evaluated, and results show that Relu outperforms the Sigmoid and Tanh on this particular task, and better classification performance is obtained with the signal quality assessment step in this study.

  13. Complex Networks in Psychological Models

    NASA Astrophysics Data System (ADS)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  14. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers.

    PubMed

    Tiong, Kai Hung; Mah, Li Yen; Leong, Chee-Onn

    2013-12-01

    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.

  15. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    PubMed

    Chng, Wen-Bin Alfred; Koch, Rafael; Li, Xiaoxue; Kondo, Shu; Nagoshi, Emi; Lemaitre, Bruno

    2017-01-01

    Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw) after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  16. Self-organizing neural network models for visual pattern recognition.

    PubMed

    Fukushima, K

    1987-01-01

    Two neural network models for visual pattern recognition are discussed. The first model, called a "neocognitron", is a hierarchical multilayered network which has only afferent synaptic connections. It can acquire the ability to recognize patterns by "learning-without-a-teacher": the repeated presentation of a set of training patterns is sufficient, and no information about the categories of the patterns is necessary. The cells of the highest stage eventually become "gnostic cells", whose response shows the final result of the pattern-recognition of the network. Pattern recognition is performed on the basis of similarity in shape between patterns, and is not affected by deformation, nor by changes in size, nor by shifts in the position of the stimulus pattern. The second model has not only afferent but also efferent synaptic connections, and is endowed with the function of selective attention. The afferent and the efferent signals interact with each other in the hierarchical network: the efferent signals, that is, the signals for selective attention, have a facilitating effect on the afferent signals, and at the same time, the afferent signals gate efferent signal flow. When a complex figure, consisting of two patterns or more, is presented to the model, it is segmented into individual patterns, and each pattern is recognized separately. Even if one of the patterns to which the models is paying selective attention is affected by noise or defects, the model can "recall" the complete pattern from which the noise has been eliminated and the defects corrected.

  17. Recent coselection in human populations revealed by protein-protein interaction network.

    PubMed

    Qian, Wei; Zhou, Hang; Tang, Kun

    2014-12-21

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein-protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Gas Chromatography Data Classification Based on Complex Coefficients of an Autoregressive Model

    DOE PAGES

    Zhao, Weixiang; Morgan, Joshua T.; Davis, Cristina E.

    2008-01-01

    This paper introduces autoregressive (AR) modeling as a novel method to classify outputs from gas chromatography (GC). The inverse Fourier transformation was applied to the original sensor data, and then an AR model was applied to transform data to generate AR model complex coefficients. This series of coefficients effectively contains a compressed version of all of the information in the original GC signal output. We applied this method to chromatograms resulting from proliferating bacteria species grown in culture. Three types of neural networks were used to classify the AR coefficients: backward propagating neural network (BPNN), radial basis function-principal component analysismore » (RBF-PCA) approach, and radial basis function-partial least squares regression (RBF-PLSR) approach. This exploratory study demonstrates the feasibility of using complex root coefficient patterns to distinguish various classes of experimental data, such as those from the different bacteria species. This cognition approach also proved to be robust and potentially useful for freeing us from time alignment of GC signals.« less

  19. The Brassinosteroid Signaling Pathway—New Key Players and Interconnections with Other Signaling Networks Crucial for Plant Development and Stress Tolerance

    PubMed Central

    Gruszka, Damian

    2013-01-01

    Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture. PMID:23615468

  20. Two protein kinase C isoforms, δ and ε, regulate energy homeostasis in mitochondria by transmitting opposing signals to the pyruvate dehydrogenase complex.

    PubMed

    Gong, Jianli; Hoyos, Beatrice; Acin-Perez, Rebeca; Vinogradov, Valerie; Shabrova, Elena; Zhao, Feng; Leitges, Michael; Fischman, Donald; Manfredi, Giovanni; Hammerling, Ulrich

    2012-08-01

    Energy production in mitochondria is a multistep process that requires coordination of several subsystems. While reversible phosphorylation is emerging as the principal tool, it is still unclear how this signal network senses the workloads of processes as different as fuel procurement, catabolism in the Krebs cycle, and stepwise oxidation of reducing equivalents in the electron transfer chain. We previously proposed that mitochondria use oxidized cytochrome c in concert with retinol to activate protein kinase Cδ, thereby linking a prominent kinase network to the redox balance of the ETC. Here, we show that activation of PKCε in mitochondria also requires retinol as a cofactor, implying a redox-mechanism. Whereas activated PKCδ transmits a stimulatory signal to the pyruvate dehdyrogenase complex (PDHC), PKCε opposes this signal and inhibits the PDHC. Our results suggest that the balance between PKCδ and ε is of paramount importance not only for flux of fuel entering the Krebs cycle but for overall energy homeostasis. We observed that the synthetic retinoid fenretinide substituted for the retinol cofactor function but, on chronic use, distorted this signal balance, leading to predominance of PKCε over PKCδ. The suppression of the PDHC might explain the proapoptotic effect of fenretinide on tumor cells, as well as the diminished adiposity observed in experimental animals and humans. Furthermore, a disturbed balance between PKCδ and PKCε might underlie the injury inflicted on the ischemic myocardium during reperfusion. dehydrogenase complex.

  1. Bimolecular fluorescence complementation: lighting up seven transmembrane domain receptor signalling networks

    PubMed Central

    Rose, Rachel H; Briddon, Stephen J; Holliday, Nicholas D

    2010-01-01

    There is increasing complexity in the organization of seven transmembrane domain (7TM) receptor signalling pathways, and in the ability of their ligands to modulate and direct this signalling. Underlying these events is a network of protein interactions between the 7TM receptors themselves and associated effectors, such as G proteins and β-arrestins. Bimolecular fluorescence complementation, or BiFC, is a technique capable of detecting these protein–protein events essential for 7TM receptor function. Fluorescent proteins, such as those from Aequorea victoria, are split into two non-fluorescent halves, which then tag the proteins under study. On association, these fragments refold and regenerate a mature fluorescent protein, producing a BiFC signal indicative of complex formation. Here, we review the experimental criteria for successful application of BiFC, considered in the context of 7TM receptor signalling events such as receptor dimerization, G protein and β-arrestin signalling. The advantages and limitations of BiFC imaging are compared with alternative resonance energy transfer techniques. We show that the essential simplicity of the fluorescent BiFC measurement allows high-content and advanced imaging applications, and that it can probe more complex multi-protein interactions alone or in combination with resonance energy transfer. These capabilities suggest that BiFC techniques will become ever more useful in the analysis of ligand and 7TM receptor pharmacology at the molecular level of protein–protein interactions. This article is part of a themed section on Imaging in Pharmacology. To view the editorial for this themed section visit http://dx.doi.org/10.1111/j.1476-5381.2010.00685.x PMID:20015298

  2. PAM4 based symmetrical 112-Gbps long-reach TWDM-PON

    NASA Astrophysics Data System (ADS)

    Wu, Liyu; Gao, Fan; Zhang, Minming; Fu, Songnian; Deng, Lei; Choi, Michael; Chang, Donald; Lei, Gordon K. P.; Liu, Deming

    2018-02-01

    We experimentally demonstrate cost effective symmetrical 112-Gbps long-reach passive optical network (LR-PON) over 70-km standard signal mode fiber (SSMF), based on pulse amplitude modulation (PAM)-4. Four 10G-class directly modulated lasers (DMLs) at C-band are used for achieving 4 × 28-Gbps downstream transmission, while two 18G-class DMLs at O-band are used to realize 2 × 56-Gbps upstream transmission, without any optical amplification in optical distributed network (ODN). Both dispersion compensation fiber (DCF) for downstream signal and praseodymium-doped fiber amplifier (PDFA) for upstream signal are equipped at optical line terminal (OLT). Meanwhile, sparse Volterra filter (SVF) equalizer is proposed to mitigate the transmission impairments with substantial reduction of computation complexity. Finally, we can successfully provide a loss budget of 33 dB per downstream wavelength channel, indicating of 64 optical network units (ONUs) with more than 1.25 Gbps per ONU.

  3. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing

    NASA Astrophysics Data System (ADS)

    Demis, E. C.; Aguilera, R.; Sillin, H. O.; Scharnhorst, K.; Sandouk, E. J.; Aono, M.; Stieg, A. Z.; Gimzewski, J. K.

    2015-05-01

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing—a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  4. An approach to efficient mobility management in intelligent networks

    NASA Technical Reports Server (NTRS)

    Murthy, K. M. S.

    1995-01-01

    Providing personal communication systems supporting full mobility require intelligent networks for tracking mobile users and facilitating outgoing and incoming calls over different physical and network environments. In realizing the intelligent network functionalities, databases play a major role. Currently proposed network architectures envision using the SS7-based signaling network for linking these DB's and also for interconnecting DB's with switches. If the network has to support ubiquitous, seamless mobile services, then it has to support additionally mobile application parts, viz., mobile origination calls, mobile destination calls, mobile location updates and inter-switch handovers. These functions will generate significant amount of data and require them to be transferred between databases (HLR, VLR) and switches (MSC's) very efficiently. In the future, the users (fixed or mobile) may use and communicate with sophisticated CPE's (e.g. multimedia, multipoint and multisession calls) which may require complex signaling functions. This will generate volumness service handling data and require efficient transfer of these message between databases and switches. Consequently, the network providers would be able to add new services and capabilities to their networks incrementally, quickly and cost-effectively.

  5. A high capacity data centre network: simultaneous 4-PAM data at 20 Gbps and 2 GHz phase modulated RF clock signal over a single VCSEL carrier

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.

  6. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  7. Attractor Structures of Signaling Networks: Consequences of Different Conformational Barcode Dynamics and Their Relations to Network-Based Drug Design.

    PubMed

    Szalay, Kristóf Z; Nussinov, Ruth; Csermely, Peter

    2014-06-01

    Conformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones. This leads to increased plasticity of signaling and cellular networks. Increased plasticity is both substantiated by and inducing an increased noise level. Using the versatile network dynamics tool, Turbine (www.turbine.linkgroup.hu), here we show that the 10 % noise level expected in cellular systems shifts a cancer-related signaling network of human cells from its proliferative attractors to its largest, apoptotic attractor representing their health-preserving response in the carcinogen containing and tumor suppressor deficient environment modeled in our study. Thus, fuzzy conformational barcodes may not only make the cellular system more plastic, and therefore more adaptable, but may also stabilize the complex system allowing better access to its largest attractor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Complexity Measures in Magnetoencephalography: Measuring "Disorder" in Schizophrenia

    PubMed Central

    Brookes, Matthew J.; Hall, Emma L.; Robson, Siân E.; Price, Darren; Palaniyappan, Lena; Liddle, Elizabeth B.; Liddle, Peter F.; Robinson, Stephen E.; Morris, Peter G.

    2015-01-01

    This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of ‘disorder’ in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices). PMID:25886553

  9. Teaching the bioinformatics of signaling networks: an integrated approach to facilitate multi-disciplinary learning.

    PubMed

    Korcsmaros, Tamas; Dunai, Zsuzsanna A; Vellai, Tibor; Csermely, Peter

    2013-09-01

    The number of bioinformatics tools and resources that support molecular and cell biology approaches is continuously expanding. Moreover, systems and network biology analyses are accompanied more and more by integrated bioinformatics methods. Traditional information-centered university teaching methods often fail, as (1) it is impossible to cover all existing approaches in the frame of a single course, and (2) a large segment of the current bioinformation can become obsolete in a few years. Signaling network offers an excellent example for teaching bioinformatics resources and tools, as it is both focused and complex at the same time. Here, we present an outline of a university bioinformatics course with four sample practices to demonstrate how signaling network studies can integrate biochemistry, genetics, cell biology and network sciences. We show that several bioinformatics resources and tools, as well as important concepts and current trends, can also be integrated to signaling network studies. The research-type hands-on experiences we show enable the students to improve key competences such as teamworking, creative and critical thinking and problem solving. Our classroom course curriculum can be re-formulated as an e-learning material or applied as a part of a specific training course. The multi-disciplinary approach and the mosaic setup of the course have the additional benefit to support the advanced teaching of talented students.

  10. Energy scaling and reduction in controlling complex networks

    PubMed Central

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  11. Compact Interconnection Networks Based on Quantum Dots

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary-signal wires described in the cited prior article. One of these advances would be the development of QCA-based wires capable of bidirectional transmission of signals. The other advance would be the development of QCA circuits capable of high-impedance state outputs. The high-impedance states would be utilized along with the 0- and 1-state outputs of QCA.

  12. A soft-hard combination-based cooperative spectrum sensing scheme for cognitive radio networks.

    PubMed

    Do, Nhu Tri; An, Beongku

    2015-02-13

    In this paper we propose a soft-hard combination scheme, called SHC scheme, for cooperative spectrum sensing in cognitive radio networks. The SHC scheme deploys a cluster based network in which Likelihood Ratio Test (LRT)-based soft combination is applied at each cluster, and weighted decision fusion rule-based hard combination is utilized at the fusion center. The novelties of the SHC scheme are as follows: the structure of the SHC scheme reduces the complexity of cooperative detection which is an inherent limitation of soft combination schemes. By using the LRT, we can detect primary signals in a low signal-to-noise ratio regime (around an average of -15 dB). In addition, the computational complexity of the LRT is reduced since we derive the closed-form expression of the probability density function of LRT value. The SHC scheme also takes into account the different effects of large scale fading on different users in the wide area network. The simulation results show that the SHC scheme not only provides the better sensing performance compared to the conventional hard combination schemes, but also reduces sensing overhead in terms of reporting time compared to the conventional soft combination scheme using the LRT.

  13. Power prediction in mobile communication systems using an optimal neural-network structure.

    PubMed

    Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J

    1997-01-01

    Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.

  14. Different Types of Laughter Modulate Connectivity within Distinct Parts of the Laughter Perception Network

    PubMed Central

    Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin

    2013-01-01

    Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter. PMID:23667619

  15. Different types of laughter modulate connectivity within distinct parts of the laughter perception network.

    PubMed

    Wildgruber, Dirk; Szameitat, Diana P; Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin

    2013-01-01

    Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter.

  16. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance

    PubMed Central

    Lee, Samuel; Kim, Soo Min

    2013-01-01

    Abstract The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes. Antioxid. Redox Signal. 18, 1165–1207. PMID:22607099

  17. The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles

    PubMed Central

    Azulay, Aharon; Zaslaver, Alon

    2016-01-01

    A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available. PMID:27606684

  18. VEGF Triggers the Activation of Cofilin and the Arp2/3 Complex within the Growth Cone

    PubMed Central

    Schlau, Matthias; Terheyden-Keighley, Daniel; Theis, Verena; Mannherz, Hans Georg; Theiss, Carsten

    2018-01-01

    A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott–Aldrich–Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP. PMID:29382077

  19. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    NASA Astrophysics Data System (ADS)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  20. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  1. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks

    PubMed Central

    Miconi, Thomas

    2017-01-01

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528

  2. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    PubMed

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  3. Biosignals learning and synthesis using deep neural networks.

    PubMed

    Belo, David; Rodrigues, João; Vaz, João R; Pezarat-Correia, Pedro; Gamboa, Hugo

    2017-09-25

    Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation of novel algorithms for signal reconstruction in heavily noisy data and source detection in biomedical engineering field. The present work explores the gated recurrent units (GRU) employed in the training of respiration (RESP), electromyograms (EMG) and electrocardiograms (ECG). Each signal is pre-processed, segmented and quantized in a specific number of classes, corresponding to the amplitude of each sample and fed to the model, which is composed by an embedded matrix, three GRU blocks and a softmax function. This network is trained by adjusting its internal parameters, acquiring the representation of the abstract notion of the next value based on the previous ones. The simulated signal was generated by forecasting a random value and re-feeding itself. The resulting generated signals are similar with the morphological expression of the originals. During the learning process, after a set of iterations, the model starts to grasp the basic morphological characteristics of the signal and later their cyclic characteristics. After training, these models' prediction are closer to the signals that trained them, specially the RESP and ECG. This synthesis mechanism has shown relevant results that inspire the use to characterize signals from other physiological sources.

  4. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    PubMed Central

    Lasker, Keren; Ahrens, Daniel G.; Eckart, Michael R.

    2017-01-01

    ABSTRACT Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment. PMID:28246363

  5. Neural networks for continuous online learning and control.

    PubMed

    Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long

    2006-11-01

    This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.

  6. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation

    PubMed Central

    Rahman, Md Shaifur; Akhtar, Naznin; Jamil, Hossen Mohammad; Banik, Rajat Suvra; Asaduzzaman, Sikder M

    2015-01-01

    Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics. PMID:26273537

  7. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens.

    PubMed

    Gimenez-Ibanez, Selena; Solano, Roberto

    2013-01-01

    An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.

  8. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens

    PubMed Central

    Gimenez-Ibanez, Selena; Solano, Roberto

    2013-01-01

    An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Timothy N.; Dentener, Mieke A.

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damagingmore » inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT5A signaling. • Microarray reveals WNT as a novel complex signaling network in silica-mediated injury.« less

  10. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization.

    PubMed

    Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan

    2018-07-04

    The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.

  11. Programming self-organizing multicellular structures with synthetic cell-cell signaling.

    PubMed

    Toda, Satoshi; Blauch, Lucas R; Tang, Sindy K Y; Morsut, Leonardo; Lim, Wendell A

    2018-05-31

    A common theme in the self-organization of multicellular tissues is the use of cell-cell signaling networks to induce morphological changes. We used the modular synNotch juxtacrine signaling platform to engineer artificial genetic programs in which specific cell-cell contacts induced changes in cadherin cell adhesion. Despite their simplicity, these minimal intercellular programs were sufficient to yield assemblies with hallmarks of natural developmental systems: robust self-organization into multi-domain structures, well-choreographed sequential assembly, cell type divergence, symmetry breaking, and the capacity for regeneration upon injury. The ability of these networks to drive complex structure formation illustrates the power of interlinking cell signaling with cell sorting: signal-induced spatial reorganization alters the local signals received by each cell, resulting in iterative cycles of cell fate branching. These results provide insights into the evolution of multi-cellularity and demonstrate the potential to engineer customized self-organizing tissues or materials. Copyright © 2018, American Association for the Advancement of Science.

  12. Gene network analysis shows immune-signaling and ERK1/2 as novel genetic markers for multiple addiction phenotypes: alcohol, smoking and opioid addiction.

    PubMed

    Reyes-Gibby, Cielito C; Yuan, Christine; Wang, Jian; Yeung, Sai-Ching J; Shete, Sanjay

    2015-06-05

    Addictions to alcohol and tobacco, known risk factors for cancer, are complex heritable disorders. Addictive behaviors have a bidirectional relationship with pain. We hypothesize that the associations between alcohol, smoking, and opioid addiction observed in cancer patients have a genetic basis. Therefore, using bioinformatics tools, we explored the underlying genetic basis and identified new candidate genes and common biological pathways for smoking, alcohol, and opioid addiction. Literature search showed 56 genes associated with alcohol, smoking and opioid addiction. Using Core Analysis function in Ingenuity Pathway Analysis software, we found that ERK1/2 was strongly interconnected across all three addiction networks. Genes involved in immune signaling pathways were shown across all three networks. Connect function from IPA My Pathway toolbox showed that DRD2 is the gene common to both the list of genetic variations associated with all three addiction phenotypes and the components of the brain neuronal signaling network involved in substance addiction. The top canonical pathways associated with the 56 genes were: 1) calcium signaling, 2) GPCR signaling, 3) cAMP-mediated signaling, 4) GABA receptor signaling, and 5) G-alpha i signaling. Cancer patients are often prescribed opioids for cancer pain thus increasing their risk for opioid abuse and addiction. Our findings provide candidate genes and biological pathways underlying addiction phenotypes, which may be future targets for treatment of addiction. Further study of the variations of the candidate genes could allow physicians to make more informed decisions when treating cancer pain with opioid analgesics.

  13. Ras plasma membrane signalling platforms

    PubMed Central

    2005-01-01

    The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863

  14. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    PubMed Central

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-01-01

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666

  15. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.

    PubMed

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-06-26

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  16. Time irreversibility and intrinsics revealing of series with complex network approach

    NASA Astrophysics Data System (ADS)

    Xiong, Hui; Shang, Pengjian; Xia, Jianan; Wang, Jing

    2018-06-01

    In this work, we analyze time series on the basis of the visibility graph algorithm that maps the original series into a graph. By taking into account the all-round information carried by the signals, the time irreversibility and fractal behavior of series are evaluated from a complex network perspective, and considered signals are further classified from different aspects. The reliability of the proposed analysis is supported by numerical simulations on synthesized uncorrelated random noise, short-term correlated chaotic systems and long-term correlated fractal processes, and by the empirical analysis on daily closing prices of eleven worldwide stock indices. Obtained results suggest that finite size has a significant effect on the evaluation, and that there might be no direct relation between the time irreversibility and long-range correlation of series. Similarity and dissimilarity between stock indices are also indicated from respective regional and global perspectives, showing the existence of multiple features of underlying systems.

  17. Mechanics of the Cell

    NASA Astrophysics Data System (ADS)

    Boal, David

    2012-01-01

    Preface; List of symbols; 1. Introduction to the cell; 2. Soft materials and fluids; Part I. Rods and Ropes: 3. Polymers; 4. Complex filaments; 5. Two-dimensional networks; 6. Three-dimensional networks; Part II. Membranes: 7. Biomembranes; 8. Membrane undulations; 9. Intermembrane and electrostatic forces; Part III. The Whole Cell: 10. Structure of the simplest cells; 11. Dynamic filaments; 12. Growth and division; 13. Signals and switches; Appendixes; Glossary; References; Index.

  18. A Non-ATP Competitive Inhibitor of BCR-ABL for the Therapy of Imatinib-Resistant Cmls

    DTIC Science & Technology

    2008-05-01

    HSP90 members (e.g. HSP70 and HSP27 ) help maintain the macromolecular complex that assembled the Bcr-Abl/Jak2 signaling Network. Our published papers 4...kinase, Akt and GSK3 beta. Our recent findings suggest that the HSP90/HSP70/ HSP27 chaperone proteins are also part of this Network, and may play a

  19. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  20. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  1. Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.

    PubMed

    Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J

    2009-03-01

    Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].

  2. Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses

    PubMed Central

    Toufighi, Kiana; Yang, Jae-Seong; Luis, Nuno Miguel; Aznar Benitah, Salvador; Lehner, Ben; Serrano, Luis; Kiel, Christina

    2015-01-01

    The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. PMID:25946651

  3. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals

    PubMed Central

    Nakamura, Shuhei; Karalay, Özlem; Jäger, Philipp S.; Horikawa, Makoto; Klein, Corinna; Nakamura, Kayo; Latza, Christian; Templer, Sven E.; Dieterich, Christoph; Antebi, Adam

    2016-01-01

    Germline removal provokes longevity in several species and shifts resources towards survival and repair. Several Caenorhabditis elegans transcription factors regulate longevity arising from germline removal; yet, how they work together is unknown. Here we identify a Myc-like HLH transcription factor network comprised of Mondo/Max-like complex (MML-1/MXL-2) to be required for longevity induced by germline removal, as well as by reduced TOR, insulin/IGF signalling and mitochondrial function. Germline removal increases MML-1 nuclear accumulation and activity. Surprisingly, MML-1 regulates nuclear localization and activity of HLH-30/TFEB, a convergent regulator of autophagy, lysosome biogenesis and longevity, by downregulating TOR signalling via LARS-1/leucyl-transfer RNA synthase. HLH-30 also upregulates MML-1 upon germline removal. Mammalian MondoA/B and TFEB show similar mutual regulation. MML-1/MXL-2 and HLH-30 transcriptomes show both shared and preferential outputs including MDL-1/MAD-like HLH factor required for longevity. These studies reveal how an extensive interdependent HLH transcription factor network distributes responsibility and mutually enforces states geared towards reproduction or survival. PMID:27001890

  4. Lightweight Filter Architecture for Energy Efficient Mobile Vehicle Localization Based on a Distributed Acoustic Sensor Network

    PubMed Central

    Kim, Keonwook

    2013-01-01

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482

  5. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  6. Proteomic snapshot of the EGF-induced ubiquitin network

    PubMed Central

    Argenzio, Elisabetta; Bange, Tanja; Oldrini, Barbara; Bianchi, Fabrizio; Peesari, Raghunath; Mari, Sara; Di Fiore, Pier Paolo; Mann, Matthias; Polo, Simona

    2011-01-01

    The activity, localization and fate of many cellular proteins are regulated through ubiquitination, a process whereby one or more ubiquitin (Ub) monomers or chains are covalently attached to target proteins. While Ub-conjugated and Ub-associated proteomes have been described, we lack a high-resolution picture of the dynamics of ubiquitination in response to signaling. In this study, we describe the epidermal growth factor (EGF)-regulated Ubiproteome, as obtained by two complementary purification strategies coupled to quantitative proteomics. Our results unveil the complex impact of growth factor signaling on Ub-based intracellular networks to levels that extend well beyond what might have been expected. In addition to endocytic proteins, the EGF-regulated Ubiproteome includes a large number of signaling proteins, ubiquitinating and deubiquitinating enzymes, transporters and proteins involved in translation and transcription. The Ub-based signaling network appears to intersect both housekeeping and regulatory circuitries of cellular physiology. Finally, as proof of principle of the biological relevance of the EGF-Ubiproteome, we demonstrated that EphA2 is a novel, downstream ubiquitinated target of epidermal growth factor receptor (EGFR), critically involved in EGFR biological responses. PMID:21245847

  7. Role of the PDZ-scaffold protein NHERF1/EBP50 in cancer biology: from signaling regulation to clinical relevance.

    PubMed

    Vaquero, J; Nguyen Ho-Bouldoires, T H; Clapéron, A; Fouassier, L

    2017-06-01

    The transmission of cellular information requires fine and subtle regulation of proteins that need to interact in a coordinated and specific way to form efficient signaling networks. The spatial and temporal coordination relies on scaffold proteins. Thanks to protein interaction domains such as PDZ domains, scaffold proteins organize multiprotein complexes enabling the proper transmission of cellular information through intracellular networks. NHERF1/EBP50 is a PDZ-scaffold protein that was initially identified as an organizer and regulator of transporters and channels at the apical side of epithelia through actin-binding ezrin-moesin-radixin proteins. Since, NHERF1/EBP50 has emerged as a major regulator of cancer signaling network by assembling cancer-related proteins. The PDZ-scaffold EBP50 carries either anti-tumor or pro-tumor functions, two antinomic functions dictated by EBP50 expression or subcellular localization. The dual function of NHERF1/EBP50 encompasses the regulation of several major signaling pathways engaged in cancer, including the receptor tyrosine kinases PDGFR and EGFR, PI3K/PTEN/AKT and Wnt-β-catenin pathways.

  8. Genetic epistasis between heparan sulfate and FGF-Ras signaling controls lens development

    PubMed Central

    Qu, Xiuxia; Hertzler, Kristina; Pan, Yi; Grobe, Kay; Robinson, Michael L.; Zhang, Xin

    2011-01-01

    Vertebrate lens development depends on a complex network of signaling molecules to coordinate cell proliferation, migration and differentiation. In this study, we have studied the role of heparan sulfate in lens specific signaling by generating a conditional ablation of heparan sulfate modification genes, Ndst1 and Ndst2. In this mutant, N-sulfation of heparan sulfate was disrupted after the lens induction stage, resulting in reduced lens cell proliferation, increased cell death and defective lens fiber differentiation in later lens development. The loss of Ndst function also prevented the assembly of Fgf/Fgfr complexes on the lens cell surface and disrupted ERK signaling within the lens. We further demonstrated that Ndst mutation completely inhibited the FGF1 and Fgf3 overexpression phenotypes, but Kras reactivation was sufficient to reverse the Ndst deficient lens differentiation defect. The epistatic relationship between Ndst and FGF-Ras signaling demonstrates that FGF signaling is the predominant signaling pathway controlled by Ndst in lens development. PMID:21536023

  9. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    PubMed Central

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  10. A Low-Complexity Subgroup Formation with QoS-Aware for Enhancing Multicast Services in LTE Networks

    NASA Astrophysics Data System (ADS)

    Algharem, M.; Omar, M. H.; Rahmat, R. F.; Budiarto, R.

    2018-03-01

    The high demand of Multimedia services on in Long Term Evolution (LTE) and beyond networks forces the networks operators to find a solution that can handle the huge traffic. Along with this, subgroup formation techniques are introduced to overcome the limitations of the Conventional Multicast Scheme (CMS) by splitting the multicast users into several subgroups based on the users’ channels quality signal. However, finding the best subgroup configuration with low complexity is need more investigations. In this paper, an efficient and simple subgroup formation mechanisms are proposed. The proposed mechanisms take the transmitter MAC queue in account. The effectiveness of the proposed mechanisms is evaluated and compared with CMS in terms of throughput, fairness, delay, Block Error Rate (BLER).

  11. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses. PMID:27625669

  12. Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks.

    PubMed

    Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari

    2015-02-01

    Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal) brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform (TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate recurrence network measures, the average clustering coefficient C and assortativity R, and the bivariate recurrence network measure, the average cross-clustering coefficient C(cross), can successfully distinguish between the focal and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path length L, and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence test based on the average cross-clustering coefficient C(cross) is independent of the outcome of the randomness test based on the average clustering coefficient C. Thus, the univariate and bivariate recurrence network measures provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion, recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.

  13. Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks

    NASA Astrophysics Data System (ADS)

    Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari

    2015-02-01

    Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal) brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform (TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate recurrence network measures, the average clustering coefficient C and assortativity R , and the bivariate recurrence network measure, the average cross-clustering coefficient Ccross, can successfully distinguish between the focal and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path length L , and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence test based on the average cross-clustering coefficient Ccross is independent of the outcome of the randomness test based on the average clustering coefficient C . Thus, the univariate and bivariate recurrence network measures provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion, recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.

  14. Graph Theory at the Service of Electroencephalograms.

    PubMed

    Iakovidou, Nantia D

    2017-04-01

    The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electrophysiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions and links, or connections, represent communication pathways between the nodes. Graph theory and theory of complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, analyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph theoretic approaches and tools to analyze EEG data.

  15. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  16. A framework to find the logic backbone of a biological network.

    PubMed

    Maheshwari, Parul; Albert, Réka

    2017-12-06

    Cellular behaviors are governed by interaction networks among biomolecules, for example gene regulatory and signal transduction networks. An often used dynamic modeling framework for these networks, Boolean modeling, can obtain their attractors (which correspond to cell types and behaviors) and their trajectories from an initial state (e.g. a resting state) to the attractors, for example in response to an external signal. The existing methods however do not elucidate the causal relationships between distant nodes in the network. In this work, we propose a simple logic framework, based on categorizing causal relationships as sufficient or necessary, as a complement to Boolean networks. We identify and explore the properties of complex subnetworks that are distillable into a single logic relationship. We also identify cyclic subnetworks that ensure the stabilization of the state of participating nodes regardless of the rest of the network. We identify the logic backbone of biomolecular networks, consisting of external signals, self-sustaining cyclic subnetworks (stable motifs), and output nodes. Furthermore, we use the logic framework to identify crucial nodes whose override can drive the system from one steady state to another. We apply these techniques to two biological networks: the epithelial-to-mesenchymal transition network corresponding to a developmental process exploited in tumor invasion, and the network of abscisic acid induced stomatal closure in plants. We find interesting subnetworks with logical implications in these networks. Using these subgraphs and motifs, we efficiently reduce both networks to succinct backbone structures. The logic representation identifies the causal relationships between distant nodes and subnetworks. This knowledge can form the basis of network control or used in the reverse engineering of networks.

  17. The protein-protein interaction network of eyestalk, Y-organ and hepatopancreas in Chinese mitten crab Eriocheir sinensis.

    PubMed

    Hao, Tong; Zeng, Zheng; Wang, Bin; Zhang, Yichen; Liu, Yichen; Geng, Xuyun; Sun, Jinsheng

    2014-03-27

    The protein-protein interaction network (PIN) is an effective information tool for understanding the complex biological processes inside the cell and solving many biological problems such as signaling pathway identification and prediction of protein functions. Eriocheir sinensis is a highly-commercial aquaculture species with an unclear proteome background which hinders the construction and development of PIN for E. sinensis. However, in recent years, the development of next-generation deep-sequencing techniques makes it possible to get high throughput data of E. sinensis tanscriptome and subsequently obtain a systematic overview of the protein-protein interaction system. In this work we sequenced the transcriptional RNA of eyestalk, Y-organ and hepatopancreas in E. sinensis and generated a PIN of E. sinensis which included 3,223 proteins and 35,787 interactions. Each protein-protein interaction in the network was scored according to the homology and genetic relationship. The signaling sub-network, representing the signal transduction pathways in E. sinensis, was extracted from the global network, which depicted a global view of the signaling systems in E. sinensis. Seven basic signal transduction pathways were identified in E. sinensis. By investigating the evolution paths of the seven pathways, we found that these pathways got mature in different evolutionary stages. Moreover, the functions of unclassified proteins and unigenes in the PIN of E. sinensis were predicted. Specifically, the functions of 549 unclassified proteins related to 864 unclassified unigenes were assigned, which respectively covered 76% and 73% of all the unclassified proteins and unigenes in the network. The PIN generated in this work is the first large-scale PIN of aquatic crustacean, thereby providing a paradigmatic blueprint of the aquatic crustacean interactome. Signaling sub-network extracted from the global PIN depicts the interaction of different signaling proteins and the evolutionary paths of the identified signal transduction pathways. Furthermore, the function assignment of unclassified proteins based on the PIN offers a new reference in protein function exploration. More importantly, the construction of the E. sinensis PIN provides necessary experience for the exploration of PINs in other aquatic crustacean species.

  18. PI3K-AKT-mTOR-Signaling and beyond: the Complex Network in Gastroenteropancreatic Neuroendocrine Neoplasms

    PubMed Central

    Briest, Franziska; Grabowski, Patricia

    2014-01-01

    Gastroenteropancreatic neuroendocrine neoplasms are heterogeneous in their clinical behavior and require therapies specially tailored according to staging, grading, origin and expression of peptide receptors. Despite extensive scientific efforts, the therapy options are still not satisfactory. The main reasons are due to the lack of a broad mechanistic knowledge, an insufficient classification of specific diagnostic sub-groups, and predictive markers. GEP-NEN tumors evade early diagnosis because of slow asymptomatic growth behavior and are frequently not detected until metastasized. How signaling networks contribute to tumor progression and how these networks interact remains unclear in large parts. In this review we summarize the knowledge on the growth factor responsive non-angiogenetic pathways in sporadic GEP-NENs, highlight promising mechanistic research approaches, and describe important therapy targets. PMID:24578720

  19. Inferring causal molecular networks: empirical assessment through a community-based effort

    PubMed Central

    Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-01-01

    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648

  20. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  1. Next generation of network medicine: interdisciplinary signaling approaches.

    PubMed

    Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio

    2017-02-20

    In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.

  2. Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks

    PubMed Central

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R.

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a “rich club” of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931

  3. Nested effects models for learning signaling networks from perturbation data.

    PubMed

    Fröhlich, Holger; Tresch, Achim; Beissbarth, Tim

    2009-04-01

    Targeted gene perturbations have become a major tool to gain insight into complex cellular processes. In combination with the measurement of downstream effects via DNA microarrays, this approach can be used to gain insight into signaling pathways. Nested Effects Models were first introduced by Markowetz et al. as a probabilistic method to reverse engineer signaling cascades based on the nested structure of downstream perturbation effects. The basic framework was substantially extended later on by Fröhlich et al., Markowetz et al., and Tresch and Markowetz. In this paper, we present a review of the complete methodology with a detailed comparison of so far proposed algorithms on a qualitative and quantitative level. As an application, we present results on estimating the signaling network between 13 genes in the ER-alpha pathway of human MCF-7 breast cancer cells. Comparison with the literature shows a substantial overlap.

  4. Modulation Classification of Satellite Communication Signals Using Cumulants and Neural Networks

    NASA Technical Reports Server (NTRS)

    Smith, Aaron; Evans, Michael; Downey, Joseph

    2017-01-01

    National Aeronautics and Space Administration (NASA)'s future communication architecture is evaluating cognitive technologies and increased system intelligence. These technologies are expected to reduce the operational complexity of the network, increase science data return, and reduce interference to self and others. In order to increase situational awareness, signal classification algorithms could be applied to identify users and distinguish sources of interference. A significant amount of previous work has been done in the area of automatic signal classification for military and commercial applications. As a preliminary step, we seek to develop a system with the ability to discern signals typically encountered in satellite communication. Proposed is an automatic modulation classifier which utilizes higher order statistics (cumulants) and an estimate of the signal-to-noise ratio. These features are extracted from baseband symbols and then processed by a neural network for classification. The modulation types considered are phase-shift keying (PSK), amplitude and phase-shift keying (APSK),and quadrature amplitude modulation (QAM). Physical layer properties specific to the Digital Video Broadcasting - Satellite- Second Generation (DVB-S2) standard, such as pilots and variable ring ratios, are also considered. This paper will provide simulation results of a candidate modulation classifier, and performance will be evaluated over a range of signal-to-noise ratios, frequency offsets, and nonlinear amplifier distortions.

  5. A Computational Model Predicting Disruption of Blood Vessel Development

    EPA Science Inventory

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

  6. vEmbryo In Silico Models: Predicting Vascular Developmental Toxicity

    EPA Science Inventory

    The cardiovascular system is the first to function in the vertebrate embryo, reflecting the critical need for nutrient delivery and waste removal during organogenesis. Blood vessel development occurs by complex interacting signaling networks, including extra-cellular matrix remod...

  7. Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Li, Xiaohua(Edward)

    In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.

  8. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    PubMed

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  9. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase.

    PubMed

    La Sala, Giuseppina; Riccardi, Laura; Gaspari, Roberto; Cavalli, Andrea; Hantschel, Oliver; De Vivo, Marco

    2016-11-08

    A number of structural factors modulate the activity of Abelson (Abl) tyrosine kinase, whose deregulation is often related to oncogenic processes. First, only the open conformation of the Abl kinase domain's activation loop (A-loop) favors ATP binding to the catalytic cleft. In this regard, the trans-autophosphorylation of the Y412 residue, which is located along the A-loop, favors the stability of the open conformation, in turn enhancing Abl activity. Another key factor for full Abl activity is the formation of active conformations of the catalytic DFG motif in the Abl kinase domain. Furthermore, binding of the SH2 domain to the N-lobe of the Abl kinase was recently demonstrated to have a long-range allosteric effect on the stabilization of the A-loop open state. Intriguingly, these distinct structural factors imply a complex signal transmission network for controlling the A-loop's flexibility and conformational preference for optimal Abl function. However, the exact dynamical features of this signal transmission network structure remain unclear. Here, we report on microsecond-long molecular dynamics coupled with enhanced sampling simulations of multiple Abl model systems, in the presence or absence of the SH2 domain and with the DFG motif flipped in two ways (in or out conformation). Through comparative analysis, our simulations augment the interpretation of the existing Abl experimental data, revealing a dynamical network of interactions that interconnect SH2 domain binding with A-loop plasticity and Y412 autophosphorylation in Abl. This signaling network engages the DFG motif and, importantly, other conserved structural elements of the kinase domain, namely, the EPK-ELK H-bond network and the HRD motif. Our results show that the signal propagation for modulating the A-loop spatial localization is highly dependent on the HRD motif conformation, which thus acts as the central hub of this (allosteric) signaling network controlling Abl activation and function.

  10. Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems

    PubMed Central

    Medford, June; Prasad, Ashok

    2014-01-01

    Biological protein interactions networks such as signal transduction or gene transcription networks are often treated as modular, allowing motifs to be analyzed in isolation from the rest of the network. Modularity is also a key assumption in synthetic biology, where it is similarly expected that when network motifs are combined together, they do not lose their essential characteristics. However, the interactions that a network module has with downstream elements change the dynamical equations describing the upstream module and thus may change the dynamic and static properties of the upstream circuit even without explicit feedback. In this work we analyze the behavior of a ubiquitous motif in gene transcription and signal transduction circuits: the switch. We show that adding an additional downstream component to the simple genetic toggle switch changes its dynamical properties by changing the underlying potential energy landscape, and skewing it in favor of the unloaded side, and in some situations adding loads to the genetic switch can also abrogate bistable behavior. We find that an additional positive feedback motif found in naturally occurring toggle switches could tune the potential energy landscape in a desirable manner. We also analyze autocatalytic signal transduction switches and show that a ubiquitous positive feedback switch can lose its switch-like properties when connected to a downstream load. Our analysis underscores the necessity of incorporating the effects of downstream components when understanding the physics of biochemical network motifs, and raises the question as to how these effects are managed in real biological systems. This analysis is particularly important when scaling synthetic networks to more complex organisms. PMID:24676102

  11. Implementing the sine transform of fermionic modes as a tensor network

    NASA Astrophysics Data System (ADS)

    Epple, Hannes; Fries, Pascal; Hinrichsen, Haye

    2017-09-01

    Based on the algebraic theory of signal processing, we recursively decompose the discrete sine transform of the first kind (DST-I) into small orthogonal block operations. Using a diagrammatic language, we then second-quantize this decomposition to construct a tensor network implementing the DST-I for fermionic modes on a lattice. The complexity of the resulting network is shown to scale as 5/4 n logn (not considering swap gates), where n is the number of lattice sites. Our method provides a systematic approach of generalizing Ferris' spectral tensor network for nontrivial boundary conditions.

  12. Entropy for the Complexity of Physiological Signal Dynamics.

    PubMed

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  13. THE RGM/DRAGON FAMILY OF BMP CO-RECEPTORS

    PubMed Central

    Corradini, Elena; Babitt, Jodie L.; Lin, Herbert Y.

    2013-01-01

    The BMP signaling pathway controls a number of cell processes during development and in adult tissues. At the cellular level, ligands of the BMP family act by binding a hetero-tetrameric signaling complex, composed of two type I and two type II receptors. BMP ligands make use of a limited number of receptors, which in turn activate a common signal transduction cascade at the intracellular level. A complex regulatory network is required in order to activate the signaling cascade at proper times and locations, and to generate specific downstream effects in the appropriate cellular context. One such regulatory mechanism is the repulsive guidance molecule (RGM) family of BMP co-receptors. This article reviews the current knowledge regarding the structure, regulation, and function of RGMs, focusing on known and potential roles of RGMs in physiology and pathophysiology. PMID:19897400

  14. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network

    PubMed Central

    Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan

    2015-01-01

    Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088

  15. Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements.

    PubMed

    Da Poian, Giulia; Rozell, Christopher J; Bernardini, Riccardo; Rinaldo, Roberto; Clifford, Gari D

    2017-09-14

    Compressive Sensing (CS) has recently been applied as a low complexity compression framework for long-term monitoring of electrocardiogram signals using Wireless Body Sensor Networks. Long-term recording of ECG signals can be useful for diagnostic purposes and to monitor the evolution of several widespread diseases. In particular, beat to beat intervals provide important clinical information, and these can be derived from the ECG signal by computing the distance between QRS complexes (R-peaks). Numerous methods for R-peak detection are available for uncompressed ECG. However, in case of compressed sensed data, signal reconstruction can be performed with relatively complex optimisation algorithms, which may require significant energy consumption. This article addresses the problem of hearth rate estimation from compressive sensing electrocardiogram (ECG) recordings, avoiding the reconstruction of the entire signal. We consider a framework where the ECG signals are represented under the form of CS linear measurements. The QRS locations are estimated in the compressed domain by computing the correlation of the compressed ECG and a known QRS template. Experiments on actual ECG signals show that our novel solution is competitive with methods applied to the reconstructed signals. Avoiding the reconstruction procedure, the proposed method proves to be very convenient for real-time, low-power applications.

  16. Signal processing and neural network toolbox and its application to failure diagnosis and prognosis

    NASA Astrophysics Data System (ADS)

    Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.

    2001-07-01

    Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.

  17. Relating brain signal variability to knowledge representation.

    PubMed

    Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R

    2012-11-15

    We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  18. Nicotine and elevated body temperature reduce the complexity of the genioglossus and diaphragm EMG signals in rats during early maturation

    NASA Astrophysics Data System (ADS)

    Akkurt, David; Akay, Yasemin M.; Akay, Metin

    2009-10-01

    In this paper, we examined the effect of nicotine exposure and increased body temperature on the complexity (dynamics) of the genioglossus muscle (EMGg) and the diaphragm muscle (EMGdia) to explore the effects of nicotine and hyperthermia. Nonlinear dynamical analysis of the EMGdia and EMGg signals was performed using the approximate entropy method on 15 (7 saline- and 8 nicotine-treated) juvenile rats (P25-P35) and 19 (11 saline- and 8 nicotine-treated) young adult rats (P36-P44). The mean complexity values were calculated over the ten consecutive breaths using the approximate entropy method during mild elevated body temperature (38 °C) and severe elevated body temperature (39-40 °C) in two groups. In the first (nicotine) group, rats were treated with single injections of nicotine enough to produce brain levels of nicotine similar to those achieved in human smokers (2.5 (mg kg-1)/day) until the recording day. In the second (control) group, rats were treated with injections of saline, beginning at postnatal 5 days until the recording day. Our results show that warming the rat by 2-3 °C and nicotine exposure significantly decreased the complexity of the EMGdia and EMGg for the juvenile age group. This reduction in the complexity of the EMGdia and EMGg for the nicotine group was much greater than the normal during elevated body temperatures. We speculate that the generalized depressive effects of nicotine exposure and elevated body temperature on the respiratory neural firing rate and the behavior of the central respiratory network could be responsible for the drastic decrease in the complexity of the EMGdia and EMGg signals, the outputs of the respiratory neural network during early maturation.

  19. Detecting the tipping points in a three-state model of complex diseases by temporal differential networks.

    PubMed

    Chen, Pei; Li, Yongjun; Liu, Xiaoping; Liu, Rui; Chen, Luonan

    2017-10-26

    The progression of complex diseases, such as diabetes and cancer, is generally a nonlinear process with three stages, i.e., normal state, pre-disease state, and disease state, where the pre-disease state is a critical state or tipping point immediately preceding the disease state. Traditional biomarkers aim to identify a disease state by exploiting the information of differential expressions for the observed molecules, but may fail to detect a pre-disease state because there are generally little significant differences between the normal and pre-disease states. Thus, it is challenging to signal the pre-disease state, which actually implies the disease prediction. In this work, by exploiting the information of differential associations among the observed molecules between the normal and pre-disease states, we propose a temporal differential network based computational method to accurately signal the pre-disease state or predict the occurrence of severe disease. The theoretical foundation of this work is the quantification of the critical state using dynamical network biomarkers. Considering that there is one stationary Markov process before reaching the tipping point, a novel index, inconsistency score (I-score), is proposed to quantitatively measure the change of the stationary processes from the normal state so as to detect the onset of pre-disease state. In other words, a drastic increase of I-score implies the high inconsistency with the preceding stable state and thus signals the upcoming critical transition. This approach is applied to the simulated and real datasets of three diseases, which demonstrates the effectiveness of our method for predicting the deterioration into disease states. Both functional analysis and pathway enrichment also validate the computational results from the perspectives of both molecules and networks. At the molecular network level, this method provides a computational way of unravelling the underlying mechanism of the dynamical progression when a biological system is near the tipping point, and thus detecting the early-warning signal of the imminent critical transition, which may help to achieve timely intervention. Moreover, the rewiring of differential networks effectively extracts discriminatively interpretable features, and systematically demonstrates the dynamical change of a biological system.

  20. Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea

    PubMed Central

    2017-01-01

    ABSTRACT All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria. Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. PMID:29208747

  1. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Bardakjian, Berj L; Valiante, Taufik A; Carlen, Peter L

    2012-10-01

    Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/f(γ) noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders.

  2. Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila.

    PubMed

    Feijão, Tália; Afonso, Olga; Maia, André F; Sunkel, Claudio E

    2013-10-01

    Kinetochores bind spindle microtubules and also act as signaling centers that monitor this interaction. Defects in kinetochore assembly lead to chromosome missegregation and aneuploidy. The interaction between microtubules and chromosomes involves a conserved super-complex of proteins, known as the KNL1Mis12Ndc80 (KMN) network, composed by the KNL1 (Spc105), Mis12, and Ndc80 complexes. Previous studies indicate that all components of the network are required for kinetochore-microtubule attachment and all play relevant functions in chromosome congression, biorientation, and segregation. Here, we report a comparative study addressing the role of the different KMN components using dsRNA and in vivo fluorescence microscopy in Drosophila S2 cells allowing us to suggest that different KMN network components might perform different roles in chromosome segregation and the mitotic checkpoint signaling. Depletion of different components results in mostly lateral kinetochore-microtubule attachments that are relatively stable on depletion of Mis12 or Ndc80 but very unstable after Spc105 depletion. In vivo analysis on depletion of Mis12, Ndc80, and to some extent Spc105, shows that lateral kinetochore-microtubule interactions are still functional allowing poleward kinetochore movement. We also find that different KMN network components affect differently the localization of spindle assembly checkpoint (SAC) proteins at kinetochores. Depletion of Ndc80 and Spc105 abolishes the mitotic checkpoint, whereas depletion of Mis12 causes a delay in mitotic progression. Taken together, our results suggest that Mis12 and Ndc80 complexes help to properly orient microtubule attachment, whereas Spc105 plays a predominant role in the kinetochore-microtubule attachment as well as in the poleward movement of chromosomes, SAC response, and cell viability. Copyright © 2013 Wiley Periodicals, Inc.

  3. Data based identification and prediction of nonlinear and complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.

  4. Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems.

    PubMed

    Lau, Hiu E; Chalasani, Sreekanth H

    2014-09-01

    Insulin signaling plays a critical role in coupling external changes to animal physiology and behavior. Despite remarkable conservation in the insulin signaling pathway components across species, divergence in the mechanism and function of the signal is evident. Focusing on recent findings from C. elegans, D. melanogaster and mammals, we discuss the role of insulin signaling in regulating adult neuronal function and behavior. In particular, we describe the transcription-dependent and transcription-independent aspects of insulin signaling across these three species. Interestingly, we find evidence of diverse mechanisms underlying complex networks of peptide action in modulating nervous system function.

  5. Modeling carbachol-induced hippocampal network synchronization using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin

    2010-10-01

    In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.

  6. Subauditory Speech Recognition based on EMG/EPG Signals

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)

    2003-01-01

    Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.

  7. Sparsity-aware multiple relay selection in large multi-hop decode-and-forward relay networks

    NASA Astrophysics Data System (ADS)

    Gouissem, A.; Hamila, R.; Al-Dhahir, N.; Foufou, S.

    2016-12-01

    In this paper, we propose and investigate two novel techniques to perform multiple relay selection in large multi-hop decode-and-forward relay networks. The two proposed techniques exploit sparse signal recovery theory to select multiple relays using the orthogonal matching pursuit algorithm and outperform state-of-the-art techniques in terms of outage probability and computation complexity. To reduce the amount of collected channel state information (CSI), we propose a limited-feedback scheme where only a limited number of relays feedback their CSI. Furthermore, a detailed performance-complexity tradeoff investigation is conducted for the different studied techniques and verified by Monte Carlo simulations.

  8. Optical switches for remote and noninvasive control of cell signaling.

    PubMed

    Gorostiza, Pau; Isacoff, Ehud Y

    2008-10-17

    Although the identity and interactions of signaling proteins have been studied in great detail, the complexity of signaling networks cannot be fully understood without elucidating the timing and location of activity of individual proteins. To do this, one needs a means for detecting and controlling specific signaling events. An attractive approach is to use light, both to report on and control signaling proteins in cells, because light can probe cells in real time with minimal damage. Although optical detection of signaling events has been successful for some time, the development of the means for optical control has accelerated only recently. Of particular interest is the development of chemically engineered proteins that are directly sensitive to light.

  9. Sensitivity of directed networks to the addition and pruning of edges and vertices

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Timár, G.; Mendes, J. F. F.

    2017-08-01

    Directed networks have various topologically different extensive components, in contrast to a single giant component in undirected networks. We study the sensitivity (response) of the sizes of these extensive components in directed complex networks to the addition and pruning of edges and vertices. We introduce the susceptibility, which quantifies this sensitivity. We show that topologically different parts of a directed network have different sensitivity to the addition and pruning of edges and vertices and, therefore, they are characterized by different susceptibilities. These susceptibilities diverge at the critical point of the directed percolation transition, signaling the appearance (or disappearance) of the giant strongly connected component in the infinite size limit. We demonstrate this behavior in randomly damaged real and synthetic directed complex networks, such as the World Wide Web, Twitter, the Caenorhabditis elegans neural network, directed Erdős-Rényi graphs, and others. We reveal a nonmonotonic dependence of the sensitivity to random pruning of edges or vertices in the case of C. elegans and Twitter that manifests specific structural peculiarities of these networks. We propose the measurements of the susceptibilities during the addition or pruning of edges and vertices as a new method for studying structural peculiarities of directed networks.

  10. WDM-PON access network with lightwave source centralized full-duplex link based on SSB-OOFDM for wired and 60 GHz band wireless alternative accesses

    NASA Astrophysics Data System (ADS)

    Ma, Jianxin; Wang, Zhao; Zheng, Guoli

    2014-04-01

    A novel lightwave centralized full-duplex WDM-PON access network based on single sideband optical orthogonal frequency-division multiplexing (SSB-OOFDM) is proposed for providing wired and 60-GHz band wireless accesses alternately. At the OLT, the multi-channels with 10-Gb/s 4-QAM-RF-OFDM signals are SSB modulated on the optical local oscillators (OLOs). At the RN, one OOFDM signal along with two OLOs is abstracted and switched to the corresponding HONU, where the signal can be downconverted to the 10-GHz or 60-GHz band RF-OFDM signal by one OLO for wired or wireless access, while the other one is used to bear the uplink signal. Since the HONU is free from the light sources, the system complexity and cost are reduced. Full duplex transmission over 25 km fiber have been demonstrated that the error vector magnitude (EVM) of the down- and up-link signals are much below the FEC limit for both the wired and 60-GHz band wireless access services.

  11. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics

    PubMed Central

    Bennett, Eric J.; Rush, John; Gygi, Steven P.; Harper, J. Wade

    2010-01-01

    Dynamic reorganization of signaling systems frequently accompany pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex Absolute Quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules while only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization. PMID:21145461

  12. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics.

    PubMed

    Bennett, Eric J; Rush, John; Gygi, Steven P; Harper, J Wade

    2010-12-10

    Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluate current models of dynamic CRL remodeling. Current models suggest that CRL complexes are controlled by cycles of CRL deneddylation and CAND1 binding. Contrary to expectations, acute CRL inhibition with MLN4924, an inhibitor of the NEDD8-activating enzyme, does not result in a global reorganization of the CRL network. Examination of CRL complex stoichiometry reveals that, independent of cullin neddylation, a large fraction of cullins are assembled with adaptor modules, whereas only a small fraction are associated with CAND1. These studies suggest an alternative model of CRL dynamicity where the abundance of adaptor modules, rather than cycles of neddylation and CAND1 binding, drives CRL network organization. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Computational Architecture of the Granular Layer of Cerebellum-Like Structures.

    PubMed

    Bratby, Peter; Sneyd, James; Montgomery, John

    2017-02-01

    In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.

  14. Attractor Signaling Models for Discovery of Combinatorial Therapies

    DTIC Science & Technology

    2014-11-01

    acquired!drug!resistance!still!makes!the!5-year!survival!rate!for!this! disease ! less!than!15%.!Over!the!years,!many!specific!mechanisms!associated!with!drug...Moreover, it has been suggested that a biological system in a chronic or therapy- resistant disease state can be seen as a network that has become...therapeutic methods for complex diseases such as cancer. Even if our knowledge of biological networks is incomplete, rapid progress is currently being

  15. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)

    PubMed Central

    Lamming, Dudley W.; Demirkan, Gokhan; Boylan, Joan M.; Mihaylova, Maria M.; Peng, Tao; Ferreira, Jonathan; Neretti, Nicola; Salomon, Arthur; Sabatini, David M.; Gruppuso, Philip A.

    2014-01-01

    The mechanistic target of rapamycin (mTOR) exists in two complexes that regulate diverse cellular processes. mTOR complex 1 (mTORC1), the canonical target of rapamycin, has been well studied, whereas the physiological role of mTORC2 remains relatively uncharacterized. In mice in which the mTORC2 component Rictor is deleted in liver [Rictor-knockout (RKO) mice], we used genomic and phosphoproteomic analyses to characterize the role of hepatic mTORC2 in vivo. Overnight food withdrawal followed by refeeding was used to activate mTOR signaling. Rapamycin was administered before refeeding to specify mTORC2-mediated events. Hepatic mTORC2 regulated a complex gene expression and post-translational network that affects intermediary metabolism, ribosomal biogenesis, and proteasomal biogenesis. Nearly all changes in genes related to intermediary metabolic regulation were replicated in cultured fetal hepatocytes, indicating a cell-autonomous effect of mTORC2 signaling. Phosphoproteomic profiling identified mTORC2-related signaling to 144 proteins, among which were metabolic enzymes and regulators. A reduction of p38 MAPK signaling in the RKO mice represents a link between our phosphoproteomic and gene expression results. We conclude that hepatic mTORC2 exerts a broad spectrum of biological effects under physiological conditions. Our findings provide a context for the development of targeted therapies to modulate mTORC2 signaling.—Lamming, D. W., Demirkan, G., Boylan, J. M., Mihaylova, M. M., Peng, T., Ferreira, J., Neretti, N., Salomon, A., Sabatini, D. M., Gruppuso, P. A. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). PMID:24072782

  16. Evolution of Abscisic Acid Synthesis and Signaling Mechanisms

    PubMed Central

    Hauser, Felix; Waadt, Rainer; Schroeder, Julian I.

    2011-01-01

    The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized. PMID:21549957

  17. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGES

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  18. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification.

    PubMed

    Wible, Ryan S; Sutter, Thomas R

    2017-03-20

    The unique biophysical and electronic properties of cysteine make this molecule one of the most biologically critical amino acids in the proteome. The defining sulfur atom in cysteine is much larger than the oxygen and nitrogen atoms more commonly found in the other amino acids. As a result of its size, the valence electrons of sulfur are highly polarizable. Unique protein microenvironments favor the polarization of sulfur, thus increasing the overt reactivity of cysteine. Here, we provide a brief overview of the endogenous generation of reactive oxygen and electrophilic species and specific examples of enzymes and transcription factors in which the oxidation or covalent modification of cysteine in those proteins modulates their function. The perspective concludes with a discussion of cysteine chemistry and biophysics, the hard and soft acids and bases model, and the proposal of the Soft Cysteine Signaling Network: a hypothesis proposing the existence of a complex signaling network governed by layered chemical reactivity and cross-talk in which the chemical modification of reactive cysteine in biological networks triggers the reorganization of intracellular biochemistry to mitigate spikes in endogenous or exogenous oxidative or electrophilic stress.

  19. Cellular and molecular specificity of pituitary gland physiology.

    PubMed

    Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo

    2012-01-01

    The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.

  20. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  1. Interaction of compass sensing and object-motion detection in the locust central complex.

    PubMed

    Bockhorst, Tobias; Homberg, Uwe

    2017-07-01

    Goal-directed behavior is often complicated by unpredictable events, such as the appearance of a predator during directed locomotion. This situation requires adaptive responses like evasive maneuvers followed by subsequent reorientation and course correction. Here we study the possible neural underpinnings of such a situation in an insect, the desert locust. As in other insects, its sense of spatial orientation strongly relies on the central complex, a group of midline brain neuropils. The central complex houses sky compass cells that signal the polarization plane of skylight and thus indicate the animal's steering direction relative to the sun. Most of these cells additionally respond to small moving objects that drive fast sensory-motor circuits for escape. Here we investigate how the presentation of a moving object influences activity of the neurons during compass signaling. Cells responded in one of two ways: in some neurons, responses to the moving object were simply added to the compass response that had adapted during continuous stimulation by stationary polarized light. By contrast, other neurons disadapted, i.e., regained their full compass response to polarized light, when a moving object was presented. We propose that the latter case could help to prepare for reorientation of the animal after escape. A neuronal network based on central-complex architecture can explain both responses by slight changes in the dynamics and amplitudes of adaptation to polarized light in CL columnar input neurons of the system. NEW & NOTEWORTHY Neurons of the central complex in several insects signal compass directions through sensitivity to the sky polarization pattern. In locusts, these neurons also respond to moving objects. We show here that during polarized-light presentation, responses to moving objects override their compass signaling or restore adapted inhibitory as well as excitatory compass responses. A network model is presented to explain the variations of these responses that likely serve to redirect flight or walking following evasive maneuvers. Copyright © 2017 the American Physiological Society.

  2. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen.

    PubMed

    Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie

    2010-03-01

    Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.

  3. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa.

    PubMed

    Ficklin, Stephen P; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.

  4. A Systems-Genetics Approach and Data Mining Tool to Assist in the Discovery of Genes Underlying Complex Traits in Oryza sativa

    PubMed Central

    Ficklin, Stephen P.; Feltus, Frank Alex

    2013-01-01

    Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance. PMID:23874666

  5. Complex Networks Dynamics Based on Events-Phase Synchronization and Intensity Correlation Applied to The Anomaly Patterns and Extremes in The Tropical African Climate System

    NASA Astrophysics Data System (ADS)

    Oluoch, K.; Marwan, N.; Trauth, M.; Loew, A.; Kurths, J.

    2012-04-01

    The African continent lie almost entirely within the tropics and as such its (tropical) climate systems are predominantly governed by the heterogeneous, spatial and temporal variability of the Hadley and Walker circulations. The variabilities in these meridional and zonal circulations lead to intensification or suppression of the intensities, durations and frequencies of the Inter-tropical Convergence Zone (ICTZ) migration, trade winds and subtropical high-pressure regions and the continental monsoons. The above features play a central role in determining the African rainfall spatial and temporal variability patterns. The current understanding of these climate features and their influence on the rainfall patterns is not sufficiently understood. Like many real-world systems, atmospheric-oceanic processes exhibit non-linear properties that can be better explored using non-linear (NL) methods of time-series analysis. Over the recent years, the complex network approach has evolved as a powerful new player in understanding spatio-temporal dynamics and evolution of complex systems. Together with NL techniques, it is continuing to find new applications in many areas of science and technology including climate research. We would like to use these two powerful methods to understand the spatial structure and dynamics of African rainfall anomaly patterns and extremes. The method of event synchronization (ES) developed by Quiroga et al., 2002 and first applied to climate networks by Malik et al., 2011 looks at correlations with a dynamic time lag and as such, it is a more intuitive way to correlate a complex and heterogeneous system like climate networks than a fixed time delay most commonly used. On the other hand, the short comings of ES is its lack of vigorous test statistics for the significance level of the correlations, and the fact that only the events' time indices are synchronized while all information about how the relative intensities propagate within network framework is lost. The new method we present is motivated by the ES and borrows ideas from signal processing where a signal is represented by its intensity and frequency. Even though the anomaly signals are not periodic, the idea of phase synchronization is not far fetched. It brings into one umbrella, the traditionally known linear Intensity correlation methods like Pearson correlation, spear-man's rank or non-linear ones like mutual information with the ES for non-linear temporal synchronization. The intensity correlation is only performed where there is a temporal synchronization. The former just measures how constant the intensity differences are. In other words, how monotonic are the two functions. The overall measure of correlation and synchronization is the product of the two coefficients. Complex networks constructed by this technique has all the advantages inherent in each of the techniques it borrows. But, it is more superior and able to uncover many known and unknown dynamical features in rainfall field or any variable of interest. The main aim of this work is to develop a method that can identify the footprints of coherent or incoherent structures within the ICTZ, the African and the Indian monsoons and the ENSO signal on the tropical African continent and their temporal evolution.

  6. The molecular circuitry of brassinosteroid signaling.

    PubMed

    Belkhadir, Youssef; Jaillais, Yvon

    2015-04-01

    Because they are tethered in space, plants have to make the most of their local growth environment. In order to grow in an ever-changing environment, plants constantly remodel their shapes. This adaptive attribute requires the orchestration of complex environmental signals at the cellular and organismal levels. A battery of small molecules, classically known as phytohormones, allows plants to change their body plan by using highly integrated signaling networks and transcriptional cascades. Amongst these hormones, brassinosteroids (BRs), the polyhydroxylated steroid of plants, influence plant responsiveness to the local environment and exquisitely promote, or interfere with, many aspects of plant development. The molecular circuits that wire steroid signals at the cell surface to the promoters of thousands of genes in the nucleus have been defined in the past decade. This review recapitulates how the transduction of BR signals impacts the temporally unfolding programs of plant growth. First, we summarize the paradigmatic BR signaling pathway acting primarily in cellular expansion. Secondly, we describe the current wiring diagram and the temporal dynamics of the BR signal transduction network. And finally we provide an overview of how key players in BR signaling act as molecular gates to transduce BR signals onto other signaling pathways. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  8. Signal transmission competing with noise in model excitable brains

    NASA Astrophysics Data System (ADS)

    Marro, J.; Mejias, J. F.; Pinamonti, G.; Torres, J. J.

    2013-01-01

    This is a short review of recent studies in our group on how weak signals may efficiently propagate in a system with noise-induced excitation-inhibition competition which adapts to the activity at short-time scales and thus induces excitable conditions. Our numerical results on simple mathematical models should hold for many complex networks in nature, including some brain cortical areas. In particular, they serve us here to interpret available psycho-technical data.

  9. Modulation of Insulin-Like Growth Factor-1 Receptor and its Signaling Network for the Treatment of Cancer: Current Status and Future Perspectives

    PubMed Central

    Jin, Meizhong; Buck, Elizabeth; Mulvihill, Mark J.

    2013-01-01

    Based on over three decades of pre-clinical data, insulin-like growth factor-1 receptor (IGF-1R) signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF-1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF-1R targeted therapies (e.g. monoclonal antibodies) and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such findings have led to the development of small molecule IGF-1R inhibitors which also co-inhibit additional targets such as insulin receptor and epidermal growth factor receptor. Such findings have helped to guide the design rationale of numerous drug combinations that are currently being evaluated in clinical trials. PMID:25992224

  10. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  11. Analysis of acoustic emission signals at austempering of steels using neural networks

    NASA Astrophysics Data System (ADS)

    Łazarska, Malgorzata; Wozniak, Tadeusz Z.; Ranachowski, Zbigniew; Trafarski, Andrzej; Domek, Grzegorz

    2017-05-01

    Bearing steel 100CrMnSi6-4 and tool steel C105U were used to carry out this research with the steels being austempered to obtain a martensitic-bainitic structure. During the process quite a large number of acoustic emissions (AE) were observed. These signals were then analysed using neural networks resulting in the identification of three groups of events of: high, medium and low energy and in addition their spectral characteristics were plotted. The results were presented in the form of diagrams of AE incidence as a function of time. It was demonstrated that complex transformations of austenite into martensite and bainite occurred when austempering bearing steel at 160 °C and tool steel at 130 °C respectively. The selected temperatures of isothermal quenching of the tested steels were within the area near to MS temperature, which affected the complex course of phase transition. The high activity of AE is a typical occurrence for martensitic transformation and this is the transformation mechanism that induces the generation of AE signals of higher energy in the first stage of transition. In the second stage of transformation, the initially nucleated martensite accelerates the occurrence of the next bainitic transformation.

  12. Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins

    NASA Astrophysics Data System (ADS)

    Jian, Yiren; Zhao, Yunjie; Zeng, Chen

    The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  13. Demystifying the cytokine network: Mathematical models point the way.

    PubMed

    Morel, Penelope A; Lee, Robin E C; Faeder, James R

    2017-10-01

    Cytokines provide the means by which immune cells communicate with each other and with parenchymal cells. There are over one hundred cytokines and many exist in families that share receptor components and signal transduction pathways, creating complex networks. Reductionist approaches to understanding the role of specific cytokines, through the use of gene-targeted mice, have revealed further complexity in the form of redundancy and pleiotropy in cytokine function. Creating an understanding of the complex interactions between cytokines and their target cells is challenging experimentally. Mathematical and computational modeling provides a robust set of tools by which complex interactions between cytokines can be studied and analyzed, in the process creating novel insights that can be further tested experimentally. This review will discuss and provide examples of the different modeling approaches that have been used to increase our understanding of cytokine networks. This includes discussion of knowledge-based and data-driven modeling approaches and the recent advance in single-cell analysis. The use of modeling to optimize cytokine-based therapies will also be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Network-Physics (NP) BEC DIGITAL(#)-VULNERABILITY; ``Q-Computing"=Simple-Arithmetic;Modular-Congruences=SignalXNoise PRODUCTS=Clock-model;BEC-Factorization;RANDOM-# Definition;P=/=NP TRIVIAL Proof!!!

    NASA Astrophysics Data System (ADS)

    Pi, E. I.; Siegel, E.

    2010-03-01

    Siegel[AMS Natl.Mtg.(2002)-Abs.973-60-124] digits logarithmic- law inversion to ONLY BEQS BEC:Quanta/Bosons=#: EMP-like SEVERE VULNERABILITY of ONLY #-networks(VS.ANALOG INvulnerability) via Barabasi NP(VS.dynamics[Not.AMS(5/2009)] critique);(so called)``quantum-computing''(QC) = simple-arithmetic (sansdivision);algorithmiccomplexities:INtractibility/UNdecidabi lity/INefficiency/NONcomputability/HARDNESS(so MIScalled) ``noise''-induced-phase-transition(NIT)ACCELERATION:Cook-Levin theorem Reducibility = RG fixed-points; #-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(2002)] How? mea culpa)= ONLY MBCS hot-plasma v #-clumping NON-random BEC; Modular-Arithmetic Congruences = Signal x Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)]BEC logarithmic-law inversion factorization: Watkins #-theory U statistical- physics); P=/=NP C-S TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation(3 millennia AGO geometry: NO:CC,``CS'';``Feet of Clay!!!'']; Query WHAT?:Definition: (so MIScalled)``complexity''=UTTER-SIMPLICITY!! v COMPLICATEDNESS MEASURE(S).

  15. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form.

    PubMed

    Levin, Michael; Pezzulo, Giovanni; Finkelstein, Joshua M

    2017-06-21

    Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.

  16. Signalling Network Construction for Modelling Plant Defence Response

    PubMed Central

    Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina

    2012-01-01

    Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided. PMID:23272172

  17. Stochastic dynamics of genetic broadcasting networks

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit A.; Wolynes, Peter G.

    2017-11-01

    The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκ B which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.

  18. Networks in Cell Biology

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  19. Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid

    NASA Astrophysics Data System (ADS)

    Chu, Zhongdi; Chen, Chieh-Li; Zhang, Qinqin; Pepple, Kathryn; Durbin, Mary; Gregori, Giovanni; Wang, Ruikang K.

    2017-12-01

    The choriocapillaris (CC) plays an essential role in maintaining the normal functions of the human eye. There is increasing interest in the community to develop an imaging technique for visualizing the CC, yet this remains underexplored due to technical limitations. We propose an approach for the visualization of the CC in humans via a complex signal-based optical microangiography (OMAG) algorithm, based on commercially available spectral domain optical coherence tomography (SD-OCT). We show that the complex signal-based OMAG was superior to both the phase and amplitude signal-based approaches in detailing the vascular lobules previously seen with histological analysis. With this improved ability to visualize the lobular vascular networks, it is possible to identify the feeding arterioles and draining venules around the lobules, which is important in understanding the role of the CC in the pathogenesis of ocular diseases. With built-in FastTrac™ and montage scanning capabilities, we also demonstrate wide-field SD-OCT angiograms of the CC with a field of view at 9×11 mm2.

  20. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    PubMed Central

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  1. An Adaptive Cooperative Strategy for Underlay MIMO Cognitive Radio Networks: An Opportunistic and Low-Complexity Approach

    NASA Astrophysics Data System (ADS)

    Mazoochi, M.; Pourmina, M. A.; Bakhshi, H.

    2015-03-01

    The core aim of this work is the maximization of the achievable data rate of the secondary user pairs (SU pairs), while ensuring the QoS of primary users (PUs). All users are assumed to be equipped with multiple antennas. It is assumed that when PUs are present, the direct communications between SU pairs introduces intolerable interference to PUs and thereby SUs transmit signal using the cooperation of other SUs and avoid transmitting in the direct channel. In brief, an adaptive cooperative strategy for multiple-input/multiple-output (MIMO) cognitive radio networks is proposed. At the presence of PUs, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The optimal approach for determining the power allocation and the cooperating SU is proposed. Besides, the outage probability of the proposed communication protocol is further derived. Due to high complexity of the optimal approach, a low-complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low-complexity approach is only about 14%, while the complexity is greatly reduced.

  2. Major component analysis of dynamic networks of physiologic organ interactions

    NASA Astrophysics Data System (ADS)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  3. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    PubMed Central

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  4. A red-light running prevention system based on artificial neural network and vehicle trajectory data.

    PubMed

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  5. Mathematical modeling of physiological systems: an essential tool for discovery.

    PubMed

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Wires in the soup: quantitative models of cell signaling

    PubMed Central

    Cheong, Raymond; Levchenko, Andre

    2014-01-01

    Living cells are capable of extracting information from their environments and mounting appropriate responses to a variety of associated challenges. The underlying signal transduction networks enabling this can be quite complex, necessitating for their unraveling by sophisticated computational modeling coupled with precise experimentation. Although we are still at the beginning of this process, some recent examples of integrative analysis of cell signaling are very encouraging. This review highlights the case of the NF-κB pathway in order to illustrate how a quantitative model of a signaling pathway can be gradually constructed through continuous experimental validation, and what lessons one might learn from such exercises. PMID:18291655

  7. Detection of social group instability among captive rhesus macaques using joint network modeling

    PubMed Central

    Beisner, Brianne A.; Jin, Jian; Fushing, Hsieh; Mccowan, Brenda

    2015-01-01

    Social stability in group-living animals is an emergent property which arises from the interaction amongst multiple behavioral networks. However, pinpointing when a social group is at risk of collapse is difficult. We used a joint network modeling approach to examine the interdependencies between two behavioral networks, aggression and status signaling, from four stable and three unstable groups of rhesus macaques in order to identify characteristic patterns of network interdependence in stable groups that are readily distinguishable from unstable groups. Our results showed that the most prominent source of aggression-status network interdependence in stable social groups came from more frequent dyads than expected with opposite direction status-aggression (i.e. A threatens B and B signals acceptance of subordinate status). In contrast, unstable groups showed a decrease in opposite direction aggression-status dyads (but remained higher than expected) as well as more frequent than expected dyads with bidirectional aggression. These results demonstrate that not only was the stable joint relationship between aggression and status networks readily distinguishable from unstable time points, social instability manifested in at least two different ways. In sum, our joint modeling approach may prove useful in quantifying and monitoring the complex social dynamics of any wild or captive social system, as all social systems are composed of multiple interconnected networks PMID:26052339

  8. Neuroelectrical Decomposition of Spontaneous Brain Activity Measured with Functional Magnetic Resonance Imaging

    PubMed Central

    Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.

    2014-01-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947

  9. Fast reversible learning based on neurons functioning as anisotropic multiplex hubs

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sheinin, Anton; Sardi, Shira; Kanter, Ido

    2017-05-01

    Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the computational capabilities of neurons by allowing, for instance, equalization among different information routes in the network, as well as high-frequency transmission of complex time-dependent signals constructed via several parallel routes. In addition, this kind of hubs adaptively eliminate very noisy neurons from the dynamics of the network, preventing masking of information transmission. The timescales for these features are several seconds at most, as opposed to the imprint of information by the synaptic plasticity, a process which exceeds minutes. Results open the horizon to the understanding of fast and adaptive learning realities in higher cognitive brain's functionalities.

  10. Stochastic dynamics of genetic broadcasting networks

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit; Wolynes, Peter

    The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a ''time-scale crisis'' of master genes that broadcast their signals to large number of binding sites. We demonstrate that this ''time-scale crisis'' can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis etc.

  11. The role of TGF-β signaling and apoptosis in innate and adaptive immunity in zebrafish: a systems biology approach.

    PubMed

    Lin, Che; Lin, Chin-Nan; Wang, Yu-Chao; Liu, Fang-Yu; Chuang, Yung-Jen; Lan, Chung-Yu; Hsieh, Wen-Ping; Chen, Bor-Sen

    2014-10-24

    The immune system is a key biological system present in vertebrates. Exposure to pathogens elicits various defensive immune mechanisms that protect the host from potential threats and harmful substances derived from pathogens such as parasites, bacteria, and viruses. The complex immune system of humans and many other vertebrates can be divided into two major categories: the innate and the adaptive immune systems. At present, analysis of the complex interactions between the two subsystems that regulate host defense and inflammatory responses remains challenging. Based on time-course microarray data following primary and secondary infection of zebrafish by Candida albicans, we constructed two intracellular protein-protein interaction (PPI) networks for primary and secondary responses of the host. 57 proteins and 341 PPIs were identified for primary infection while 90 proteins and 385 PPIs were identified for secondary infection. There were 20 proteins in common while 37 and 70 proteins specific to primary and secondary infection. By inspecting the hub proteins of each network and comparing significant changes in the number of linkages between the two PPI networks, we identified TGF-β signaling and apoptosis as two of the main functional modules involved in primary and secondary infection. Our initial in silico analyses pave the way for further investigation into the interesting roles played by the TGF-β signaling pathway and apoptosis in innate and adaptive immunity in zebrafish. Such insights could lead to therapeutic advances and improved drug design in the continual battle against infectious diseases.

  12. A signal-flow-graph approach to on-line gradient calculation.

    PubMed

    Campolucci, P; Uncini, A; Piazza, F

    2000-08-01

    A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.

  13. Multi-label spacecraft electrical signal classification method based on DBN and random forest

    PubMed Central

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479

  14. Multi-label spacecraft electrical signal classification method based on DBN and random forest.

    PubMed

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.

  15. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.

  16. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    PubMed Central

    2010-01-01

    Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space. PMID:20230643

  17. The social brain: allowing humans to boldly go where no other species has been

    PubMed Central

    Frith, Uta; Frith, Chris

    2010-01-01

    The biological basis of complex human social interaction and communication has been illuminated through a coming together of various methods and disciplines. Among these are comparative studies of other species, studies of disorders of social cognition and developmental psychology. The use of neuroimaging and computational models has given weight to speculations about the evolution of social behaviour and culture in human societies. We highlight some networks of the social brain relevant to two-person interactions and consider the social signals between interacting partners that activate these networks. We make a case for distinguishing between signals that automatically trigger interaction and cooperation and ostensive signals that are used deliberately. We suggest that this ostensive signalling is needed for ‘closing the loop’ in two-person interactions, where the partners each know that they have the intention to communicate. The use of deliberate social signals can serve to increase reputation and trust and facilitates teaching. This is likely to be a critical factor in the steep cultural ascent of mankind. PMID:20008394

  18. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  19. Reverse Engineering a Signaling Network Using Alternative Inputs

    PubMed Central

    Tanaka, Hiromasa; Yi, Tau-Mu

    2009-01-01

    One of the goals of systems biology is to reverse engineer in a comprehensive fashion the arrow diagrams of signal transduction systems. An important tool for ordering pathway components is genetic epistasis analysis, and here we present a strategy termed Alternative Inputs (AIs) to perform systematic epistasis analysis. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. We introduced the concept of an “AIs-Deletions matrix” that summarizes the outputs of all combinations of alternative inputs and deletions. We developed the theory and algorithms to construct a pairwise relationship graph from the AIs-Deletions matrix capturing both functional ordering (upstream, downstream) and logical relationships (AND, OR), and then interpreting these relationships into a standard arrow diagram. As a proof-of-principle, we applied this methodology to a subset of genes involved in yeast mating signaling. This experimental pilot study highlights the robustness of the approach and important technical challenges. In summary, this research formalizes and extends classical epistasis analysis from linear pathways to more complex networks, facilitating computational analysis and reconstruction of signaling arrow diagrams. PMID:19898612

  20. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

    NASA Astrophysics Data System (ADS)

    Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na

    2016-05-01

    Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

  1. Network-Assisted Investigation of Combined Causal Signals from Genome-Wide Association Studies in Schizophrenia

    PubMed Central

    Jia, Peilin; Wang, Lily; Fanous, Ayman H.; Pato, Carlos N.; Edwards, Todd L.; Zhao, Zhongming

    2012-01-01

    With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had P meta<1×10−4, including the gene HLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available. PMID:22792057

  2. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing

    NASA Astrophysics Data System (ADS)

    Shao, Haidong; Jiang, Hongkai; Zhang, Haizhou; Duan, Wenjing; Liang, Tianchen; Wu, Shuaipeng

    2018-02-01

    The vibration signals collected from rolling bearing are usually complex and non-stationary with heavy background noise. Therefore, it is a great challenge to efficiently learn the representative fault features of the collected vibration signals. In this paper, a novel method called improved convolutional deep belief network (CDBN) with compressed sensing (CS) is developed for feature learning and fault diagnosis of rolling bearing. Firstly, CS is adopted for reducing the vibration data amount to improve analysis efficiency. Secondly, a new CDBN model is constructed with Gaussian visible units to enhance the feature learning ability for the compressed data. Finally, exponential moving average (EMA) technique is employed to improve the generalization performance of the constructed deep model. The developed method is applied to analyze the experimental rolling bearing vibration signals. The results confirm that the developed method is more effective than the traditional methods.

  3. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Hosseinkhan, Nazanin; Mousavian, Zaynab; Masoudi-Nejad, Ali

    2018-05-26

    The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Innate Immune Regulations and Liver Ischemia Reperfusion Injury

    PubMed Central

    Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan

    2016-01-01

    Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288

  5. Performance of Wireless Networks in Highly Reflective Rooms with Variable Absorption

    DTIC Science & Technology

    2014-09-01

    methods used to take these measurements , and an analysis of the results. 1. Packet Internet Groper Packet Internet Groper (PING) is a utility that can...such as 802.15 Bluetooth and ZigBee [4]. The handsets used in many of these systems, especially 802.11- based devices, have complex ...phase shifts of the original signal due to differences in time of arrivals for the various multiple paths. The signal power fluctuates around a mean

  6. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis.

    PubMed

    Zhang, Douglas; Lee, Junmin; Kilian, Kristopher A

    2017-10-01

    Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Power budget of direct-detection ultra-dense WDM-Nyquist-SCM PON with low-complexity SSBI mitigation

    NASA Astrophysics Data System (ADS)

    Soeiro, Ricardo O. J.; Alves, Tiago M. F.; Cartaxo, Adolfo V. T.

    2017-07-01

    The power budget (PB) of a direct-detection ultra-dense wavelength division/subcarrier multiplexing (SCM) passive optical network (PON) is assessed numerically for downstream, when a low-complexity iterative signal-to-signal beat interference (SSBI) mitigation technique is employed. Each SCM signal, inserted in a 12.5 GHz width optical channel, is comprised of two or three electrically generated and multiplexed 16-quadrature-amplitude-modulation (QAM) or 32-QAM Nyquist pulse-shaped subcarriers, each with a 7% forward error correction bit rate of 10.7 Gbit/s. The PB and maximum number of optical network units (ONUs) served by each optical line terminal (OLT) are compared with and without SSBI mitigation. When SSBI mitigation is realized, PB gains up to 4.5 dB are attained relative to the PB in the absence of SSBI mitigation. The PB gain enabled by the SSBI mitigation technique proposed in this work increases the number of ONUs served per OLT at least by a factor of 2, for the cases of higher spectral efficiency. In particular, for a SCM signal comprised of three subcarriers, the maximum number of ONUs served per OLT is between 2 and 32, and between 8 and 64, in the absence of SSBI mitigation, and when SSBI mitigation is employed, respectively, depending on the fiber length (up to 50 km) and order of QAM.

  8. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins.

    PubMed

    Thirumalai, D; Hyeon, Changbong

    2018-06-19

    Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).

  9. Where the thoughts dwell: the physiology of neuronal-glial "diffuse neural net".

    PubMed

    Verkhratsky, Alexei; Parpura, Vladimir; Rodríguez, José J

    2011-01-07

    The mechanisms underlying the production of thoughts by exceedingly complex cellular networks that construct the human brain constitute the most challenging problem of natural sciences. Our understanding of the brain function is very much shaped by the neuronal doctrine that assumes that neuronal networks represent the only substrate for cognition. These neuronal networks however are embedded into much larger and probably more complex network formed by neuroglia. The latter, although being electrically silent, employ many different mechanisms for intercellular signalling. It appears that astrocytes can control synaptic networks and in such a capacity they may represent an integral component of the computational power of the brain rather than being just brain "connective tissue". The fundamental question of whether neuroglia is involved in cognition and information processing remains, however, open. Indeed, a remarkable increase in the number of glial cells that distinguishes the human brain can be simply a result of exceedingly high specialisation of the neuronal networks, which delegated all matters of survival and maintenance to the neuroglia. At the same time potential power of analogue processing offered by internally connected glial networks may represent the alternative mechanism involved in cognition. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Essential Requirements for Robust Signaling in Hfq Dependent Small RNA Networks

    PubMed Central

    Adamson, David N.; Lim, Han N.

    2011-01-01

    Bacteria possess networks of small RNAs (sRNAs) that are important for modulating gene expression. At the center of many of these sRNA networks is the Hfq protein. Hfq's role is to quickly match cognate sRNAs and target mRNAs from among a large number of possible combinations and anneal them to form duplexes. Here we show using a kinetic model that Hfq can efficiently and robustly achieve this difficult task by minimizing the sequestration of sRNAs and target mRNAs in Hfq complexes. This sequestration can be reduced by two non-mutually exclusive kinetic mechanisms. The first mechanism involves heterotropic cooperativity (where sRNA and target mRNA binding to Hfq is influenced by other RNAs bound to Hfq); this cooperativity can selectively decrease singly-bound Hfq complexes and ternary complexes with non-cognate sRNA-target mRNA pairs while increasing cognate ternary complexes. The second mechanism relies on frequent RNA dissociation enabling the rapid cycling of sRNAs and target mRNAs among different Hfq complexes; this increases the probability the cognate ternary complex forms before the sRNAs and target mRNAs degrade. We further demonstrate that the performance of sRNAs in isolation is not predictive of their performance within a network. These findings highlight the importance of experimentally characterizing duplex formation in physiologically relevant contexts with multiple RNAs competing for Hfq. The model will provide a valuable framework for guiding and interpreting these experiments. PMID:21876666

  11. Information processing in bacteria: memory, computation, and statistical physics: a key issues review.

    PubMed

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network-the main players (nodes) and their interactions (links)-in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also study the thermodynamic costs of adaptation for cells to maintain an accurate memory. The statistical physics based approach described here should be useful in understanding design principles for cellular biochemical circuits in general.

  12. A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock.

    PubMed

    Boyd, Joseph S; Cheng, Ryan R; Paddock, Mark L; Sancar, Cigdem; Morcos, Faruck; Golden, Susan S

    2016-09-15

    Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Optically controlled phased-array antenna technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  14. Energy-aware scheduling of surveillance in wireless multimedia sensor networks.

    PubMed

    Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao

    2010-01-01

    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.

  15. Phenotypic and genotypic characterization of biofilm forming capability in non-O157 Shiga toxin-producing Escherichia coli strains

    USDA-ARS?s Scientific Manuscript database

    The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutat...

  16. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    USDA-ARS?s Scientific Manuscript database

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  17. Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.

    2017-12-01

    In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.

  18. Evolutionary trends and functional anatomy of the human expanded autophagy network

    PubMed Central

    Till, Andreas; Saito, Rintaro; Merkurjev, Daria; Liu, Jing-Jing; Syed, Gulam Hussain; Kolnik, Martin; Siddiqui, Aleem; Glas, Martin; Scheffler, Björn; Ideker, Trey; Subramani, Suresh

    2015-01-01

    All eukaryotic cells utilize autophagy for protein and organelle turnover, thus assuring subcellular quality control, homeostasis, and survival. In order to address recent advances in identification of human autophagy associated genes, and to describe autophagy on a system-wide level, we established an autophagy-centered gene interaction network by merging various primary data sets and by retrieving respective interaction data. The resulting network (‘AXAN’) was analyzed with respect to subnetworks, e.g. the prime gene subnetwork (including the core machinery, signaling pathways and autophagy receptors) and the transcription subnetwork. To describe aspects of evolution within this network, we assessed the presence of protein orthologs across 99 eukaryotic model organisms. We visualized evolutionary trends for prime gene categories and evolutionary tracks for selected AXAN genes. This analysis confirms the eukaryotic origin of autophagy core genes while it points to a diverse evolutionary history of autophagy receptors. Next, we used module identification to describe the functional anatomy of the network at the level of pathway modules. In addition to obvious pathways (e.g., lysosomal degradation, insulin signaling) our data unveil the existence of context-related modules such as Rho GTPase signaling. Last, we used a tripartite, image-based RNAi – screen to test candidate genes predicted to play a role in regulation of autophagy. We verified the Rho GTPase, CDC42, as a novel regulator of autophagy-related signaling. This study emphasizes the applicability of system-wide approaches to gain novel insights into a complex biological process and to describe the human autophagy pathway at a hitherto unprecedented level of detail. PMID:26103419

  19. The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus.

    PubMed

    Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2011-02-15

    Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.

  20. Rhythmogenic neuronal networks, emergent leaders, and k-cores.

    PubMed

    Schwab, David J; Bruinsma, Robijn F; Feldman, Jack L; Levine, Alex J

    2010-11-01

    Neuronal network behavior results from a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a simplified model, based on the proposal of Feldman and Del Negro (FDN) [Nat. Rev. Neurosci. 7, 232 (2006)], of the preBötzinger Complex, a small neuronal network that participates in the control of the mammalian breathing rhythm through periodic firing bursts. The dynamics of this randomly connected network of identical excitatory neurons differ from those of a uniformly connected one. Specifically, network connectivity determines the identity of emergent leader neurons that trigger the firing bursts. When neuronal desensitization is controlled by the number of input signals to the neurons (as proposed by FDN), the network's collective desensitization--required for successful burst termination--is mediated by k-core clusters of neurons.

  1. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    PubMed

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  2. Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data

    PubMed Central

    Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924

  3. Crosstalk cancellation on linearly and circularly polarized communications satellite links

    NASA Technical Reports Server (NTRS)

    Overstreet, W. P.; Bostian, C. W.

    1979-01-01

    The paper discusses the cancellation network approach for reducing crosstalk caused by depolarization on a dual-polarized communications satellite link. If the characteristics of rain depolarization are sufficiently well known, the cancellation network can be designed in a way that reduces system complexity, the most important parameter being the phase of the cross-polarized signal. Relevant theoretical calculations and experimental data are presented. The simplicity of the cancellation system proposed makes it ideal for use with small domestic or private earth terminals.

  4. Beyond Critical Exponents in Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin

    2011-03-01

    Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.

  5. Large scale analysis of signal reachability.

    PubMed

    Todor, Andrei; Gabr, Haitham; Dobra, Alin; Kahveci, Tamer

    2014-06-15

    Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm. © The Author 2014. Published by Oxford University Press.

  6. Using gravity as a proxy for stress accumulation in complex fault systems

    NASA Astrophysics Data System (ADS)

    Hayes, Tyler Joseph

    The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction

  7. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  8. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules.

    PubMed

    Menon, Govind; Krishnan, J

    2016-07-21

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  9. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.

    PubMed

    Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan

    2015-07-29

    Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.

  10. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning

    NASA Astrophysics Data System (ADS)

    Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft

    2018-01-01

    We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.

  11. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration.

    PubMed

    Décaillot, Fabien M; Kazmi, Manija A; Lin, Ying; Ray-Saha, Sarmistha; Sakmar, Thomas P; Sachdev, Pallavi

    2011-09-16

    G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of G(i)-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7.

  12. CXCR7/CXCR4 Heterodimer Constitutively Recruits β-Arrestin to Enhance Cell Migration*

    PubMed Central

    Décaillot, Fabien M.; Kazmi, Manija A.; Lin, Ying; Ray-Saha, Sarmistha; Sakmar, Thomas P.; Sachdev, Pallavi

    2011-01-01

    G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of Gi-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7. PMID:21730065

  13. Time-Dependent Behavior of Microvascular Blood Flow and Oxygenation: A Predictor of Functional Outcomes.

    PubMed

    Kuliga, Katarzyna Z; Gush, Rodney; Clough, Geraldine F; Chipperfield, Andrew John

    2018-05-01

    This study investigates the time-dependent behaviour and algorithmic complexity of low-frequency periodic oscillations in blood flux (BF) and oxygenation signals from the microvasculature. Microvascular BF and oxygenation (OXY: oxyHb, deoxyHb, totalHb, and SO 2 %) was recorded from 15 healthy young adult males using combined laser Doppler fluximetry and white light spectroscopy with local skin temperature clamped to 33  °C and during local thermal hyperaemia (LTH) at 43 °C. Power spectral density of the BF and OXY signals was evaluated within the frequency range (0.0095-1.6 Hz). Signal complexity was determined using the Lempel-Ziv (LZ) algorithm. Fold increase in BF during LTH was 15.6 (10.3, 22.8) and in OxyHb 4.8 (3.5, 5.9) (median, range). All BF and OXY signals exhibited multiple oscillatory components with clear differences in signal power distribution across frequency bands at 33 and 43 °C. Significant reduction in the intrinsic variability and complexity of the microvascular signals during LTH was found, with mean LZ complexity of BF and OxyHb falling by 25% and 49%, respectively ( ). These results provide corroboration that in human skin microvascular blood flow and oxygenation are influenced by multiple time-varying oscillators that adapt to local influences and become more predictable during increased haemodynamic flow. Recent evidence strongly suggests that the inability of microvascular networks to adapt to an imposed stressor is symptomatic of disease risk which might be assessed via BF and OXY via the combination signal analysis techniques described here.

  14. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    PubMed

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.

  15. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    PubMed

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  16. Dynamic multiprotein assemblies shape the spatial structure of cell signaling.

    PubMed

    Nussinov, Ruth; Jang, Hyunbum

    2014-01-01

    Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch.

    PubMed

    Wang, Zhiwei; Liao, Tianqi; Zhou, Zhongkai; Wang, Yuyang; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris

    2016-09-06

    To study the mechanism underlying the liver damage induced by deep-fried oil (DO) consumption and the beneficial effects from resistant starch (RS) supplement, differential gene expression and pathway network were analyzed based on RNA sequencing data from rats. The up/down regulated genes and corresponding signaling pathways were used to construct a novel local gene network (LGN). The topology of the network showed characteristics of small-world network, with some pathways demonstrating a high degree. Some changes in genes led to a larger probability occurrence of disease or infection with DO intake. More importantly, the main pathways were found to be almost the same between the two LGNs (30 pathways overlapped in total 48) with gene expression profile. This finding may indicate that RS supplement in DO-containing diet may mainly regulate the genes that related to DO damage, and RS in the diet may provide direct signals to the liver cells and modulate its effect through a network involving complex gene regulatory events. It is the first attempt to reveal the mechanism of the attenuation of liver dysfunction from RS supplement in the DO-containing diet using differential gene expression and pathway network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. InFlo: a novel systems biology framework identifies cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer.

    PubMed

    Dimitrova, N; Nagaraj, A B; Razi, A; Singh, S; Kamalakaran, S; Banerjee, N; Joseph, P; Mankovich, A; Mittal, P; DiFeo, A; Varadan, V

    2017-04-27

    Characterizing the complex interplay of cellular processes in cancer would enable the discovery of key mechanisms underlying its development and progression. Published approaches to decipher driver mechanisms do not explicitly model tissue-specific changes in pathway networks and the regulatory disruptions related to genomic aberrations in cancers. We therefore developed InFlo, a novel systems biology approach for characterizing complex biological processes using a unique multidimensional framework integrating transcriptomic, genomic and/or epigenomic profiles for any given cancer sample. We show that InFlo robustly characterizes tissue-specific differences in activities of signalling networks on a genome scale using unique probabilistic models of molecular interactions on a per-sample basis. Using large-scale multi-omics cancer datasets, we show that InFlo exhibits higher sensitivity and specificity in detecting pathway networks associated with specific disease states when compared to published pathway network modelling approaches. Furthermore, InFlo's ability to infer the activity of unmeasured signalling network components was also validated using orthogonal gene expression signatures. We then evaluated multi-omics profiles of primary high-grade serous ovarian cancer tumours (N=357) to delineate mechanisms underlying resistance to frontline platinum-based chemotherapy. InFlo was the only algorithm to identify hyperactivation of the cAMP-CREB1 axis as a key mechanism associated with resistance to platinum-based therapy, a finding that we subsequently experimentally validated. We confirmed that inhibition of CREB1 phosphorylation potently sensitized resistant cells to platinum therapy and was effective in killing ovarian cancer stem cells that contribute to both platinum-resistance and tumour recurrence. Thus, we propose InFlo to be a scalable and widely applicable and robust integrative network modelling framework for the discovery of evidence-based biomarkers and therapeutic targets.

  19. Network analyses based on comprehensive molecular interaction maps reveal robust control structures in yeast stress response pathways

    PubMed Central

    Kawakami, Eiryo; Singh, Vivek K; Matsubara, Kazuko; Ishii, Takashi; Matsuoka, Yukiko; Hase, Takeshi; Kulkarni, Priya; Siddiqui, Kenaz; Kodilkar, Janhavi; Danve, Nitisha; Subramanian, Indhupriya; Katoh, Manami; Shimizu-Yoshida, Yuki; Ghosh, Samik; Jere, Abhay; Kitano, Hiroaki

    2016-01-01

    Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying architecture in complex biological systems. PMID:28725465

  20. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  1. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    PubMed

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  2. A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

    PubMed Central

    Sriraam, N.

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238

  3. A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors.

    PubMed

    Sriraam, N

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.

  4. Enhancement of COPD biological networks using a web-based collaboration interface

    PubMed Central

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C.; Schlage, Walter K.; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V.; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C.; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks. PMID:25767696

  5. Enhancement of COPD biological networks using a web-based collaboration interface.

    PubMed

    Boue, Stephanie; Fields, Brett; Hoeng, Julia; Park, Jennifer; Peitsch, Manuel C; Schlage, Walter K; Talikka, Marja; Binenbaum, Ilona; Bondarenko, Vladimir; Bulgakov, Oleg V; Cherkasova, Vera; Diaz-Diaz, Norberto; Fedorova, Larisa; Guryanova, Svetlana; Guzova, Julia; Igorevna Koroleva, Galina; Kozhemyakina, Elena; Kumar, Rahul; Lavid, Noa; Lu, Qingxian; Menon, Swapna; Ouliel, Yael; Peterson, Samantha C; Prokhorov, Alexander; Sanders, Edward; Schrier, Sarah; Schwaitzer Neta, Golan; Shvydchenko, Irina; Tallam, Aravind; Villa-Fombuena, Gema; Wu, John; Yudkevich, Ilya; Zelikman, Mariya

    2015-01-01

    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks.

  6. Cancer therapy based on oncogene addiction.

    PubMed

    McCormick, Frank

    2011-05-01

    Tumor cells contain multiple mutations, yet they often depend on continued expressed of a single oncoprotein for survival. Targeting these proteins has led to dramatic responses. Unfortunately, patients usually progress, through drug resistance or adaptive resistance through reprogramming of signaling networks. The Ras-MAPK pathway provides examples of these successes and failures, and has revealed unexpected degrees of oncogene addiction and signaling complexity that are likely to be useful lessons for the future of targeted therapy. Copyright © 2011 Wiley-Liss, Inc.

  7. The visual display of regulatory information and networks.

    PubMed

    Pirson, I; Fortemaison, N; Jacobs, C; Dremier, S; Dumont, J E; Maenhaut, C

    2000-10-01

    Cell regulation and signal transduction are becoming increasingly complex, with reports of new cross-signalling, feedback, and feedforward regulations between pathways and between the multiple isozymes discovered at each step of these pathways. However, this information, which requires pages of text for its description, can be summarized in very simple schemes, although there is no consensus on the drawing of such schemes. This article presents a simple set of rules that allows a lot of information to be inserted in easily understandable displays.

  8. Physically secured orthogonal frequency division multiplexing-passive optical network employing noise-based encryption and signal recovery process

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Zhang, Chongfu; Yuan, Weicheng

    2016-02-01

    We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.

  9. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update

    PubMed Central

    Parkinson, John S.; Hazelbauer, Gerald L.; Falke, Joseph J.

    2015-01-01

    Motile Escherichia coli cells track gradients of attractant and repellent chemicals in their environment with transmembrane chemoreceptor proteins. These receptors operate in cooperative arrays to produce large changes in the activity of a signaling kinase CheA in response to small changes in chemoeffector concentration. Recent research has provided much deeper understanding of the structure and function of core receptor signaling complexes and the architecture of higher-order receptor arrays, which in turn has led to new insights into the molecular signaling mechanisms of chemoreceptor networks. Current evidence supports a new view of receptor signaling in which stimulus information travels within receptor molecules through shifts in the dynamic properties of adjoining structural elements rather than through a few discrete conformational states. PMID:25834953

  10. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    PubMed

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. A Novel Framework for the Comparative Analysis of Biological Networks

    PubMed Central

    Pache, Roland A.; Aloy, Patrick

    2012-01-01

    Genome sequencing projects provide nearly complete lists of the individual components present in an organism, but reveal little about how they work together. Follow-up initiatives have deciphered thousands of dynamic and context-dependent interrelationships between gene products that need to be analyzed with novel bioinformatics approaches able to capture their complex emerging properties. Here, we present a novel framework for the alignment and comparative analysis of biological networks of arbitrary topology. Our strategy includes the prediction of likely conserved interactions, based on evolutionary distances, to counter the high number of missing interactions in the current interactome networks, and a fast assessment of the statistical significance of individual alignment solutions, which vastly increases its performance with respect to existing tools. Finally, we illustrate the biological significance of the results through the identification of novel complex components and potential cases of cross-talk between pathways and alternative signaling routes. PMID:22363585

  12. Weak connections form an infinite number of patterns in the brain

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Baptista, Murilo S.; Grebogi, Celso

    2017-04-01

    Recently, much attention has been paid to interpreting the mechanisms for memory formation in terms of brain connectivity and dynamics. Within the plethora of collective states a complex network can exhibit, we show that the phenomenon of Collective Almost Synchronisation (CAS), which describes a state with an infinite number of patterns emerging in complex networks for weak coupling strengths, deserves special attention. We show that a simulated neuron network with neurons weakly connected does produce CAS patterns, and additionally produces an output that optimally model experimental electroencephalograph (EEG) signals. This work provides strong evidence that the brain operates locally in a CAS regime, allowing it to have an unlimited number of dynamical patterns, a state that could explain the enormous memory capacity of the brain, and that would give support to the idea that local clusters of neurons are sufficiently decorrelated to independently process information locally.

  13. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Architecture of the human interactome defines protein communities and disease networks

    PubMed Central

    Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade

    2017-01-01

    The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442

  15. Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception.

    PubMed

    Lahnakoski, Juha M; Glerean, Enrico; Salmi, Juha; Jääskeläinen, Iiro P; Sams, Mikko; Hari, Riitta; Nummenmaa, Lauri

    2012-01-01

    Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech) and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action, and non-human sounds) lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS) responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: (1) a fronto-temporal network responding to multiple social categories, (2) a fronto-parietal network preferentially activated to bodies, motion, and pain, (3) a temporo-amygdalar network responding to faces, social interaction, and speech, and (4) a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the pSTS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  16. Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weighill, Deborah; Jones, Piet; Shah, Manesh

    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less

  17. Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

    DOE PAGES

    Weighill, Deborah; Jones, Piet; Shah, Manesh; ...

    2018-05-11

    Biological organisms are complex systems that are composed of functional networks of interacting molecules and macro-molecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant's sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes usemore » of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to target functions. This new scoring system was applied to quantify the lines of evidence linking genes to lignin-related genes and phenotypes across the network layers, and allowed for the generation of new hypotheses surrounding potential new candidate genes involved in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. Lastly, the resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation, and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.« less

  18. Signal transduction networks in rheumatoid arthritis

    PubMed Central

    Hammaker, D; Sweeney, S; Firestein, G

    2003-01-01

    Signal transduction pathways regulate cellular responses to stress and play a critical role in inflammation. The complexity and specificity of signalling mechanisms represent major hurdles for developing effective, safe therapeutic interventions that target specific molecules. One approach is to dissect the pathways methodically to determine their hierarchy in various cell types and diseases. This approach contributed to the identification and prioritisation of specific kinases that regulate NF-κB and the mitogen activated protein (MAP) kinase cascade as especially attractive targets. Although significant issues remain with regard to the discovery of truly selective kinase inhibitors, the risks that accompany inhibition of fundamental signal transduction mechanisms can potentially be decreased by careful dissection of the pathways and rational target selection. PMID:14532158

  19. Uncovering hidden nodes in complex networks in the presence of noise

    PubMed Central

    Su, Ri-Qi; Lai, Ying-Cheng; Wang, Xiao; Do, Younghae

    2014-01-01

    Ascertaining the existence of hidden objects in a complex system, objects that cannot be observed from the external world, not only is curiosity-driven but also has significant practical applications. Generally, uncovering a hidden node in a complex network requires successful identification of its neighboring nodes, but a challenge is to differentiate its effects from those of noise. We develop a completely data-driven, compressive-sensing based method to address this issue by utilizing complex weighted networks with continuous-time oscillatory or discrete-time evolutionary-game dynamics. For any node, compressive sensing enables accurate reconstruction of the dynamical equations and coupling functions, provided that time series from this node and all its neighbors are available. For a neighboring node of the hidden node, this condition cannot be met, resulting in abnormally large prediction errors that, counterintuitively, can be used to infer the existence of the hidden node. Based on the principle of differential signal, we demonstrate that, when strong noise is present, insofar as at least two neighboring nodes of the hidden node are subject to weak background noise only, unequivocal identification of the hidden node can be achieved. PMID:24487720

  20. Small molecule schweinfurthins selectively inhibit cancer cell proliferation and mTOR/AKT signaling by interfering with trans-Golgi-network trafficking

    PubMed Central

    Bao, Xingfeng; Zheng, Wanjun; Sugi, Naoko Hata; Agarwala, Kishan L; Xu, Qunli; Wang, Zichun; Tendyke, Karen; Lee, Winnie; Parent, Lana; Li, Wei; Cheng, Hongsheng; Shen, Yongchun; Taylor, Noel; Dezso, Zoltan; Du, Hong; Kotake, Yoshihiko; Zhao, Nanding; Wang, John; Postema, Maarten; Woodall-Jappe, Mary; Takase, Yasutaka; Uenaka, Toshimitsu; Kingston, David G I; Nomoto, Kenichi

    2015-01-01

    Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment. PMID:25729885

  1. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies

    PubMed Central

    Bueno, Anibal; Morilla, Ian; Diez, Diego; Moya-Garcia, Aurelio A.; Lozano, José; Ranea, Juan A.G.

    2016-01-01

    RAS proteins are the founding members of the RAS superfamily of GTPases. They are involved in key signaling pathways regulating essential cellular functions such as cell growth and differentiation. As a result, their deregulation by inactivating mutations often results in aberrant cell proliferation and cancer. With the exception of the relatively well-known KRAS, HRAS and NRAS proteins, little is known about how the interactions of the other RAS human paralogs affect cancer evolution and response to treatment. In this study we performed a comprehensive analysis of the relationship between the phylogeny of RAS proteins and their location in the protein interaction network. This analysis was integrated with the structural analysis of conserved positions in available 3D structures of RAS complexes. Our results show that many RAS proteins with divergent sequences are found close together in the human interactome. We found specific conserved amino acid positions in this group that map to the binding sites of RAS with many of their signaling effectors, suggesting that these pairs could share interacting partners. These results underscore the potential relevance of cross-talking in the RAS signaling network, which should be taken into account when considering the inhibitory activity of drugs targeting specific RAS oncoproteins. This study broadens our understanding of the human RAS signaling network and stresses the importance of considering its potential cross-talk in future therapies. PMID:27713118

  2. Feed-forward neural network model for hunger and satiety related VAS score prediction.

    PubMed

    Krishnan, Shaji; Hendriks, Henk F J; Hartvigsen, Merete L; de Graaf, Albert A

    2016-07-07

    An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from sets of satiety hormone data obtained in experiments using different food compositions. The correlation coefficients for the predicted VAS responses for test sets having i) a full set of three satiety hormones, ii) a set of only two satiety hormones, and iii) a set of only one satiety hormone were 0.96, 0.96, and 0.89, respectively. The predicted VAS responses discriminated the satiety effects of high satiating food types from less satiating food types both in orally fed and ileal infused forms. From this application of artificial neural networks, one may conclude that neural network models are very suitable to describe situations where behavior is complex and incompletely understood. However, training data sets that fit the experimental conditions need to be available.

  3. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex

    PubMed Central

    Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.

    2017-01-01

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792

  4. Dynamical states, possibilities and propagation of stress signal

    PubMed Central

    Malik, Md. Zubbair; Ali, Shahnawaz; Singh, Soibam Shyamchand; Ishrat, Romana; Singh, R. K. Brojen

    2017-01-01

    The stress driven dynamics of Notch-Wnt-p53 cross-talk is subjected to a few possible dynamical states governed by simple fractal rules, and allowed to decide its own fate by choosing one of these states which are contributed from long range correlation with varied fluctuations due to active molecular interaction. The topological properties of the networks corresponding to these dynamical states have hierarchical features with assortive structure. The stress signal driven by nutlin and modulated by mediator GSK3 acts as anti-apoptotic signal in this system, whereas, the stress signal driven by Axin and modulated by GSK3 behaves as anti-apoptotic for a certain range of Axin and GSK3 interaction, and beyond which the signal acts as favor-apoptotic signal. However, this stress system prefers to stay in an active dynamical state whose counterpart complex network is closest to hierarchical topology with exhibited roles of few interacting hubs. During the propagation of stress signal, the system allows the propagator pathway to inherit all possible properties of the state to the receiver pathway/pathways with slight modifications, indicating efficient information processing and democratic sharing of responsibilities in the system via cross-talk. The increase in the number of cross-talk pathways in the system favors to establish self-organization. PMID:28106087

  5. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth

    PubMed Central

    Wang, Weidong; Sheng, Xianyong; Shu, Zaifa; Li, Dongqin; Pan, Junting; Ye, Xiaoli; Chang, Pinpin; Li, Xinghui; Wang, Yuhua

    2016-01-01

    Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca2+ gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca2+, ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca2+, ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension. PMID:27148289

  6. Dynamical states, possibilities and propagation of stress signal.

    PubMed

    Malik, Md Zubbair; Ali, Shahnawaz; Singh, Soibam Shyamchand; Ishrat, Romana; Singh, R K Brojen

    2017-01-20

    The stress driven dynamics of Notch-Wnt-p53 cross-talk is subjected to a few possible dynamical states governed by simple fractal rules, and allowed to decide its own fate by choosing one of these states which are contributed from long range correlation with varied fluctuations due to active molecular interaction. The topological properties of the networks corresponding to these dynamical states have hierarchical features with assortive structure. The stress signal driven by nutlin and modulated by mediator GSK3 acts as anti-apoptotic signal in this system, whereas, the stress signal driven by Axin and modulated by GSK3 behaves as anti-apoptotic for a certain range of Axin and GSK3 interaction, and beyond which the signal acts as favor-apoptotic signal. However, this stress system prefers to stay in an active dynamical state whose counterpart complex network is closest to hierarchical topology with exhibited roles of few interacting hubs. During the propagation of stress signal, the system allows the propagator pathway to inherit all possible properties of the state to the receiver pathway/pathways with slight modifications, indicating efficient information processing and democratic sharing of responsibilities in the system via cross-talk. The increase in the number of cross-talk pathways in the system favors to establish self-organization.

  7. Origin of short-period signals following P-diffracted waves: A case study of the 1994 Bolivian deep earthquake

    NASA Astrophysics Data System (ADS)

    Tono, Yoko; Yomogida, Kiyoshi

    1997-10-01

    Seismograms of the June 9, 1994, Bolivian deep earthquake recorded at epicentral distances from 100° to 122° show a train of signals with predominant frequencies between 1 and 2 Hz after the arrivals of short-period diffracted P-waves (P diff). We investigate the origin of these signals following P diff by analyzing a total of 20 records from the IRIS broad-band network and the short-period network of New Zealand. The arrivals of late signals continue for over 100 s, that is two times longer than the estimated source duration of this event. Subsequent aftershocks, which cause the following signals, are not expected from the long-period records. These results indicate that the long continuation of short-period signals is not due to the source complexities. The signals following P diff have small incident angles, and their spectra show peaks at about the same frequencies. These characteristics of the following signals exclude the possibility that their origin is shallow structure such as the heterogeneities beneath the stations or upper mantle. P diff propagates a long distance within the heterogeneous region near the core-mantle boundary. We conclude that the short-period signals following the main P diff are scattered waves caused by small-scale heterogeneities near the core-mantle boundary.

  8. A network of networks model to study phase synchronization using structural connection matrix of human brain

    NASA Astrophysics Data System (ADS)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  9. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional importance of spatial organization in cross-membrane signal transduction. The method can be applied to any specific signaling pathway in cells.

  10. Proteomics and Systems Biology: Current and Future Applications in the Nutritional Sciences1

    PubMed Central

    Moore, J. Bernadette; Weeks, Mark E.

    2011-01-01

    In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences. PMID:22332076

  11. Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans.

    PubMed

    Mills, Holly; Wragg, Rachel; Hapiak, Vera; Castelletto, Michelle; Zahratka, Jeffrey; Harris, Gareth; Summers, Philip; Korchnak, Amanda; Law, Wenjing; Bamber, Bruce; Komuniecki, Richard

    2012-02-01

    Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α(2)-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of norepinephrine, modulates sensory-mediated reversal through three α-adrenergic-like OA receptors. OCTR-1 and SER-3 antagonistically modulate ASH signalling directly, with OCTR-1 signalling mediated by Gα(o). In contrast, SER-6 inhibits aversive responses by stimulating the release of an array of 'inhibitory' neuropeptides that activate receptors on sensory neurons mediating attraction or repulsion, suggesting that peptidergic signalling may integrate multiple sensory inputs to modulate locomotory transitions. These studies highlight the complexity of octopaminergic/peptidergic interactions, the role of OA in activating global peptidergic signalling cascades and the similarities of this modulatory network to the noradrenergic inhibition of nociception in mammals, where norepinephrine suppresses chronic pain through inhibitory α(2)-adrenoreceptors on afferent nociceptors and stimulatory α(1)-receptors on inhibitory peptidergic interneurons.

  12. Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans

    PubMed Central

    Mills, Holly; Wragg, Rachel; Hapiak, Vera; Castelletto, Michelle; Zahratka, Jeffrey; Harris, Gareth; Summers, Philip; Korchnak, Amanda; Law, Wenjing; Bamber, Bruce; Komuniecki, Richard

    2012-01-01

    Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α2-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of norepinephrine, modulates sensory-mediated reversal through three α-adrenergic-like OA receptors. OCTR-1 and SER-3 antagonistically modulate ASH signalling directly, with OCTR-1 signalling mediated by Gαo. In contrast, SER-6 inhibits aversive responses by stimulating the release of an array of ‘inhibitory' neuropeptides that activate receptors on sensory neurons mediating attraction or repulsion, suggesting that peptidergic signalling may integrate multiple sensory inputs to modulate locomotory transitions. These studies highlight the complexity of octopaminergic/peptidergic interactions, the role of OA in activating global peptidergic signalling cascades and the similarities of this modulatory network to the noradrenergic inhibition of nociception in mammals, where norepinephrine suppresses chronic pain through inhibitory α2-adrenoreceptors on afferent nociceptors and stimulatory α1-receptors on inhibitory peptidergic interneurons. PMID:22124329

  13. Exposure assessment procedures in presence of wideband digital wireless networks.

    PubMed

    Trinchero, D

    2009-12-01

    The article analyses the applicability of traditional methods, as well as recently proposed techniques, to the exposure assessment of electromagnetic field generated by wireless transmitters. As is well known, a correct measurement of the electromagnetic field is conditioned by the complexity of the signal, which requires dedicated instruments or specifically developed extrapolation techniques. Nevertheless, it is also influenced by the typology of the deployment of the transmitting and receiving stations, which varies from network to network. These aspects have been intensively analysed in the literature and several cases of study are available for review. The present article collects the most recent analyses and discusses their applicability to different scenarios, typical of the main wireless networking applications: broadcasting services, mobile cellular networks and data access provisioning infrastructures.

  14. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.

    PubMed

    Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  15. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    PubMed Central

    Yao, Yao; Storme, Veronique; Marchal, Kathleen

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477

  16. The governance of innovation diffusion - a socio-technical analysis of energy policy

    NASA Astrophysics Data System (ADS)

    Nolden, C.

    2012-10-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.

  17. Full-band TDM-OPDMA for OBI-reduced simultaneous multiple access in a single-wavelength optical access network.

    PubMed

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-14

    Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.

  18. A Power-Efficient Clustering Protocol for Coal Mine Face Monitoring with Wireless Sensor Networks Under Channel Fading Conditions

    PubMed Central

    Ren, Peng; Qian, Jiansheng

    2016-01-01

    This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380

  19. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2016-01-01

    The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment. PMID:27861609

  20. Sensitivity of bandpass filters using recirculating delay-line structures

    NASA Astrophysics Data System (ADS)

    Heyde, Eric C.

    1996-12-01

    Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.

  1. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  2. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  3. A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion

    PubMed Central

    Hetmanski, Joseph H. R.; Zindy, Egor; Schwartz, Jean-Marc; Caswell, Patrick T.

    2016-01-01

    Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis. PMID:27138333

  4. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  5. Exhaustive identification of steady state cycles in large stoichiometric networks

    PubMed Central

    Wright, Jeremiah; Wagner, Andreas

    2008-01-01

    Background Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. Results We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. Conclusion The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable. PMID:18616835

  6. Modern temporal network theory: a colloquium

    NASA Astrophysics Data System (ADS)

    Holme, Petter

    2015-09-01

    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it is more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.

  7. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  8. Locating multiple diffusion sources in time varying networks from sparse observations.

    PubMed

    Hu, Zhao-Long; Shen, Zhesi; Cao, Shinan; Podobnik, Boris; Yang, Huijie; Wang, Wen-Xu; Lai, Ying-Cheng

    2018-02-08

    Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

  9. The nuclear retention signal of HPV16 L2 protein is essential for incoming viral genome to transverse the trans-Golgi network

    PubMed Central

    DiGiuseppe, Stephen; Bienkowska-Haba, Malgorzata; Hilbig, Lydia; Sapp, Martin

    2014-01-01

    The Human papillomavirus (HPV) capsid is composed of the major and minor capsid proteins, L1 and L2, respectively. Infectious entry requires a complex series of conformational changes in both proteins that lead to uptake and allow uncoating to occur. During entry, the capsid is disassembled and host cyclophilins dissociate L1 protein from the L2/DNA complex. Herein, we describe a mutant HPV16 L2 protein (HPV16 L2-R302/5A) that traffics pseudogenome to the trans-Golgi network (TGN) but fails to egress. Our data provide further evidence that HPV16 traffics through the TGN and demonstrates that L2 is essential for TGN egress. Furthermore, we show that cyclophilin activity is required for the L2/DNA complex to be transported to the TGN which is accompanied by a reduced L1 protein levels. PMID:24928042

  10. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  11. Study of the convergence behavior of the complex kernel least mean square algorithm.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2013-09-01

    The complex kernel least mean square (CKLMS) algorithm is recently derived and allows for online kernel adaptive learning for complex data. Kernel adaptive methods can be used in finding solutions for neural network and machine learning applications. The derivation of CKLMS involved the development of a modified Wirtinger calculus for Hilbert spaces to obtain the cost function gradient. We analyze the convergence of the CKLMS with different kernel forms for complex data. The expressions obtained enable us to generate theory-predicted mean-square error curves considering the circularity of the complex input signals and their effect on nonlinear learning. Simulations are used for verifying the analysis results.

  12. Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network

    PubMed Central

    Nam, Hyun-Jun; Kim, Inhae; Bowie, James U.; Kim, Sanguk

    2015-01-01

    A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms. PMID:25923201

  13. A disassembly-free method for evaluation of spiral bevel gear assembly

    NASA Astrophysics Data System (ADS)

    Jedliński, Łukasz; Jonak, Józef

    2017-05-01

    The paper presents a novel method for evaluation of assembly of spiral bevel gears. The examination of the approaches to the problem of gear control diagnostics without disassembly has revealed that residual processes in the form of vibrations (or noise) are currently the most suitable to this end. According to the literature, contact pattern is a complex parameter for describing gear position. Therefore, the task is to determine the correlation between contact pattern and gear vibrations. Although the vibration signal contains a great deal of information, it also has a complex spectral structure and contains interferences. For this reason, the proposed method has three variants which determine the effect of preliminary processing of the signal on the results. In Variant 2, stage 1, the vibration signal is subjected to multichannel denoising using a wavelet transform (WT), and in Variant 3 - to a combination of WT and principal component analysis (PCA). This denoising procedure does not occur in Variant 1. Next, we determine the features of the vibration signal in order to focus on information which is crucial regarding the objective of the study. Given the lack of unequivocal premises enabling selection of optimum features, we calculate twenty features, rank them and finally select the appropriate ones using an algorithm. Diagnostic rules were created using artificial neural networks. We investigated the suitability of three network types: multilayer perceptron (MLP), radial basis function (RBF) and support vector machine (SVM).

  14. Plant Development, Auxin, and the Subsystem Incompleteness Theorem

    PubMed Central

    Niklas, Karl J.; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the “subsystem incompleteness theorem,” which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective. PMID:22645582

  15. New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network.

    PubMed

    Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu

    2018-01-24

    Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.

  16. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  17. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics

    NASA Astrophysics Data System (ADS)

    Serletis, Demitre; Bardakjian, Berj L.; Valiante, Taufik A.; Carlen, Peter L.

    2012-10-01

    Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/fγ noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders. This paper is based on chapter 5 of Serletis (2010 PhD Dissertation Department of Physiology, Institute of Biomaterials and Biomedical Engineering, University of Toronto).

  18. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain

    PubMed Central

    Senapedis, William T.; Kennedy, Caleb J.; Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Forkhead transcription factors (FOXOs) alter a diverse array of cellular processes including the cell cycle, oxidative stress resistance, and aging. Insulin/Akt activation directs phosphorylation and cytoplasmic sequestration of FOXO away from its target genes and serves as an endpoint of a complex signaling network. Using a human genome small interfering RNA (siRNA) library in a cell-based assay, we identified an extensive network of proteins involved in nuclear export, focal adhesion, and mitochondrial respiration not previously implicated in FOXO localization. Furthermore, a detailed examination of mitochondrial factors revealed that loss of uncoupling protein 5 (UCP5) modifies the energy balance and increases free radicals through up-regulation of uncoupling protein 3 (UCP3). The increased superoxide content induces c-Jun N-terminal kinase 1 (JNK1) kinase activity, which in turn affects FOXO localization through a compensatory dephosphorylation of Akt. The resulting nuclear FOXO increases expression of target genes, including mitochondrial superoxide dismutase. By connecting free radical defense and mitochondrial uncoupling to Akt/FOXO signaling, these results have implications in obesity and type 2 diabetes development and the potential for therapeutic intervention. PMID:21460183

  19. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain.

    PubMed

    Senapedis, William T; Kennedy, Caleb J; Boyle, Patrick M; Silver, Pamela A

    2011-05-15

    Forkhead transcription factors (FOXOs) alter a diverse array of cellular processes including the cell cycle, oxidative stress resistance, and aging. Insulin/Akt activation directs phosphorylation and cytoplasmic sequestration of FOXO away from its target genes and serves as an endpoint of a complex signaling network. Using a human genome small interfering RNA (siRNA) library in a cell-based assay, we identified an extensive network of proteins involved in nuclear export, focal adhesion, and mitochondrial respiration not previously implicated in FOXO localization. Furthermore, a detailed examination of mitochondrial factors revealed that loss of uncoupling protein 5 (UCP5) modifies the energy balance and increases free radicals through up-regulation of uncoupling protein 3 (UCP3). The increased superoxide content induces c-Jun N-terminal kinase 1 (JNK1) kinase activity, which in turn affects FOXO localization through a compensatory dephosphorylation of Akt. The resulting nuclear FOXO increases expression of target genes, including mitochondrial superoxide dismutase. By connecting free radical defense and mitochondrial uncoupling to Akt/FOXO signaling, these results have implications in obesity and type 2 diabetes development and the potential for therapeutic intervention.

  20. Predicting Essential Components of Signal Transduction Networks: A Dynamic Model of Guard Cell Abscisic Acid Signaling

    PubMed Central

    Li, Song; Assmann, Sarah M; Albert, Réka

    2006-01-01

    Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA) inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K+ efflux through slowly activating K+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited. PMID:16968132

  1. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  2. Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive.

    PubMed

    Encke, Jörg; Hemmert, Werner

    2018-01-01

    The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.

  3. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network—the main players (nodes) and their interactions (links)—in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also study the thermodynamic costs of adaptation for cells to maintain an accurate memory. The statistical physics based approach described here should be useful in understanding design principles for cellular biochemical circuits in general.

  4. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  5. Toward nanomolar detection by NMR through SABRE hyperpolarization.

    PubMed

    Eshuis, Nan; Hermkens, Niels; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2014-02-19

    SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network, resulting in strongly enhanced NMR signals. This technique is generally applied at relatively high concentrations (mM), in large excess of substrate with respect to metal complex. Dilution of substrate ligands below stoichiometry results in progressive decrease of signal enhancement, which precludes the direct application of SABRE to the NMR analysis of low concentration (μM) solutions. Here, we show that the efficiency of SABRE at low substrate concentrations can be restored by addition of a suitable coordinating ligand to the solution. The proposed method allowed NMR detection below 1 μM in a single scan.

  6. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming.

    PubMed

    Tang, Hong-Wen; Hu, Yanhui; Chen, Chiao-Lin; Xia, Baolong; Zirin, Jonathan; Yuan, Min; Asara, John M; Rabinow, Leonard; Perrimon, Norbert

    2018-05-01

    Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  8. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  9. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Pérez, María Esther; Crespo, José L.

    2017-01-01

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae. PMID:28704927

  10. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  11. Biological network extraction from scientific literature: state of the art and challenges.

    PubMed

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Multi-pathway Kinase Signatures of Multipotent Stromal Cells are Predictive for Osteogenic Differentiation

    PubMed Central

    Platt, Manu O.; Wilder, Catera L.; Wells, Alan; Griffith, Linda G.; Lauffenburger, Douglas A.

    2010-01-01

    Bone marrow-derived multi-potent stromal cells (MSCs) offer great promise for regenerating tissue. While certain transcription factors have been identified in association with tendency toward particular MSC differentiation phenotypes, the regulatory network of key receptor-mediated signaling pathways activated by extracellular ligands that induce various differentiation responses remain poorly understood. Attempts to predict differentiation fate tendencies from individual pathways in isolation are problematic due to the complex pathway interactions inherent in signaling networks. Accordingly, we have undertaken a multi-variate systems approach integrating experimental measurement of multiple kinase pathway activities and osteogenic differentiation in MSCs, together with computational analysis to elucidate quantitative combinations of kinase signals predictive of cell behavior across diverse contexts. In particular, for culture on polymeric biomaterials surfaces presenting tethered epidermal growth factor (tEGF), type-I collagen, neither, or both, we have found that a partial least-squares regression model yields successful prediction of phenotypic behavior on the basis of two principal components comprising the weighted sums of 8 intracellular phosphoproteins: p-EGFR, p-Akt, p-ERK1/2, p-Hsp27, p-c-jun, p-GSK3α/β, p-p38, and p-STAT3. This combination provides strongest predictive capability for 21-day differentiated phenotype status when calculated from day-7 signal measurements (99%); day-4 (88%) and day-14 (89%) signal measurements are also significantly predictive, indicating a broad time-frame during MSC osteogenesis wherein multiple pathways and states of the kinase signaling network are quantitatively integrated to regulate gene expression, cell processes, and ultimately, cell fate. PMID:19750537

  14. Synchronization and coordination of sequences in two neural ensembles

    NASA Astrophysics Data System (ADS)

    Venaille, Antoine; Varona, Pablo; Rabinovich, Mikhail I.

    2005-06-01

    There are many types of neural networks involved in the sequential motor behavior of animals. For high species, the control and coordination of the network dynamics is a function of the higher levels of the central nervous system, in particular the cerebellum. However, in many cases, especially for invertebrates, such coordination is the result of direct synaptic connections between small circuits. We show here that even the chaotic sequential activity of small model networks can be coordinated by electrotonic synapses connecting one or several pairs of neurons that belong to two different networks. As an example, we analyzed the coordination and synchronization of the sequential activity of two statocyst model networks of the marine mollusk Clione. The statocysts are gravity sensory organs that play a key role in postural control of the animal and the generation of a complex hunting motor program. Each statocyst network was modeled by a small ensemble of neurons with Lotka-Volterra type dynamics and nonsymmetric inhibitory interactions. We studied how two such networks were synchronized by electrical coupling in the presence of an external signal which lead to winnerless competition among the neurons. We found that as a function of the number and the strength of connections between the two networks, it is possible to coordinate and synchronize the sequences that each network generates with its own chaotic dynamics. In spite of the chaoticity, the coordination of the signals is established through an activation sequence lock for those neurons that are active at a particular instant of time.

  15. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  16. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant.

  17. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics.

    PubMed

    Anastasi, Sergio; Lamberti, Dante; Alemà, Stefano; Segatto, Oreste

    2016-02-01

    The ErbB signaling network instructs the execution of key cellular programs, such as cell survival, proliferation and motility, through the generation of robust signals of defined strength and duration. In contrast, unabated ErbB signaling disrupts tissue homeostasis and leads to cell transformation. Cells oppose the threat inherent in excessive ErbB activity through several mechanisms of negative feedback regulation. Inducible feedback inhibitors (IFIs) are expressed in the context of transcriptional responses triggered by ErbB signaling, thus being uniquely suited to regulate ErbB activity during the execution of complex cellular programs. This review focuses on MIG6, an IFI that restrains ErbB signaling by mediating ErbB kinase suppression and receptor down-regulation. We will review key issues in MIG6 function, regulation and tumor suppressor activity. Subsequently, the role for MIG6 loss in the pathogenesis of tumors driven by ErbB oncogenes as well as in the generation of cellular addiction to ErbB signaling will be discussed. We will conclude by analyzing feedback inhibition by MIG6 in the context of therapies directed against ErbB and non-ErbB oncogenes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.

    PubMed

    Dodsworth, Steven

    2009-12-01

    At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.

  19. Impact of the Usher syndrome on olfaction.

    PubMed

    Jansen, Fabian; Kalbe, Benjamin; Scholz, Paul; Mikosz, Marta; Wunderlich, Kirsten A; Kurtenbach, Stefan; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Hatt, Hanns; Osterloh, Sabrina

    2016-02-01

    Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior

    PubMed Central

    Picciotto, Marina R.; Higley, Michael J.; Mineur, Yann S.

    2012-01-01

    Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss the consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on the site of release, the receptor subtypes, and the target neuronal population, however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. PMID:23040810

  1. Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics

    PubMed Central

    Williams, Grace R.; Bethard, Jennifer R.; Berkaw, Mary N.; Nagel, Alexis K.; Luttrell, Louis M.; Ball, Lauren E.

    2015-01-01

    The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry combined with bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5 min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation. PMID:26160508

  2. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles.

    PubMed

    Zhang, Duona; Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-03-20

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.

  3. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

    PubMed Central

    Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-01-01

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network. PMID:29558434

  4. A traffic analyzer for multiple SpaceWire links

    NASA Astrophysics Data System (ADS)

    Liu, Scige J.; Giusi, Giovanni; Di Giorgio, Anna M.; Vertolli, Nello; Galli, Emanuele; Biondi, David; Farina, Maria; Pezzuto, Stefano; Spinoglio, Luigi

    2014-07-01

    Modern space missions are becoming increasingly complex: the interconnection of the units in a satellite is now a network of terminals linked together through routers, where devices with different level of automation and intelligence share the same data-network. The traceability of the network transactions is performed mostly at terminal level through log analysis and hence it is difficult to verify in real time the reliability of the interconnections and the interchange protocols. To improve and ease the traffic analysis in a SpaceWire network we implemented a low-level link analyzer, with the specific goal to simplify the integration and test phases in the development of space instrumentation. The traffic analyzer collects signals coming from pod probes connected in-series on the interested links between two SpaceWire terminals. With respect to the standard traffic analyzers, the design of this new tool includes the possibility to internally reshape the LVDS signal. This improvement increases the robustness of the analyzer towards environmental noise effects and guarantees a deterministic delay on all analyzed signals. The analyzer core is implemented on a Xilinx FPGA, programmed to decode the bidirectional LVDS signals at Link and Network level. Successively, the core packetizes protocol characters in homogeneous sets of time ordered events. The analyzer provides time-tagging functionality for each characters set, with a precision down to the FPGA Clock, i.e. about 20nsec in the adopted HW environment. The use of a common time reference for each character stream allows synchronous performance measurements. The collected information is then routed to an external computer for quick analysis: this is done via high-speed USB2 connection. With this analyzer it is possible to verify the link performances in terms of induced delays in the transmitted signals. A case study focused on the analysis of the Time-Code synchronization in presence of a SpaceWire Router is shown in this paper as well.

  5. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps

    PubMed Central

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies. PMID:26192618

  6. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells

    PubMed Central

    Lee, Esther J.

    2018-01-01

    Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals. PMID:29451874

  7. Canalization and Control in Automata Networks: Body Segmentation in Drosophila melanogaster

    PubMed Central

    Marques-Pita, Manuel; Rocha, Luis M.

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics – a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity – with the ultimate goal of explaining how do cells and tissues ‘compute’. PMID:23520449

  8. Canalization and control in automata networks: body segmentation in Drosophila melanogaster.

    PubMed

    Marques-Pita, Manuel; Rocha, Luis M

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics--a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity--with the ultimate goal of explaining how do cells and tissues 'compute'.

  9. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.

    PubMed

    Verkhivker, G M

    2016-10-20

    Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.

  10. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development.

    PubMed

    Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich

    2016-06-21

    The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood. The first fungal STRIPAK was described in Sordaria macrospora, which is a well-established model organism used to study the formation of fungal fruiting bodies, three-dimensional organ-like structures. We analyzed STRIPAK subunit PP2Ac1, catalytic subunit 1 of protein phosphatase PP2A, to study the importance of the catalytic activity of this protein during sexual development. The results of our yeast two-hybrid analysis and tandem affinity purification, followed by mass spectrometry, indicate that PP2Ac1 activity connects STRIPAK with other signaling pathways and thus forms a large interconnected signaling network. Copyright © 2016 Beier et al.

  11. Packet communications in satellites with multiple-beam antennas and signal processing

    NASA Technical Reports Server (NTRS)

    Davies, R.; Chethik, F.; Penick, M.

    1980-01-01

    A communication satellite with a multiple-beam antenna and onboard signal processing is considered for use in a 'message-switched' data relay system. The signal processor may incorporate demodulation, routing, storage, and remodulation of the data. A system user model is established and key functional elements for the signal processing are identified. With the throughput and delay requirements as the controlled variables, the hardware complexity, operational discipline, occupied bandwidth, and overall user end-to-end cost are estimated for (1) random-access packet switching; and (2) reservation-access packet switching. Other aspects of this network (eg, the adaptability to channel switched traffic requirements) are examined. For the given requirements and constraints, the reservation system appears to be the most attractive protocol.

  12. Correlations in the degeneracy of structurally controllable topologies for networks

    NASA Astrophysics Data System (ADS)

    Campbell, Colin; Aucott, Steven; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2017-04-01

    Many dynamic systems display complex emergent phenomena. By directly controlling a subset of system components (nodes) via external intervention it is possible to indirectly control every other component in the system. When the system is linear or can be approximated sufficiently well by a linear model, methods exist to identify the number and connectivity of a minimum set of external inputs (constituting a so-called minimal control topology, or MCT). In general, many MCTs exist for a given network; here we characterize a broad ensemble of empirical networks in terms of the fraction of nodes and edges that are always, sometimes, or never a part of an MCT. We study the relationships between the measures, and apply the methodology to the T-LGL leukemia signaling network as a case study. We show that the properties introduced in this report can be used to predict key components of biological networks, with potentially broad applications to network medicine.

  13. Distributed Transmitter Localization by Power Difference of Arrival (PDOA) on a Network of GNU Radio Sensors

    DTIC Science & Technology

    2015-02-03

    requiring the least hardware investment is to localize by received signal strength [1, 4, 5]. Because our intended scenario of low-complexity...MHz were taken with a spectrum analyzer program on the USRP and a range finder was used to measure the distance between the emitter and sensor

  14. Chimeras in leaky integrate-and-fire neural networks: effects of reflecting connectivities

    NASA Astrophysics Data System (ADS)

    Tsigkri-DeSmedt, Nefeli Dimitra; Hizanidis, Johanne; Schöll, Eckehard; Hövel, Philipp; Provata, Astero

    2017-07-01

    The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.

  15. Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua

    2012-01-01

    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  16. Simulation of traffic control signal systems

    NASA Technical Reports Server (NTRS)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  17. Auxin-BR Interaction Regulates Plant Growth and Development

    PubMed Central

    Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun

    2018-01-01

    Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511

  18. Quantification of Degeneracy in Biological Systems for Characterization of Functional Interactions Between Modules

    PubMed Central

    Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei

    2012-01-01

    There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750

  19. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  20. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    NASA Astrophysics Data System (ADS)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  1. Evolutionary rewiring of bacterial regulatory networks

    PubMed Central

    Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.

    2015-01-01

    Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301

  2. Fusarium oxysporum f.sp. ciceri Race 1 Induced Redox State Alterations Are Coupled to Downstream Defense Signaling in Root Tissues of Chickpea (Cicer arietinum L.)

    PubMed Central

    Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea–Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes. PMID:24058463

  3. Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions

    PubMed Central

    2014-01-01

    Background Plant secondary metabolites are critical to various biological processes. However, the regulations of these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of secondary metabolic pathways in Arabidopsis. Results The dynamic regulatory network was constructed through integrating co-expressed gene pairs and regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression, network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’ expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways (such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network because of their low degrees in topology. Upstream signaling pathways of 50 TFs were identified to comprehend the underlying mechanism of TFs’ regulatory rewiring. Conclusion Overall, this dynamic regulatory network largely improves the understanding of perplexed regulatory rewiring in secondary metabolism in Arabidopsis. PMID:24993737

  4. A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain.

    PubMed

    Weber, Alexander M; Soreni, Noam; Noseworthy, Michael D

    2014-08-01

    To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain. Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) (1)H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia. Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01). The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.

  5. Proof of Concept: A review on how network and systems biology approaches aid in the discovery of potent anticancer drug combinations

    PubMed Central

    Azmi, Asfar S.; Wang, Zhiwei; Philip, Philip A.; Mohammad, Ramzi M.; Sarkar, Fazlul H.

    2010-01-01

    Cancer therapies that target key molecules have not fulfilled expected promises for most common malignancies. Major challenges include the incomplete understanding and validation of these targets in patients, the multiplicity and complexity of genetic and epigenetic changes in the majority of cancers, and the redundancies and cross-talk found in key signaling pathways. Collectively, the uses of single-pathway targeted approaches are not effective therapies for human malignances. To overcome these barriers, it is important to understand the molecular cross-talk among key signaling pathways and how they may be altered by targeted agents. This requires innovative approaches such as understanding the global physiological environment of target proteins and the effects of modifying them without losing key molecular details. Such strategies will aid the design of novel therapeutics and their combinations against multifaceted diseases where efficacious combination therapies will focus on altering multiple pathways rather than single proteins. Integrated network modeling and systems biology has emerged as a powerful tool benefiting our understanding of drug mechanism of action in real time. This mini-review highlights the significance of the network and systems biology-based strategy and presents a “proof-of-concept” recently validated in our laboratory using the example of a combination treatment of oxaliplatin and the MDM2 inhibitor MI-219 in genetically complex and incurable pancreatic adenocarcinoma. PMID:21041384

  6. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    NASA Astrophysics Data System (ADS)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  7. Purinergic modulation of preBötzinger complex inspiratory rhythm in rodents: the interaction between ATP and adenosine

    PubMed Central

    Zwicker, J D; Rajani, V; Hahn, L B; Funk, G D

    2011-01-01

    Abstract ATP signalling in the CNS is mediated by a three-part system comprising the actions of ATP (and ADP) at P2 receptors (P2Rs), adenosine (ADO) at P1 receptors (P1Rs), and ectonucleotidases that degrade ATP into ADO. ATP excites preBötzinger complex (preBötC) inspiratory rhythm-generating networks where its release attenuates the hypoxic depression of breathing. Its metabolite, ADO, inhibits breathing through unknown mechanisms that may involve the preBötC. Our objective is to understand the dynamics of this signalling system and its influence on preBötC networks. We show that the preBötC of mouse and rat is sensitive to P2Y1 purinoceptor (P2Y1R) activation, responding with a >2-fold increase in frequency. Remarkably, the mouse preBötC is insensitive to ATP. Only after block of A1 ADORs is the ATP-evoked, P2Y1R-mediated frequency increase observed. This demonstrates that ATP is rapidly degraded to ADO, which activates inhibitory A1Rs, counteracting the P2Y1R-mediated excitation. ADO sensitivity of mouse preBötC was confirmed by a frequency decrease that was absent in rat. Differential ectonucleotidase activities are likely to contribute to the negligible ATP sensitivity of mouse preBötC. Real-time PCR analysis of ectonucleotidase isoforms in preBötC punches revealed TNAP (degrades ATP to ADO) or ENTPDase2 (favours production of excitatory ADP) as the primary constituent in mouse and rat, respectively. These data further establish the sensitivity of this vital network to P2Y1R-mediated excitation, emphasizing that individual components of the three-part signalling system dramatically alter network responses to ATP. Data also suggest therapeutic potential may derive from methods that alter the ATP–ADO balance to favour the excitatory actions of ATP. PMID:21788352

  8. Reduced modeling of signal transduction – a modular approach

    PubMed Central

    Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494

  9. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NASA Astrophysics Data System (ADS)

    Larsen, G. K. H.; van Foreest, N. D.; Scherpen, J. M. A.

    2012-10-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way.

  10. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  11. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury*

    PubMed Central

    van Niekerk, Erna A.; Tuszynski, Mark H.; Lu, Paul; Dulin, Jennifer N.

    2016-01-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. PMID:26695766

  12. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    PubMed

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These results extend our understanding of the electrophysiological signature of BOLD RSNs and demonstrate the intrinsic connection between the fast neuronal activity and slow hemodynamic fluctuations. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Graph-based network analysis of resting-state functional MRI.

    PubMed

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  14. Development of global cortical networks in early infancy.

    PubMed

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  15. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus.

    PubMed

    McDermott, Jason E; Mitchell, Hugh D; Gralinski, Lisa E; Eisfeld, Amie J; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S; Katze, Michael G; Waters, Katrina M

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.

  16. Experimental Investigation of the Performance of Vertical Handover Algorithms between WiFi and UMTS Networks

    NASA Astrophysics Data System (ADS)

    Busanelli, Stefano; Martalò, Marco; Ferrari, Gianluigi; Spigoni, Giovanni; Iotti, Nicola

    In this paper, we analyze the performance of vertical handover (VHO) algorithms for seamless mobility between WiFi and UMTS networks. We focus on a no-coupling scenario, characterized by the lack of any form of cooperation between the involved players (users and network operators). In this context, we first propose a low-complexity Received Signal Strength Indicator (RSSI)-based algorithm, and then an improved hybrid RSSI/goodput version. We present experimental results based on the implementation of a real testbed with commercial WiFi (Guglielmo) and UMTS (Telecom Italia) deployed networks. Despite the relatively long handover times experienced in our testbed, the proposed RSSI-based VHO algorithm guarantees an effective goodput increase at the MTs. Moreover, this algorithm mitigates the ping-pong phenomenon.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Bo; Huang Bo; School of Public Health, University of South China, Hengyang, Hunan 421001

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe,more » such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3{sigma} and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: > 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. > Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. > The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. > The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.« less

  18. Programmable chemical controllers made from DNA.

    PubMed

    Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg

    2013-10-01

    Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

  19. Network-Physics(NP) Bec DIGITAL(#)-VULNERABILITY Versus Fault-Tolerant Analog

    NASA Astrophysics Data System (ADS)

    Alexander, G. K.; Hathaway, M.; Schmidt, H. E.; Siegel, E.

    2011-03-01

    Siegel[AMS Joint Mtg.(2002)-Abs.973-60-124] digits logarithmic-(Newcomb(1881)-Weyl(1914; 1916)-Benford(1938)-"NeWBe"/"OLDbe")-law algebraic-inversion to ONLY BEQS BEC:Quanta/Bosons= digits: Synthesis reveals EMP-like SEVERE VULNERABILITY of ONLY DIGITAL-networks(VS. FAULT-TOLERANT ANALOG INvulnerability) via Barabasi "Network-Physics" relative-``statics''(VS.dynamics-[Willinger-Alderson-Doyle(Not.AMS(5/09)]-]critique); (so called)"Quantum-computing is simple-arithmetic(sans division/ factorization); algorithmic-complexities: INtractibility/ UNdecidability/ INefficiency/NONcomputability / HARDNESS(so MIScalled) "noise"-induced-phase-transitions(NITS) ACCELERATION: Cook-Levin theorem Reducibility is Renormalization-(Semi)-Group fixed-points; number-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(02)] How? mea culpa)can ONLY be MBCS "hot-plasma" versus digit-clumping NON-random BEC; Modular-arithmetic Congruences= Signal X Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)] BEC logarithmic-law inversion factorization:Watkins number-thy. U stat.-phys.); P=/=NP TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation via geometry.

  20. Programmable chemical controllers made from DNA

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg

    2013-10-01

    Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

Top