Science.gov

Sample records for complex social networks

  1. Social networks as embedded complex adaptive systems.

    PubMed

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  2. Disease Surveillance on Complex Social Networks.

    PubMed

    Herrera, Jose L; Srinivasan, Ravi; Brownstein, John S; Galvani, Alison P; Meyers, Lauren Ancel

    2016-07-01

    As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors-sampling the most connected, random, and friends of random individuals-in three complex social networks-a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals-early and accurate detection of epidemic emergence and peak, and general situational awareness-we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.

  3. Disease Surveillance on Complex Social Networks.

    PubMed

    Herrera, Jose L; Srinivasan, Ravi; Brownstein, John S; Galvani, Alison P; Meyers, Lauren Ancel

    2016-07-01

    As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors-sampling the most connected, random, and friends of random individuals-in three complex social networks-a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals-early and accurate detection of epidemic emergence and peak, and general situational awareness-we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information. PMID:27415615

  4. Disease Surveillance on Complex Social Networks

    PubMed Central

    Herrera, Jose L.; Srinivasan, Ravi; Brownstein, John S.; Galvani, Alison P.; Meyers, Lauren Ancel

    2016-01-01

    As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information. PMID:27415615

  5. Dynamics of Social Complex Networks: Some Insights into Recent Research

    NASA Astrophysics Data System (ADS)

    Lozano, Sergi

    Social networks analysis (that is, the study of interactions among social actors from a structural viewpoint) has a long tradition covering several decades [1, 2, 3]. This sort of study has usually been performed over small social networks, and the limitation of size has conditioned the visibility of complexity [4, 5]. However, the situation has changed significantly in recent times due to basically two reasons. First, there is an increasing availability of larger social datasets (obtained in most cases from information and communication technologies). Secondly, a large number of physicists and other scholars from complexity science have started to take active interest in the field. New perspectives and tools have been provided by these ‘newcomers’, which in combination with the expertise and knowledge accumulated by ‘classical’ social network analysts, has formed the basis of a multidisciplinary field suitably termed the science of networks [6, 7].

  6. Bidirectional selection between two classes in complex social networks

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-01

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  7. Bidirectional selection between two classes in complex social networks.

    PubMed

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-19

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  8. Bidirectional selection between two classes in complex social networks

    PubMed Central

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-01-01

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks. PMID:25524835

  9. Evolution of Cooperation in Social Dilemmas on Complex Networks

    PubMed Central

    Iyer, Swami; Killingback, Timothy

    2016-01-01

    Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428

  10. Evolution of Cooperation in Social Dilemmas on Complex Networks.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2016-02-01

    Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner's dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games.

  11. Theory of rumour spreading in complex social networks

    NASA Astrophysics Data System (ADS)

    Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.

    2007-01-01

    We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

  12. Social-network complexity in humans is associated with the neural response to social information.

    PubMed

    Dziura, Sarah L; Thompson, James C

    2014-11-01

    Humans have evolved to thrive in large and complex social groups, and it is likely that this increase in group complexity has come with a greater need to decode and respond to complex and uncertain communicatory signals. In this functional MRI study, we examined whether complexity of social networks in humans is related to the functioning of brain regions key to the perception of basic, nonverbal social stimuli. Greater activation to biological than to scrambled motion in the right posterior superior temporal sulcus (pSTS) and right amygdala were positively correlated with the diversity of social-network roles. In the pSTS, in particular, this association was not due to a relationship between network diversity and network size. These findings suggest that increased functioning of brain regions involved in decoding social signals might facilitate the detection and decoding of subtle signals encountered in varied social settings.

  13. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners.

    PubMed

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W Thomas; Bush, Nicole R; Adler, Nancy; Levine, Joel D

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of "reciprocal" interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  14. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners

    PubMed Central

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W. Thomas; Bush, Nicole R.; Adler, Nancy; Levine, Joel D.

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of “reciprocal” interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  15. The food environment is a complex social network.

    PubMed

    Brown, David R; Brewster, Luther G

    2015-05-01

    The lack of demonstrated impact of the South LA fast food ban suggests that the policy was too narrowly crafted. Healthy food deserts like South LA are simultaneously unhealthy food swamps; and face myriad interrelated social, economic, and environmental challenges. The food environment is a complex social network impacted by social, economic and political factors at the neighborhood, regional, national, and international levels. Banning one subtype of unhealthy food venue is not likely to limit the availability of unhealthy processed and packaged foods nor result in increased access to affordable healthy foods. Food deserts and food insecurity are symptoms of the interacting pathologies of poverty, distressed communities, and unhealthy global macroeconomic and industrial policies. Policies that seek to impact urban health disparities need to tackle root causes including poverty and the global production and distribution of cheap, addictive, unhealthy products that promote unhealthy lifestyles.

  16. Baboon (Papio anubis) social complexity--a network approach.

    PubMed

    Lehmann, Julia; Ross, Caroline

    2011-08-01

    Although many studies have analyzed the causes and consequences of social relationships, few studies have explicitly assessed how measures of social relationships are affected by the choice of behaviors used to quantify them. The use of many behaviors to measure social relationships in primates has long been advocated, but it was analytically difficult to implement this framework into primatological work. However, recent advances in social network analysis (SNA) now allow the comparison of multiple networks created from different behaviors. Here we use our database of baboon social behavior (Papio anubis, Gashaka Gumti National Park, Nigeria) to investigate (i) to what extent social networks created from different behaviors overlap, (ii) to what extent individuals occupy similar social positions in these networks and (iii) how sex affects social network position in this population of baboons. We used data on grooming, aggression, displacement, mounting and presenting, which were collected over a 15-month period. We calculated network parameters separately for each behavior. Networks based on displacement, mounting and presenting were very similar to each other, whereas grooming and aggression networks differed both from each other and from mounting, displacement and presenting networks. Overall, individual network positions were strongly affected by sex. Individuals central in one network tended to be central in most other networks as well, whereas other measures such as clustering coefficient were found to vary depending on the behavior analyzed. Thus, our results suggest that a baboon's social environment is best described by a multiplex network based on affiliative, aggressive and sexual behavior. Modern SNA provides a number of useful tools that will help us to better understand animals' social environment. We also discuss potential caveats related to their use.

  17. Impact of social punishment on cooperative behavior in complex networks.

    PubMed

    Wang, Zhen; Xia, Cheng-Yi; Meloni, Sandro; Zhou, Chang-Song; Moreno, Yamir

    2013-01-01

    Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems. PMID:24162105

  18. Impact of Social Punishment on Cooperative Behavior in Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xia, Cheng-Yi; Meloni, Sandro; Zhou, Chang-Song; Moreno, Yamir

    2013-10-01

    Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems.

  19. Impact of Social Punishment on Cooperative Behavior in Complex Networks

    PubMed Central

    Wang, Zhen; Xia, Cheng-Yi; Meloni, Sandro; Zhou, Chang-Song; Moreno, Yamir

    2013-01-01

    Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems. PMID:24162105

  20. A Method for Group Extraction in Complex Social Networks

    NASA Astrophysics Data System (ADS)

    Bródka, Piotr; Musial, Katarzyna; Kazienko, Przemysław

    The extraction of social groups from social networks existing among employees in the company, its customers or users of various computer systems became one of the research areas of growing importance. Once we have discovered the groups, we can utilise them, in different kinds of recommender systems or in the analysis of the team structure and communication within a given population.

  1. Advertising and Irreversible Opinion Spreading in Complex Social Networks

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.

  2. Visual social network analysis: effective approach to model complex human social, behaviour & culture.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar

    2012-01-01

    The advent and adoption of internet-based social networking has significantly altered our daily lives. The educational community has taken notice of the positive aspects of social networking such as creation of blogs and to support groups of system designers going through the same challenges and difficulties. This paper introduces a social networking framework for collaborative education, design and modeling of the next generation of smarter products and services. Human behaviour modeling in social networking application aims to ensure that human considerations for learners and designers have a prominent place in the integrated design and development of sustainable, smarter products throughout the total system lifecycle. Social networks blend self-directed learning and prescribed, existing information. The self-directed element creates interest within a learner and the ability to access existing information facilitates its transfer, and eventual retention of knowledge acquired.

  3. Visual social network analysis: effective approach to model complex human social, behaviour & culture.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar

    2012-01-01

    The advent and adoption of internet-based social networking has significantly altered our daily lives. The educational community has taken notice of the positive aspects of social networking such as creation of blogs and to support groups of system designers going through the same challenges and difficulties. This paper introduces a social networking framework for collaborative education, design and modeling of the next generation of smarter products and services. Human behaviour modeling in social networking application aims to ensure that human considerations for learners and designers have a prominent place in the integrated design and development of sustainable, smarter products throughout the total system lifecycle. Social networks blend self-directed learning and prescribed, existing information. The self-directed element creates interest within a learner and the ability to access existing information facilitates its transfer, and eventual retention of knowledge acquired. PMID:22317253

  4. Connecting the Dots: Social Network Structure, Conflict, and Group Cognitive Complexity

    ERIC Educational Resources Information Center

    Curseu, Petru L.; Janssen, Steffie E. A.; Raab, Jorg

    2012-01-01

    The current paper combines arguments from the social capital and group cognition literature to explain two different processes through which communication network structures and intra group conflict influence groups' cognitive complexity (GCC). We test in a sample of 44 groups the mediating role of intra group conflict in the relationship between…

  5. Computer Networks As Social Networks

    NASA Astrophysics Data System (ADS)

    Wellman, Barry

    2001-09-01

    Computer networks are inherently social networks, linking people, organizations, and knowledge. They are social institutions that should not be studied in isolation but as integrated into everyday lives. The proliferation of computer networks has facilitated a deemphasis on group solidarities at work and in the community and afforded a turn to networked societies that are loosely bounded and sparsely knit. The Internet increases people's social capital, increasing contact with friends and relatives who live nearby and far away. New tools must be developed to help people navigate and find knowledge in complex, fragmented, networked societies.

  6. Propagation, cascades, and agreement dynamics in complex communication and social networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming

    Many modern and important technological, social, information and infrastructure systems can be viewed as complex systems with a large number of interacting components. Models of complex networks and dynamical interactions, as well as their applications are of fundamental interests in many aspects. Here, several stylized models of multiplex propagation and opinion dynamics are investigated on complex and empirical social networks. We first investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level. We also investigate a prototypical agent-based model, the Naming Game, on two-dimensional random geometric networks. The Naming Game [A. Baronchelli et al., J. Stat. Mech.: Theory Exp. (2006) P06014.] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the Naming Games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially-embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long

  7. Visualizing Social Networks

    NASA Astrophysics Data System (ADS)

    Correa, Carlos D.; Ma, Kwan-Liu

    With today‘s ubiquity and popularity of social network applications, the ability to analyze and understand large networks in an efficient manner becomes critically important. However, as networks become larger and more complex, reasoning about social dynamics via simple statistics is not a feasible option. To overcome these limitations, we can rely on visual metaphors. Visualization nowadays is no longer a passive process that produces images from a set of numbers. Recent years have witnessed a convergence of social network analytics and visualization, coupled with interaction, that is changing the way analysts understand and characterize social networks. In this chapter, we discuss the main goal of visualization and how different metaphors are aimed towards elucidating different aspects of social networks, such as structure and semantics. We also describe a number of methods where analytics and visualization are interwoven towards providing a better comprehension of social structure and dynamics.

  8. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  9. Emergent Complex Network Geometry

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  10. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  11. Predicting Human Preferences Using the Block Structure of Complex Social Networks

    PubMed Central

    Guimerà, Roger; Llorente, Alejandro; Moro, Esteban; Sales-Pardo, Marta

    2012-01-01

    With ever-increasing available data, predicting individuals' preferences and helping them locate the most relevant information has become a pressing need. Understanding and predicting preferences is also important from a fundamental point of view, as part of what has been called a “new” computational social science. Here, we propose a novel approach based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of social interactions. Our model is in the spirit of predicting individuals' preferences based on the preferences of others but, rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible models. We show that our approach is considerably more accurate than leading recommender algorithms, with major relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis of the characteristics of those groups. PMID:22984533

  12. Emergent Complex Behavior in Social Networks: Examples from the Ktunaxa Speech Community

    ERIC Educational Resources Information Center

    Horsethief, Christopher

    2012-01-01

    Language serves as a primary tool for structuring identity and loss of language represents the loss of that identity. This study utilizes a social network analysis of Ktunaxa speech community activities for evidence of internally generated revitalization efforts. These behaviors include instances of self-organized emergence. Such emergent behavior…

  13. Participation and social networks of school-age children with complex communication needs: a descriptive study.

    PubMed

    Thirumanickam, Abirami; Raghavendra, Parimala; Olsson, Catherine

    2011-09-01

    Social participation becomes particularly important in middle childhood, as it contributes towards the acquisition and development of critical life skills such as developing friendships and a sense of belonging. However, only limited literature is available on the impact of communication difficulties on social participation in middle childhood. This study compared the participation patterns of school-age children with and without physical disabilities and complex communication needs in extracurricular activities. Participants included five children between 6-9 years of age with moderate-severe physical disability and complex communication needs, and five matched peers. Findings showed that children with physical disability and complex communication needs engaged in activities with reduced variety, lower frequency, fewer partners and in limited venues, but reported higher levels of enjoyment and preference for activity participation, than their matched peers. These children also had fewer same-aged friends, but more paid workers in their social circle. This small-scale descriptive study provides some preliminary evidence about the impact of severe communication difficulties on participation and socialization. PMID:22008032

  14. Renormalization flows in complex networks.

    PubMed

    Radicchi, Filippo; Barrat, Alain; Fortunato, Santo; Ramasco, José J

    2009-02-01

    Complex networks have acquired a great popularity in recent years, since the graph representation of many natural, social, and technological systems is often very helpful to characterize and model their phenomenology. Additionally, the mathematical tools of statistical physics have proven to be particularly suitable for studying and understanding complex networks. Nevertheless, an important obstacle to this theoretical approach is still represented by the difficulties to draw parallelisms between network science and more traditional aspects of statistical physics. In this paper, we explore the relation between complex networks and a well known topic of statistical physics: renormalization. A general method to analyze renormalization flows of complex networks is introduced. The method can be applied to study any suitable renormalization transformation. Finite-size scaling can be performed on computer-generated networks in order to classify them in universality classes. We also present applications of the method on real networks.

  15. Social networks and schizophrenia.

    PubMed

    Beels, C C

    1979-01-01

    This artical begins with an introduction to social networks research and its practical importance in the understanding and treatment of schizophrenia, and concludes with a consideration of the experience, the phenomenology, of schizophrenia, from a social network point of view.

  16. The model of microblog message diffusion based on complex social network

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bai, Shu-Ying; Jin, Rui

    2014-05-01

    Microblog is a micromessage communication network in which users are the nodes and the followship between users are the edges. Sina Weibo is a typical case of these microblog service websites. As the enormous scale of nodes and complex links in the network, we choose a sample network crawled in Sina Weibo as the base of empirical analysis. The study starts with the analysis of its topological features, and brings in epidemiological SEIR model to explore the mode of message spreading throughout the microblog network. It is found that the network is obvious small-world and scale-free, which made it succeed in transferring messages and failed in resisting negative influence. In addition, the paper focuses on the rich nodes as they constitute a typical feature of Sina Weibo. It is also found that whether the message starts with a rich node will not account for its final coverage. Actually, the rich nodes always play the role of pivotal intermediaries who speed up the spreading and make the message known by much more people.

  17. Language Networks as Complex Systems

    ERIC Educational Resources Information Center

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  18. Complex networks: Patterns of complexity

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2010-07-01

    The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion systems. A framework that describes Turing-pattern formation in the context of complex networks should provide a new basis for studying the phenomenon.

  19. A novel mammalian social structure in Indo-Pacific bottlenose dolphins (Tursiops sp.): complex male alliances in an open social network.

    PubMed

    Randić, Srđan; Connor, Richard C; Sherwin, William B; Krützen, Michael

    2012-08-01

    Terrestrial mammals with differentiated social relationships live in 'semi-closed groups' that occasionally accept new members emigrating from other groups. Bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia, exhibit a fission-fusion grouping pattern with strongly differentiated relationships, including nested male alliances. Previous studies failed to detect a group membership 'boundary', suggesting that the dolphins live in an open social network. However, two alternative hypotheses have not been excluded. The community defence model posits that the dolphins live in a large semi-closed 'chimpanzee-like' community defended by males and predicts that a dominant alliance(s) will range over the entire community range. The mating season defence model predicts that alliances will defend mating-season territories or sets of females. Here, both models are tested and rejected: no alliances ranged over the entire community range and alliances showed extensive overlap in mating season ranges and consorted females. The Shark Bay dolphins, therefore, present a combination of traits that is unique among mammals: complex male alliances in an open social network. The open social network of dolphins is linked to their relatively low costs of locomotion. This reveals a surprising and previously unrecognized convergence between adaptations reducing travel costs and complex intergroup-alliance relationships in dolphins, elephants and humans.

  20. Professional social networking.

    PubMed

    Rowley, Robert D

    2014-12-01

    We review the current state of social communication between healthcare professionals, the role of consumer social networking, and some emerging technologies to address the gaps. In particular, the review covers (1) the current state of loose social networking for continuing medical education (CME) and other broadcast information dissemination; (2) social networking for business promotion; (3) social networking for peer collaboration, including simple communication as well as more robust data-centered collaboration around patient care; and (4) engaging patients on social platforms, including integrating consumer-originated data into the mix of healthcare data. We will see how, as the nature of healthcare delivery moves from the institution-centric way of tradition to a more social and networked ambulatory pattern that we see emerging today, the nature of health IT has also moved from enterprise-centric systems to more socially networked, cloud-based options.

  1. Professional social networking.

    PubMed

    Rowley, Robert D

    2014-12-01

    We review the current state of social communication between healthcare professionals, the role of consumer social networking, and some emerging technologies to address the gaps. In particular, the review covers (1) the current state of loose social networking for continuing medical education (CME) and other broadcast information dissemination; (2) social networking for business promotion; (3) social networking for peer collaboration, including simple communication as well as more robust data-centered collaboration around patient care; and (4) engaging patients on social platforms, including integrating consumer-originated data into the mix of healthcare data. We will see how, as the nature of healthcare delivery moves from the institution-centric way of tradition to a more social and networked ambulatory pattern that we see emerging today, the nature of health IT has also moved from enterprise-centric systems to more socially networked, cloud-based options. PMID:25308391

  2. Coupled adaptive complex networks.

    PubMed

    Shai, S; Dobson, S

    2013-04-01

    Adaptive networks, which combine topological evolution of the network with dynamics on the network, are ubiquitous across disciplines. Examples include technical distribution networks such as road networks and the internet, natural and biological networks, and social science networks. These networks often interact with or depend upon other networks, resulting in coupled adaptive networks. In this paper we study susceptible-infected-susceptible (SIS) epidemic dynamics on coupled adaptive networks, where susceptible nodes are able to avoid contact with infected nodes by rewiring their intranetwork connections. However, infected nodes can pass the disease through internetwork connections, which do not change with time: The dependencies between the coupled networks remain constant. We develop an analytical formalism for these systems and validate it using extensive numerical simulation. We find that stability is increased by increasing the number of internetwork links, in the sense that the range of parameters over which both endemic and healthy states coexist (both states are reachable depending on the initial conditions) becomes smaller. Finally, we find a new stable state that does not appear in the case of a single adaptive network but only in the case of weakly coupled networks, in which the infection is endemic in one network but neither becomes endemic nor dies out in the other. Instead, it persists only at the nodes that are coupled to nodes in the other network through internetwork links. We speculate on the implications of these findings. PMID:23679478

  3. Coupled adaptive complex networks

    NASA Astrophysics Data System (ADS)

    Shai, S.; Dobson, S.

    2013-04-01

    Adaptive networks, which combine topological evolution of the network with dynamics on the network, are ubiquitous across disciplines. Examples include technical distribution networks such as road networks and the internet, natural and biological networks, and social science networks. These networks often interact with or depend upon other networks, resulting in coupled adaptive networks. In this paper we study susceptible-infected-susceptible (SIS) epidemic dynamics on coupled adaptive networks, where susceptible nodes are able to avoid contact with infected nodes by rewiring their intranetwork connections. However, infected nodes can pass the disease through internetwork connections, which do not change with time: The dependencies between the coupled networks remain constant. We develop an analytical formalism for these systems and validate it using extensive numerical simulation. We find that stability is increased by increasing the number of internetwork links, in the sense that the range of parameters over which both endemic and healthy states coexist (both states are reachable depending on the initial conditions) becomes smaller. Finally, we find a new stable state that does not appear in the case of a single adaptive network but only in the case of weakly coupled networks, in which the infection is endemic in one network but neither becomes endemic nor dies out in the other. Instead, it persists only at the nodes that are coupled to nodes in the other network through internetwork links. We speculate on the implications of these findings.

  4. Interpreting participatory Fuzzy Cognitive Maps as complex networks in the social-ecological systems of the Amazonian forests

    NASA Astrophysics Data System (ADS)

    Varela, Consuelo; Tarquis, Ana M.; Blanco-Gutiérrez, Irene; Estebe, Paloma; Toledo, Marisol; Martorano, Lucieta

    2015-04-01

    Social-ecological systems are linked complex systems that represent interconnected human and biophysical processes evolving and adapting across temporal and spatial scales. In the real world, social-ecological systems pose substantial challenges for modeling. In this regard, Fuzzy Cognitive Maps (FCMs) have proven to be a useful method for capturing the functioning of this type of systems. FCMs are a semi-quantitative type of cognitive map that represent a system composed of relevant factors and weighted links showing the strength and direction of cause-effects relationships among factors. Therefore, FCMs can be interpreted as complex system structures or complex networks. In this sense, recent research has applied complex network concepts for the analysis of FCMs that represent social-ecological systems. Key to FCM the tool is its potential to allow feedback loops and to include stakeholder knowledge in the construction of the tool. Also, previous research has demonstrated their potential to represent system dynamics and simulate the effects of changes in the system, such as policy interventions. For illustrating this analysis, we have developed a series of participatory FCM for the study of the ecological and human systems related to biodiversity conservation in two case studies of the Amazonian region, the Bolivia lowlands of Guarayos and the Brazil Tapajos National forest. The research is carried out in the context of the EU project ROBIN1 and it is based on the development of a series of stakeholder workshops to analyze the current state of the socio-ecological environment in the Amazonian forest, reflecting conflicts and challenges for biodiversity conservation and human development. Stakeholders included all relevant actors in the local case studies, namely farmers, environmental groups, producer organizations, local and provincial authorities and scientists. In both case studies we illustrate the use of complex networks concepts, such as the adjacency

  5. Social Networks and Health.

    PubMed

    Perdiaris, Christos; Chardalias, Konstantinos; Magita, Andrianna; Mechili, Aggelos E; Diomidous, Marianna

    2015-01-01

    Nowadays the social networks have been developed into an advanced communications tool, which is important for all people to contact each other. These specific networks do offer lots of options as well as plenty of advantages and disadvantages. The social websites are many in number and titles, such as the facebook, the twitter, the bandoo etc. One of the most important function-mechanisms for the social network websites, are the marketing tools. The future goal is suggested to be the evolution of these programs. The development of these applications, which is going to lead into a new era for the social digital communication between the internet users, all around the globe.

  6. "Conjectural" links in complex networks

    NASA Astrophysics Data System (ADS)

    Snarskii, A. A.; Zorinets, D. I.; Lande, D. V.

    2016-11-01

    This paper introduces the concept of Conjectural Link for Complex Networks, in particular, social networks. Conjectural Link we understand as an implicit link, not available in the network, but supposed to be present, based on the characteristics of its topology. It is possible, for example, when in the formal description of the network some connections are skipped due to errors, deliberately hidden or withdrawn (e.g. in the case of partial destruction of the network). Introduced a parameter that allows ranking the Conjectural Link. The more this parameter - the more likely that this connection should be present in the network. This paper presents a method of recovery of partially destroyed Complex Networks using Conjectural Links finding. Presented two methods of finding the node pairs that are not linked directly to one another, but have a great possibility of Conjectural Link communication among themselves: a method based on the determination of the resistance between two nodes, and method based on the computation of the lengths of routes between two nodes. Several examples of real networks are reviewed and performed a comparison to know network links prediction methods, not intended to find the missing links in already formed networks.

  7. Controllability of complex networks.

    PubMed

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2011-05-12

    The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.

  8. Exploring complex networks

    NASA Astrophysics Data System (ADS)

    Strogatz, Steven H.

    2001-03-01

    The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems - be they neurons, power stations or lasers - will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

  9. Affinity driven social networks

    NASA Astrophysics Data System (ADS)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  10. [Social networks and medicine].

    PubMed

    Bastardot, F; Vollenweider, P; Marques-Vidal, P

    2015-11-01

    Social networks (social media or #SoMe) have entered medical practice within the last few years. These new media--like Twitter or Skype--enrich interactions among physicians (telemedicine), among physicians and patients (virtual consultations) and change the way of teaching medicine. They also entail new ethical, deontological and legal issues: the extension of the consultation area beyond the medical office and the access of information by third parties were recently debated. We develop here a review of some social networks with their characteristics, applications for medicine and limitations, and we offer some recommendations of good practice. PMID:26685647

  11. Social Networks and Health.

    PubMed

    Perdiaris, Christos; Chardalias, Konstantinos; Magita, Andrianna; Mechili, Aggelos E; Diomidous, Marianna

    2015-01-01

    Nowadays the social networks have been developed into an advanced communications tool, which is important for all people to contact each other. These specific networks do offer lots of options as well as plenty of advantages and disadvantages. The social websites are many in number and titles, such as the facebook, the twitter, the bandoo etc. One of the most important function-mechanisms for the social network websites, are the marketing tools. The future goal is suggested to be the evolution of these programs. The development of these applications, which is going to lead into a new era for the social digital communication between the internet users, all around the globe. PMID:26153011

  12. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  13. Online Advertising in Social Networks

    NASA Astrophysics Data System (ADS)

    Bagherjeiran, Abraham; Bhatt, Rushi P.; Parekh, Rajesh; Chaoji, Vineet

    Online social networks offer opportunities to analyze user behavior and social connectivity and leverage resulting insights for effective online advertising. This chapter focuses on the role of social network information in online display advertising.

  14. Compressively sensed complex networks.

    SciTech Connect

    Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali

    2010-07-01

    The aim of this project is to develop low dimension parametric (deterministic) models of complex networks, to use compressive sensing (CS) and multiscale analysis to do so and to exploit the structure of complex networks (some are self-similar under coarsening). CS provides a new way of sampling and reconstructing networks. The approach is based on multiresolution decomposition of the adjacency matrix and its efficient sampling. It requires preprocessing of the adjacency matrix to make it 'blocky' which is the biggest (combinatorial) algorithm challenge. Current CS reconstruction algorithm makes no use of the structure of a graph, its very general (and so not very efficient/customized). Other model-based CS techniques exist, but not yet adapted to networks. Obvious starting point for future work is to increase the efficiency of reconstruction.

  15. Homogeneous complex networks

    NASA Astrophysics Data System (ADS)

    Bogacz, Leszek; Burda, Zdzisław; Wacław, Bartłomiej

    2006-07-01

    We discuss various ensembles of homogeneous complex networks and a Monte-Carlo method of generating graphs from these ensembles. The method is quite general and can be applied to simulate micro-canonical, canonical or grand-canonical ensembles for systems with various statistical weights. It can be used to construct homogeneous networks with desired properties, or to construct a non-trivial scoring function for problems of advanced motif searching.

  16. Complex Semantic Networks

    NASA Astrophysics Data System (ADS)

    Teixeira, G. M.; Aguiar, M. S. F.; Carvalho, C. F.; Dantas, D. R.; Cunha, M. V.; Morais, J. H. M.; Pereira, H. B. B.; Miranda, J. G. V.

    Verbal language is a dynamic mental process. Ideas emerge by means of the selection of words from subjective and individual characteristics throughout the oral discourse. The goal of this work is to characterize the complex network of word associations that emerge from an oral discourse from a discourse topic. Because of that, concepts of associative incidence and fidelity have been elaborated and represented the probability of occurrence of pairs of words in the same sentence in the whole oral discourse. Semantic network of words associations were constructed, where the words are represented as nodes and the edges are created when the incidence-fidelity index between pairs of words exceeds a numerical limit (0.001). Twelve oral discourses were studied. The networks generated from these oral discourses present a typical behavior of complex networks and their indices were calculated and their topologies characterized. The indices of these networks obtained from each incidence-fidelity limit exhibit a critical value in which the semantic network has maximum conceptual information and minimum residual associations. Semantic networks generated by this incidence-fidelity limit depict a pattern of hierarchical classes that represent the different contexts used in the oral discourse.

  17. Epidemic processes in complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Castellano, Claudio; Van Mieghem, Piet; Vespignani, Alessandro

    2015-07-01

    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.

  18. The Social Network Classroom

    NASA Astrophysics Data System (ADS)

    Bunus, Peter

    Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.

  19. Social networking and adolescents.

    PubMed

    Fuld, Gilbert L

    2009-04-01

    Online social networking is a 21st century innovation increasingly embraced by today's young people. It provides new opportunities for communication that expand an adolescent's world. Yet adults, often suspicious of new trends and technologies initially embraced by youth, often see these new environments as perilous places to visit. These fears have been accentuated by media hype, especially about sexual predators. How dangerous are they? Because the rush to go on these sites is a new phenomenon, research is as yet scant. This review explores current beliefs and knowledge about the dangers of social networking sites.

  20. An integrative network approach to social anxiety disorder: The complex dynamic interplay among attentional bias for threat, attentional control, and symptoms.

    PubMed

    Heeren, Alexandre; McNally, Richard J

    2016-08-01

    Cognitive models posit that social anxiety disorder (SAD) is associated with and maintained by biased attention allocation vis-à-vis social threat. However, over the last decade, there has been intense debate regarding whether AB in SAD results from preferential engagement with or difficulty in disengaging from social threat. Further, recent evidence suggests that AB may merely result from top-down attentional impairments vis-à-vis non-emotional material. Consequently, uncertainty still abounds regarding both the relative importance and the mutual interactions of these different processes and SAD symptoms. Inspired by novel network approaches to psychopathology that conceptualize symptoms as complex dynamic systems of mutually interacting variables, we computed weighted directed networks to investigate potential causal relations among laboratory measures of attentional components and symptoms of social anxiety disorder. Global and local connectivity of network structures revealed that the three most central variables were the orienting component of attention as well as both avoidance and fear of social situations. Neither preferential attention engagement with threat nor difficulty disengaging from threat exhibited high relative importance as predictors of symptoms in the network. Together, these findings suggest the value of extending the network approach beyond self-reported clinical symptoms to incorporate process-level measures from laboratory tasks to gain new insight into the mechanisms of SAD. PMID:27395806

  1. Contagion on complex networks with persuasion

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  2. Animal welfare: a social networks perspective.

    PubMed

    Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P

    2016-01-01

    Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare. PMID:27120815

  3. Animal welfare: a social networks perspective.

    PubMed

    Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P

    2016-01-01

    Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare.

  4. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  5. Higher-order organization of complex networks.

    PubMed

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2016-07-01

    Networks are a fundamental tool for understanding and modeling complex systems in physics, biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich, lower-order connectivity patterns that can be captured at the level of individual nodes and edges. However, higher-order organization of complex networks--at the level of small network subgraphs--remains largely unknown. Here, we develop a generalized framework for clustering networks on the basis of higher-order connectivity patterns. This framework provides mathematical guarantees on the optimality of obtained clusters and scales to networks with billions of edges. The framework reveals higher-order organization in a number of networks, including information propagation units in neuronal networks and hub structure in transportation networks. Results show that networks exhibit rich higher-order organizational structures that are exposed by clustering based on higher-order connectivity patterns.

  6. Higher-order organization of complex networks.

    PubMed

    Benson, Austin R; Gleich, David F; Leskovec, Jure

    2016-07-01

    Networks are a fundamental tool for understanding and modeling complex systems in physics, biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich, lower-order connectivity patterns that can be captured at the level of individual nodes and edges. However, higher-order organization of complex networks--at the level of small network subgraphs--remains largely unknown. Here, we develop a generalized framework for clustering networks on the basis of higher-order connectivity patterns. This framework provides mathematical guarantees on the optimality of obtained clusters and scales to networks with billions of edges. The framework reveals higher-order organization in a number of networks, including information propagation units in neuronal networks and hub structure in transportation networks. Results show that networks exhibit rich higher-order organizational structures that are exposed by clustering based on higher-order connectivity patterns. PMID:27387949

  7. Complex Networks and Socioeconomic Applications

    NASA Astrophysics Data System (ADS)

    Almendral, Juan A.; López, Luis; Mendes, Jose F.; Sanjuán, Miguel A. F.

    2003-04-01

    The study and characterization of complex systems is a fruitful research area nowadays. Special attention has been paid recently to complex networks, where graph and network analysis plays an important role since they reduce a given system to a simpler problem. Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders because the global influence each actor has within the network is completely determined by the hierarchical level occupied. The effect on the efficiency caused by a change in a traditional hierarchical topology is also analyzed. In particular, by introducing the possibility of communication on the same level of the hierarchy.

  8. Online social networking for radiology.

    PubMed

    Auffermann, William F; Chetlen, Alison L; Colucci, Andrew T; DeQuesada, Ivan M; Grajo, Joseph R; Heller, Matthew T; Nowitzki, Kristina M; Sherry, Steven J; Tillack, Allison A

    2015-01-01

    Online social networking services have changed the way we interact as a society and offer many opportunities to improve the way we practice radiology and medicine in general. This article begins with an introduction to social networking. Next, the latest advances in online social networking are reviewed, and areas where radiologists and clinicians may benefit from these new tools are discussed. This article concludes with several steps that the interested reader can take to become more involved in online social networking.

  9. Sociality influences cultural complexity

    PubMed Central

    Muthukrishna, Michael; Shulman, Ben W.; Vasilescu, Vlad; Henrich, Joseph

    2014-01-01

    Archaeological and ethnohistorical evidence suggests a link between a population's size and structure, and the diversity or sophistication of its toolkits or technologies. Addressing these patterns, several evolutionary models predict that both the size and social interconnectedness of populations can contribute to the complexity of its cultural repertoire. Some models also predict that a sudden loss of sociality or of population will result in subsequent losses of useful skills/technologies. Here, we test these predictions with two experiments that permit learners to access either one or five models (teachers). Experiment 1 demonstrates that naive participants who could observe five models, integrate this information and generate increasingly effective skills (using an image editing tool) over 10 laboratory generations, whereas those with access to only one model show no improvement. Experiment 2, which began with a generation of trained experts, shows how learners with access to only one model lose skills (in knot-tying) more rapidly than those with access to five models. In the final generation of both experiments, all participants with access to five models demonstrate superior skills to those with access to only one model. These results support theoretical predictions linking sociality to cumulative cultural evolution. PMID:24225461

  10. Sociality influences cultural complexity.

    PubMed

    Muthukrishna, Michael; Shulman, Ben W; Vasilescu, Vlad; Henrich, Joseph

    2014-01-01

    Archaeological and ethnohistorical evidence suggests a link between a population's size and structure, and the diversity or sophistication of its toolkits or technologies. Addressing these patterns, several evolutionary models predict that both the size and social interconnectedness of populations can contribute to the complexity of its cultural repertoire. Some models also predict that a sudden loss of sociality or of population will result in subsequent losses of useful skills/technologies. Here, we test these predictions with two experiments that permit learners to access either one or five models (teachers). Experiment 1 demonstrates that naive participants who could observe five models, integrate this information and generate increasingly effective skills (using an image editing tool) over 10 laboratory generations, whereas those with access to only one model show no improvement. Experiment 2, which began with a generation of trained experts, shows how learners with access to only one model lose skills (in knot-tying) more rapidly than those with access to five models. In the final generation of both experiments, all participants with access to five models demonstrate superior skills to those with access to only one model. These results support theoretical predictions linking sociality to cumulative cultural evolution.

  11. Collaboration in social networks

    PubMed Central

    Dall’Asta, Luca; Marsili, Matteo; Pin, Paolo

    2012-01-01

    The very notion of social network implies that linked individuals interact repeatedly with each other. This notion allows them not only to learn successful strategies and adapt to them, but also to condition their own behavior on the behavior of others, in a strategic forward looking manner. Game theory of repeated games shows that these circumstances are conducive to the emergence of collaboration in simple games of two players. We investigate the extension of this concept to the case where players are engaged in a local contribution game and show that rationality and credibility of threats identify a class of Nash equilibria—that we call “collaborative equilibria”—that have a precise interpretation in terms of subgraphs of the social network. For large network games, the number of such equilibria is exponentially large in the number of players. When incentives to defect are small, equilibria are supported by local structures whereas when incentives exceed a threshold they acquire a nonlocal nature, which requires a “critical mass” of more than a given fraction of the players to collaborate. Therefore, when incentives are high, an individual deviation typically causes the collapse of collaboration across the whole system. At the same time, higher incentives to defect typically support equilibria with a higher density of collaborators. The resulting picture conforms with several results in sociology and in the experimental literature on game theory, such as the prevalence of collaboration in denser groups and in the structural hubs of sparse networks. PMID:22383559

  12. Modeling Social Network Topologies in Elementary Schools

    PubMed Central

    Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Viga-de Alva, Dolores

    2013-01-01

    Complex networks are used to describe interactions in many real world systems, including economic, biological and social systems. An analysis was done of inter-student friendship, enmity and kinship relationships at three elementary schools by building social networks of these relationships and studying their properties. Friendship network measurements were similar between schools and produced a Poisson topology with a high clustering index. Enmity network measurements were also similar between schools and produced a power law topology. Spatial confinement and the sense of belonging to a social group played vital roles in shaping these networks. Two models were developed which generate complex friendship and enmity networks that reproduce the properties observed at the three studied elementary schools. PMID:23408976

  13. Interests diffusion in social networks

    NASA Astrophysics Data System (ADS)

    D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore

    2015-10-01

    We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.

  14. Correlation dimension of complex networks.

    PubMed

    Lacasa, Lucas; Gómez-Gardeñes, Jesús

    2013-04-19

    We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.

  15. Applications of Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  16. Spreading dynamics in complex networks

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  17. Controlling complex networks with conformity behavior

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  18. Underage Children and Social Networking

    ERIC Educational Resources Information Center

    Weeden, Shalynn; Cooke, Bethany; McVey, Michael

    2013-01-01

    Despite minimum age requirements for joining popular social networking services such as Facebook, many students misrepresent their real ages and join as active participants in the networks. This descriptive study examines the use of social networking services (SNSs) by children under the age of 13. The researchers surveyed a sample of 199…

  19. Social Network Visualization in Epidemiology

    PubMed Central

    Christakis, Nicholas A.; Fowler, James H.

    2010-01-01

    Epidemiological investigations and interventions are increasingly focusing on social networks. Two aspects of social networks are relevant in this regard: the structure of networks and the function of networks. A better understanding of the processes that determine how networks form and how they operate with respect to the spread of behavior holds promise for improving public health. Visualizing social networks is a key to both research and interventions. Network images supplement statistical analyses and allow the identification of groups of people for targeting, the identification of central and peripheral individuals, and the clarification of the macro-structure of the network in a way that should affect public health interventions. People are inter-connected and so their health is inter-connected. Inter-personal health effects in social networks provide a new foundation for public health. PMID:22544996

  20. Graph distance for complex networks

    NASA Astrophysics Data System (ADS)

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-10-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.

  1. Graph distance for complex networks

    PubMed Central

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-01-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions. PMID:27725690

  2. Attack vulnerability of complex networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Kim, Beom Jun; Yoon, Chang No; Han, Seung Kee

    2002-05-01

    We study the response of complex networks subject to attacks on vertices and edges. Several existing complex network models as well as real-world networks of scientific collaborations and Internet traffic are numerically investigated, and the network performance is quantitatively measured by the average inverse geodesic length and the size of the largest connected subgraph. For each case of attacks on vertices and edges, four different attacking strategies are used: removals by the descending order of the degree and the betweenness centrality, calculated for either the initial network or the current network during the removal procedure. It is found that the removals by the recalculated degrees and betweenness centralities are often more harmful than the attack strategies based on the initial network, suggesting that the network structure changes as important vertices or edges are removed. Furthermore, the correlation between the betweenness centrality and the degree in complex networks is studied.

  3. Search in weighted complex networks

    NASA Astrophysics Data System (ADS)

    Thadakamalla, Hari P.; Albert, R.; Kumara, S. R. T.

    2005-12-01

    We study trade-offs presented by local search algorithms in complex networks which are heterogeneous in edge weights and node degree. We show that search based on a network measure, local betweenness centrality (LBC), utilizes the heterogeneity of both node degrees and edge weights to perform the best in scale-free weighted networks. The search based on LBC is universal and performs well in a large class of complex networks.

  4. Statistical mechanics of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Barabási, Albert-László

    2002-01-01

    Complex networks describe a wide range of systems in nature and society. Frequently cited examples include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of routers and computers connected by physical links. While traditionally these systems have been modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks are governed by robust organizing principles. This article reviews the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, the authors discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, the emerging theory of evolving networks, and the interplay between topology and the network's robustness against failures and attacks.

  5. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  6. Fundamental structures of dynamic social networks

    PubMed Central

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  7. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  8. Measure of robustness for complex networks

    NASA Astrophysics Data System (ADS)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect

  9. A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks

    ERIC Educational Resources Information Center

    Gou, Liang

    2012-01-01

    Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…

  10. Entropy of Dynamical Social Networks

    PubMed Central

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    2011-01-01

    Human dynamical social networks encode information and are highly adaptive. To characterize the information encoded in the fast dynamics of social interactions, here we introduce the entropy of dynamical social networks. By analysing a large dataset of phone-call interactions we show evidence that the dynamical social network has an entropy that depends on the time of the day in a typical week-day. Moreover we show evidence for adaptability of human social behavior showing data on duration of phone-call interactions that significantly deviates from the statistics of duration of face-to-face interactions. This adaptability of behavior corresponds to a different information content of the dynamics of social human interactions. We quantify this information by the use of the entropy of dynamical networks on realistic models of social interactions. PMID:22194809

  11. Churn in Social Networks

    NASA Astrophysics Data System (ADS)

    Karnstedt, Marcel; Hennessy, Tara; Chan, Jeffrey; Basuchowdhuri, Partha; Hayes, Conor; Strufe, Thorsten

    In the past, churn has been identified as an issue across most industry sectors. In its most general sense it refers to the rate of loss of customers from a company's customer base. There is a simple reason for the attention churn attracts: churning customers mean a loss of revenue. Emerging from business spaces like telecommunications (telcom) and broadcast providers, where churn is a major issue, it is also regarded as a crucial problem in many other businesses, such as online games creators, but also online social networks and discussion sites. Companies aim at identifying the risk of churn in its early stages, as it is usually much cheaper to retain a customer than to try to win him or her back. If this risk can be accurately predicted, marketing departments can target customers efficiently with tailored incentives to prevent them from leaving.

  12. The price of complexity in financial networks

    PubMed Central

    May, Robert M.; Roukny, Tarik; Stiglitz, Joseph E.

    2016-01-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises. PMID:27555583

  13. The price of complexity in financial networks.

    PubMed

    Battiston, Stefano; Caldarelli, Guido; May, Robert M; Roukny, Tarik; Stiglitz, Joseph E

    2016-09-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises. PMID:27555583

  14. The price of complexity in financial networks

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; May, Robert M.; Roukny, Tarik; Stiglitz, Joseph E.

    2016-09-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises.

  15. Complex Dynamics in Information Sharing Networks

    NASA Astrophysics Data System (ADS)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  16. A Social Networks in Education

    ERIC Educational Resources Information Center

    Klimova, Blanka; Poulova, Petra

    2015-01-01

    At present social networks are becoming important in all areas of human activities. They are simply part and parcel of everyday life. They are mostly used for advertising, but they have already found their way into education. The future potential of social networks is high as it can be seen from their statistics on a daily, monthly or yearly…

  17. Social Networking Goes to School

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2010-01-01

    Just a few years ago, social networking meant little more to educators than the headache of determining whether to penalize students for inappropriate activities captured on Facebook or MySpace. Now, teachers and students have an array of social-networking sites and tools--from Ning to VoiceThread and Second Life--to draw on for such serious uses…

  18. Effective Augmentation of Complex Networks

    PubMed Central

    Wang, Jinjian; Yu, Xinghuo; Stone, Lewi

    2016-01-01

    Networks science plays an enormous role in many aspects of modern society from distributing electrical power across nations to spreading information and social networking amongst global populations. While modern networks constantly change in size, few studies have sought methods for the difficult task of optimising this growth. Here we study theoretical requirements for augmenting networks by adding source or sink nodes, without requiring additional driver-nodes to accommodate the change i.e., conserving structural controllability. Our “effective augmentation” algorithm takes advantage of clusters intrinsic to the network topology, and permits rapidly and efficient augmentation of a large number of nodes in one time-step. “Effective augmentation” is shown to work successfully on a wide range of model and real networks. The method has numerous applications (e.g. study of biological, social, power and technological networks) and potentially of significant practical and economic value. PMID:27165120

  19. Effective Augmentation of Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jinjian; Yu, Xinghuo; Stone, Lewi

    2016-05-01

    Networks science plays an enormous role in many aspects of modern society from distributing electrical power across nations to spreading information and social networking amongst global populations. While modern networks constantly change in size, few studies have sought methods for the difficult task of optimising this growth. Here we study theoretical requirements for augmenting networks by adding source or sink nodes, without requiring additional driver-nodes to accommodate the change i.e., conserving structural controllability. Our “effective augmentation” algorithm takes advantage of clusters intrinsic to the network topology, and permits rapidly and efficient augmentation of a large number of nodes in one time-step. “Effective augmentation” is shown to work successfully on a wide range of model and real networks. The method has numerous applications (e.g. study of biological, social, power and technological networks) and potentially of significant practical and economic value.

  20. Self-similarity of complex networks.

    PubMed

    Song, Chaoming; Havlin, Shlomo; Makse, Hernán A

    2005-01-27

    Complex networks have been studied extensively owing to their relevance to many real systems such as the world-wide web, the Internet, energy landscapes and biological and social networks. A large number of real networks are referred to as 'scale-free' because they show a power-law distribution of the number of links per node. However, it is widely believed that complex networks are not invariant or self-similar under a length-scale transformation. This conclusion originates from the 'small-world' property of these networks, which implies that the number of nodes increases exponentially with the 'diameter' of the network, rather than the power-law relation expected for a self-similar structure. Here we analyse a variety of real complex networks and find that, on the contrary, they consist of self-repeating patterns on all length scales. This result is achieved by the application of a renormalization procedure that coarse-grains the system into boxes containing nodes within a given 'size'. We identify a power-law relation between the number of boxes needed to cover the network and the size of the box, defining a finite self-similar exponent. These fundamental properties help to explain the scale-free nature of complex networks and suggest a common self-organization dynamics.

  1. Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks

    NASA Astrophysics Data System (ADS)

    Maletić, S.; Rajković, M.

    2012-09-01

    Simplicial complexes represent useful and accurate models of complex networks and complex systems in general. We explore the properties of spectra of combinatorial Laplacian operator of simplicial complexes and show its relationship with connectivity properties of the Q-vector and with connectivities of cliques in the simplicial clique complex. We demonstrate the need for higher order analysis in complex networks and compare the results with ordinary graph spectra. Methods and results are obtained using social network of the Zachary karate club.

  2. Social network supported process recommender system.

    PubMed

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  3. Error and attack tolerance of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Jeong, Hawoong; Barabási, Albert-László

    2000-07-01

    Many complex systems display a surprising degree of tolerance against errors. For example, relatively simple organisms grow, persist and reproduce despite drastic pharmaceutical or environmental interventions, an error tolerance attributed to the robustness of the underlying metabolic network. Complex communication networks display a surprising degree of robustness: although key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these and other complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. Here we demonstrate that error tolerance is not shared by all redundant systems: it is displayed only by a class of inhomogeneously wired networks, called scale-free networks, which include the World-Wide Web, the Internet, social networks and cells. We find that such networks display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates. However, error tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that is, to the selection and removal of a few nodes that play a vital role in maintaining the network's connectivity). Such error tolerance and attack vulnerability are generic properties of communication networks.

  4. Analysis and applications of complex networks

    NASA Astrophysics Data System (ADS)

    Bagrow, James Peter

    This thesis is concerned with three main areas of complex networks research. One is on developing and testing new methods to find communities, especially methods that do not need knowledge of the entire network. The second is on the application of shells and their usage when characterizing and identifying important network properties. Finally, we offer several contributions toward the usage of complex networks as a tool for studying social dynamics. The study of communities, densely interconnected subsets of nodes, is a difficult and important problem. Methods to identify communities are developed which have the rare ability to function with only local knowledge of the network. A new bench-marking and evaluation procedure is introduced to compare the performance of both existing and new local community algorithms. Using shells, we introduce a new matrix structure that allows for quantitative comparison and visualization of networks of all sizes, even extremely large ones. This "portrait" encodes a great deal of information including dimensionality and regularity, and imparts immediate intuition about the network at hand. A distance metric generated by comparing two portraits allows one to test if, e.g., two networks were created by the same underlying generating mechanism. Generalizations to weighted networks are studied, as is applicability to the Graph Isomorphism problem. We introduce the Patron-Artwork model as a new means of generating a distribution of fame or knowledge from an underlying social network, and give a full analysis for a network where all members are neighbors. In addition, the so-called Small World Phenomenon has been studied in the context of social networks, specifically that of Kleinberg navigation. We studied the impact of modifying the underlying Kleinberg lattice by introducing an anisotropy: the lattice is either stretched along one axis or long-distance connections are made more favorable along a preferred direction.

  5. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  6. The robustness of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2002-03-01

    Many complex networks display a surprising degree of tolerance against errors. For example, organisms and ecosystems exhibit remarkable robustness to large variations in temperature, moisture, and nutrients, and communication networks continue to function despite local failures. This presentation will explore the effects of the network topology on its robust functioning. First, we will consider the topological integrity of several networks under node disruption. Then we will focus on the functional robustness of biological signaling networks, and the decisive role played by the network topology in this robustness.

  7. The architecture of complex weighted networks

    PubMed Central

    Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A.

    2004-01-01

    Networked structures arise in a wide array of different contexts such as technological and transportation infrastructures, social phenomena, and biological systems. These highly interconnected systems have recently been the focus of a great deal of attention that has uncovered and characterized their topological complexity. Along with a complex topological structure, real networks display a large heterogeneity in the capacity and intensity of the connections. These features, however, have mainly not been considered in past studies where links are usually represented as binary states, i.e., either present or absent. Here, we study the scientific collaboration network and the world-wide air-transportation network, which are representative examples of social and large infrastructure systems, respectively. In both cases it is possible to assign to each edge of the graph a weight proportional to the intensity or capacity of the connections among the various elements of the network. We define appropriate metrics combining weighted and topological observables that enable us to characterize the complex statistical properties and heterogeneity of the actual strength of edges and vertices. This information allows us to investigate the correlations among weighted quantities and the underlying topological structure of the network. These results provide a better description of the hierarchies and organizational principles at the basis of the architecture of weighted networks. PMID:15007165

  8. Synchronization Dynamics in Complex Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Zemanová, Lucia; Kurths, Jürgen

    Previous chapters have discussed tools from graph theory and their contribution to our understanding of the structural organization of mammalian brains and its functional implications. The brain functions are mediated by complicated dynamical processes which arise from the underlying complex neural networks, and synchronization has been proposed as an important mechanism for neural information processing. In this chapter, we discuss synchronization dynamics on complex networks. We first present a general theory and tools to characterize the relationship of some structural measures of networks to their synchronizability (the ability of the networks to achieve complete synchronization) and to the organization of effective synchronization patterns on the networks. Then, we study synchronization in a realistic network of cat cortical connectivity by modeling the nodes (which are cortical areas composed of large ensembles of neurons) by a neural mass model or a subnetwork of interacting neurons. We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns can be understood by the general principles discussed in the first part of the chapter. With weak couplings, the model with subnetworks displays biologically plausible dynamics and the synchronization pattern reveals a hierarchically clustered organization in the network structure. Thus, the study of synchronization of complex networks can provide insights into the relationship between network topology and functional organization of complex brain networks.

  9. Topological Strata of Weighted Complex Networks.

    PubMed

    Petri, Giovanni; Scolamiero, Martina; Donato, Irene; Vaccarino, Francesco

    2013-01-01

    The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and -more recently- correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems. PMID:23805226

  10. Using Social Network Graphs as Visualization Tools to Influence Peer Selection Decision-Making Strategies to Access Information about Complex Socioscientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan A.

    2011-01-01

    This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…

  11. Contagion on complex networks with persuasion.

    PubMed

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-01-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498

  12. Contagion on complex networks with persuasion

    PubMed Central

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-01-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498

  13. Social networks and neurological illness.

    PubMed

    Dhand, Amar; Luke, Douglas A; Lang, Catherine E; Lee, Jin-Moo

    2016-10-01

    Every patient is embedded in a social network of interpersonal connections that influence health outcomes. Neurologists routinely need to engage with a patient's family and friends due to the nature of the illness and its social sequelae. Social isolation is a potent determinant of poor health and neurobiological changes, and its effects can be comparable to those of traditional risk factors. It would seem reasonable, therefore, to map and follow the personal networks of neurology patients. This approach reveals influential people, their habits, and linkage patterns that could facilitate or limit health behaviours. Personal network information can be particularly valuable to enhance risk factor management, medication adherence, and functional recovery. Here, we propose an agenda for research and clinical practice that includes mapping the networks of patients with diverse neurological disorders, evaluating the impact of the networks on patient outcomes, and testing network interventions. PMID:27615420

  14. Line graphs as social networks

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Muchnik, L.; Mańka-Krasoń, A.; Kułakowski, K.

    2011-07-01

    It was demonstrated recently that the line graphs are clustered and assortative. These topological features are known to characterize some social networks [M.E.J. Newman, Y. Park, Why social networks are different from other types of networks, Phys. Rev. E 68 (2003) 036122]; it was argued that this similarity reveals their cliquey character. In the model proposed here, a social network is the line graph of an initial network of families, communities, interest groups, school classes and small companies. These groups play the role of nodes, and individuals are represented by links between these nodes. The picture is supported by the data on the LiveJournal network of about 8×10 6 people.

  15. Introduction to Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Zaphiris, Panayiotis; Ang, Chee Siang

    Social Network analysis focuses on patterns of relations between and among people, organizations, states, etc. It aims to describe networks of relations as fully as possible, identify prominent patterns in such networks, trace the flow of information through them, and discover what effects these relations and networks have on people and organizations. Social network analysis offers a very promising potential for analyzing human-human interactions in online communities (discussion boards, newsgroups, virtual organizations). This Tutorial provides an overview of this analytic technique and demonstrates how it can be used in Human Computer Interaction (HCI) research and practice, focusing especially on Computer Mediated Communication (CMC). This topic acquires particular importance these days, with the increasing popularity of social networking websites (e.g., youtube, myspace, MMORPGs etc.) and the research interest in studying them.

  16. Social Disadvantage and Network Turnover

    PubMed Central

    2015-01-01

    Objectives. Research shows that socially disadvantaged groups—especially African Americans and people of low socioeconomic status (SES)—experience more unstable social environments. I argue that this causes higher rates of turnover within their personal social networks. This is a particularly important issue among disadvantaged older adults, who may benefit from stable networks. This article, therefore, examines whether social disadvantage is related to various aspects of personal network change. Method. Social network change was assessed using longitudinal egocentric network data from the National Social Life, Health, and Aging Project, a study of older adults conducted between 2005 and 2011. Data collection in Wave 2 included a technique for comparing respondents’ confidant network rosters between waves. Rates of network losses, deaths, and additions were modeled using multivariate Poisson regression. Results. African Americans and low-SES individuals lost more confidants—especially due to death—than did whites and college-educated respondents. African Americans also added more confidants than whites. However, neither African Americans nor low-SES individuals were able to match confidant losses with new additions to the extent that others did, resulting in higher levels of confidant network shrinkage. These trends are partly, but not entirely, explained by disadvantaged individuals’ poorer health and their greater risk of widowhood or marital dissolution. Discussion. Additional work is needed to shed light on the role played by race- and class-based segregation on group differences in social network turnover. Social gerontologists should examine the role these differences play in explaining the link between social disadvantage and important outcomes in later life, such as health decline. PMID:24997286

  17. The Possibilities of Network Sociality

    NASA Astrophysics Data System (ADS)

    Willson, Michele

    Technologically networked social forms are broad, extensive and in demand. The rapid development and growth of web 2.0, or the social web, is evidence of the need and indeed hunger for social connectivity: people are searching for many and varied ways of enacting being-together. However, the ways in which we think of, research and write about network(ed) sociality are relatively recent and arguably restricted, warranting further critique and development. This article attempts to do several things: it raises questions about the types of sociality enacted in contemporary techno-society; critically explores the notion of the networked individual and the focus on the individual evident in much of the technology and sociality literature and asks questions about the place of the social in these discussions. It argues for a more well-balanced and multilevelled approach to questions of sociality in networked societies. The article starts from the position that possibilities enabled/afforded by the technologies we have in place have an effect upon the ways in which we understand being in the world together and our possible actions and futures. These possibilities are more than simply supplementary; in many ways they are transformative. The ways in which we grapple with these questions reveals as much about our understandings of sociality as it does about the technologies themselves.

  18. Quantization Effects on Complex Networks

    PubMed Central

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  19. Quantization Effects on Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-05-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws.

  20. Quantization Effects on Complex Networks.

    PubMed

    Wang, Ying; Wang, Lin; Yang, Wen; Wang, Xiaofan

    2016-01-01

    Weights of edges in many complex networks we constructed are quantized values of the real weights. To what extent does the quantization affect the properties of a network? In this work, quantization effects on network properties are investigated based on the spectrum of the corresponding Laplacian. In contrast to the intuition that larger quantization level always implies a better approximation of the quantized network to the original one, we find a ubiquitous periodic jumping phenomenon with peak-value decreasing in a power-law relationship in all the real-world weighted networks that we investigated. We supply theoretical analysis on the critical quantization level and the power laws. PMID:27226049

  1. Information complexity of neural networks.

    PubMed

    Kon, M A; Plaskota, L

    2000-04-01

    This paper studies the question of lower bounds on the number of neurons and examples necessary to program a given task into feed forward neural networks. We introduce the notion of information complexity of a network to complement that of neural complexity. Neural complexity deals with lower bounds for neural resources (numbers of neurons) needed by a network to perform a given task within a given tolerance. Information complexity measures lower bounds for the information (i.e. number of examples) needed about the desired input-output function. We study the interaction of the two complexities, and so lower bounds for the complexity of building and then programming feed-forward nets for given tasks. We show something unexpected a priori--the interaction of the two can be simply bounded, so that they can be studied essentially independently. We construct radial basis function (RBF) algorithms of order n3 that are information-optimal, and give example applications.

  2. Review of Public Safety in Viewpoint of Complex Networks

    SciTech Connect

    Gai Chengcheng; Weng Wenguo; Yuan Hongyong

    2010-05-21

    In this paper, a brief review of public safety in viewpoint of complex networks is presented. Public safety incidents are divided into four categories: natural disasters, industry accidents, public health and social security, in which the complex network approaches and theories are need. We review how the complex network methods was developed and used in the studies of the three kinds of public safety incidents. The typical public safety incidents studied by the complex network methods in this paper are introduced, including the natural disaster chains, blackouts on electric power grids and epidemic spreading. Finally, we look ahead to the application prospects of the complex network theory on public safety.

  3. Social networks and the development of social skills in cowbirds.

    PubMed

    White, David J; Gersick, Andrew S; Snyder-Mackler, Noah

    2012-07-01

    The complex interrelationships among individuals within social environments can exert selection pressures on social skills: those behaviours and cognitive processes that allow animals to manipulate and out-reproduce others. Social complexity can also have a developmental effect on social skills by providing individuals with opportunities to hone their skills by dealing with the challenges posed in within-group interactions. We examined how social skills develop in captive, adult male brown-headed cowbirds (Molothrus ater) that were exposed to differing levels of 'social complexity' across a 2-year experiment. After each year, subjects housed in groups with dynamic social structure (where many individuals entered and exited the groups during the year) outcompeted birds who had been housed in static groups. Exposure to dynamic structure subsequently led to substantial changes to the social networks of the home conditions during the breeding season. Static groups were characterized by a predictable relationship between singing and reproductive success that was stable across years. In dynamic conditions, however, males showed significant variability in their dominance status, their courting and even in their mating success. Reproductive success of males varied dramatically across years and was responsive to social learning in adulthood, and socially dynamic environments 'trained' individuals to be better competitors, even at an age when the development of many traits important for breeding (like song quality) had ended. PMID:22641827

  4. Social networks and the development of social skills in cowbirds.

    PubMed

    White, David J; Gersick, Andrew S; Snyder-Mackler, Noah

    2012-07-01

    The complex interrelationships among individuals within social environments can exert selection pressures on social skills: those behaviours and cognitive processes that allow animals to manipulate and out-reproduce others. Social complexity can also have a developmental effect on social skills by providing individuals with opportunities to hone their skills by dealing with the challenges posed in within-group interactions. We examined how social skills develop in captive, adult male brown-headed cowbirds (Molothrus ater) that were exposed to differing levels of 'social complexity' across a 2-year experiment. After each year, subjects housed in groups with dynamic social structure (where many individuals entered and exited the groups during the year) outcompeted birds who had been housed in static groups. Exposure to dynamic structure subsequently led to substantial changes to the social networks of the home conditions during the breeding season. Static groups were characterized by a predictable relationship between singing and reproductive success that was stable across years. In dynamic conditions, however, males showed significant variability in their dominance status, their courting and even in their mating success. Reproductive success of males varied dramatically across years and was responsive to social learning in adulthood, and socially dynamic environments 'trained' individuals to be better competitors, even at an age when the development of many traits important for breeding (like song quality) had ended.

  5. The physics of communicability in complex networks

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Hatano, Naomichi; Benzi, Michele

    2012-05-01

    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.

  6. Analysis of complex networks using aggressive abstraction.

    SciTech Connect

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  7. Online Identities and Social Networking

    NASA Astrophysics Data System (ADS)

    Maheswaran, Muthucumaru; Ali, Bader; Ozguven, Hatice; Lord, Julien

    Online identities play a critical role in the social web that is taking shape on the Internet. Despite many technical proposals for creating and managing online identities, none has received widespread acceptance. Design and implementation of online identities that are socially acceptable on the Internet remains an open problem. This chapter discusses the interplay between online identities and social networking. Online social networks (OSNs) are growing at a rapid pace and has millions of members in them. While the recent trend is to create explicit OSNs such as Facebook and MySpace, we also have implicit OSNs such as interaction graphs created by email and instant messaging services. Explicit OSNs allow users to create profiles and use them to project their identities on the web. There are many interesting identity related issues in the context of social networking including how OSNs help and hinder the definition of online identities.

  8. Social network size in humans.

    PubMed

    Hill, R A; Dunbar, R I M

    2003-03-01

    This paper examines social network size in contemporary Western society based on the exchange of Christmas cards. Maximum network size averaged 153.5 individuals, with a mean network size of 124.9 for those individuals explicitly contacted; these values are remarkably close to the group size of 150 predicted for humans on the basis of the size of their neocortex. Age, household type, and the relationship to the individual influence network structure, although the proportion of kin remained relatively constant at around 21%. Frequency of contact between network members was primarily determined by two classes of variable: passive factors (distance, work colleague, overseas) and active factors (emotional closeness, genetic relatedness). Controlling for the influence of passive factors on contact rates allowed the hierarchical structure of human social groups to be delimited. These findings suggest that there may be cognitive constraints on network size.

  9. Stressing out the Social Network.

    PubMed

    Kirkby, Lowry A; Sohal, Vikaas S

    2016-07-20

    In this issue of Neuron, Hultman et al. (2016) find that stress-induced abnormal social behavior reflects aberrant prefrontal regulation of downstream limbic networks. This illustrates how linking aberrant network dynamics to neuropsychiatric disorders may lead to new circuit-based therapeutic interventions. PMID:27477012

  10. Measurement of Online Social Networks

    ERIC Educational Resources Information Center

    Gjoka, Mina

    2010-01-01

    In recent years, the popularity of online social networks (OSN) has risen to unprecedented levels, with the most popular ones having hundreds of millions of users. This success has generated interest within the networking community and has given rise to a number of measurement and characterization studies, which provide a first step towards their…

  11. Identifying community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Chenxi; Duan, Yubing

    2015-07-01

    A wide variety of applications could be formulated to resolve the problem of finding all communities from a given network, ranging from social and biological network analysis to web mining and searching. In this study, we propose the concept of virtual attractive strength between each pair of node in networks, and then give the definition of community structure based on the proposed attractive strength. Furthermore, we present a community detection method by moving vertices to the clusters that produce the largest attractive strengths to them until the division of network reaches unchanged. Experimental results on synthetic and real networks indicate that the proposed approach has favorite effectiveness and fast convergence speed, which provides an efficient method for exploring and analyzing complex systems.

  12. Measuring distances between complex networks

    NASA Astrophysics Data System (ADS)

    Andrade, Roberto F. S.; Miranda, José G. V.; Pinho, Suani T. R.; Lobão, Thierry Petit

    2008-08-01

    A previously introduced concept of higher order neighborhoods in complex networks, [R.F.S. Andrade, J.G.V. Miranda, T.P. Lobão, Phys. Rev. E 73 (2006) 046101] is used to define a distance between networks with the same number of nodes. With such measure, expressed in terms of the matrix elements of the neighborhood matrices of each network, it is possible to compare, in a quantitative way, how far apart in the space of neighborhood matrices two networks are. The distance between these matrices depends on both the network topologies and the adopted node numberings. While the numbering of one network is fixed, a Monte Carlo algorithm is used to find the best numbering of the other network, in the sense that it minimizes the distance between the matrices. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise only from distinct topologies. This procedure ends up by providing a projection of the first network on the pattern of the second one. Examples are worked out allowing for a quantitative comparison for distances among distinct networks, as well as among distinct realizations of random networks.

  13. Control efficacy of complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  14. Control efficacy of complex networks

    PubMed Central

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  15. Information communication on complex networks

    NASA Astrophysics Data System (ADS)

    Igarashi, Akito; Kawamoto, Hiroki; Maruyama, Takahiro; Morioka, Atsushi; Naganuma, Yuki

    2013-02-01

    Since communication networks such as the Internet, which is regarded as a complex network, have recently become a huge scale and a lot of data pass through them, the improvement of packet routing strategies for transport is one of the most significant themes in the study of computer networks. It is especially important to find routing strategies which can bear as many traffic as possible without congestion in complex networks. First, using neural networks, we introduce a strategy for packet routing on complex networks, where path lengths and queue lengths in nodes are taken into account within a framework of statistical physics. Secondly, instead of using shortest paths, we propose efficient paths which avoid hubs, nodes with a great many degrees, on scale-free networks with a weight of each node. We improve the heuristic algorithm proposed by Danila et. al. which optimizes step by step routing properties on congestion by using the information of betweenness, the probability of paths passing through a node in all optimal paths which are defined according to a rule, and mitigates the congestion. We confirm the new heuristic algorithm which balances traffic on networks by achieving minimization of the maximum betweenness in much smaller number of iteration steps. Finally, We model virus spreading and data transfer on peer-to-peer (P2P) networks. Using mean-field approximation, we obtain an analytical formulation and emulate virus spreading on the network and compare the results with those of simulation. Moreover, we investigate the mitigation of information traffic congestion in the P2P networks.

  16. Maximizing information exchange between complex networks

    NASA Astrophysics Data System (ADS)

    West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo

    2008-10-01

    modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.

  17. Neighborhood properties of complex networks

    NASA Astrophysics Data System (ADS)

    Andrade, Roberto F. S.; Miranda, José G. V.; Lobão, Thierry Petit

    2006-04-01

    A concept of neighborhood in complex networks is addressed based on the criterion of the minimal number of steps to reach other vertices. This amounts to, starting from a given network R1 , generating a family of networks Rl,l=2,3,… such that, the vertices that are l steps apart in the original R1 , are only 1 step apart in Rl . The higher order networks are generated using Boolean operations among the adjacency matrices Ml that represent Rl . The families originated by the well known linear and the Erdös-Renyi networks are found to be invariant, in the sense that the spectra of Ml are the same, up to finite size effects. A further family originated from small world network is identified.

  18. Assessing group interaction with social language network analysis.

    SciTech Connect

    Pennebaker, James; Scholand, Andrew Joseph; Tausczik, Yla R.

    2010-04-01

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  19. Assessing Group Interaction with Social Language Network Analysis

    NASA Astrophysics Data System (ADS)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  20. Social networks and environmental outcomes.

    PubMed

    Barnes, Michele L; Lynham, John; Kalberg, Kolter; Leung, PingSun

    2016-06-01

    Social networks can profoundly affect human behavior, which is the primary force driving environmental change. However, empirical evidence linking microlevel social interactions to large-scale environmental outcomes has remained scarce. Here, we leverage comprehensive data on information-sharing networks among large-scale commercial tuna fishers to examine how social networks relate to shark bycatch, a global environmental issue. We demonstrate that the tendency for fishers to primarily share information within their ethnic group creates segregated networks that are strongly correlated with shark bycatch. However, some fishers share information across ethnic lines, and examinations of their bycatch rates show that network contacts are more strongly related to fishing behaviors than ethnicity. Our findings indicate that social networks are tied to actions that can directly impact marine ecosystems, and that biases toward within-group ties may impede the diffusion of sustainable behaviors. Importantly, our analysis suggests that enhanced communication channels across segregated fisher groups could have prevented the incidental catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery.

  1. Social networks and environmental outcomes.

    PubMed

    Barnes, Michele L; Lynham, John; Kalberg, Kolter; Leung, PingSun

    2016-06-01

    Social networks can profoundly affect human behavior, which is the primary force driving environmental change. However, empirical evidence linking microlevel social interactions to large-scale environmental outcomes has remained scarce. Here, we leverage comprehensive data on information-sharing networks among large-scale commercial tuna fishers to examine how social networks relate to shark bycatch, a global environmental issue. We demonstrate that the tendency for fishers to primarily share information within their ethnic group creates segregated networks that are strongly correlated with shark bycatch. However, some fishers share information across ethnic lines, and examinations of their bycatch rates show that network contacts are more strongly related to fishing behaviors than ethnicity. Our findings indicate that social networks are tied to actions that can directly impact marine ecosystems, and that biases toward within-group ties may impede the diffusion of sustainable behaviors. Importantly, our analysis suggests that enhanced communication channels across segregated fisher groups could have prevented the incidental catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery. PMID:27217551

  2. Rumor evolution in social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Zhou, Shi; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2013-03-01

    The social network is a main tunnel of rumor spreading. Previous studies concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped, and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first six mouth-to-mouth transmissions. Based on these observations, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to their neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multirevised version of the rumor, if the modifiers dominate the networks. The individuals with more social connections have a higher probability to receive the original rumor. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn out to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.

  3. Social networks and environmental outcomes

    PubMed Central

    Kalberg, Kolter; Leung, PingSun

    2016-01-01

    Social networks can profoundly affect human behavior, which is the primary force driving environmental change. However, empirical evidence linking microlevel social interactions to large-scale environmental outcomes has remained scarce. Here, we leverage comprehensive data on information-sharing networks among large-scale commercial tuna fishers to examine how social networks relate to shark bycatch, a global environmental issue. We demonstrate that the tendency for fishers to primarily share information within their ethnic group creates segregated networks that are strongly correlated with shark bycatch. However, some fishers share information across ethnic lines, and examinations of their bycatch rates show that network contacts are more strongly related to fishing behaviors than ethnicity. Our findings indicate that social networks are tied to actions that can directly impact marine ecosystems, and that biases toward within-group ties may impede the diffusion of sustainable behaviors. Importantly, our analysis suggests that enhanced communication channels across segregated fisher groups could have prevented the incidental catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery. PMID:27217551

  4. Multiscale vulnerability of complex networks.

    PubMed

    Boccaletti, Stefano; Buldú, Javier; Criado, Regino; Flores, Julio; Latora, Vito; Pello, Javier; Romance, Miguel

    2007-12-01

    We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks. The proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined powers of the links' betweenness. We show that the proposed approach is able to properly describe some cases for which earlier measures of vulnerability fail. The relevant applications of our method for technological network design are outlined.

  5. Measuring multiple evolution mechanisms of complex networks.

    PubMed

    Zhang, Qian-Ming; Xu, Xiao-Ke; Zhu, Yu-Xiao; Zhou, Tao

    2015-01-01

    Numerous concise models such as preferential attachment have been put forward to reveal the evolution mechanisms of real-world networks, which show that real-world networks are usually jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To get an accurate simulation for real networks, some researchers proposed a few hybrid models by mixing multiple evolution mechanisms. Nevertheless, how a hybrid mechanism of multiplex features jointly influence the network evolution is not very clear. In this study, we introduce two methods (link prediction and likelihood analysis) to measure multiple evolution mechanisms of complex networks. Through tremendous experiments on artificial networks, which can be controlled to follow multiple mechanisms with different weights, we find the method based on likelihood analysis performs much better and gives very accurate estimations. At last, we apply this method to some real-world networks which are from different domains (including technology networks and social networks) and different countries (e.g., USA and China), to see how popularity and clustering co-evolve. We find most of them are affected by both popularity and clustering, but with quite different weights.

  6. Measuring multiple evolution mechanisms of complex networks

    PubMed Central

    Zhang, Qian-Ming; Xu, Xiao-Ke; Zhu, Yu-Xiao; Zhou, Tao

    2015-01-01

    Numerous concise models such as preferential attachment have been put forward to reveal the evolution mechanisms of real-world networks, which show that real-world networks are usually jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To get an accurate simulation for real networks, some researchers proposed a few hybrid models by mixing multiple evolution mechanisms. Nevertheless, how a hybrid mechanism of multiplex features jointly influence the network evolution is not very clear. In this study, we introduce two methods (link prediction and likelihood analysis) to measure multiple evolution mechanisms of complex networks. Through tremendous experiments on artificial networks, which can be controlled to follow multiple mechanisms with different weights, we find the method based on likelihood analysis performs much better and gives very accurate estimations. At last, we apply this method to some real-world networks which are from different domains (including technology networks and social networks) and different countries (e.g., USA and China), to see how popularity and clustering co-evolve. We find most of them are affected by both popularity and clustering, but with quite different weights. PMID:26065382

  7. Statistical mechanics of complex networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka Zsuzsanna

    2001-07-01

    The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdoḧs and Alfréd Rényi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in

  8. Porous Soil as Complex Network

    NASA Astrophysics Data System (ADS)

    Benito, R. M.; Santiago, A.; Cárdenas, J. P.; Tarquis, A. M.; Borondo, F.; Losada, J. C.

    2009-04-01

    We present a complex network model based on a heterogeneous preferential attachment scheme [1,2] to quantify the structure of porous soils [3]. Under this perspective pores are represented by nodes and the space for the flow of fluids between them are represented by links. Pore properties such as position and size are described by fixed states in a metric space, while an affinity function is introduced to bias the attachment probabilities of links according to these properties. We perform an analytical and numerical study of the degree distributions in the soil model and show that under reasonable conditions all the model variants yield a multiscaling behavior in the connectivity degrees, leaving a empirically testable signature of heterogeneity in the topology of pore networks. References [1] A. Santiago and R. M. Benito, "Emergence of multiscaling in heterogeneous complex networks". Int. J. Mod. Phys. C 18, 1591 (2007). [2] A. Santiago and R. M. Benito, "An extended formalism for preferential attachment in heterogeneous complex networks". Europhys. Lett. 82, 58004 (2008). [3] A. Santiago, R. M. Benito, J. P. Cárdenas, J. C. Losada, A. M. Tarquis and F. Borondo, "Multiscaling of porous soils as heterogeneous complex networks". Nonl. Proc. Geophys. 15, 1-10 (2008).

  9. Complex Networks in Psychological Models

    NASA Astrophysics Data System (ADS)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  10. Composing Music with Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  11. Modification Propagation in Complex Networks

    NASA Astrophysics Data System (ADS)

    Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador

    To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.

  12. Winning consensus on social networks

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Sameet; Xie, J.; Korniss, G.; Szymanski, Boleslaw

    2011-03-01

    The adoption of a specific behavior (opinion) by a population of individuals is influenced dramatically by the social network through which the individuals interact. Here, we show the conditions under which a randomly distributed sub-population of committed agents -- nodes on the network that consistently profess a unique opinion and are not influenceable to change -- can win over an entire population of individuals initially opposed to that opinion. We model the opinion dynamics by a variant of the Naming Game (Baronchelli et al. (2006)), which effectively captures the persistence of dominant opinions. Given this model, we demonstrate that in the asymptotic network size limit, there exists a critical value p c of the fraction of committed agents, above which the network-state attains consensus, and below which the network-state converges to a non-consensus fixed point. We also discuss finite size corrections to p c and the scaling of consensus times for finite networks. Support by ARL, ONR.

  13. Social games in a social network.

    PubMed

    Abramson, G; Kuperman, M

    2001-03-01

    We study an evolutionary version of the Prisoner's Dilemma game, played by agents placed in a small-world network. Agents are able to change their strategy, imitating that of the most successful neighbor. We observe that different topologies, ranging from regular lattices to random graphs, produce a variety of emergent behaviors. This is a contribution towards the study of social phenomena and transitions governed by the topology of the community. PMID:11308622

  14. Networks in Social Policy Problems

    NASA Astrophysics Data System (ADS)

    Vedres, Balázs; Scotti, Marco

    2012-08-01

    1. Introduction M. Scotti and B. Vedres; Part I. Information, Collaboration, Innovation: The Creative Power of Networks: 2. Dissemination of health information within social networks C. Dhanjal, S. Blanchemanche, S. Clemençon, A. Rona-Tas and F. Rossi; 3. Scientific teams and networks change the face of knowledge creation S. Wuchty, J. Spiro, B. F. Jones and B. Uzzi; 4. Structural folds: the innovative potential of overlapping groups B. Vedres and D. Stark; 5. Team formation and performance on nanoHub: a network selection challenge in scientific communities D. Margolin, K. Ognyanova, M. Huang, Y. Huang and N. Contractor; Part II. Influence, Capture, Corruption: Networks Perspectives on Policy Institutions: 6. Modes of coordination of collective action: what actors in policy making? M. Diani; 7. Why skewed distributions of pay for executives is the cause of much grief: puzzles and few answers so far B. Kogut and J.-S. Yang; 8. Networks of institutional capture: a case of business in the State apparatus E. Lazega and L. Mounier; 9. The social and institutional structure of corruption: some typical network configurations of corruption transactions in Hungary Z. Szántó, I. J. Tóth and S. Varga; Part III. Crisis, Extinction, World System Change: Network Dynamics on a Large Scale: 10. How creative elements help the recovery of networks after crisis: lessons from biology A. Mihalik, A. S. Kaposi, I. A. Kovács, T. Nánási, R. Palotai, Á. Rák, M. S. Szalay-Beko and P. Csermely; 11. Networks and globalization policies D. R. White; 12. Network science in ecology: the structure of ecological communities and the biodiversity question A. Bodini, S. Allesina and C. Bondavalli; 13. Supply security in the European natural gas pipeline network M. Scotti and B. Vedres; 14. Conclusions and outlook A.-L. Barabási; Index.

  15. Privacy Amplification with Social Networks

    NASA Astrophysics Data System (ADS)

    Nagaraja, Shishir

    There are a number of scenarios where users wishing to communicate, share a weak secret. Often, they are also part of a common social network. Connections (edges) from the social network are represented as shared link keys between participants (vertices). We propose mechanisms that utilise the graph topology of such a network, to increase the entropy of weak pre-shared secrets. Our proposal is based on using random walks to identify a chain of common acquaintances between Alice and Bob, each of which contribute entropy to the final key. Our mechanisms exploit one-wayness and convergence properties of Markovian random walks to, firstly, maximize the set of potential entropy contributors, and second, to resist any contribution from dubious sources such as Sybill sub-networks.

  16. Navigating Social Networks

    ERIC Educational Resources Information Center

    Hamblin, DeAnna; Bartlett, Marilyn J.

    2013-01-01

    The authors note that when it comes to balancing free speech and schools' responsibilities, the online world is largely uncharted waters. Questions remain about the rights of both students and teachers in the world of social media. Although the lower courts have ruled that students' freedom of speech rights offer them some protection for…

  17. Skeleton of weighted social network

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhu, J.

    2013-03-01

    In the literature of social networks, understanding topological structure is an important scientific issue. In this paper, we construct a network from mobile phone call records and use the cumulative number of calls as a measure of the weight of a social tie. We extract skeletons from the weighted social network on the basis of the weights of ties, and we study their properties. We find that strong ties can support the skeleton in the network by studying the percolation characters. We explore the centrality of w-skeletons based on the correlation between some centrality measures and the skeleton index w of a vertex, and we find that the average centrality of a w-skeleton increases as w increases. We also study the cumulative degree distribution of the successive w-skeletons and find that as w increases, the w-skeleton tends to become more self-similar. Furthermore, fractal characteristics appear in higher w-skeletons. We also explore the global information diffusion efficiency of w-skeletons using simulations, from which we can see that the ties in the high w-skeletons play important roles in information diffusion. Identifying such a simple structure of a w-skeleton is a step forward toward understanding and representing the topological structure of weighted social networks.

  18. Blockmodeling techniques for complex networks

    NASA Astrophysics Data System (ADS)

    Ball, Brian Joseph

    The class of network models known as stochastic blockmodels has recently been gaining popularity. In this dissertation, we present new work that uses blockmodels to answer questions about networks. We create a blockmodel based on the idea of link communities, which naturally gives rise to overlapping vertex communities. We derive a fast and accurate algorithm to fit the model to networks. This model can be related to another blockmodel, which allows the method to efficiently find nonoverlapping communities as well. We then create a heuristic based on the link community model whose use is to find the correct number of communities in a network. The heuristic is based on intuitive corrections to likelihood ratio tests. It does a good job finding the correct number of communities in both real networks and synthetic networks generated from the link communities model. Two commonly studied types of networks are citation networks, where research papers cite other papers, and coauthorship networks, where authors are connected if they've written a paper together. We study a multi-modal network from a large dataset of Physics publications that is the combination of the two, allowing for directed links between papers as citations, and an undirected edge between a scientist and a paper if they helped to write it. This allows for new insights on the relation between social interaction and scientific production. We also have the publication dates of papers, which lets us track our measures over time. Finally, we create a stochastic model for ranking vertices in a semi-directed network. The probability of connection between two vertices depends on the difference of their ranks. When this model is fit to high school friendship networks, the ranks appear to correspond with a measure of social status. Students have reciprocated and some unreciprocated edges with other students of closely similar rank that correspond to true friendship, and claim an aspirational friendship with a much

  19. Quantum physics and complex networks

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob

    2014-03-01

    There is a widely used and successful theory of ``chemical reaction networks,'' which provides a framework describing systems governed by mass action kinetics. Computer science and population biology use the same ideas under a different name: ``stochastic Petri nets.'' But if we look at these theories from the perspective of quantum theory, they turn out to involve creation and annihilation operators, coherent states and other well-known ideas--yet in a context where probabilities replace amplitudes. I will explain this connection as part of a detailed analogy between quantum mechanics and stochastic mechanics which we've produced several results on recently, including the recent analytical results uniting quantum physics and complex networks. Our general idea is about merging concepts from quantum physics and complex network theory to provide a bidirectional bridge between both disciplines. Support is acknowledged from the Foundational Questions Institute (FQXi) and the Compagnia di San Paolo Foundation.

  20. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  1. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  2. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  3. From biological and social network metaphors to coupled bio-social wireless networks

    PubMed Central

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  4. The complex network of musical tastes

    NASA Astrophysics Data System (ADS)

    Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.

    2007-06-01

    We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.

  5. The Kuramoto model in complex networks

    NASA Astrophysics Data System (ADS)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  6. Purity homophily in social networks.

    PubMed

    Dehghani, Morteza; Johnson, Kate; Hoover, Joe; Sagi, Eyal; Garten, Justin; Parmar, Niki Jitendra; Vaisey, Stephen; Iliev, Rumen; Graham, Jesse

    2016-03-01

    Does sharing moral values encourage people to connect and form communities? The importance of moral homophily (love of same) has been recognized by social scientists, but the types of moral similarities that drive this phenomenon are still unknown. Using both large-scale, observational social-media analyses and behavioral lab experiments, the authors investigated which types of moral similarities influence tie formations. Analysis of a corpus of over 700,000 tweets revealed that the distance between 2 people in a social-network can be predicted based on differences in the moral purity content-but not other moral content-of their messages. The authors replicated this finding by experimentally manipulating perceived moral difference (Study 2) and similarity (Study 3) in the lab and demonstrating that purity differences play a significant role in social distancing. These results indicate that social network processes reflect moral selection, and both online and offline differences in moral purity concerns are particularly predictive of social distance. This research is an attempt to study morality indirectly using an observational big-data study complemented with 2 confirmatory behavioral experiments carried out using traditional social-psychology methodology. PMID:26726910

  7. Multilevel Complex Networks and Systems

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  8. Social Networking: Keeping It Clean

    ERIC Educational Resources Information Center

    Waters, John K.

    2011-01-01

    The need to maintain an unpolluted learning environment is no easy task for schools and districts that have incorporated social networking sites into their educational life. The staff and teachers at Blaine High School in Minnesota's Anoka-Hennepin District 11 had been considering the pros and cons of establishing a school Facebook page when the…

  9. Privacy and Social Networking Sites

    ERIC Educational Resources Information Center

    Timm, Dianne M.; Duven, Carolyn J.

    2008-01-01

    College students are relying on the Internet to make connections with other people every day. As the Internet has developed and grown, so have the capabilities for interaction. Social networking sites, a group of Web sites that provide people with the opportunity to create an online profile and to share that profile with others, are a part of…

  10. Social inheritance can explain the structure of animal social networks

    PubMed Central

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  11. Social inheritance can explain the structure of animal social networks.

    PubMed

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  12. Social structure of Facebook networks

    NASA Astrophysics Data System (ADS)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  13. Role models for complex networks

    NASA Astrophysics Data System (ADS)

    Reichardt, J.; White, D. R.

    2007-11-01

    We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.

  14. Social Networking: It's Not What You Think

    NASA Technical Reports Server (NTRS)

    Jones, Kevin D.

    2010-01-01

    This slide presentation reviews some of the current uses of the social networking sites available on the internet. It list some of the skills that are now considered obsolete and reviews the major social networking sites.

  15. Statistical physics of complex networks

    NASA Astrophysics Data System (ADS)

    Xie, Huafeng

    We live in a connected world. It is of great practical importance and intellectual appeal to understand the networks surrounding us. In this work we study ranking of the nodes in complex networks. In large networks such as World Wide Web (WWW) and citation networks of scientific literature, searching by keywords is a common practice to retrieve useful information. On the WWW, apart from the contents of webpages, the topology of the network itself can be a rich source of information about their relative importance and relevancy to the search query. It is the effective utilization of this topological information [50] which advanced the Google search engine to its present position of the most popular tool on the WWW. The World-Wide Web (WWW) is characterized by a strong community structure in which communities of webpages are densely interconnected by hyperlinks. We study how such network architecture affects the average Google ranking of individual webpages in the community. Using a mean-field approximation, we quantify how the average Google rank of community's webpages depends on the degree to which it is isolated from the rest of the world in both incoming and outgoing directions, and alpha -- the only intrinsic parameter of Google's PageRank algorithm. We proceed with numerical study of simulated networks and empirical study of several internal web-communities within two US universities. The predictions of our mean-field treatment were qualitatively verified in those real-life networks. Furthermore, the value alpha = 0.15 used by Google seems to be optimized for the degree of isolation of communities as they exist in the actual WWW. We then extend Google's PageRank algorithm to citation networks of scientific literature. Unlike hyperlinks, citations cannot be updated after the point of publication. This results in strong aging characteristics of citation networks that affect the performance of the PageRank algorithm. To rectify this we modify the Page

  16. Topological evolution of virtual social networks by modeling social activities

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  17. Leveraging social networks for toxicovigilance.

    PubMed

    Chary, Michael; Genes, Nicholas; McKenzie, Andrew; Manini, Alex F

    2013-06-01

    The landscape of drug abuse is shifting. Traditional means of characterizing these changes, such as national surveys or voluntary reporting by frontline clinicians, can miss changes in usage the emergence of novel drugs. Delays in detecting novel drug usage patterns make it difficult to evaluate public policy aimed at altering drug abuse. Increasingly, newer methods to inform frontline providers to recognize symptoms associated with novel drugs or methods of administration are needed. The growth of social networks may address this need. The objective of this manuscript is to introduce tools for using data from social networks to characterize drug abuse. We outline a structured approach to analyze social media in order to capture emerging trends in drug abuse by applying powerful methods from artificial intelligence, computational linguistics, graph theory, and agent-based modeling. First, we describe how to obtain data from social networks such as Twitter using publicly available automated programmatic interfaces. Then, we discuss how to use artificial intelligence techniques to extract content useful for purposes of toxicovigilance. This filtered content can be employed to generate real-time maps of drug usage across geographical regions. Beyond describing the real-time epidemiology of drug abuse, techniques from computational linguistics can uncover ways that drug discussions differ from other online conversations. Next, graph theory can elucidate the structure of networks discussing drug abuse, helping us learn what online interactions promote drug abuse and whether these interactions differ among drugs. Finally, agent-based modeling relates online interactions to psychological archetypes, providing a link between epidemiology and behavior. An analysis of social media discussions about drug abuse patterns with computational linguistics, graph theory, and agent-based modeling permits the real-time monitoring and characterization of trends of drugs of abuse. These

  18. Leveraging social networks for toxicovigilance.

    PubMed

    Chary, Michael; Genes, Nicholas; McKenzie, Andrew; Manini, Alex F

    2013-06-01

    The landscape of drug abuse is shifting. Traditional means of characterizing these changes, such as national surveys or voluntary reporting by frontline clinicians, can miss changes in usage the emergence of novel drugs. Delays in detecting novel drug usage patterns make it difficult to evaluate public policy aimed at altering drug abuse. Increasingly, newer methods to inform frontline providers to recognize symptoms associated with novel drugs or methods of administration are needed. The growth of social networks may address this need. The objective of this manuscript is to introduce tools for using data from social networks to characterize drug abuse. We outline a structured approach to analyze social media in order to capture emerging trends in drug abuse by applying powerful methods from artificial intelligence, computational linguistics, graph theory, and agent-based modeling. First, we describe how to obtain data from social networks such as Twitter using publicly available automated programmatic interfaces. Then, we discuss how to use artificial intelligence techniques to extract content useful for purposes of toxicovigilance. This filtered content can be employed to generate real-time maps of drug usage across geographical regions. Beyond describing the real-time epidemiology of drug abuse, techniques from computational linguistics can uncover ways that drug discussions differ from other online conversations. Next, graph theory can elucidate the structure of networks discussing drug abuse, helping us learn what online interactions promote drug abuse and whether these interactions differ among drugs. Finally, agent-based modeling relates online interactions to psychological archetypes, providing a link between epidemiology and behavior. An analysis of social media discussions about drug abuse patterns with computational linguistics, graph theory, and agent-based modeling permits the real-time monitoring and characterization of trends of drugs of abuse. These

  19. Organizational Application of Social Networking Information Technologies

    ERIC Educational Resources Information Center

    Reppert, Jeffrey R.

    2012-01-01

    The focus of this qualitative research study using the Delphi method is to provide a framework for leaders to develop their own social networks. By exploring concerns in four areas, leaders may be able to better plan, implement, and manage social networking systems in organizations. The areas addressed are: (a) social networking using…

  20. Collaboration in the School Social Network

    ERIC Educational Resources Information Center

    Schultz-Jones, Barbara

    2009-01-01

    Social networks are fundamental to all people. Their social network describes how they are connected to others: close relationships, peripheral relationships, and those relationships that help connect them to other people, events, or things. As information specialists, school librarians develop a multidimensional social network that enables them…

  1. Identification of hybrid node and link communities in complex networks

    NASA Astrophysics Data System (ADS)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  2. Community Detection in Quantum Complex Networks

    NASA Astrophysics Data System (ADS)

    Faccin, Mauro; Migdał, Piotr; Johnson, Tomi H.; Bergholm, Ville; Biamonte, Jacob D.

    2014-10-01

    Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, static or in interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems—a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.

  3. Mathematical modelling of complex contagion on clustered networks

    NASA Astrophysics Data System (ADS)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  4. Benford’s Distribution in Complex Networks

    PubMed Central

    Morzy, Mikołaj; Kajdanowicz, Tomasz; Szymański, Bolesław K.

    2016-01-01

    Many collections of numbers do not have a uniform distribution of the leading digit, but conform to a very particular pattern known as Benford’s distribution. This distribution has been found in numerous areas such as accounting data, voting registers, census data, and even in natural phenomena. Recently it has been reported that Benford’s law applies to online social networks. Here we introduce a set of rigorous tests for adherence to Benford’s law and apply it to verification of this claim, extending the scope of the experiment to various complex networks and to artificial networks created by several popular generative models. Our findings are that neither for real nor for artificial networks there is sufficient evidence for common conformity of network structural properties with Benford’s distribution. We find very weak evidence suggesting that three measures, degree centrality, betweenness centrality and local clustering coefficient, could adhere to Benford’s law for scalefree networks but only for very narrow range of their parameters. PMID:27748398

  5. Benford’s Distribution in Complex Networks

    NASA Astrophysics Data System (ADS)

    Morzy, Mikołaj; Kajdanowicz, Tomasz; Szymański, Bolesław K.

    2016-10-01

    Many collections of numbers do not have a uniform distribution of the leading digit, but conform to a very particular pattern known as Benford’s distribution. This distribution has been found in numerous areas such as accounting data, voting registers, census data, and even in natural phenomena. Recently it has been reported that Benford’s law applies to online social networks. Here we introduce a set of rigorous tests for adherence to Benford’s law and apply it to verification of this claim, extending the scope of the experiment to various complex networks and to artificial networks created by several popular generative models. Our findings are that neither for real nor for artificial networks there is sufficient evidence for common conformity of network structural properties with Benford’s distribution. We find very weak evidence suggesting that three measures, degree centrality, betweenness centrality and local clustering coefficient, could adhere to Benford’s law for scalefree networks but only for very narrow range of their parameters.

  6. Challenges of Health Games in the Social Network Environment.

    PubMed

    Paredes, Hugo; Pinho, Anabela; Zagalo, Nelson

    2012-04-01

    Virtual communities and their benefits have been widely exploited to support patients, caregivers, families, and healthcare providers. The complexity of the social organization evolved the concept of virtual community to social networks, exploring the establishment of ties and relations between people. These technological platforms provide a way to keep up with one's connections network, through a set of communication and interaction tools. Games, as social interactive technologies, have great potential, ensuring a supportive community and thereby reducing social isolation. Serious social health games bring forward several research challenges. This article examines the potential benefits of the triad "health-serious games-social networks" and discusses some research challenges and opportunities of the liaison of serious health games and social networks.

  7. Googling Social Interactions: Web Search Engine Based Social Network Construction

    PubMed Central

    Lee, Sang Hoon; Kim, Pan-Jun; Ahn, Yong-Yeol; Jeong, Hawoong

    2010-01-01

    Social network analysis has long been an untiring topic of sociology. However, until the era of information technology, the availability of data, mainly collected by the traditional method of personal survey, was highly limited and prevented large-scale analysis. Recently, the exploding amount of automatically generated data has completely changed the pattern of research. For instance, the enormous amount of data from so-called high-throughput biological experiments has introduced a systematic or network viewpoint to traditional biology. Then, is “high-throughput” sociological data generation possible? Google, which has become one of the most influential symbols of the new Internet paradigm within the last ten years, might provide torrents of data sources for such study in this (now and forthcoming) digital era. We investigate social networks between people by extracting information on the Web and introduce new tools of analysis of such networks in the context of statistical physics of complex systems or socio-physics. As a concrete and illustrative example, the members of the 109th United States Senate are analyzed and it is demonstrated that the methods of construction and analysis are applicable to various other weighted networks. PMID:20657762

  8. Early Adolescent Social Networks and Substance Use

    ERIC Educational Resources Information Center

    Henry, David B.; Kobus, Kimberly

    2007-01-01

    This study examined the relationships between social network position and the use of tobacco, alcohol, marijuana, and inhalants in a sample of 1,119 sixth-grade youth. Social network analyses of peer nominations were used to categorize youth as "members" of social groups, "liaisons" between groups, or social "isolates." The results revealed that…

  9. Social networks--the future for health care delivery.

    PubMed

    Griffiths, Frances; Cave, Jonathan; Boardman, Felicity; Ren, Justin; Pawlikowska, Teresa; Ball, Robin; Clarke, Aileen; Cohen, Alan

    2012-12-01

    With the rapid growth of online social networking for health, health care systems are experiencing an inescapable increase in complexity. This is not necessarily a drawback; self-organising, adaptive networks could become central to future health care delivery. This paper considers whether social networks composed of patients and their social circles can compete with, or complement, professional networks in assembling health-related information of value for improving health and health care. Using the framework of analysis of a two-sided network--patients and providers--with multiple platforms for interaction, we argue that the structure and dynamics of such a network has implications for future health care. Patients are using social networking to access and contribute health information. Among those living with chronic illness and disability and engaging with social networks, there is considerable expertise in assessing, combining and exploiting information. Social networking is providing a new landscape for patients to assemble health information, relatively free from the constraints of traditional health care. However, health information from social networks currently complements traditional sources rather than substituting for them. Networking among health care provider organisations is enabling greater exploitation of health information for health care planning. The platforms of interaction are also changing. Patient-doctor encounters are now more permeable to influence from social networks and professional networks. Diffuse and temporary platforms of interaction enable discourse between patients and professionals, and include platforms controlled by patients. We argue that social networking has the potential to change patterns of health inequalities and access to health care, alter the stability of health care provision and lead to a reformulation of the role of health professionals. Further research is needed to understand how network structure combined with

  10. Social network models predict movement and connectivity in ecological landscapes.

    PubMed

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data. PMID:22084081

  11. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  12. Paths to synchronization on complex networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Arenas, Alex

    2007-01-19

    The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this Letter, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena. PMID:17358685

  13. Clustering-led complex brain networks approach.

    PubMed

    Liu, Dazhong; Zhong, Ning

    2014-01-01

    This paper reviewed the meaning of the statistic index and the properties of the complex network models and their physiological explanation. By analyzing existing problems and construction strategies, this paper attempted to construct complex brain networks from a different point of view: that of clustering first and constructing the brain network second. A clustering-guided (or led) construction strategy towards complex brain networks was proposed. The research focused on the discussion of the task-induced brain network. To discover different networks in a single run, a combined-clusters method was applied. Afterwards, a complex local brain network was formed with a complex network method on voxels. In a real test dataset, it was found that the network had small-world characteristics and had no significant scale-free properties. Meanwhile, some key bridge nodes and their characteristics were identified in the local network by calculating the betweenness centrality.

  14. Social Insects: A Model System for Network Dynamics

    NASA Astrophysics Data System (ADS)

    Charbonneau, Daniel; Blonder, Benjamin; Dornhaus, Anna

    Social insect colonies (ants, bees, wasps, and termites) show sophisticated collective problem-solving in the face of variable constraints. Individuals exchange information and materials such as food. The resulting network structure and dynamics can inform us about the mechanisms by which the insects achieve particular collective behaviors and these can be transposed to man-made and social networks. We discuss how network analysis can answer important questions about social insects, such as how effective task allocation or information flow is realized. We put forward the idea that network analysis methods are under-utilized in social insect research, and that they can provide novel ways to view the complexity of collective behavior, particularly if network dynamics are taken into account. To illustrate this, we present an example of network tasks performed by ant workers, linked by instances of workers switching from one task to another. We show how temporal network analysis can propose and test new hypotheses on mechanisms of task allocation, and how adding temporal elements to static networks can drastically change results. We discuss the benefits of using social insects as models for complex systems in general. There are multiple opportunities emergent technologies and analysis methods in facilitating research on social insect network. The potential for interdisciplinary work could significantly advance diverse fields such as behavioral ecology, computer sciences, and engineering.

  15. Topological implications of negative curvature for biological and social networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim

    2014-03-01

    Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.

  16. Social Media and Social Networking Applications for Teaching and Learning

    ERIC Educational Resources Information Center

    Yeo, Michelle Mei Ling

    2014-01-01

    This paper aims to better understand the experiences of the youth and the educators with the tapping of social media like YouTube videos and the social networking application of Facebook for teaching and learning. This paper is interested in appropriating the benefits of leveraging of social media and networking applications like YouTube and…

  17. The Social Classroom: Integrating Social Network Use in Education

    ERIC Educational Resources Information Center

    Mallia, Gorg, Ed.

    2014-01-01

    As technology is being integrated into educational processes, teachers are searching for new ways to enhance student motivation and learning. Through shared experiences and the results of empirical research, educators can ease social networking sites into instructional usage. "The Social Classroom: Integrating Social Network Use in…

  18. Social Rewards and Social Networks in the Human Brain.

    PubMed

    Fareri, Dominic S; Delgado, Mauricio R

    2014-02-21

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations.

  19. Social Rewards and Social Networks in the Human Brain.

    PubMed

    Fareri, Dominic S; Delgado, Mauricio R

    2014-02-21

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. PMID:24561513

  20. Will Learning Social Inclusion Assist Rural Networks

    ERIC Educational Resources Information Center

    Marchant, Jillian

    2013-01-01

    Current research on social networks in some rural communities reports continuing demise despite efforts to build resilient communities. Several factors are identified as contributing to social decline including globalisation and rural social characteristics. Particular rural social characteristics, such as strong social bonds among members of…

  1. Advances in the Theory of Complex Networks

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.

  2. Location Privacy Protection on Social Networks

    NASA Astrophysics Data System (ADS)

    Zhan, Justin; Fang, Xing

    Location information is considered as private in many scenarios. Protecting location information on mobile ad-hoc networks has attracted much research in past years. However, location information protection on social networks has not been paid much attention. In this paper, we present a novel location privacy protection approach on the basis of user messages in social networks. Our approach grants flexibility to users by offering them multiple protecting options. To the best of our knowledge, this is the first attempt to protect social network users' location information via text messages. We propose five algorithms for location privacy protection on social networks.

  3. Minimum complexity echo state network.

    PubMed

    Rodan, Ali; Tino, Peter

    2011-01-01

    Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.

  4. Good Communication: The Other Social Network for Successful IT Organizations

    ERIC Educational Resources Information Center

    Trubitt, Lisa; Overholtzer, Jeff

    2009-01-01

    Social networks of the electronic variety have become thoroughly embedded in contemporary culture. People have woven these networks into their daily routines, using Facebook, Twitter, LinkedIn, online gaming environments, and other tools to build and maintain complex webs of professional and personal relationships. Chief Information Officers…

  5. Socioecological regime shifts in the setting of complex social interactions

    NASA Astrophysics Data System (ADS)

    Sugiarto, Hendrik Santoso; Chung, Ning Ning; Lai, Choy Heng; Chew, Lock Yue

    2015-06-01

    The coupling between social and ecological system has become more ubiquitous and predominant in the current era. The strong interaction between these systems can bring about regime shifts which in the extreme can lead to the collapse of social cooperation and the extinction of ecological resources. In this paper, we study the occurrence of such regime shifts in the context of a coupled social-ecological system where social cooperation is established by means of sanction that punishes local selfish act and promotes norms that prescribe nonexcessive resource extraction. In particular, we investigate the role of social networks on social-ecological regimes shift and the corresponding hysteresis effects caused by the local ostracism mechanism under different social and ecological parameters. Our results show that a lowering of network degree reduces the hysteresis effect and also alters the tipping point, which is duly verified by our numerical results and analytical estimation. Interestingly, the hysteresis effect is found to be stronger in scale-free network in comparison with random network even when both networks have the same average degree. These results provide deeper insights into the resilience of these systems, and can have important implications on the management of coupled social-ecological systems with complex social interactions.

  6. A Computer Network for Social Scientists.

    ERIC Educational Resources Information Center

    Gerber, Barry

    1989-01-01

    Describes a microcomputer-based network developed at the University of California Los Angeles to support education in the social sciences. Topics discussed include technological, managerial, and academic considerations of university networking; the use of the network in teaching macroeconomics, social demographics, and symbolic logic; and possible…

  7. Social Network Theory and Educational Change

    ERIC Educational Resources Information Center

    Daly, Alan J., Ed.

    2010-01-01

    "Social Network Theory and Educational Change" offers a provocative and fascinating exploration of how social networks in schools can impede or facilitate the work of education reform. Drawing on the work of leading scholars, the book comprises a series of studies examining networks among teachers and school leaders, contrasting formal and…

  8. An evolutionary model of social networks

    NASA Astrophysics Data System (ADS)

    Ludwig, M.; Abell, P.

    2007-07-01

    Social networks in communities, markets, and societies self-organise through the interactions of many individuals. In this paper we use a well-known mechanism of social interactions — the balance of sentiment in triadic relations — to describe the development of social networks. Our model contrasts with many existing network models, in that people not only establish but also break up relations whilst the network evolves. The procedure generates several interesting network features such as a variety of degree distributions and degree correlations. The resulting network converges under certain conditions to a steady critical state where temporal disruptions in triangles follow a power-law distribution.

  9. Bayesian Networks for Social Modeling

    SciTech Connect

    Whitney, Paul D.; White, Amanda M.; Walsh, Stephen J.; Dalton, Angela C.; Brothers, Alan J.

    2011-03-28

    This paper describes a body of work developed over the past five years. The work addresses the use of Bayesian network (BN) models for representing and predicting social/organizational behaviors. The topics covered include model construction, validation, and use. These topics show the bulk of the lifetime of such model, beginning with construction, moving to validation and other aspects of model ‘critiquing’, and finally demonstrating how the modeling approach might be used to inform policy analysis. To conclude, we discuss limitations of using BN for this activity and suggest remedies to address those limitations. The primary benefits of using a well-developed computational, mathematical, and statistical modeling structure, such as BN, are 1) there are significant computational, theoretical and capability bases on which to build 2) ability to empirically critique the model, and potentially evaluate competing models for a social/behavioral phenomena.

  10. Social Network Closure and Child Adjustment.

    ERIC Educational Resources Information Center

    Fletcher, Anne C.; Newsome, Deborah; Nickerson, Pamela; Bazley, Ronda

    2001-01-01

    Identified fourth graders' peer groups and measured social network closure--extent to which meaningful social relationships exist between children and their friends' parents and among parents whose children are friends. Found that higher social network closure related to higher academic achievement and lower parent-reported externalizing…

  11. Controlling synchronous patterns in complex networks.

    PubMed

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  12. Opinion control in complex networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki

    2015-03-01

    In many political elections, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, an important goal for a political party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and the effects of peer-to-peer influence. Based on the exact solution of classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method that uses pinning control strategy to maximize the share of a party in a social network of independent voters. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opposing party controls. We show that controlling hubs is generally a good strategy, but the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the independent voters are connected as directed (rather than undirected) networks.

  13. Psychology and social networks: a dynamic network theory perspective.

    PubMed

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  14. Improved community model for social networks based on social mobility

    NASA Astrophysics Data System (ADS)

    Lu, Zhe-Ming; Wu, Zhen; Luo, Hao; Wang, Hao-Xian

    2015-07-01

    This paper proposes an improved community model for social networks based on social mobility. The relationship between the group distribution and the community size is investigated in terms of communication rate and turnover rate. The degree distributions, clustering coefficients, average distances and diameters of networks are analyzed. Experimental results demonstrate that the proposed model possesses the small-world property and can reproduce social networks effectively and efficiently.

  15. Robustness and structure of complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  16. Evolution of individual versus social learning on social networks.

    PubMed

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-01

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak.

  17. Social Networks and Social Influences in Adolescence.

    ERIC Educational Resources Information Center

    Cotterell, John

    Young people are concerned with making and keeping friends, and they invest a great deal of energy in group social life to do so. This book charts the interactions of young people both in and out of school and the role of peers and friends in strengthening social attachments and in establishing social identities. It describes how social identities…

  18. Discovering Mobile Social Networks by Semantic Technologies

    NASA Astrophysics Data System (ADS)

    Jung, Jason J.; Choi, Kwang Sun; Park, Sung Hyuk

    It has been important for telecommunication companies to discover social networks from mobile subscribers. They have attempted to provide a number of recommendation services, but they realized that the services were not successful. In this chapter, we present semantic technologies for discovering social networks. The process is mainly composed of two steps; (1) profile identification and (2) context understanding. Through developing a Next generation Contents dElivery (NICE) platform, we were able to generate various services based on the discovered social networks.

  19. Complexity Characteristics of Currency Networks

    NASA Astrophysics Data System (ADS)

    Gorski, A. Z.; Drozdz, S.; Kwapien, J.; Oswiecimka, P.

    2006-11-01

    A large set of daily FOREX time series is analyzed. The corresponding correlation matrices (CM) are constructed for USD, EUR and PLN used as the base currencies. The triangle rule is interpreted as constraints reducing the number of independent returns. The CM spectrum is computed and compared with the cases of shuffled currencies and a fictitious random currency taken as a base currency. The Minimal Spanning Tree (MST) graphs are calculated and the clustering effects for strong currencies are found. It is shown that for MSTs the node rank has power like, scale free behavior. Finally, the scaling exponents are evaluated and found in the range analogous to those identified recently for various complex networks.

  20. The Social Side of Information Networking.

    ERIC Educational Resources Information Center

    Katz, James E.

    1997-01-01

    Explores the social issues, including manners, security, crime (fraud), and social control associated with information networking, with emphasis on the Internet. Also addresses the influence of cellular phones, the Internet and other information technologies on society. (GR)

  1. Networking for philanthropy: increasing volunteer behavior via social networking sites.

    PubMed

    Kim, Yoojung; Lee, Wei-Na

    2014-03-01

    Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs. PMID:24102569

  2. Networking for philanthropy: increasing volunteer behavior via social networking sites.

    PubMed

    Kim, Yoojung; Lee, Wei-Na

    2014-03-01

    Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs.

  3. Social Networks of Educated Nematodes

    PubMed Central

    Willett, Denis S.; Alborn, Hans T.; Duncan, Larry W.; Stelinski, Lukasz L.

    2015-01-01

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound specific manner, increasing preference for volatiles they previously were exposed to and decreasing attraction to other volatiles. In addition, persistence of volatile exposure influences this response. Longer exposure not only increases preference, but also results in longer retention of that preference. These entomopathogenic nematodes display interspecific social behavioral plasticity; experienced nematodes influence the behavior of different species. This interspecific social behavioral plasticity suggests a mechanism for rapid adaptation of belowground communities to dynamic environments. PMID:26404058

  4. Social Networks of Educated Nematodes.

    PubMed

    Willett, Denis S; Alborn, Hans T; Duncan, Larry W; Stelinski, Lukasz L

    2015-09-25

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound specific manner, increasing preference for volatiles they previously were exposed to and decreasing attraction to other volatiles. In addition, persistence of volatile exposure influences this response. Longer exposure not only increases preference, but also results in longer retention of that preference. These entomopathogenic nematodes display interspecific social behavioral plasticity; experienced nematodes influence the behavior of different species. This interspecific social behavioral plasticity suggests a mechanism for rapid adaptation of belowground communities to dynamic environments.

  5. How Many "Friends" Do You Need? Teaching Students How to Network Using Social Media

    ERIC Educational Resources Information Center

    Sacks, Michael Alan; Graves, Nikki

    2012-01-01

    Student reliance on social media is undeniable. However, while we largely regard social media as a new phenomena, the concepts underlying it come directly from social network theory in sociology and organizational behavior. In this article, the authors examine how the social network concepts of size, quality, complexity, diffusion, and distance…

  6. Competition between global and local online social networks.

    PubMed

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-01-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability. PMID:27117826

  7. Competition between global and local online social networks

    PubMed Central

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-01-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability. PMID:27117826

  8. Competition between global and local online social networks

    NASA Astrophysics Data System (ADS)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-04-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.

  9. Going Social: The Impact of Social Networking in Promoting Education

    ERIC Educational Resources Information Center

    Jain, Neelesh Kumar; Verma, Ashish; Verma, Rama Shankar; Tiwari, Prashant

    2012-01-01

    The growth and the popularity of the Social networks has a high impact on the development of the students in the field of Personality, Attitudes, Knowledge and on its whole academic performance in classroom and society. This paper envisage on the impact of Social Network on Education and Training of the students.

  10. Changes in Mothers' Social Networks and Social Support Following Divorce.

    ERIC Educational Resources Information Center

    Leslie, Leigh A.; Grady, Katherine

    1985-01-01

    Interviewed 38 mothers to determine the relationship between network characteristics and social support, and changes in both following divorce. Results indicated that characteristics associated with the support a mother receives may differ from the characteristics associated with how satisfied she feels with her network. With time, social networks…

  11. Social Software: Participants' Experience Using Social Networking for Learning

    ERIC Educational Resources Information Center

    Batchelder, Cecil W.

    2010-01-01

    Social networking tools used in learning provides instructional design with tools for transformative change in education. This study focused on defining the meanings and essences of social networking through the lived common experiences of 7 college students. The problem of the study was a lack of learner voice in understanding the value of social…

  12. Online Community Detection for Large Complex Networks

    PubMed Central

    Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian

    2014-01-01

    Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683

  13. Multilayer weighted social network model

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Török, János; Jo, Hang-Hyun; Kaski, Kimmo; Kertész, János

    2014-11-01

    Recent empirical studies using large-scale data sets have validated the Granovetter hypothesis on the structure of the society in that there are strongly wired communities connected by weak ties. However, as interaction between individuals takes place in diverse contexts, these communities turn out to be overlapping. This implies that the society has a multilayered structure, where the layers represent the different contexts. To model this structure we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We find that when merging such WSN models, a sufficient amount of interlayer correlation is needed to maintain the relationship between topology and link weights, while these correlations destroy the enhancement in the community overlap due to multiple layers. To resolve this, we devise a geographic multilayer WSN model, where the indirect interlayer correlations due to the geographic constraints of individuals enhance the overlaps between the communities and, at the same time, the Granovetterian structure is preserved.

  14. Exploring the morphospace of communication efficiency in complex networks.

    PubMed

    Goñi, Joaquín; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; van den Heuvel, Martijn P; Betzel, Richard F; Sporns, Olaf

    2013-01-01

    Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing"), we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion"). The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.

  15. Spreading in online social networks: The role of social reinforcement

    NASA Astrophysics Data System (ADS)

    Zheng, Muhua; Lü, Linyuan; Zhao, Ming

    2013-07-01

    Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [ScienceSCIEAS0036-807510.1126/science.1185231 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.

  16. Introduction to Focus Issue: Mesoscales in Complex Networks

    NASA Astrophysics Data System (ADS)

    Almendral, Juan A.; Criado, Regino; Leyva, Inmaculada; Buldú, Javier M.; Sendiña-Nadal, Irene

    2011-03-01

    Although the functioning of real complex networks is greatly determined by modularity, the majority of articles have focused, until recently, on either their local scale structure or their macroscopical properties. However, neither of these descriptions can adequately describe the important features that complex networks exhibit due to their organization in modules. This Focus Issue precisely presents the state of the art on the study of complex networks at that intermediate level. The reader will find out why this mesoscale level has become an important topic of research through the latest advances carried out to improve our understanding of the dynamical behavior of modular networks. The contributions presented here have been chosen to cover, from different viewpoints, the many open questions in the field as different aspects of community definition and detection algorithms, moduli overlapping, dynamics on modular networks, interplay between scales, and applications to biological, social, and technological fields.

  17. Introduction to focus issue: mesoscales in complex networks.

    PubMed

    Almendral, Juan A; Criado, Regino; Leyva, Inmaculada; Buldú, Javier M; Sendiña-Nadal, Irene

    2011-03-01

    Although the functioning of real complex networks is greatly determined by modularity, the majority of articles have focused, until recently, on either their local scale structure or their macroscopical properties. However, neither of these descriptions can adequately describe the important features that complex networks exhibit due to their organization in modules. This Focus Issue precisely presents the state of the art on the study of complex networks at that intermediate level. The reader will find out why this mesoscale level has become an important topic of research through the latest advances carried out to improve our understanding of the dynamical behavior of modular networks. The contributions presented here have been chosen to cover, from different viewpoints, the many open questions in the field as different aspects of community definition and detection algorithms, moduli overlapping, dynamics on modular networks, interplay between scales, and applications to biological, social, and technological fields. PMID:21456843

  18. Social Networks and Political Participation: How Do Networks Matter?

    ERIC Educational Resources Information Center

    Lim, Chaeyoon

    2008-01-01

    Despite great interest in the role of social networks as channels of political mobilization, few studies have examined which types of social networks work more effectively in recruiting political activists. Using the Citizen Participation Study data, this study shows that contrary to the conventional wisdom in the literature, there is little…

  19. Science, Society, and Social Networking

    NASA Astrophysics Data System (ADS)

    White, K. S.; Lohwater, T.

    2009-12-01

    The increased use of social networking is changing the way that scientific societies interact with their members and others. The American Association for the Advancement of Science (AAAS) uses a variety of online networks to engage its members and the broader scientific community. AAAS members and non-members can interact with AAAS staff and each other on AAAS sites on Facebook, YouTube, and Twitter, as well as blogs and forums on the AAAS website (www.aaas.org). These tools allow scientists to more readily become engaged in policy by providing information on current science policy topics as well as methods of involvement. For example, members and the public can comment on policy-relevant stories from Science magazine’s ScienceInsider blog, download a weekly policy podcast, receive a weekly email update of policy issues affecting the scientific community, or watch a congressional hearing from their computer. AAAS resource websites and outreach programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (www.aaas.org/spp/cstc/) and Science Careers (http://sciencecareers.sciencemag.org) also provide tools for scientists to become more personally engaged in communicating their findings and involved in the policy process.

  20. Trust Transitivity in Social Networks

    PubMed Central

    Richters, Oliver; Peixoto, Tiago P.

    2011-01-01

    Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust) is a requirement for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of the Pretty Good Privacy (PGP) web of trust, in view of the concepts introduced. We compare different scenarios of trust distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered scenario is more efficient, and leads to higher average trust values, it favours weakly-connected “fringe” nodes, which are directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/out-degrees, in detriment of the authorities and its “fringe” peers. PMID:21483683

  1. Trust transitivity in social networks.

    PubMed

    Richters, Oliver; Peixoto, Tiago P

    2011-04-05

    Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust) is a requirement for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of the Pretty Good Privacy (PGP) web of trust, in view of the concepts introduced. We compare different scenarios of trust distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered scenario is more efficient, and leads to higher average trust values, it favours weakly-connected "fringe" nodes, which are directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/out-degrees, in detriment of the authorities and its "fringe" peers.

  2. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  3. Social complexity as a proximate and ultimate factor in communicative complexity

    PubMed Central

    Freeberg, Todd M.; Dunbar, Robin I. M.; Ord, Terry J.

    2012-01-01

    The ‘social complexity hypothesis’ for communication posits that groups with complex social systems require more complex communicative systems to regulate interactions and relations among group members. Complex social systems, compared with simple social systems, are those in which individuals frequently interact in many different contexts with many different individuals, and often repeatedly interact with many of the same individuals in networks over time. Complex communicative systems, compared with simple communicative systems, are those that contain a large number of structurally and functionally distinct elements or possess a high amount of bits of information. Here, we describe some of the historical arguments that led to the social complexity hypothesis, and review evidence in support of the hypothesis. We discuss social complexity as a driver of communication and possible causal factor in human language origins. Finally, we discuss some of the key current limitations to the social complexity hypothesis—the lack of tests against alternative hypotheses for communicative complexity and evidence corroborating the hypothesis from modalities other than the vocal signalling channel. PMID:22641818

  4. Network motifs: simple building blocks of complex networks.

    PubMed

    Milo, R; Shen-Orr, S; Itzkovitz, S; Kashtan, N; Chklovskii, D; Alon, U

    2002-10-25

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined "network motifs," patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks. PMID:12399590

  5. Network Motifs: Simple Building Blocks of Complex Networks

    NASA Astrophysics Data System (ADS)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  6. Offering a Job: Meritocracy and Social Networks.

    ERIC Educational Resources Information Center

    Petersen, Trond; Saporta, Ishak; Seidel, Marc-David L.

    2000-01-01

    Focuses on the impact of sex, race, and social networks in the hiring processes of a midsize, high-technology organization using information about applicants (n=35,229) from 1985-94. Reports that for gender, age and education account for all sex differences; for ethnic minorities, the hiring process is partly reliant on social networks. (CMK)

  7. Minority Traders in Thai Village Social Networks.

    ERIC Educational Resources Information Center

    Foster, Brian L.

    1980-01-01

    Examines social networks in three villages in rural Thailand. Demonstrates that Mon (merchant group) villagers, despite their cultural similarity to other Thais, are less strongly linked into the networks of villagers in which they trade. Suggests that ethnicity provides a vehicle for social distance which is beneficial for commerce. (Author/GC)

  8. Entrepreneurial Idea Identification through Online Social Networks

    ERIC Educational Resources Information Center

    Lang, Matthew C.

    2010-01-01

    The increasing use of social network websites may signal a change in the way the next generation of entrepreneurs identify entrepreneurial ideas. An important part of the entrepreneurship literature emphasizes how vital the use of social networks is to entrepreneurial idea identification, opportunity recognition, and ultimately new venture…

  9. Changes in Social Networks Following Marital Separation.

    ERIC Educational Resources Information Center

    Rands, Marylyn

    Divorce changes not only the spousal relationship, but other associations as well. To study the changes in the social networks of recently divorced individuals, 40 adults (20 males, 20 females) participated in structured interviews. During the interview, data were collected on respondents' social networks and on their psychological well-being…

  10. Social Networking on the Semantic Web

    ERIC Educational Resources Information Center

    Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam

    2005-01-01

    Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…

  11. Enhancing Classroom Effectiveness through Social Networking Tools

    ERIC Educational Resources Information Center

    Kurthakoti, Raghu; Boostrom, Robert E., Jr.; Summey, John H.; Campbell, David A.

    2013-01-01

    To determine the usefulness of social networking Web sites such as Ning.com as a communication tool in marketing courses, a study was designed with special concern for social network use in comparison to Blackboard. Students from multiple marketing courses were surveyed. Assessments of Ning.com and Blackboard were performed both to understand how…

  12. Social networks and social support: living with chronic renal disease.

    PubMed

    Rounds, K A; Israel, B A

    1985-09-01

    Individuals with chronic renal disease who receive dialysis treatment are continually faced with major adjustments. These may include dealing with changes in work and economic status, social roles, activity levels, self-image, health status, and normal routines, as well as learning to live with uncertainty and loss. The individual's social network plays a key role as the individual experiences and moves through various stages of adjustment. Networks with certain characteristics (e.g. provision of affective support, reciprocal ties) may be more effective than others lacking these characteristics in meeting the individual's changing needs during the process of adjusting to chronic renal disease. This paper examines this relationship between the characteristics of an individual's social network and adjustment to chronic renal illness. The discussion focuses on the impact of chronic renal disease on the individual, the composition and characteristics of the social network, and on the relationships between network members. How the social network affects a person's adjustment to stages of adaptation to chronic renal disease is also addressed. Finally, suggestions are presented for how health care professionals can intervene at the individual, network, and organizational level to strengthen and enlarge social networks in order to enhance social support.

  13. Complex networks: A winning strategy

    NASA Astrophysics Data System (ADS)

    D'Souza, Raissa M.

    2013-04-01

    Introducing connections between two distinct networks can tip the balance of power -- at times enhancing the weaker system. The properties of the nodes that are linked together often determine which network claims the competitive advantage.

  14. Digital Social Network Mining for Topic Discovery

    NASA Astrophysics Data System (ADS)

    Moradianzadeh, Pooya; Mohi, Maryam; Sadighi Moshkenani, Mohsen

    Networked computers are expanding more and more around the world, and digital social networks becoming of great importance for many people's work and leisure. This paper mainly focused on discovering the topic of exchanging information in digital social network. In brief, our method is to use a hierarchical dictionary of related topics and words that mapped to a graph. Then, with comparing the extracted keywords from the context of social network with graph nodes, probability of relation between context and desired topics will be computed. This model can be used in many applications such as advertising, viral marketing and high-risk group detection.

  15. One Health in social networks and social media

    PubMed Central

    Mekaru, S.R.; Brownstein, J.S.

    2015-01-01

    Summary In the rapidly evolving world of social media, social networks, mobile applications and citizen science, online communities can develop organically and separately from larger or more established organisations. The One Health online community is experiencing expansion from both the bottom up and the top down. In this paper, the authors review social media’s strengths and weaknesses, earlier work examining Internet resources for One Health, the current state of One Health in social media (e.g. Facebook, Twitter, YouTube) and online social networking sites (e.g. LinkedIn and ResearchGate), as well as social media in One Health-related citizen science projects. While One Health has a fairly strong presence on websites, its social media presence is more limited and has an uneven geographic distribution. In work following the Stone Mountain Meeting, the One Health Global Network Task Force Report recommended the creation of an online community of practice. Professional social networks as well as the strategic use of social media should be employed in this effort. Finally, One Health-related research projects using volunteers (citizen science) often use social media to enhance their recruitment. Including these researchers in a community of practitioners would take full advantage of their existing social media presence. In conclusion, the interactive nature of social media, combined with increasing global Internet access, provides the One Health community with opportunities to meaningfully expand their community and promote their message. PMID:25707189

  16. One Health in social networks and social media.

    PubMed

    Mekaru, S R; Brownstein, J S

    2014-08-01

    In the rapidly evolving world of social media, social networks, mobile applications and citizen science, online communities can develop organically and separately from larger or more established organisations. The One Health online community is experiencing expansion from both the bottom up and the top down. In this paper, the authors review social media's strengths and weaknesses, earlier work examining Internet resources for One Health, the current state of One Health in social media (e.g. Facebook, Twitter, YouTube) and online social networking sites (e.g. LinkedIn and ResearchGate), as well as social media in One Health-related citizen science projects. While One Health has a fairly strong presence on websites, its social media presence is more limited and has an uneven geographic distribution. In work following the Stone Mountain Meeting,the One Health Global Network Task Force Report recommended the creation of an online community of practice. Professional social networks as well as the strategic use of social media should be employed in this effort. Finally, One Health-related research projects using volunteers (citizen science) often use social media to enhance their recruitment. Including these researchers in a community of practitioners would take full advantage of their existing social media presence. In conclusion, the interactive nature of social media, combined with increasing global Internet access, provides the One Health community with opportunities to meaningfully expand their community and promote their message.

  17. Approaching human language with complex networks

    NASA Astrophysics Data System (ADS)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  18. Approaching human language with complex networks.

    PubMed

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  19. Approaching human language with complex networks.

    PubMed

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). PMID:24794524

  20. Spectral Analysis of Rich Network Topology in Social Networks

    ERIC Educational Resources Information Center

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  1. Network quotients: Structural skeletons of complex systems

    NASA Astrophysics Data System (ADS)

    Xiao, Yanghua; MacArthur, Ben D.; Wang, Hui; Xiong, Momiao; Wang, Wei

    2008-10-01

    A defining feature of many large empirical networks is their intrinsic complexity. However, many networks also contain a large degree of structural repetition. An immediate question then arises: can we characterize essential network complexity while excluding structural redundancy? In this article we utilize inherent network symmetry to collapse all redundant information from a network, resulting in a coarse graining which we show to carry the essential structural information of the “parent” network. In the context of algebraic combinatorics, this coarse-graining is known as the “quotient.” We systematically explore the theoretical properties of network quotients and summarize key statistics of a variety of “real-world” quotients with respect to those of their parent networks. In particular, we find that quotients can be substantially smaller than their parent networks yet typically preserve various key functional properties such as complexity (heterogeneity and hub vertices) and communication (diameter and mean geodesic distance), suggesting that quotients constitute the essential structural skeletons of their parent networks. We summarize with a discussion of potential uses of quotients in analysis of biological regulatory networks and ways in which using quotients can reduce the computational complexity of network algorithms.

  2. Information Filtering on Coupled Social Networks

    PubMed Central

    Nie, Da-Cheng; Zhang, Zi-Ke; Zhou, Jun-Lin; Fu, Yan; Zhang, Kui

    2014-01-01

    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks. PMID:25003525

  3. Narcissism and social networking Web sites.

    PubMed

    Buffardi, Laura E; Campbell, W Keith

    2008-10-01

    The present research examined how narcissism is manifested on a social networking Web site (i.e., Facebook.com). Narcissistic personality self-reports were collected from social networking Web page owners. Then their Web pages were coded for both objective and subjective content features. Finally, strangers viewed the Web pages and rated their impression of the owner on agentic traits, communal traits, and narcissism. Narcissism predicted (a) higher levels of social activity in the online community and (b) more self-promoting content in several aspects of the social networking Web pages. Strangers who viewed the Web pages judged more narcissistic Web page owners to be more narcissistic. Finally, mediational analyses revealed several Web page content features that were influential in raters' narcissistic impressions of the owners, including quantity of social interaction, main photo self-promotion, and main photo attractiveness. Implications of the expression of narcissism in social networking communities are discussed.

  4. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  5. Minimum-cost control of complex networks

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Wuhua; Xiao, Gaoxi; Deng, Lei; Tang, Pei; Pei, Jing; Shi, Luping

    2016-01-01

    Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in both synthetic and real-life networks. The study is then extended to the case where each controller can only be connected to a single network node to have the lowest connection complexity. We obtain the interesting insight that such connections basically avoid high-degree nodes of the network, which is in resonance with recent observations on controllability of complex networks. Our results provide the first technical path to enabling minimum-cost control of complex networks, and contribute new insights to locating the key nodes from a minimum-cost control perspective.

  6. Pinning impulsive control algorithms for complex network.

    PubMed

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-01

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  7. Pinning impulsive control algorithms for complex network

    SciTech Connect

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  8. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    PubMed

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  9. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  10. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.

    PubMed

    Senior, Alistair M; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  11. Investigation of a protein complex network

    NASA Astrophysics Data System (ADS)

    Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.

    2004-09-01

    The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.

  12. Structural permeability of complex networks to control signals

    NASA Astrophysics Data System (ADS)

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-09-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met.

  13. An Introduction to Social Network Data Analytics

    NASA Astrophysics Data System (ADS)

    Aggarwal, Charu C.

    The advent of online social networks has been one of the most exciting events in this decade. Many popular online social networks such as Twitter, LinkedIn, and Facebook have become increasingly popular. In addition, a number of multimedia networks such as Flickr have also seen an increasing level of popularity in recent years. Many such social networks are extremely rich in content, and they typically contain a tremendous amount of content and linkage data which can be leveraged for analysis. The linkage data is essentially the graph structure of the social network and the communications between entities; whereas the content data contains the text, images and other multimedia data in the network. The richness of this network provides unprecedented opportunities for data analytics in the context of social networks. This book provides a data-centric view of online social networks; a topic which has been missing from much of the literature. This chapter provides an overview of the key topics in this field, and their coverage in this book.

  14. Internet-Based Community Networks: Finding the Social in Social Networks

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Faith

    In this chapter we explore the concept of community within social networks and the effect that this primarily social construct can have on the way in which we understand trust within an online network. To do this we analyse and compare a number of the definitions that are both traditionally used to identify online communities and which have developed with the advent of semantically described social networks. Taking these definitions we apply them to a number of groups within a visualisation of a social network and, using this case study, consider the differences that are apparent between the types of groups. Finally, we discuss how the social implications inherent within the definition of community interact with the trust and reputation systems that exist in such networks. In doing so, we focus on the social aspect of the social network and the ways in which the social and technical worlds entwine.

  15. Supported Employment: A Route to Social Networks

    ERIC Educational Resources Information Center

    Forrester-Jones, Rachel; Jones, Samantha; Heason, Sophie; Di'Terlizzi, Michele

    2004-01-01

    Background: Evidence suggests that social networks mediate social functioning, self-esteem, mental health and quality of life. This paper presents findings concerning changes in the social lives, skills, behaviour and life experiences of a group of people with intellectual disabilities (n = 18), who gained support from an employment agency to find…

  16. Models of social networks based on social distance attachment

    NASA Astrophysics Data System (ADS)

    Boguñá, Marián; Pastor-Satorras, Romualdo; Díaz-Guilera, Albert; Arenas, Alex

    2004-11-01

    We propose a class of models of social network formation based on a mathematical abstraction of the concept of social distance. Social distance attachment is represented by the tendency of peers to establish acquaintances via a decreasing function of the relative distance in a representative social space. We derive analytical results (corroborated by extensive numerical simulations), showing that the model reproduces the main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations, and the emergence of a hierarchy of communities. The model is confronted with the social network formed by people that shares confidential information using the Pretty Good Privacy (PGP) encryption algorithm, the so-called web of trust of PGP.

  17. Social network analysis for program implementation.

    PubMed

    Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.

  18. Social Network Analysis for Program Implementation

    PubMed Central

    Valente, Thomas W.; Palinkas, Lawrence A.; Czaja, Sara; Chu, Kar-Hai; Brown, C. Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach. PMID:26110842

  19. CORRELATION PROFILES AND MOTIFS IN COMPLEX NETWORKS.

    SciTech Connect

    MASLOV,S.SNEPPEN,K.ALON,U.

    2004-01-16

    Networks have recently emerged as a unifying theme in complex systems research [1]. It is in fact no coincidence that networks and complexity are so heavily intertwined. Any future definition of a complex system should reflect the fact that such systems consist of many mutually interacting components. These components are far from being identical as say electrons in systems studied by condensed matter physics. In a truly complex system each of them has a unique identity allowing one to separate it from the others. The very first question one may ask about such a system is which other components a given component interacts with? This information system wide can be visualized as a graph, whose nodes correspond to individual components of the complex system in question and edges to their mutual interactions. Such a network can be thought of as a backbone of the complex system. Of course, system's dynamics depends not only on the topology of an underlying network but also on the exact form of interaction of components with each other, which can be very different in various complex systems. However, the underlying network may contain clues about the basic design principles and/or evolutionary history of the complex system in question. The goal of this article is to provide readers with a set of useful tools that would help to decide which features of a complex network are there by pure chance alone, and which of them were possibly designed or evolved to their present state.

  20. Temporal properties of dynamic processes on complex networks

    NASA Astrophysics Data System (ADS)

    Turalska, Malgorzata A.

    Many social, biological and technological systems can be viewed as complex networks with a large number of interacting components. However despite recent advancements in network theory, a satisfactory description of dynamic processes arising in such cooperative systems is a subject of ongoing research. In this dissertation the emergence of dynamical complexity in networks of interacting stochastic oscillators is investigated. In particular I demonstrate that networks of two and three state stochastic oscillators present a second-order phase transition with respect to the strength of coupling between individual units. I show that at the critical point fluctuations of the global order parameter are characterized by an inverse-power law distribution and I assess their renewal properties. Additionally, I study the effect that different types of perturbation have on dynamical properties of the model. I discuss the relevance of those observations for the transmission of information between complex systems.

  1. Social network structures and bank runs

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Li, Jiaheng

    2016-05-01

    This paper investigates the impact of social network structures of depositors on bank runs. The analyzed network structures include random networks, small-world networks and scale-free networks. Simulation results show that the probability of bank run occurrence in random networks is larger than that in small-world networks, but the probability of bank run occurrence in scale-free networks drops from the highest to the lowest among the three types of network structures with the increase of the proportion of impatient depositors. The average degree of depositor networks has a significant impact on bank runs, but this impact is related to the proportion of impatient depositors and the confidence levels of depositors in banks.

  2. Revealing the hidden language of complex networks.

    PubMed

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-01-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists. PMID:24686408

  3. Revealing the Hidden Language of Complex Networks

    NASA Astrophysics Data System (ADS)

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-04-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists.

  4. Revealing the Hidden Language of Complex Networks

    PubMed Central

    Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Davis, Darren; Levnajic, Zoran; Janjic, Vuk; Karapandza, Rasa; Stojmirovic, Aleksandar; Pržulj, Nataša

    2014-01-01

    Sophisticated methods for analysing complex networks promise to be of great benefit to almost all scientific disciplines, yet they elude us. In this work, we make fundamental methodological advances to rectify this. We discover that the interaction between a small number of roles, played by nodes in a network, can characterize a network's structure and also provide a clear real-world interpretation. Given this insight, we develop a framework for analysing and comparing networks, which outperforms all existing ones. We demonstrate its strength by uncovering novel relationships between seemingly unrelated networks, such as Facebook, metabolic, and protein structure networks. We also use it to track the dynamics of the world trade network, showing that a country's role of a broker between non-trading countries indicates economic prosperity, whereas peripheral roles are associated with poverty. This result, though intuitive, has escaped all existing frameworks. Finally, our approach translates network topology into everyday language, bringing network analysis closer to domain scientists. PMID:24686408

  5. Percolation of localized attack on complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2015-02-01

    The robustness of complex networks against node failure and malicious attack has been of interest for decades, while most of the research has focused on random attack or hub-targeted attack. In many real-world scenarios, however, attacks are neither random nor hub-targeted, but localized, where a group of neighboring nodes in a network are attacked and fail. In this paper we develop a percolation framework to analytically and numerically study the robustness of complex networks against such localized attack. In particular, we investigate this robustness in Erdős-Rényi networks, random-regular networks, and scale-free networks. Our results provide insight into how to better protect networks, enhance cybersecurity, and facilitate the design of more robust infrastructures.

  6. Complex Networks: from Graph Theory to Biology

    NASA Astrophysics Data System (ADS)

    Lesne, Annick

    2006-12-01

    The aim of this text is to show the central role played by networks in complex system science. A remarkable feature of network studies is to lie at the crossroads of different disciplines, from mathematics (graph theory, combinatorics, probability theory) to physics (statistical physics of networks) to computer science (network generating algorithms, combinatorial optimization) to biological issues (regulatory networks). New paradigms recently appeared, like that of ‘scale-free networks’ providing an alternative to the random graph model introduced long ago by Erdös and Renyi. With the notion of statistical ensemble and methods originally introduced for percolation networks, statistical physics is of high relevance to get a deep account of topological and statistical properties of a network. Then their consequences on the dynamics taking place in the network should be investigated. Impact of network theory is huge in all natural sciences, especially in biology with gene networks, metabolic networks, neural networks or food webs. I illustrate this brief overview with a recent work on the influence of network topology on the dynamics of coupled excitable units, and the insights it provides about network emerging features, robustness of network behaviors, and the notion of static or dynamic motif.

  7. A random interacting network model for complex networks.

    PubMed

    Goswami, Bedartha; Shekatkar, Snehal M; Rheinwalt, Aljoscha; Ambika, G; Kurths, Jürgen

    2015-01-01

    We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems. PMID:26657032

  8. A random interacting network model for complex networks

    NASA Astrophysics Data System (ADS)

    Goswami, Bedartha; Shekatkar, Snehal M.; Rheinwalt, Aljoscha; Ambika, G.; Kurths, Jürgen

    2015-12-01

    We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems.

  9. Topology analysis of social networks extracted from literature.

    PubMed

    Waumans, Michaël C; Nicodème, Thibaut; Bersini, Hugues

    2015-01-01

    In a world where complex networks are an increasingly important part of science, it is interesting to question how the new reading of social realities they provide applies to our cultural background and in particular, popular culture. Are authors of successful novels able to reproduce social networks faithful to the ones found in reality? Is there any common trend connecting an author's oeuvre, or a genre of fiction? Such an analysis could provide new insight on how we, as a culture, perceive human interactions and consume media. The purpose of the work presented in this paper is to define the signature of a novel's story based on the topological analysis of its social network of characters. For this purpose, an automated tool was built that analyses the dialogs in novels, identifies characters and computes their relationships in a time-dependent manner in order to assess the network's evolution over the course of the story.

  10. Topology analysis of social networks extracted from literature.

    PubMed

    Waumans, Michaël C; Nicodème, Thibaut; Bersini, Hugues

    2015-01-01

    In a world where complex networks are an increasingly important part of science, it is interesting to question how the new reading of social realities they provide applies to our cultural background and in particular, popular culture. Are authors of successful novels able to reproduce social networks faithful to the ones found in reality? Is there any common trend connecting an author's oeuvre, or a genre of fiction? Such an analysis could provide new insight on how we, as a culture, perceive human interactions and consume media. The purpose of the work presented in this paper is to define the signature of a novel's story based on the topological analysis of its social network of characters. For this purpose, an automated tool was built that analyses the dialogs in novels, identifies characters and computes their relationships in a time-dependent manner in order to assess the network's evolution over the course of the story. PMID:26039072

  11. Managing Complex Network Operation with Predictive Analytics

    SciTech Connect

    Huang, Zhenyu; Wong, Pak C.; Mackey, Patrick S.; Chen, Yousu; Ma, Jian; Schneider, Kevin P.; Greitzer, Frank L.

    2008-03-26

    Complex networks play an important role in modern societies. Their failures, such as power grid blackouts, would lead to significant disruption of people’s life, industry and commercial activities, and result in massive economic losses. Operation of these complex networks is an extremely challenging task due to their complex structures, wide geographical coverage, complex data/information technology systems, and highly dynamic and nonlinear behaviors. None of the complex network operation is fully automated; human-in-the-loop operation is critical. Given the complexity involved, there may be thousands of possible topological configurations at any given time. During an emergency, it is not uncommon for human operators to examine thousands of possible configurations in near real-time to choose the best option and operate the network effectively. In today’s practice, network operation is largely based on experience with very limited real-time decision support, resulting in inadequate management of complex predictions and inability to anticipate, recognize, and respond to situations caused by human errors, natural disasters, and cyber attacks. A systematic approach is needed to manage the complex operation paradigms and choose the best option in a near-real-time manner. This paper applies predictive analytics techniques to establish a decision support system for complex network operation management and help operators to predict potential network failures and adapt the network to adverse situations. The resultant decision support system enables continuous monitoring of network performance and turns large amounts of data into actionable information. Examples with actual power grid data are presented to demonstrate the capability of this proposed decision support system.

  12. Quantifying networks complexity from information geometry viewpoint

    SciTech Connect

    Felice, Domenico Mancini, Stefano; Pettini, Marco

    2014-04-15

    We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy on simplexes and find that it monotonically increases with their dimension.

  13. Sustainable growth in complex networks

    NASA Astrophysics Data System (ADS)

    Tessone, C. J.; Geipel, M. M.; Schweitzer, F.

    2011-12-01

    Based on the analysis of the dependency network in 18 Java projects, we develop a novel model of network growth which considers both preferential attachment and the addition of new nodes with a heterogeneous distribution of their initial degree, k0. Empirically we find that the cumulative distributions of initial and final degrees in the network follow power law behaviours: 1-P(k0)~k01-α, and 1-P(k)~k1-γ, respectively. For the total number of links as a function of the network size, we find empirically K(N)~Nβ, where βin[1.25, 2] (for small N), while converging to β~1 for large N. This indicates a transition from a growth regime with increasing network density towards a sustainable regime, which prevents a collapse due to ever increasing dependencies. Our theoretical framework allows us to predict relations between the exponents α, β, γ, which also link issues of software engineering and developer activity. These relations are verified by means of computer simulations and empirical investigations. They indicate that the growth of real Open Source Software networks occurs on the edge between two regimes, which are dominated either by the initial degree distribution of added nodes, or by the preferential attachment mechanism. Hence, the heterogeneous degree distribution of newly added nodes, found empirically, is essential to describe the laws of sustainable growth in networks.

  14. Maintenance of cultural diversity: social roles, social networks, and cognitive networks.

    PubMed

    Abrams, Marshall

    2014-06-01

    Smaldino suggests that patterns that give rise to group-level cultural traits can also increase individual-level cultural diversity. I distinguish social roles and related social network structures and discuss ways in which each might maintain diversity. I suggest that cognitive analogs of "cohesion," a property of networks that helps maintenance of diversity, might mediate the effects of social roles on diversity.

  15. Social Support and Social Networks in COPD: A Scoping Review.

    PubMed

    Barton, Christopher; Effing, Tanya W; Cafarella, Paul

    2015-01-01

    A scoping review was conducted to determine the size and nature of the evidence describing associations between social support and networks on health, management and clinical outcomes amongst patients with COPD. Searches of PubMed, PsychInfo and CINAHL were undertaken for the period 1966-December 2013. A descriptive synthesis of the main findings was undertaken to demonstrate where there is current evidence for associations between social support, networks and health outcomes, and where further research is needed. The search yielded 318 papers of which 287 were excluded after applying selection criteria. Two areas emerged in which there was consistent evidence of benefit of social support; namely mental health and self-efficacy. There was inconsistent evidence for a relationship between perceived social support and quality of life, physical functioning and self-rated health. Hospital readmission was not associated with level of perceived social support. Only a small number of studies (3 articles) have reported on the social network of individuals with COPD. There remains a need to identify the factors that promote and enable social support. In particular, there is a need to further understand the characteristics of social networks within the broader social structural conditions in which COPD patients live and manage their illness. PMID:26263036

  16. COMPLEX NETWORKS IN CLIMATE SCIENCE: PROGRESS, OPPORTUNITIES AND CHALLENGES

    SciTech Connect

    Steinhaeuser, Karsten J K; Chawla, Nitesh; Ganguly, Auroop R

    2010-01-01

    Networks have been used to describe and model a wide range of complex systems, both natural as well as man-made. One particularly interesting application in the earth sciences is the use of complex networks to represent and study the global climate system. In this paper, we motivate this general approach, explain the basic methodology, report on the state of the art (including our contributions), and outline open questions and opportunities for future research. Datasets and systems that can be represented as interaction networks (or graphs), broadly defined as any collection of interrelated objects or entities, have received considerable attention both from a theoretical viewpoint as well as various application domains; examples include the analysis of social networks, chemical interactions between proteins, the behavior of financial markets, and many others. Recently, the study of complex networks - that is, networks which exhibit non-trivial topological properties - has permeated numerous fields and disciplines spanning the physical, social, and computational sciences. So why do networks enjoy such broad appeal? Briefly, it is their ability to serve at once as a data representation, as an analysis framework, and as a visualization tool. The analytic capabilities in particular are quite powerful, as networks can uncover structure and patterns at multiple scales, ranging from local properties to global phenomena, and thus help better understand the characteristics of complex systems. We focus on one particular application of networks in the earth sciences, namely, the construction and analysis of climate networks. Identifying and analyzing patterns in global climate is an important task of growing scientific, social, and political interest, with the goal of deepening our understanding of the complex processes underlying observed phenomena. To this end, we make the case that complex networks offer a compelling perspective for capturing the dynamics of the climate

  17. The Dynamics of Coalition Formation on Complex Networks

    PubMed Central

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-01-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects. PMID:26303622

  18. The Dynamics of Coalition Formation on Complex Networks

    NASA Astrophysics Data System (ADS)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  19. Geographies of an Online Social Network.

    PubMed

    Lengyel, Balázs; Varga, Attila; Ságvári, Bence; Jakobi, Ákos; Kertész, János

    2015-01-01

    How is online social media activity structured in the geographical space? Recent studies have shown that in spite of earlier visions about the "death of distance", physical proximity is still a major factor in social tie formation and maintenance in virtual social networks. Yet, it is unclear, what are the characteristics of the distance dependence in online social networks. In order to explore this issue the complete network of the former major Hungarian online social network is analyzed. We find that the distance dependence is weaker for the online social network ties than what was found earlier for phone communication networks. For a further analysis we introduced a coarser granularity: We identified the settlements with the nodes of a network and assigned two kinds of weights to the links between them. When the weights are proportional to the number of contacts we observed weakly formed, but spatially based modules resemble to the borders of macro-regions, the highest level of regional administration in the country. If the weights are defined relative to an uncorrelated null model, the next level of administrative regions, counties are reflected. PMID:26359668

  20. Geographies of an Online Social Network.

    PubMed

    Lengyel, Balázs; Varga, Attila; Ságvári, Bence; Jakobi, Ákos; Kertész, János

    2015-01-01

    How is online social media activity structured in the geographical space? Recent studies have shown that in spite of earlier visions about the "death of distance", physical proximity is still a major factor in social tie formation and maintenance in virtual social networks. Yet, it is unclear, what are the characteristics of the distance dependence in online social networks. In order to explore this issue the complete network of the former major Hungarian online social network is analyzed. We find that the distance dependence is weaker for the online social network ties than what was found earlier for phone communication networks. For a further analysis we introduced a coarser granularity: We identified the settlements with the nodes of a network and assigned two kinds of weights to the links between them. When the weights are proportional to the number of contacts we observed weakly formed, but spatially based modules resemble to the borders of macro-regions, the highest level of regional administration in the country. If the weights are defined relative to an uncorrelated null model, the next level of administrative regions, counties are reflected.

  1. Structure of Mutualistic Complex Networks

    NASA Astrophysics Data System (ADS)

    Hwang, Jun Kyung; Maeng, Seong Eun; Cha, Moon Yong; Lee, Jae Woo

    We consider the structures of six plant-pollinator mutualistic networks. The plants and pollinators are linked by the plant-pollinating relation. We assigned the visiting frequency of pollinators to a plant as a weight of each link. We calculated the cumulative distribution functions of the degree and strength for the networks. We observed a power-law, linear, and stretched exponential dependence of the cumulative distribution function. We also calculated the disparity and the strength of the nodes s(k) with degree k. We observed that the plant-pollinator networks exhibit an disassortative behaviors and nonlinear dependence of the strength on the nodes. In mutualistic networks links with large weight are connected to the neighbors with small degrees.

  2. Social network analysis and dual rover communications

    NASA Astrophysics Data System (ADS)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  3. Searching social networks for subgraph patterns

    NASA Astrophysics Data System (ADS)

    Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises

    2013-06-01

    Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.

  4. Link prediction in complex networks: A survey

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Zhou, Tao

    2011-03-01

    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labeled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.

  5. Incorporating profile information in community detection for online social networks

    NASA Astrophysics Data System (ADS)

    Fan, W.; Yeung, K. H.

    2014-07-01

    Community structure is an important feature in the study of complex networks. It is because nodes of the same community may have similar properties. In this paper we extend two popular community detection methods to partition online social networks. In our extended methods, the profile information of users is used for partitioning. We apply the extended methods in several sample networks of Facebook. Compared with the original methods, the community structures we obtain have higher modularity. Our results indicate that users' profile information is consistent with the community structure of their friendship network to some extent. To the best of our knowledge, this paper is the first to discuss how profile information can be used to improve community detection in online social networks.

  6. Entropic origin of disassortativity in complex networks.

    PubMed

    Johnson, Samuel; Torres, Joaquín J; Marro, J; Muñoz, Miguel A

    2010-03-12

    Why are most empirical networks, with the prominent exception of social ones, generically degree-degree anticorrelated? To answer this long-standing question, we define the ensemble of correlated networks and obtain the associated Shannon entropy. Maximum entropy can correspond to either assortative (correlated) or disassortative (anticorrelated) configurations, but in the case of highly heterogeneous, scale-free networks a certain disassortativity is predicted--offering a parsimonious explanation for the question above. Our approach provides a neutral model from which, in the absence of further knowledge regarding network evolution, one can obtain the expected value of correlations. When empirical observations deviate from the neutral predictions--as happens for social networks--one can then infer that there are specific correlating mechanisms at work.

  7. Social networking policies in nursing education.

    PubMed

    Frazier, Blake; Culley, Joan M; Hein, Laura C; Williams, Amber; Tavakoli, Abbas S

    2014-03-01

    Social networking use has increased exponentially in the past few years. A literature review related to social networking and nursing revealed a research gap between nursing practice and education. Although there was information available on the appropriate use of social networking sites, there was limited research on the use of social networking policies within nursing education. The purpose of this study was to identify current use of social media by faculty and students and a need for policies within nursing education at one institution. A survey was developed and administered to nursing students (n = 273) and nursing faculty (n = 33). Inferential statistics included χ², Fisher exact test, t test, and General Linear Model. Cronbach's α was used to assess internal consistency of social media scales. The χ² result indicates that there were associations with the group and several social media items. t Test results indicate significant differences between student and faculty for average of policies are good (P = .0127), policies and discipline (P = .0315), and policy at the study school (P = .0013). General Linear Model analyses revealed significant differences for "friend" a patient with a bond, unprofessional posts, policy, and nursing with class level. Results showed that students and faculty supported the development of a social networking policy. PMID:24406310

  8. Social networking policies in nursing education.

    PubMed

    Frazier, Blake; Culley, Joan M; Hein, Laura C; Williams, Amber; Tavakoli, Abbas S

    2014-03-01

    Social networking use has increased exponentially in the past few years. A literature review related to social networking and nursing revealed a research gap between nursing practice and education. Although there was information available on the appropriate use of social networking sites, there was limited research on the use of social networking policies within nursing education. The purpose of this study was to identify current use of social media by faculty and students and a need for policies within nursing education at one institution. A survey was developed and administered to nursing students (n = 273) and nursing faculty (n = 33). Inferential statistics included χ², Fisher exact test, t test, and General Linear Model. Cronbach's α was used to assess internal consistency of social media scales. The χ² result indicates that there were associations with the group and several social media items. t Test results indicate significant differences between student and faculty for average of policies are good (P = .0127), policies and discipline (P = .0315), and policy at the study school (P = .0013). General Linear Model analyses revealed significant differences for "friend" a patient with a bond, unprofessional posts, policy, and nursing with class level. Results showed that students and faculty supported the development of a social networking policy.

  9. Social networks in improvement of health care.

    PubMed

    Masic, Izet; Sivic, Suad; Toromanovic, Selim; Borojevic, Tea; Pandza, Haris

    2012-01-01

    Social network is a social structure made of individuals or organizations associated with one or more types of interdependence (friendship, common interests, work, knowledge, prestige, etc.) which are the "nodes" of the network. Networks can be organized to exchange information, knowledge or financial assistance under the various interest groups in universities, workplaces and associations of citizens. Today the most popular and widely used networks are based on application of the Internet as the main ICT. Depending on the method of connection, their field of activity and expertise of those who participate in certain networks, the network can be classified into the following groups: a) Social Networks with personal physical connectivity (the citizens' associations, transplant networks, etc.), b) Global social internet network (Facebook, Twitter, Skype), c) specific health internet social network (forums, Health Care Forums, Healthcare Industry Forum), d) The health community internet network of non professionals (DailyStrength, CaringBridge, CarePages, MyFamilyHealth), e) Scientific social internet network (BiomedExperts, ResearchGate, iMedExchange), f) Social internet network which supported professionals (HealthBoards, Spas and Hope Association of Disabled and diabetic Enurgi), g) Scientific medical internet network databases in the system of scientific and technical information (CC, Pubmed/Medline, Excerpta Medica/EMBASE, ISI Web Knowledge, EBSCO, Index Copernicus, Social Science Index, etc.). The information in the network are exchanged in real time and in a way that has until recently been impossible in real life of people in the community. Networks allow tens of thousands of specific groups of people performing a series of social, professional and educational activities in the place of living and housing, place of work or other locations where individuals are. Network provides access to information related to education, health, nutrition, drugs, procedures

  10. Social Networks in Improvement of Health Care

    PubMed Central

    Masic, Izet; Sivic, Suad; Toromanovic, Selim; Borojevic, Tea; Pandza, Haris

    2012-01-01

    Social network is a social structure made of individuals or organizations associated with one or more types of interdependence (friendship, common interests, work, knowledge, prestige, etc.) which are the “nodes” of the network. Networks can be organized to exchange information, knowledge or financial assistance under the various interest groups in universities, workplaces and associations of citizens. Today the most popular and widely used networks are based on application of the Internet as the main ICT. Depending on the method of connection, their field of activity and expertise of those who participate in certain networks, the network can be classified into the following groups: a) Social Networks with personal physical connectivity (the citizens’ associations, transplant networks, etc.), b) Global social internet network (Facebook, Twitter, Skype), c) specific health internet social network (forums, Health Care Forums, Healthcare Industry Forum), d) The health community internet network of non professionals (DailyStrength, CaringBridge, CarePages, MyFamilyHealth), e) Scientific social internet network (BiomedExperts, ResearchGate, iMedExchange), f) Social internet network which supported professionals (HealthBoards, Spas and Hope Association of Disabled and diabetic Enurgi), g) Scientific medical internet network databases in the system of scientific and technical information (CC, Pubmed/Medline, Excerpta Medica/EMBASE, ISI Web Knowledge, EBSCO, Index Copernicus, Social Science Index, etc.). The information in the network are exchanged in real time and in a way that has until recently been impossible in real life of people in the community. Networks allow tens of thousands of specific groups of people performing a series of social, professional and educational activities in the place of living and housing, place of work or other locations where individuals are. Network provides access to information related to education, health, nutrition, drugs

  11. Localized recovery of complex networks against failure.

    PubMed

    Shang, Yilun

    2016-01-01

    Resilience of complex networks to failure has been an important issue in network research for decades, and recent studies have begun to focus on the inverse recovery of network functionality through strategically healing missing nodes or edges. However, the effect of network recovery is far from fully understood, and a general theory is still missing. Here we propose and study a general model of localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the "complement network" of failed nodes under RR and LR. By identifying the two competitive forces behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original network as the only input. Our work therefore provides insight for quantitatively understanding recovery process and its implications in infrastructure protection in various complex systems. PMID:27456202

  12. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  13. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  14. Social ecological complexity and resilience processes.

    PubMed

    Ungar, Michael

    2015-01-01

    A social ecological model of resilience avoids the reductionism of simple explanations of the complex and multisystemic processes associated with well-being in contexts of adversity. There is evidence that when stressors are abnormally high, environmental factors account for more of an individual's resilience than do individual traits or cognitions. In this commentary, a social ecological model of resilience is discussed.

  15. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  16. Modeling Epidemics Spreading on Social Contact Networks

    PubMed Central

    ZHANG, ZHAOYANG; WANG, HONGGANG; WANG, CHONGGANG; FANG, HUA

    2016-01-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  17. Viewing Attractiveness Socialization from a Social Network Perspective.

    ERIC Educational Resources Information Center

    Downs, A. Chris

    Providing a framework for a symposium exploring the influence of physical attractiveness on the socialization process, this paper (1) offers a working definition of physical attractiveness, (2) reviews stereotypes associated with attractiveness, and (3) discusses a social network perspective on the influence of attractiveness. Physical…

  18. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    PubMed

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  19. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    PubMed Central

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive

  20. Vulnerability analysis for complex networks using aggressive abstraction.

    SciTech Connect

    Colbaugh, Richard; Glass, Kristin L.

    2010-06-01

    Large, complex networks are ubiquitous in nature and society, and there is great interest in developing rigorous, scalable methods for identifying and characterizing their vulnerabilities. This paper presents an approach for analyzing the dynamics of complex networks in which the network of interest is first abstracted to a much simpler, but mathematically equivalent, representation, the required analysis is performed on the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit vulnerability-preserving, finite state abstractions, and develop efficient algorithms for computing these abstractions. We then propose a vulnerability analysis methodology which combines these finite state abstractions with formal analytics from theoretical computer science to yield a comprehensive vulnerability analysis process for networks of realworld scale and complexity. The potential of the proposed approach is illustrated with a case study involving a realistic electric power grid model and also with brief discussions of biological and social network examples.

  1. Brand communities embedded in social networks.

    PubMed

    Zaglia, Melanie E

    2013-02-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers' interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes.

  2. Brand communities embedded in social networks.

    PubMed

    Zaglia, Melanie E

    2013-02-01

    Brand communities represent highly valuable marketing, innovation management, and customer relationship management tools. However, applying successful marketing strategies today, and in the future, also means exploring and seizing the unprecedented opportunities of social network environments. This study combines these two social phenomena which have largely been researched separately, and aims to investigate the existence, functionality and different types of brand communities within social networks. The netnographic approach yields strong evidence of this existence; leading to a better understanding of such embedded brand communities, their peculiarities, and motivational drivers for participation; therefore the findings contribute to theory by combining two separate research streams. Due to the advantages of social networks, brand management is now able to implement brand communities with less time and financial effort; however, choosing the appropriate brand community type, cultivating consumers' interaction, and staying tuned to this social engagement are critical factors to gain anticipated brand outcomes. PMID:23564989

  3. Information diffusion in structured online social networks

    NASA Astrophysics Data System (ADS)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  4. The Social Network and Alcohol Use*

    PubMed Central

    Homish, Gregory G.; Leonard, Kenneth E.

    2008-01-01

    Objective: Previous research has found that a drinking-supportive social network has a strong influence on heavy drinking and alcohol-related problems over time. The objective of this work was to understand the individual difference and interpersonal factors that predict changes in the social network relevant to alcohol use. Method: Data are from a large, ongoing prospective sample of 634 newly married couples in the United States. The current study examined the association between individual, relationship, and partner factors as they relate to changes in the number of drinking buddies in the social network during the first 7 years of marriage. Results: After controlling for the number of drinking buddies before marriage, as well as the frequency of heavy drinking, several individual, relationship, and partner factors were associated with changes in the social network over time. For both husbands and wives, alcohol expectancies and a partner's social network related to changes in the number of drinking buddies over time. Additionally, husbands with higher levels of extroversion and agreeableness had a greater number of drinking buddies over time. Among wives, personality factors were not related to changes in the number of drinking buddies over time. Conclusions: This work extends previous research by examining factors that predict changes in the social network that are most influential in alcohol use. Identifying these factors is important for informing prevention and treatment efforts. PMID:18925349

  5. Localized recovery of complex networks against failure

    PubMed Central

    Shang, Yilun

    2016-01-01

    Resilience of complex networks to failure has been an important issue in network research for decades, and recent studies have begun to focus on the inverse recovery of network functionality through strategically healing missing nodes or edges. However, the effect of network recovery is far from fully understood, and a general theory is still missing. Here we propose and study a general model of localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the “complement network” of failed nodes under RR and LR. By identifying the two competitive forces behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original network as the only input. Our work therefore provides insight for quantitatively understanding recovery process and its implications in infrastructure protection in various complex systems. PMID:27456202

  6. Localized recovery of complex networks against failure

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2016-07-01

    Resilience of complex networks to failure has been an important issue in network research for decades, and recent studies have begun to focus on the inverse recovery of network functionality through strategically healing missing nodes or edges. However, the effect of network recovery is far from fully understood, and a general theory is still missing. Here we propose and study a general model of localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the “complement network” of failed nodes under RR and LR. By identifying the two competitive forces behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original network as the only input. Our work therefore provides insight for quantitatively understanding recovery process and its implications in infrastructure protection in various complex systems.

  7. Network representations of immune system complexity.

    PubMed

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A; Germain, Ronald N; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single-cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating 'omics' and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular- and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks.

  8. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  9. Renormalization Group for Critical Phenomena in Complex Networks

    PubMed Central

    Boettcher, S.; Brunson, C. T.

    2011-01-01

    We discuss the behavior of statistical models on a novel class of complex “Hanoi” networks. Such modeling is often the cornerstone for the understanding of many dynamical processes in complex networks. Hanoi networks are special because they integrate small-world hierarchies common to many social and economical structures with the inevitable geometry of the real world these structures exist in. In addition, their design allows exact results to be obtained with the venerable renormalization group (RG). Our treatment will provide a detailed, pedagogical introduction to RG. In particular, we will study the Ising model with RG, for which the fixed points are determined and the RG flow is analyzed. We show that the small-world bonds result in non-universal behavior. It is shown that a diversity of different behaviors can be observed with seemingly small changes in the structure of hierarchical networks generally, and we provide a general theory to describe our findings. PMID:22194725

  10. Core organization of directed complex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2013-03-01

    The recursive removal of leaves (dead end vertices) and their neighbors from an undirected network results, when this pruning algorithm stops, in a so-called core of the network. This specific subgraph should be distinguished from k-cores, which are principally different subgraphs in networks. If the vertex mean degree of a network is sufficiently large, the core is a giant cluster containing a finite fraction of vertices. We find that generalization of this pruning algorithm to directed networks provides a significantly more complex picture of cores. By implementing a rate equation approach to this pruning procedure for directed uncorrelated networks, we identify a set of cores progressively embedded into each other in a network and describe their birth points and structure.

  11. Aversive Peer Experiences on Social Networking Sites: Development of the Social Networking-Peer Experiences Questionnaire (SN-PEQ)

    PubMed Central

    Landoll, Ryan R.; La Greca, Annette M.; Lai, Betty S.

    2012-01-01

    Cyber victimization is an important research area; yet, little is known about aversive peer experiences on social networking sites (SNSs), which are used extensively by youth and host complex social exchanges. Across samples of adolescents (n=216) and young adults (n=214), we developed the Social Networking-Peer Experiences Questionnaire (SN-PEQ), and examined its psychometric properties, distinctiveness from traditional peer victimization, and associations with internalized distress. The SN-PEQ demonstrated strong factorial invariance and a single factor structure that was distinct from other forms of peer victimization. Negative SNS experiences were associated with youths’ symptoms of social anxiety and depression, even when controlling for traditional peer victimization. Findings highlight the importance of examining the effects of aversive peer experiences that occur via social media. PMID:24288449

  12. Aversive Peer Experiences on Social Networking Sites: Development of the Social Networking-Peer Experiences Questionnaire (SN-PEQ).

    PubMed

    Landoll, Ryan R; La Greca, Annette M; Lai, Betty S

    2013-12-01

    Cyber victimization is an important research area; yet, little is known about aversive peer experiences on social networking sites (SNSs), which are used extensively by youth and host complex social exchanges. Across samples of adolescents (n=216) and young adults (n=214), we developed the Social Networking-Peer Experiences Questionnaire (SN-PEQ), and examined its psychometric properties, distinctiveness from traditional peer victimization, and associations with internalized distress. The SN-PEQ demonstrated strong factorial invariance and a single factor structure that was distinct from other forms of peer victimization. Negative SNS experiences were associated with youths' symptoms of social anxiety and depression, even when controlling for traditional peer victimization. Findings highlight the importance of examining the effects of aversive peer experiences that occur via social media.

  13. Aversive Peer Experiences on Social Networking Sites: Development of the Social Networking-Peer Experiences Questionnaire (SN-PEQ).

    PubMed

    Landoll, Ryan R; La Greca, Annette M; Lai, Betty S

    2013-12-01

    Cyber victimization is an important research area; yet, little is known about aversive peer experiences on social networking sites (SNSs), which are used extensively by youth and host complex social exchanges. Across samples of adolescents (n=216) and young adults (n=214), we developed the Social Networking-Peer Experiences Questionnaire (SN-PEQ), and examined its psychometric properties, distinctiveness from traditional peer victimization, and associations with internalized distress. The SN-PEQ demonstrated strong factorial invariance and a single factor structure that was distinct from other forms of peer victimization. Negative SNS experiences were associated with youths' symptoms of social anxiety and depression, even when controlling for traditional peer victimization. Findings highlight the importance of examining the effects of aversive peer experiences that occur via social media. PMID:24288449

  14. Online Social Networking: Usage in Adolescents

    ERIC Educational Resources Information Center

    Raju, Nevil Johnson; Valsaraj, Blessy Prabha; Noronha, Judith

    2015-01-01

    Online social networking (OSN) has played a significant role on the relationship among college students. It is becoming a popular medium for socializing online and tools to facilitate friendship. Young adults and adolescents are the most prolific users of OSN sites. The frequent use of OSN sites results in addiction toward these sites and…

  15. Social media networking: Facebook and Twitter.

    PubMed

    Schneider, Andrew; Jackson, Rem; Baum, Neil

    2010-01-01

    The new wave of marketing and practice promotion will include social media networking. This article will discuss Facebook and Twitter. After reading this article you, will have an understanding of these two important aspects of social media and how you might use Facebook and Twitter in your practice to enhance your communication with your existing patients and attract new patients. PMID:21243885

  16. Online Formative Assessments with Social Network Awareness

    ERIC Educational Resources Information Center

    Lin, Jian-Wei; Lai, Yuan-Cheng

    2013-01-01

    Social network awareness (SNA) has been used extensively as one of the strategies to increase knowledge sharing and collaboration opportunities. However, most SNA studies either focus on being aware of peer's knowledge context or on social context. This work proposes online formative assessments with SNA, trying to address the problems of online…

  17. Network Analysis in Comparative Social Sciences

    ERIC Educational Resources Information Center

    Vera, Eugenia Roldan; Schupp, Thomas

    2006-01-01

    This essay describes the pertinence of Social Network Analysis (SNA) for the social sciences in general, and discusses its methodological and conceptual implications for comparative research in particular. The authors first present a basic summary of the theoretical and methodological assumptions of SNA, followed by a succinct overview of its…

  18. College Students' Social Networking Experiences on Facebook

    ERIC Educational Resources Information Center

    Pempek, Tiffany A.; Yermolayeva, Yevdokiya A.; Calvert, Sandra L.

    2009-01-01

    Millions of contemporary young adults use social networking sites. However, little is known about how much, why, and how they use these sites. In this study, 92 undergraduates completed a diary-like measure each day for a week, reporting daily time use and responding to an activities checklist to assess their use of the popular social networking…

  19. Creating Socially Networked Knowledge through Interdisciplinary Collaboration

    ERIC Educational Resources Information Center

    Chuk, Eric; Hoetzlein, Rama; Kim, David; Panko, Julia

    2012-01-01

    We report on the experience of creating a socially networked system, the Research-oriented Social Environment (RoSE), for representing knowledge in the form of relationships between people, documents, and groups. Developed as an intercampus, interdisciplinary project of the University of California, this work reflects on a collaboration between…

  20. District Policy and Teachers' Social Networks

    ERIC Educational Resources Information Center

    Coburn, Cynthia E.; Russell, Jennifer Lin

    2008-01-01

    Policy makers increasingly include provisions aimed at fostering professional community as part of reform initiatives. Yet little is known about the impact of policy on teachers' professional relations in schools. Drawing theoretically from social capital theory and methodologically from qualitative social network analysis, this article explores…

  1. Spatial and Social Networks in Organizational Innovation

    ERIC Educational Resources Information Center

    Wineman, Jean D.; Kabo, Felichism W.; Davis, Gerald F.

    2009-01-01

    Research on the enabling factors of innovation has focused on either the social component of organizations or on the spatial dimensions involved in the innovation process. But no one has examined the aggregate consequences of the link from spatial layout, to social networks, to innovation. This project enriches our understanding of how innovation…

  2. Facebook, Social Networking, and Business Education

    ERIC Educational Resources Information Center

    Taylor, Steven A.; Mulligan, Jamie R.; Ishida, Chiharu

    2012-01-01

    Brown (2012) asserts that faculty perceptions of Web 2.0 for teaching will influence its adoption. For example, social media's influence on educational delivery is growing (Hrastinski and Dennon 2012). Zulu et al. (2011) note that business educators are only beginning to understand social networking related to education. We report an exploratory…

  3. Dynamics on Complex Networks and Applications

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Matías, Manuel A.; Kurths, Jürgen; Ott, Edward

    2006-12-01

    At the eight-year anniversary of Watts and Strogatz’s work on the collective dynamics of small-world networks and seven years after Barabási and Albert’s discovery of scale-free networks, the area of dynamical processes on complex networks is at the forefront of the current research on nonlinear dynamics and complex systems. This volume brings together a selection of original contributions in complementary topics of statistical physics, nonlinear dynamics and biological sciences, and is expected to provide the reader with a comprehensive up-to-date representation of this rapidly developing area.

  4. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  5. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.

    2002-08-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.

  6. Social anxiety as a basis for friendship selection and socialization in adolescents' social networks.

    PubMed

    Van Zalk, Nejra; Van Zalk, Maarten; Kerr, Margaret; Stattin, Håkan

    2011-06-01

    Socially anxious children and adolescents have previously been found to have friends with similarly socially anxious, withdrawn behavioral characteristics. How peers might socialize social anxiety over time has, however, not been thoroughly investigated. We examined this in a sample of 834 youths (339 girls and 495 boys; M=14.29), followed for 3 years. We used the social network analysis software SIENA to analyze the data. The results showed that youths who were socially anxious were less popular and chose fewer friends in the network. They also tended to choose friends who were socially anxious, and over time they influenced each other into becoming more socially anxious--over and above other effects. Finally, girls' social anxiety was more influenced than boys' by their friends' social anxiety levels. The results showed the significance of looking at socially anxious youths' friendships over time and embedded in social networks.

  7. Visual Matrix Clustering of Social Networks

    SciTech Connect

    Wong, Pak C.; Mackey, Patrick S.; Foote, Harlan P.; May, Richard A.

    2013-07-01

    The prevailing choices to graphically represent a social network in today’s literature are a node-link graph layout and an adjacency matrix. Both visualization techniques have unique strengths and weaknesses when applied to different domain applications. In this article, we focus our discussion on adjacency matrix and how to turn the matrix-based visualization technique from merely showing pairwise associations among network actors (or graph nodes) to depicting clusters of a social network. We also use node-link layouts to supplement the discussion.

  8. Controlling Complex Networks with Compensatory Perturbations

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean; Kath, William; Motter, Adilson

    2012-02-01

    The response of complex networks to perturbations is of critical importance in areas as diverse as ecosystem management, power system design, and cell reprogramming. These systems have the property that localized perturbations can propagate through the network, causing the system as a whole to change behavior and possibly collapse. We will show how this same mechanism can actually be exploited to prevent such failures and, more generally, control a network's behavior. This strategy is based on counteracting a deleterious perturbation through the judicious application of additional, compensatory perturbations---a prospect recently demonstrated heuristically in metabolic and food-web networks. Here, we introduce a method to identify such compensatory perturbations in general complex networks, under arbitrary constraints that restrict the interventions one can actually implement in real systems. Our method accounts for the full nonlinear time evolution of real complex networks, and in fact capitalizes on this behavior to bring the system to a desired target state even when this state is not directly accessible. Altogether, these results provide a new framework for the rescue, control, and reprogramming of complex networks in various domains.

  9. Predicting fate from early connectivity in a social network.

    PubMed

    McDonald, David B

    2007-06-26

    In the long-tailed manakin (Chiroxiphia linearis), a long-lived tropical bird, early connectivity within a social network predicts male success an average of 4.8 years later. Long-tailed manakins have an unusual lek mating system in which pairs of unrelated males, at the top of complex overlapping teams of as many as 15 males, cooperate for obligate dual-male song and dance courtship displays. For as long as 8 years before forming stable "alpha-beta" partnerships, males interact with many other males in complex, temporally dynamic social networks. "Information centrality" is a network connectivity metric that accounts for indirect as well as shortest (geodesic) paths among interactors. The odds that males would rise socially rose by a factor of five for each one-unit increase in their early information centrality. Connectivity of males destined to rise did not change over time but increased in males that failed to rise socially. The results suggest that network connectivity is important for young males (ages 1-6) but less so for older males of high status (ages 10-15) and that it is difficult to explain present success without reference to social history. PMID:17576933

  10. Shock waves on complex networks

    PubMed Central

    Mones, Enys; Araújo, Nuno A. M.; Vicsek, Tamás; Herrmann, Hans J.

    2014-01-01

    Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node. PMID:24821422

  11. Quantum-classical transitions in complex networks

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto; Armano, Giuliano

    2013-04-01

    The inherent properties of specific physical systems can be used as metaphors for investigation of the behavior of complex networks. This insight has already been put into practice in previous work, e.g., studying the network evolution in terms of phase transitions of quantum gases or representing distances among nodes as if they were particle energies. This paper shows that the emergence of different structures in complex networks, such as the scale-free and the winner-takes-all networks, can be represented in terms of a quantum-classical transition for quantum gases. In particular, we propose a model of fermionic networks that allows us to investigate the network evolution and its dependence on the system temperature. Simulations, performed in accordance with the cited model, clearly highlight the separation between classical random and winner-takes-all networks, in full correspondence with the separation between classical and quantum regions for quantum gases. We deem this model useful for the analysis of synthetic and real complex networks.

  12. Heat diffusion: Thermodynamic depth complexity of networks

    NASA Astrophysics Data System (ADS)

    Escolano, Francisco; Hancock, Edwin R.; Lozano, Miguel A.

    2012-03-01

    In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power.

  13. Modelling coordination in hospital emergency departments through social network analysis.

    PubMed

    Hossain, Liaquat; Kit Guan, Danny Chun

    2012-04-01

    Coordination theory provides a theoretical framework for analysing complex processes of project groups working towards a common goal. In this study, we explore the relationship between coordination and social networks for the development of a network-based coordination model. This model is applied to measure the performance and quality of complex and dynamic project coordination such as in hospital emergency departments. The dataset used for the study was collected by the 2004 National Hospital Ambulatory Medical Care Survey--a national probability sample survey of visits to emergency and outpatient departments of non-Federal, short-stay and general hospitals in the United States. Using social network analysis, this study allows us to understand the possible causes of inefficient coordination performance and coordination quality resulting in access blocks.

  14. On the origins of hierarchy in complex networks

    PubMed Central

    Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V.; Rodríguez-Caso, Carlos

    2013-01-01

    Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks. PMID:23898177

  15. Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks

    NASA Astrophysics Data System (ADS)

    Pecora, Louis

    2015-03-01

    Many networks are observed to produce patterns of synchronized clusters, but it has been difficult to predict these clusters in general or understand the conditions for their formation. We show the intimate connection between network symmetry and cluster synchronization. We apply computational group theory to reveal the clusters and determine their stability. In complex networks the symmetries can number in the millions, billions, and more. The connection between symmetry and cluster synchronization is experimentally explored using an electro-optic network. We observe and explain a surprising and common phenomenon (isolated desynchronization) in which some clusters lose synchrony while leaving others connected to them synchronized. We show the isolated desynchronization is intimately related to the decomposition of the group of symmetries into subgroups. The results could guide the design of new power grid systems or lead to new understanding of the dynamical behavior of networks ranging from neural to social.

  16. On the origins of hierarchy in complex networks.

    PubMed

    Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V; Rodríguez-Caso, Carlos

    2013-08-13

    Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks.

  17. How do online social networks grow?

    PubMed

    Zhu, Konglin; Li, Wenzhong; Fu, Xiaoming; Nagler, Jan

    2014-01-01

    Online social networks such as Facebook, Twitter and Gowalla allow people to communicate and interact across borders. In past years online social networks have become increasingly important for studying the behavior of individuals, group formation, and the emergence of online societies. Here we focus on the characterization of the average growth of online social networks and try to understand which are possible processes behind seemingly long-range temporal correlated collective behavior. In agreement with recent findings, but in contrast to Gibrat's law of proportionate growth, we find scaling in the average growth rate and its standard deviation. In contrast, Renren and Twitter deviate, however, in certain important aspects significantly from those found in many social and economic systems. Whereas independent methods suggest no significance for temporally long-range correlated behavior for Renren and Twitter, a scaling analysis of the standard deviation does suggest long-range temporal correlated growth in Gowalla. However, we demonstrate that seemingly long-range temporal correlations in the growth of online social networks, such as in Gowalla, can be explained by a decomposition into temporally and spatially independent growth processes with a large variety of entry rates. Our analysis thus suggests that temporally or spatially correlated behavior does not play a major role in the growth of online social networks.

  18. How do online social networks grow?

    PubMed

    Zhu, Konglin; Li, Wenzhong; Fu, Xiaoming; Nagler, Jan

    2014-01-01

    Online social networks such as Facebook, Twitter and Gowalla allow people to communicate and interact across borders. In past years online social networks have become increasingly important for studying the behavior of individuals, group formation, and the emergence of online societies. Here we focus on the characterization of the average growth of online social networks and try to understand which are possible processes behind seemingly long-range temporal correlated collective behavior. In agreement with recent findings, but in contrast to Gibrat's law of proportionate growth, we find scaling in the average growth rate and its standard deviation. In contrast, Renren and Twitter deviate, however, in certain important aspects significantly from those found in many social and economic systems. Whereas independent methods suggest no significance for temporally long-range correlated behavior for Renren and Twitter, a scaling analysis of the standard deviation does suggest long-range temporal correlated growth in Gowalla. However, we demonstrate that seemingly long-range temporal correlations in the growth of online social networks, such as in Gowalla, can be explained by a decomposition into temporally and spatially independent growth processes with a large variety of entry rates. Our analysis thus suggests that temporally or spatially correlated behavior does not play a major role in the growth of online social networks. PMID:24940744

  19. Social Networks and the Maintenance of Conformity: Japanese sojourner women

    PubMed Central

    Saint Arnault, Denise; Roles, Deborah J.

    2011-01-01

    Asian immigrant women have the lowest utilization of mental health services of any ethnic minority (Garland, Lau, Yeh & McCabe 2005). Because help seeking for distress occurs within social networks, we examined how social networks supported or disabled help seeking for Japanese sojourners living in the US. Unfortunately, most of the literature about Japanese social relationships focuses on men in organizational settings. This study used intensive ethnographic interviewing with 49 Japanese expatriate women to examine how social relationships influenced psychosocial distress and help seeking. We found that the women in these samples engaged in complex, highly regulated, complicated and obligatory relationships through their primary affiliation with other “company wives.” Like many immigrant women, increased traditional cultural norms (referred to in Japanese as ryoosai kenbo, or good wives and wise mothers), were expected from these modern women, and the enactment of these roles was enforced through scrutiny, gossip and the possibility of ostracism. Fears of scrutiny was described by the women as a primary barrier to their self-disclosure and ultimate help seeking. Understanding the social organization and support within the Japanese women's community is central to understanding how culturally specific social networks can both give support, as well as create social constraints to help seeking. Health oriented prevention programs must consider these social factors when evaluating the immigration stressors faced by these families. PMID:23162609

  20. Social Networks and the Maintenance of Conformity: Japanese sojourner women.

    PubMed

    Saint Arnault, Denise; Roles, Deborah J

    2012-08-01

    Asian immigrant women have the lowest utilization of mental health services of any ethnic minority (Garland, Lau, Yeh & McCabe 2005). Because help seeking for distress occurs within social networks, we examined how social networks supported or disabled help seeking for Japanese sojourners living in the US. Unfortunately, most of the literature about Japanese social relationships focuses on men in organizational settings. This study used intensive ethnographic interviewing with 49 Japanese expatriate women to examine how social relationships influenced psychosocial distress and help seeking. We found that the women in these samples engaged in complex, highly regulated, complicated and obligatory relationships through their primary affiliation with other "company wives." Like many immigrant women, increased traditional cultural norms (referred to in Japanese as ryoosai kenbo, or good wives and wise mothers), were expected from these modern women, and the enactment of these roles was enforced through scrutiny, gossip and the possibility of ostracism. Fears of scrutiny was described by the women as a primary barrier to their self-disclosure and ultimate help seeking. Understanding the social organization and support within the Japanese women's community is central to understanding how culturally specific social networks can both give support, as well as create social constraints to help seeking. Health oriented prevention programs must consider these social factors when evaluating the immigration stressors faced by these families.

  1. Topology Analysis of Social Networks Extracted from Literature

    PubMed Central

    2015-01-01

    In a world where complex networks are an increasingly important part of science, it is interesting to question how the new reading of social realities they provide applies to our cultural background and in particular, popular culture. Are authors of successful novels able to reproduce social networks faithful to the ones found in reality? Is there any common trend connecting an author’s oeuvre, or a genre of fiction? Such an analysis could provide new insight on how we, as a culture, perceive human interactions and consume media. The purpose of the work presented in this paper is to define the signature of a novel’s story based on the topological analysis of its social network of characters. For this purpose, an automated tool was built that analyses the dialogs in novels, identifies characters and computes their relationships in a time-dependent manner in order to assess the network’s evolution over the course of the story. PMID:26039072

  2. Phase transitions in complex network dynamics

    NASA Astrophysics Data System (ADS)

    Squires, Shane

    Two phase transitions in complex networks are analyzed. The first of these is a percolation transition, in which the network develops a macroscopic connected component as edges are added to it. Recent work has shown that if edges are added "competitively" to an undirected network, the onset of percolation is abrupt or "explosive." A new variant of explosive percolation is introduced here for directed networks, whose critical behavior is explored using numerical simulations and finite-size scaling theory. This process is also characterized by a very rapid percolation transition, but it is not as sudden as in undirected networks. The second phase transition considered here is the emergence of instability in Boolean networks, a class of dynamical systems that are widely used to model gene regulation. The dynamics, which are determined by the network topology and a set of update rules, may be either stable or unstable, meaning that small perturbations to the state of the network either die out or grow to become macroscopic. Here, this transition is analytically mapped onto a well-studied percolation problem, which can be used to predict the average steady-state distance between perturbed and unperturbed trajectories. This map applies to specific Boolean networks with few restrictions on network topology, but can only be applied to two commonly used types of update rules. Finally, a method is introduced for predicting the stability of Boolean networks with a much broader range of update rules. The network is assumed to have a given complex topology, subject only to a locally tree-like condition, and the update rules may be correlated with topological features of the network. While past work has addressed the separate effects of topology and update rules on stability, the present results are the first widely applicable approach to studying how these effects interact. Numerical simulations agree with the theory and show that such correlations between topology and update

  3. Teachers, Networks and Social Capital

    ERIC Educational Resources Information Center

    Healey, Kaleen

    2013-01-01

    A growing body of research suggests that school leaders and policymakers should attend to the social conditions within schools that promote instructional improvement and student achievement gains. This dissertation uses theoretical and empirical work on social capital to frame three aspects of the relationships among teachers. The three studies…

  4. Developmental stress predicts social network position.

    PubMed

    Boogert, Neeltje J; Farine, Damien R; Spencer, Karen A

    2014-10-01

    The quantity and quality of social relationships, as captured by social network analysis, can have major fitness consequences. Various studies have shown that individual differences in social behaviour can be due to variation in exposure to developmental stress. However, whether these developmental differences translate to consistent differences in social network position is not known. We experimentally increased levels of the avian stress hormone corticosterone (CORT) in nestling zebra finches in a fully balanced design. Upon reaching nutritional independence, we released chicks and their families into two free-flying rooms, where we measured daily social networks over five weeks using passive integrated transponder tags. Developmental stress had a significant effect on social behaviour: despite having similar foraging patterns, CORT chicks had weaker associations to their parents than control chicks. Instead, CORT chicks foraged with a greater number of flock mates and were less choosy with whom they foraged, resulting in more central network positions. These findings highlight the importance of taking developmental history into account to understand the drivers of social organization in gregarious species. PMID:25354917

  5. Measuring the significance of community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Nie, Yuchao; Yang, Hua; Cheng, Jie; Fan, Ying; di, Zengru

    2010-12-01

    Many complex systems can be represented as networks, and separating a network into communities could simplify functional analysis considerably. Many approaches have recently been proposed to detect communities, but a method to determine whether the detected communities are significant is still lacking. In this paper, an index to evaluate the significance of communities in networks is proposed based on perturbation of the network. In contrast to previous approaches, the network is disturbed gradually, and the index is defined by integrating all of the similarities between the community structures before and after perturbation. Moreover, by taking the null model into account, the index eliminates scale effects. Thus, it can evaluate and compare the significance of communities in different networks. The method has been tested in many artificial and real-world networks. The results show that the index is in fact independent of the size of the network and the number of communities. With this approach, clear communities are found to always exist in social networks, but significant communities cannot be found in protein interactions and metabolic networks.

  6. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  7. Dynamic information routing in complex networks

    NASA Astrophysics Data System (ADS)

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-04-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function.

  8. Cascade-based attacks on complex networks

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Lai, Ying-Cheng

    2002-12-01

    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

  9. Dynamic information routing in complex networks

    PubMed Central

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  10. Mapping stochastic processes onto complex networks

    NASA Astrophysics Data System (ADS)

    Shirazi, A. H.; Reza Jafari, G.; Davoudi, J.; Peinke, J.; Reza Rahimi Tabar, M.; Sahimi, Muhammad

    2009-07-01

    We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks.

  11. Empirical Models of Social Learning in a Large, Evolving Network

    PubMed Central

    Bener, Ayşe Başar; Çağlayan, Bora; Henry, Adam Douglas; Prałat, Paweł

    2016-01-01

    This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals’ access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1) attraction homophily causes individuals to form ties on the basis of attribute similarity, 2) aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3) social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends. PMID:27701430

  12. Network model of bilateral power markets based on complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li

    2014-06-01

    The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.

  13. Assembly of complex plant–fungus networks

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2014-01-01

    Species in ecological communities build complex webs of interaction. Although revealing the architecture of these networks is fundamental to understanding ecological and evolutionary dynamics in nature, it has been difficult to characterize the structure of most species-rich ecological systems. By overcoming this limitation through next-generation sequencing technology, we herein uncover the network architecture of below-ground plant–fungus symbioses, which are ubiquitous to terrestrial ecosystems. The examined symbiotic network of a temperate forest in Japan includes 33 plant species and 387 functionally and phylogenetically diverse fungal taxa, and the overall network architecture differs fundamentally from that of other ecological networks. In contrast to results for other ecological networks and theoretical predictions for symbiotic networks, the plant–fungus network shows moderate or relatively low levels of interaction specialization and modularity and an unusual pattern of ‘nested’ network architecture. These results suggest that species-rich ecological networks are more architecturally diverse than previously recognized. PMID:25327887

  14. Community core evolution in mobile social networks.

    PubMed

    Xu, Hao; Xiao, Weidong; Tang, Daquan; Tang, Jiuyang; Wang, Zhenwen

    2013-01-01

    Community detection in social networks attracts a lot of attention in the recent years. Existing methods always depict the relationship of two nodes using the temporary connection. However, these temporary connections cannot be fully recognized as the real relationships when the history connections among nodes are considered. For example, a casual visit in Facebook cannot be seen as an establishment of friendship. Hence, our question is the following: how to cluster the real friends in mobile social networks? In this paper, we study the problem of detecting the stable community core in mobile social networks. The cumulative stable contact is proposed to depict the relationship among nodes. The whole process is divided into timestamps. Nodes and their connections can be added or removed at each timestamp, and historical contacts are considered when detecting the community core. Also, community cores can be tracked through the incremental computing, which can help to recognize the evolving of community structure. Empirical studies on real-world social networks demonstrate that our proposed method can effectively detect stable community cores in mobile social networks.

  15. Persistent ISR: the social network analysis connection

    NASA Astrophysics Data System (ADS)

    Bowman, Elizabeth K.

    2012-06-01

    Persistent surveillance provides decision makers with unprecedented access to multisource data collected from humans and sensor assets around the globe, yet these data exist in the physical world and provide few overt clues to meaning behind actions. In this paper we explore the recent growth in online social networking and ask the questions: 1) can these sites provide value-added information to compliment physical sensing and 2) what are the mechanisms by which these data could inform situational awareness and decision making? In seeking these answers we consider the range of options provided by Social Network Analysis (SNA), and focus especially on the dynamic nature of these networks. In our discussion we focus on the wave of reform experienced by the North African nations in early 2011 known as the Arab Spring. Demonstrators made widespread use of social networking applications to coordinate, document, and publish material to aid their cause. Unlike members of covert social networks who hide their activity and associations, these demonstrators openly posted multimedia information to coordinate activity and stimulate global support. In this paper we provide a review of SNA approaches and consider how one might track network adaptations by capturing temporal and conceptual trends. We identify opportunities and challenges for merging SNA with physical sensor output, and conclude by addressing future challenges in the persistent ISR domain with respect to SNA.

  16. Conformity biased transmission in social networks.

    PubMed

    Whalen, Andrew; Laland, Kevin

    2015-09-01

    In this paper we explore how the structure of a population can differentially influence the spread of novel behaviors, depending on the learning strategy of each individual. We use a series of simulations to analyze how frequency dependent learning rules might affect how easily novel behaviors can spread through a population on four artificial social networks, and three real social networks. We measured the likelihood that a novel behavior could spread through the population, and the likelihood that there were multiple behavioral variants in the population, a measure of cultural diversity. Surprisingly, we find few differences between networks on either measure. However, we do find that where a behavior originated on a network can have a substantial impact on the likelihood that it spreads, and that this location effect depends on the learning strategy of an individual. These results suggest that for first-order analysis of how behaviors spread through a population, social network structure can be ignored, but that the social network structure may be useful for more fine-tuned analyses and predictions.

  17. Undermining and Strengthening Social Networks through Network Modification

    NASA Astrophysics Data System (ADS)

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  18. Undermining and Strengthening Social Networks through Network Modification

    PubMed Central

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-01-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention. PMID:27703198

  19. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    PubMed

    Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions. PMID:26505473

  20. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks

    PubMed Central

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions. PMID:26505473

  1. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    PubMed

    Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.

  2. Origin of Peer Influence in Social Networks

    NASA Astrophysics Data System (ADS)

    Pinheiro, Flávio L.; Santos, Marta D.; Santos, Francisco C.; Pacheco, Jorge M.

    2014-03-01

    Social networks pervade our everyday lives: we interact, influence, and are influenced by our friends and acquaintances. With the advent of the World Wide Web, large amounts of data on social networks have become available, allowing the quantitative analysis of the distribution of information on them, including behavioral traits and fads. Recent studies of correlations among members of a social network, who exhibit the same trait, have shown that individuals influence not only their direct contacts but also friends' friends, up to a network distance extending beyond their closest peers. Here, we show how such patterns of correlations between peers emerge in networked populations. We use standard models (yet reflecting intrinsically different mechanisms) of information spreading to argue that empirically observed patterns of correlation among peers emerge naturally from a wide range of dynamics, being essentially independent of the type of information, on how it spreads, and even on the class of underlying network that interconnects individuals. Finally, we show that the sparser and clustered the network, the more far reaching the influence of each individual will be.

  3. Origin of peer influence in social networks.

    PubMed

    Pinheiro, Flávio L; Santos, Marta D; Santos, Francisco C; Pacheco, Jorge M

    2014-03-01

    Social networks pervade our everyday lives: we interact, influence, and are influenced by our friends and acquaintances. With the advent of the World Wide Web, large amounts of data on social networks have become available, allowing the quantitative analysis of the distribution of information on them, including behavioral traits and fads. Recent studies of correlations among members of a social network, who exhibit the same trait, have shown that individuals influence not only their direct contacts but also friends' friends, up to a network distance extending beyond their closest peers. Here, we show how such patterns of correlations between peers emerge in networked populations. We use standard models (yet reflecting intrinsically different mechanisms) of information spreading to argue that empirically observed patterns of correlation among peers emerge naturally from a wide range of dynamics, being essentially independent of the type of information, on how it spreads, and even on the class of underlying network that interconnects individuals. Finally, we show that the sparser and clustered the network, the more far reaching the influence of each individual will be.

  4. Complex-linear invariants of biochemical networks.

    PubMed

    Karp, Robert L; Pérez Millán, Mercedes; Dasgupta, Tathagata; Dickenstein, Alicia; Gunawardena, Jeremy

    2012-10-21

    The nonlinearities found in molecular networks usually prevent mathematical analysis of network behaviour, which has largely been studied by numerical simulation. This can lead to difficult problems of parameter determination. However, molecular networks give rise, through mass-action kinetics, to polynomial dynamical systems, whose steady states are zeros of a set of polynomial equations. These equations may be analysed by algebraic methods, in which parameters are treated as symbolic expressions whose numerical values do not have to be known in advance. For instance, an "invariant" of a network is a polynomial expression on selected state variables that vanishes in any steady state. Invariants have been found that encode key network properties and that discriminate between different network structures. Although invariants may be calculated by computational algebraic methods, such as Gröbner bases, these become computationally infeasible for biologically realistic networks. Here, we exploit Chemical Reaction Network Theory (CRNT) to develop an efficient procedure for calculating invariants that are linear combinations of "complexes", or the monomials coming from mass action. We show how this procedure can be used in proving earlier results of Horn and Jackson and of Shinar and Feinberg for networks of deficiency at most one. We then apply our method to enzyme bifunctionality, including the bacterial EnvZ/OmpR osmolarity regulator and the mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase glycolytic regulator, whose networks have deficiencies up to four. We show that bifunctionality leads to different forms of concentration control that are robust to changes in initial conditions or total amounts. Finally, we outline a systematic procedure for using complex-linear invariants to analyse molecular networks of any deficiency.

  5. Online and Offline Social Networks: Use of Social Networking Sites by Emerging Adults

    ERIC Educational Resources Information Center

    Subrahmanyam, Kaveri; Reich, Stephanie M.; Waechter, Natalia; Espinoza, Guadalupe

    2008-01-01

    Social networking sites (e.g., MySpace and Facebook) are popular online communication forms among adolescents and emerging adults. Yet little is known about young people's activities on these sites and how their networks of "friends" relate to their other online (e.g., instant messaging) and offline networks. In this study, college students…

  6. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  7. Power-Hop: A Pervasive Observation for Real Complex Networks.

    PubMed

    Papalexakis, Evangelos; Hooi, Bryan; Pelechrinis, Konstantinos; Faloutsos, Christos

    2016-01-01

    Complex networks have been shown to exhibit universal properties, with one of the most consistent patterns being the scale-free degree distribution, but are there regularities obeyed by the r-hop neighborhood in real networks? We answer this question by identifying another power-law pattern that describes the relationship between the fractions of node pairs C(r) within r hops and the hop count r. This scale-free distribution is pervasive and describes a large variety of networks, ranging from social and urban to technological and biological networks. In particular, inspired by the definition of the fractal correlation dimension D2 on a point-set, we consider the hop-count r to be the underlying distance metric between two vertices of the network, and we examine the scaling of C(r) with r. We find that this relationship follows a power-law in real networks within the range 2 ≤ r ≤ d, where d is the effective diameter of the network, that is, the 90-th percentile distance. We term this relationship as power-hop and the corresponding power-law exponent as power-hop exponent h. We provide theoretical justification for this pattern under successful existing network models, while we analyze a large set of real and synthetic network datasets and we show the pervasiveness of the power-hop. PMID:26974560

  8. Discriminating complex networks through supervised NDR and Bayesian classifier

    NASA Astrophysics Data System (ADS)

    Yan, Ke-Sheng; Rong, Li-Li; Yu, Kai

    2016-12-01

    Discriminating complex networks is a particularly important task for the purpose of the systematic study of networks. In order to discriminate unknown networks exactly, a large set of network measurements are needed to be taken into account for comprehensively considering network properties. However, as we demonstrate in this paper, these measurements are nonlinear correlated with each other in general, resulting in a wide variety of redundant measurements which unintentionally explain the same aspects of network properties. To solve this problem, we adopt supervised nonlinear dimensionality reduction (NDR) to eliminate the nonlinear redundancy and visualize networks in a low-dimensional projection space. Though unsupervised NDR can achieve the same aim, we illustrate that supervised NDR is more appropriate than unsupervised NDR for discrimination task. After that, we perform Bayesian classifier (BC) in the projection space to discriminate the unknown network by considering the projection score vectors as the input of the classifier. We also demonstrate the feasibility and effectivity of this proposed method in six extensive research real networks, ranging from technological to social or biological. Moreover, the effectiveness and advantage of the proposed method is proved by the contrast experiments with the existing method.

  9. Power-Hop: A Pervasive Observation for Real Complex Networks

    PubMed Central

    Papalexakis, Evangelos; Hooi, Bryan; Pelechrinis, Konstantinos; Faloutsos, Christos

    2016-01-01

    Complex networks have been shown to exhibit universal properties, with one of the most consistent patterns being the scale-free degree distribution, but are there regularities obeyed by the r-hop neighborhood in real networks? We answer this question by identifying another power-law pattern that describes the relationship between the fractions of node pairs C(r) within r hops and the hop count r. This scale-free distribution is pervasive and describes a large variety of networks, ranging from social and urban to technological and biological networks. In particular, inspired by the definition of the fractal correlation dimension D2 on a point-set, we consider the hop-count r to be the underlying distance metric between two vertices of the network, and we examine the scaling of C(r) with r. We find that this relationship follows a power-law in real networks within the range 2 ≤ r ≤ d, where d is the effective diameter of the network, that is, the 90-th percentile distance. We term this relationship as power-hop and the corresponding power-law exponent as power-hop exponent h. We provide theoretical justification for this pattern under successful existing network models, while we analyze a large set of real and synthetic network datasets and we show the pervasiveness of the power-hop. PMID:26974560

  10. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    NASA Astrophysics Data System (ADS)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  11. The Analysis of Duocentric Social Networks: A Primer

    PubMed Central

    Kennedy, David P.; Jackson, Grace L.; Green, Harold D.; Bradbury, Thomas N.; Karney, Benjamin R.

    2016-01-01

    Marriages and other intimate partnerships are facilitated or constrained by the social networks within which they are embedded. To date, methods used to assess the social networks of couples have been limited to global ratings of social network characteristics or network data collected from each partner separately. In the current article, the authors offer new tools for expanding on the existing literature by describing methods of collecting and analyzing duocentric social networks, that is, the combined social networks of couples. They provide an overview of the key considerations for measuring duocentric networks, such as how and why to combine separate network interviews with partners into one shared duocentric network, the number of network members to assess, and the implications of different network operationalizations. They illustrate these considerations with analyses of social network data collected from 57 low-income married couples, presenting visualizations and quantitative measures of network composition and structure. PMID:27182084

  12. Online Social Networking and Mental Health

    PubMed Central

    2014-01-01

    Abstract During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction. PMID:25192305

  13. Online social networking and mental health.

    PubMed

    Pantic, Igor

    2014-10-01

    During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction.

  14. Group Colocation Behavior in Technological Social Networks

    PubMed Central

    Brown, Chloë; Lathia, Neal; Mascolo, Cecilia; Noulas, Anastasios; Blondel, Vincent

    2014-01-01

    We analyze two large datasets from technological networks with location and social data: user location records from an online location-based social networking service, and anonymized telecommunications data from a European cellphone operator, in order to investigate the differences between individual and group behavior with respect to physical location. We discover agreements between the two datasets: firstly, that individuals are more likely to meet with one friend at a place they have not visited before, but tend to meet at familiar locations when with a larger group. We also find that groups of individuals are more likely to meet at places that their other friends have visited, and that the type of a place strongly affects the propensity for groups to meet there. These differences between group and solo mobility has potential technological applications, for example, in venue recommendation in location-based social networks. PMID:25148037

  15. Online social networking and mental health.

    PubMed

    Pantic, Igor

    2014-10-01

    During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction. PMID:25192305

  16. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  17. Network representations of immune system complexity.

    PubMed

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A; Germain, Ronald N; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single-cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating 'omics' and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular- and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  18. Distinction and connection between contact network, social network, and disease transmission network.

    PubMed

    Chen, Shi; Lanzas, Cristina

    2016-09-01

    In this paper we discuss the distinction and connection between three closely related networks in animal ecology and epidemiology studies: the contact, social, and disease transmission networks. We provide a robust theoretical definition and interpretation of these three networks, demonstrate that social and disease transmission networks can be derived as spanning subgraphs of contact network, and show examples based on real-world high-resolution cattle contact structure data. Furthermore, we establish a modeling framework to track potential disease transmission dynamics and construct transmission network based on the observed animal contact network.

  19. Distinction and connection between contact network, social network, and disease transmission network.

    PubMed

    Chen, Shi; Lanzas, Cristina

    2016-09-01

    In this paper we discuss the distinction and connection between three closely related networks in animal ecology and epidemiology studies: the contact, social, and disease transmission networks. We provide a robust theoretical definition and interpretation of these three networks, demonstrate that social and disease transmission networks can be derived as spanning subgraphs of contact network, and show examples based on real-world high-resolution cattle contact structure data. Furthermore, we establish a modeling framework to track potential disease transmission dynamics and construct transmission network based on the observed animal contact network. PMID:27544246

  20. Virality Prediction and Community Structure in Social Networks

    PubMed Central

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  1. Virality Prediction and Community Structure in Social Networks

    NASA Astrophysics Data System (ADS)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  2. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106

  3. Virality prediction and community structure in social networks.

    PubMed

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-01-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  4. Micro-macro analysis of complex networks.

    PubMed

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a "classic" approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail ("micro") to a different scale level ("macro"), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability.

  5. Micro-Macro Analysis of Complex Networks

    PubMed Central

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a “classic” approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability. PMID:25635812

  6. The organization of strong links in complex networks

    NASA Astrophysics Data System (ADS)

    Pajevic, Sinisa; Plenz, Dietmar

    2012-05-01

    Many complex systems reveal a small-world topology, which allows simultaneously local and global efficiency in the interaction between system constituents. Here, we report the results of a comprehensive study that investigates the relation between the clustering properties in such small-world systems and the strength of interactions between its constituents, quantified by the link weight. For brain, gene, social and language networks, we find a local integrative weight organization in which strong links preferentially occur between nodes with overlapping neighbourhoods; we relate this to global robustness of the clustering to removal of the weakest links. Furthermore, we identify local learning rules that establish integrative networks and improve network traffic in response to past traffic failures. Our findings identify a general organization for complex systems that strikes a balance between efficient local and global communication in their strong interactions, while allowing for robust, exploratory development of weak interactions.

  7. Community detection by signaling on complex networks

    NASA Astrophysics Data System (ADS)

    Hu, Yanqing; Li, Menghui; Zhang, Peng; Fan, Ying; di, Zengru

    2008-07-01

    Based on a signaling process of complex networks, a method for identification of community structure is proposed. For a network with n nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source to excite the whole network one time. Then the source node is associated with an n -dimensional vector which records the effects of the signaling process. By this process, the topological relationship of nodes on the network could be transferred into a geometrical structure of vectors in n -dimensional Euclidean space. Then the best partition of groups is determined by F statistics and the final community structure is given by the K -means clustering method. This method can detect community structure both in unweighted and weighted networks. It has been applied to ad hoc networks and some real networks such as the Zachary karate club network and football team network. The results indicate that the algorithm based on the signaling process works well.

  8. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  9. The Curriculum Prerequisite Network: Modeling the Curriculum as a Complex System

    ERIC Educational Resources Information Center

    Aldrich, Preston R.

    2015-01-01

    This article advances the prerequisite network as a means to visualize the hidden structure in an academic curriculum. Networks have been used to represent a variety of complex systems ranging from social systems to biochemical pathways and protein interactions. Here, I treat the academic curriculum as a complex system with nodes representing…

  10. Size reduction of complex networks preserving modularity

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Duch, J.; Fernández, A.; Gómez, S.

    2007-06-01

    The ubiquity of modular structure in real-world complex networks is the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the non-deterministic polynomial-time hard (NP-hard) class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining their modularity. This size reduction allows use of heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the extremal optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  11. Size reduction of complex networks preserving modularity

    SciTech Connect

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  12. Characterizing English Poetic Style Using Complex Networks

    NASA Astrophysics Data System (ADS)

    Roxas-Villanueva, Ranzivelle Marianne; Nambatac, Maelori Krista; Tapang, Giovanni

    Complex networks have been proven useful in characterizing written texts. Here, we use networks to probe if there exist a similarity within, and difference across, era as reflected within the poem's structure. In literary history, boundary lines are set to distinguish the change in writing styles through time. We obtain the network parameters and motif frequencies of 845 poems published from 1522 to 1931 and relate this to the writing of the Elizabethan, 17th Century, Augustan, Romantic and Victorian eras. Analysis of the different network parameters shows a significant difference of the Augustan era (1667-1780) with the rest. The network parameters and the convex hull and centroids of the motif frequencies reflect the adjectival sequence pattern of the poems of the Augustan era.

  13. The "Majority Illusion" in Social Networks

    PubMed Central

    Lerman, Kristina; Yan, Xiaoran; Wu, Xin-Zeng

    2016-01-01

    Individual’s decisions, from what product to buy to whether to engage in risky behavior, often depend on the choices, behaviors, or states of other people. People, however, rarely have global knowledge of the states of others, but must estimate them from the local observations of their social contacts. Network structure can significantly distort individual’s local observations. Under some conditions, a state that is globally rare in a network may be dramatically over-represented in the local neighborhoods of many individuals. This effect, which we call the “majority illusion,” leads individuals to systematically overestimate the prevalence of that state, which may accelerate the spread of social contagions. We develop a statistical model that quantifies this effect and validate it with measurements in synthetic and real-world networks. We show that the illusion is exacerbated in networks with a heterogeneous degree distribution and disassortative structure. PMID:26886112

  14. Burstiness and Aging in Social Temporal Networks

    NASA Astrophysics Data System (ADS)

    Moinet, Antoine; Starnini, Michele; Pastor-Satorras, Romualdo

    2015-03-01

    The presence of burstiness in temporal social networks, revealed by a power-law form of the waiting time distribution of consecutive interactions, is expected to produce aging effects in the corresponding time-integrated network. Here, we propose an analytically tractable model, in which interactions among the agents are ruled by a renewal process, that is able to reproduce this aging behavior. We develop an analytic solution for the topological properties of the integrated network produced by the model, finding that the time translation invariance of the degree distribution is broken. We validate our predictions against numerical simulations, and we check for the presence of aging effects in a empirical temporal network, ruled by bursty social interactions.

  15. MAXIMUM LIKELIHOOD ESTIMATION FOR SOCIAL NETWORK DYNAMICS

    PubMed Central

    Snijders, Tom A.B.; Koskinen, Johan; Schweinberger, Michael

    2014-01-01

    A model for network panel data is discussed, based on the assumption that the observed data are discrete observations of a continuous-time Markov process on the space of all directed graphs on a given node set, in which changes in tie variables are independent conditional on the current graph. The model for tie changes is parametric and designed for applications to social network analysis, where the network dynamics can be interpreted as being generated by choices made by the social actors represented by the nodes of the graph. An algorithm for calculating the Maximum Likelihood estimator is presented, based on data augmentation and stochastic approximation. An application to an evolving friendship network is given and a small simulation study is presented which suggests that for small data sets the Maximum Likelihood estimator is more efficient than the earlier proposed Method of Moments estimator. PMID:25419259

  16. Bose-Einstein condensation in complex networks.

    PubMed

    Bianconi, G; Barabási, A L

    2001-06-11

    The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the "first-mover-advantage," "fit-get-rich," and "winner-takes-all" phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks.

  17. Spreading paths in partially observed social networks

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Christakis, Nicholas A.

    2012-03-01

    Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.

  18. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  19. Social Trust Prediction Using Heterogeneous Networks

    PubMed Central

    HUANG, JIN; NIE, FEIPING; HUANG, HENG; TU, YI-CHENG; LEI, YU

    2014-01-01

    Along with increasing popularity of social websites, online users rely more on the trustworthiness information to make decisions, extract and filter information, and tag and build connections with other users. However, such social network data often suffer from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches are primarily based on exploring trust graph topology itself. However, research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behaviors and tastes. To take advantage of the ancillary information for trust prediction, the challenge then becomes what to transfer and how to transfer. In this article, we address this problem by aggregating heterogeneous social networks and propose a novel joint social networks mining (JSNM) method. Our new joint learning model explores the user-group-level similarity between correlated graphs and simultaneously learns the individual graph structure; therefore, the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the proposed objective function, we use the alternative technique to break down the objective function into several manageable subproblems. We further introduce the auxiliary function to solve the optimization problems with rigorously proved convergence. The extensive experiments have been conducted on both synthetic and real- world data. All empirical results demonstrate the effectiveness of our method. PMID:24729776

  20. Build your own social network laboratory with Social Lab: a tool for research in social media.

    PubMed

    Garaizar, Pablo; Reips, Ulf-Dietrich

    2014-06-01

    Social networking has surpassed e-mail and instant messaging as the dominant form of online communication (Meeker, Devitt, & Wu, 2010). Currently, all large social networks are proprietary, making it difficult to impossible for researchers to make changes to such networks for the purpose of study design and access to user-generated data from the networks. To address this issue, the authors have developed and present Social Lab, an Internet-based free and open-source social network software system available from http://www.sociallab.es . Having full availability of navigation and communication data in Social Lab allows researchers to investigate behavior in social media on an individual and group level. Automated artificial users ("bots") are available to the researcher to simulate and stimulate social networking situations. These bots respond dynamically to situations as they unfold. The bots can easily be configured with scripts and can be used to experimentally manipulate social networking situations in Social Lab. Examples for setting up, configuring, and using Social Lab as a tool for research in social media are provided.

  1. The Influence of Social Networks on the Use of Health Services.

    ERIC Educational Resources Information Center

    Reeder, Sharon; And Others

    This paper describes the effect of a person's social network upon his or her use of health services. A "social network" consists of complex strands of affiliations radiating from an individual to his/her close associates (kin and friends) and then to the larger society beyond. Health services include hospitals, clinics, doctors' offices, and…

  2. Detecting Emotional Contagion in Massive Social Networks

    PubMed Central

    Coviello, Lorenzo; Sohn, Yunkyu; Kramer, Adam D. I.; Marlow, Cameron; Franceschetti, Massimo; Christakis, Nicholas A.; Fowler, James H.

    2014-01-01

    Happiness and other emotions spread between people in direct contact, but it is unclear whether massive online social networks also contribute to this spread. Here, we elaborate a novel method for measuring the contagion of emotional expression. With data from millions of Facebook users, we show that rainfall directly influences the emotional content of their status messages, and it also affects the status messages of friends in other cities who are not experiencing rainfall. For every one person affected directly, rainfall alters the emotional expression of about one to two other people, suggesting that online social networks may magnify the intensity of global emotional synchrony. PMID:24621792

  3. Sentiment analysis on smoking in social networks.

    PubMed

    Sofean, Mustafa; Smith, Matthew

    2013-01-01

    Online social networks play a vital role in daily life to share the opinions or behaviors on different topics. The data of social networks can be used to understand health-related behaviors. In this work, we used Twitter status updates to survey of smoking behaviors among the users. We introduce approach to classify the sentiment of smoke-related tweets into positive and negative tweets. The classifier is based on the Support Vector Machines (SVMs) and can achieve high accuracy up to 86%.

  4. Social Network Sites as Educational Factors

    PubMed Central

    Ebrahimpour, Alireza; Rajabali, Farnaz; Yazdanfar, Fatemeh; Azarbad, Reza; Nodeh, Majid Rezaei; Siamian, Hasan; Vahedi, Mohammad

    2016-01-01

    Background: in this present era, the technology development has established certain type of communication. Nowadays education as the fundamental principle in transferring cognition to the learners has found various methods. Recently the concept that social networks could be effective tool in easing the achievement to the educational goals has been under attention. Therefore, this investigation is trying to find out whether, the social networks could play role on the process of education among students? Materials and Methods: This cross sectional descriptive study was performed on 1000 students from 7 medical universities in 2015. The data collection tool was questionnaire that was approved Cronbach’s alpha: was 0.85. Meanwhile its validity was confirmed too. The obtained data were analyzed by the descriptive statistic, ANOVA, Turkey and used X2 SPSS-19. Results: In this investigation, 940 subjects were under study. 85% used daily the social network. The highest usage was attributed to the Telegram. 52% preferred image suitable for transferring of information. Even though, 73% believed that these networks have significant effects on coordinating of students with in university charges. Conclusion: Considering the findings of the present study, it is proposed that the universities integrate the social networks in the education programs and recognize it as the awareness factor, therefore benefit it in the educational affairs. PMID:27147807

  5. EventWeb: towards social life networks.

    PubMed

    Jain, Ramesh

    2013-03-28

    The Web has changed the way we live, work and socialize. The nodes in the current Web are documents and hence the current World Wide Web is a Document Web. Advances in technology and requirements of emerging applications require formation of a parallel and closely connected Web of events, the EventWeb, in which each node is an event. In this paper, we explore growth of EventWeb as a natural next step in the evolution of the Web with rich multimodal sensory information. Social networks use events extensively and have revolutionized communication among people. Mobile phones, equipped with myriads of sensors and being used by more than 75% of living humans, are bringing the next generation of social networks, not only to connect people with other people, but also to connect people with other people and essential life resources. We call these networks social life networks, and believe that this is the right time to focus efforts to discover and develop technology and infrastructure to design and build these networks and to apply them for solving some essential human problems.

  6. Prediction of missing links and reconstruction of complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Jun; Zeng, An

    2016-04-01

    Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.

  7. Identifying influential spreaders in complex networks based on gravity formula

    NASA Astrophysics Data System (ADS)

    Ma, Ling-ling; Ma, Chuang; Zhang, Hai-Feng; Wang, Bing-Hong

    2016-06-01

    How to identify the influential spreaders in social networks is crucial for accelerating/hindering information diffusion, increasing product exposure, controlling diseases and rumors, and so on. In this paper, by viewing the k-shell value of each node as its mass and the shortest path distance between two nodes as their distance, then inspired by the idea of the gravity formula, we propose a gravity centrality index to identify the influential spreaders in complex networks. The comparison between the gravity centrality index and some well-known centralities, such as degree centrality, betweenness centrality, closeness centrality, and k-shell centrality, and so forth, indicates that our method can effectively identify the influential spreaders in real networks as well as synthetic networks. We also use the classical Susceptible-Infected-Recovered (SIR) epidemic model to verify the good performance of our method.

  8. A natural experiment of social network formation and dynamics.

    PubMed

    Phan, Tuan Q; Airoldi, Edoardo M

    2015-05-26

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities.

  9. A natural experiment of social network formation and dynamics.

    PubMed

    Phan, Tuan Q; Airoldi, Edoardo M

    2015-05-26

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities. PMID:25964337

  10. A natural experiment of social network formation and dynamics

    PubMed Central

    Phan, Tuan Q.; Airoldi, Edoardo M.

    2015-01-01

    Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities. PMID:25964337

  11. Pain tolerance predicts human social network size

    PubMed Central

    Johnson, Katerina V.-A.; Dunbar, Robin I. M.

    2016-01-01

    Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids. PMID:27121297

  12. Offdiagonal complexity: A computationally quick complexity measure for graphs and networks

    NASA Astrophysics Data System (ADS)

    Claussen, Jens Christian

    2007-02-01

    A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.

  13. A Developmental Analysis of Children's Social Support Networks.

    ERIC Educational Resources Information Center

    Kriegler, Julie A.; Bogat, G. Anne

    Although much investigation of adult social support networks has been done, little attention has been paid to children's social support networks. Childhood patterns of social support probably influence adult patterns. A study was conducted to describe the social networks of third through sixth grade children. It also tests the validity of a new…

  14. The Application of Social Network Analysis to Team Sports

    ERIC Educational Resources Information Center

    Lusher, Dean; Robins, Garry; Kremer, Peter

    2010-01-01

    This article reviews how current social network analysis might be used to investigate individual and group behavior in sporting teams. Social network analysis methods permit researchers to explore social relations between team members and their individual-level qualities simultaneously. As such, social network analysis can be seen as augmenting…

  15. Health and the Structure of Adolescent Social Networks

    ERIC Educational Resources Information Center

    Haas, Steven A.; Schaefer, David R.; Kornienko, Olga

    2010-01-01

    Much research has explored the role of social networks in promoting health through the provision of social support. However, little work has examined how social networks themselves may be structured by health. This article investigates the link between individuals' health and the characteristics of their social network positions.We first develop…

  16. Social Network Methods for the Educational and Psychological Sciences

    ERIC Educational Resources Information Center

    Sweet, Tracy M.

    2016-01-01

    Social networks are especially applicable in educational and psychological studies involving social interactions. A social network is defined as a specific relationship among a group of individuals. Social networks arise in a variety of situations such as friendships among children, collaboration and advice seeking among teachers, and coauthorship…

  17. How multiple social networks affect user awareness: The information diffusion process in multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming

    2015-10-01

    The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.

  18. Text documents as social networks

    NASA Astrophysics Data System (ADS)

    Balinsky, Helen; Balinsky, Alexander; Simske, Steven J.

    2012-03-01

    The extraction of keywords and features is a fundamental problem in text data mining. Document processing applications directly depend on the quality and speed of the identification of salient terms and phrases. Applications as disparate as automatic document classification, information visualization, filtering and security policy enforcement all rely on the quality of automatically extracted keywords. Recently, a novel approach to rapid change detection in data streams and documents has been developed. It is based on ideas from image processing and in particular on the Helmholtz Principle from the Gestalt Theory of human perception. By modeling a document as a one-parameter family of graphs with its sentences or paragraphs defining the vertex set and with edges defined by Helmholtz's principle, we demonstrated that for some range of the parameters, the resulting graph becomes a small-world network. In this article we investigate the natural orientation of edges in such small world networks. For two connected sentences, we can say which one is the first and which one is the second, according to their position in a document. This will make such a graph look like a small WWW-type network and PageRank type algorithms will produce interesting ranking of nodes in such a document.

  19. Hierarchical social networks and information flow

    NASA Astrophysics Data System (ADS)

    López, Luis; F. F. Mendes, Jose; Sanjuán, Miguel A. F.

    2002-12-01

    Using a simple model for the information flow on social networks, we show that the traditional hierarchical topologies frequently used by companies and organizations, are poorly designed in terms of efficiency. Moreover, we prove that this type of structures are the result of the individual aim of monopolizing as much information as possible within the network. As the information is an appropriate measurement of centrality, we conclude that this kind of topology is so attractive for leaders, because the global influence each actor has within the network is completely determined by the hierarchical level occupied.

  20. Massive Social Network Analysis: Mining Twitter for Social Good

    SciTech Connect

    Ediger, David; Jiang, Karl; Riedy, Edward J.; Bader, David A.; Corley, Courtney D.; Farber, Robert M.; Reynolds, William

    2010-10-11

    Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Tooklit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system. Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.

  1. Computational Statistical Methods for Social Network Models

    PubMed Central

    Hunter, David R.; Krivitsky, Pavel N.; Schweinberger, Michael

    2013-01-01

    We review the broad range of recent statistical work in social network models, with emphasis on computational aspects of these methods. Particular focus is applied to exponential-family random graph models (ERGM) and latent variable models for data on complete networks observed at a single time point, though we also briefly review many methods for incompletely observed networks and networks observed at multiple time points. Although we mention far more modeling techniques than we can possibly cover in depth, we provide numerous citations to current literature. We illustrate several of the methods on a small, well-known network dataset, Sampson’s monks, providing code where possible so that these analyses may be duplicated. PMID:23828720

  2. Spatial Network Representation Of Complex Living Tissues

    NASA Astrophysics Data System (ADS)

    Korošak, Dean; Rupnik, Marjan

    2008-11-01

    Networks were widely used to describe organizational and functional principles of living organisms across various scales. The topology of such biological complex networks often turned out to be "scale-free," with the power-law distribution of number of links per node, robust and modular with underlying self-similar structure. However, the topology of cytoarchitecture in living tissues has not yet received wide attention from the network perspective. Here we discuss the spatial complex network model of coupled clusters of beta cells in pancreatic islets. Networks of cells in pancreatic islets were constructed from the 2D section images presenting fluorescently labelled intercellular spaces obtained by two-photon laser scanning microscopy of whole pancreas tissue slices, and cells conductances measured electrophysiologically using whole-cell patch-clamp. We find that the heterogeneity of beta cells in intact living islets induces scale-free topology of the tissue network. Furthermore, we show that the islet-like structures visually similar to 2D section images can be obtained using Voronoi diagrams of random points.

  3. Realizing Wisdom Theory in Complex Learning Networks

    ERIC Educational Resources Information Center

    Kok, Ayse

    2009-01-01

    The word "wisdom" is rarely seen in contemporary technology and learning discourse. This conceptual paper aims to provide some clear principles that answer the question: How can we establish wisdom in complex learning networks? By considering the nature of contemporary calls for wisdom the paper provides a metatheoretial framework to evaluate the…

  4. Information Spread of Emergency Events: Path Searching on Social Networks

    PubMed Central

    Hu, Hongzhi; Wu, Tunan

    2014-01-01

    Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323

  5. Information spread of emergency events: path searching on social networks.

    PubMed

    Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui

    2014-01-01

    Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.

  6. Employment, Social Networks and Undocumented Migrants: The Employer Perspective

    PubMed Central

    Bloch, Alice; McKay, Sonia

    2015-01-01

    This article draws on data from qualitative interviews with ethnic enclave and ethnic economy business entrepreneurs from Chinese, Bangladeshi and Turkish-speaking communities in London. Routes into business and worker recruitment practices are explored, demonstrating the centrality of social capital in the form of family and other social networks within these processes. The article investigates what employers consider the desirable characteristics of workers: trust, kinship, gender, social networks, language compatibility and the needs of the business intersect with racialised notions of workers’ strengths and characteristics. Finally, we consider changing practices in relation to the employment of undocumented migrants, in the context of an increasingly punitive legislative regime. The complex and variable impact of policy alongside the ways in which other obligations and positions outweigh the fear and risks of sanctions associated with non-compliance is revealed. PMID:25866421

  7. Architectural approach for quality and safety aware healthcare social networks.

    PubMed

    López, Diego M; Blobel, Bernd; González, Carolina

    2012-01-01

    Quality of information and privacy and safety issues are frequently identified as main limitations to make most benefit from social media in healthcare. The objective of the paper is to contribute to the analysis of healthcare social networks (SN), and online healthcare social network services (SNS) by proposing a formal architectural analysis of healthcare SN and SNS, considering the complexity of both systems, but stressing on quality, safety and usability aspects. Quality policies are necessary to control the quality of content published by experts and consumers. Privacy and safety policies protect against inappropriate use of information and users responsibility for sharing information. After the policies are established and documented, a proof of concept online SNS supporting primary healthcare promotion is presented in the paper.

  8. Social networks of educated nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound...

  9. Controlling extreme events on complex networks.

    PubMed

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network "mobile" can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  10. Controlling extreme events on complex networks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  11. Amplitude dynamics favors synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-04-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

  12. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  13. Proximity data-loggers increase the quantity and quality of social network data

    PubMed Central

    Ryder, Thomas B.; Horton, Brent M.; van den Tillaart, Mike; Morales, Juan De Dios; Moore, Ignacio T.

    2012-01-01

    Social network analysis is an ideal quantitative tool for advancing our understanding of complex social behaviour. However, this approach is often limited by the challenges of accurately characterizing social structure and measuring network heterogeneity. Technological advances have facilitated the study of social networks, but to date, all such work has focused on large vertebrates. Here, we provide proof of concept for using proximity data-logging to quantify the frequency of social interactions, construct weighted networks and characterize variation in the social behaviour of a lek-breeding bird, the wire-tailed manakin, Pipra filicauda. Our results highlight how this approach can ameliorate the challenges of social network data collection and analysis by concurrently improving data quality and quantity. PMID:22859558

  14. Proximity data-loggers increase the quantity and quality of social network data.

    PubMed

    Ryder, Thomas B; Horton, Brent M; van den Tillaart, Mike; Morales, Juan De Dios; Moore, Ignacio T

    2012-12-23

    Social network analysis is an ideal quantitative tool for advancing our understanding of complex social behaviour. However, this approach is often limited by the challenges of accurately characterizing social structure and measuring network heterogeneity. Technological advances have facilitated the study of social networks, but to date, all such work has focused on large vertebrates. Here, we provide proof of concept for using proximity data-logging to quantify the frequency of social interactions, construct weighted networks and characterize variation in the social behaviour of a lek-breeding bird, the wire-tailed manakin, Pipra filicauda. Our results highlight how this approach can ameliorate the challenges of social network data collection and analysis by concurrently improving data quality and quantity. PMID:22859558

  15. Adoption of Social Networking in Education: A Study of the Use of Social Networks by Higher Education Students in Oman

    ERIC Educational Resources Information Center

    Al-Mukhaini, Elham M.; Al-Qayoudhi, Wafa S.; Al-Badi, Ali H.

    2014-01-01

    The use of social networks is a growing phenomenon, being increasingly important in both private and academic life. Social networks are used as tools to enable users to have social interaction. The use of social networks (SNs) complements and enhances the teaching in traditional classrooms. For example, YouTube, Facebook, wikis, and blogs provide…

  16. Electronic Social Networks, Teaching, and Learning

    ERIC Educational Resources Information Center

    Pidduck, Anne Banks

    2010-01-01

    This paper explores the relationship between electronic social networks, teaching, and learning. Previous studies have shown a strong positive correlation between student engagement and learning. By extending this work to engage instructors and add an electronic component, our study shows possible teaching improvement as well. In particular,…

  17. Social Dynamics within Electronic Networks of Practice

    ERIC Educational Resources Information Center

    Mattson, Thomas A., Jr.

    2013-01-01

    Electronic networks of practice (eNoP) are special types of electronic social structures focused on discussing domain-specific problems related to a skill-based craft or profession in question and answer style forums. eNoP have implemented peer-to-peer feedback systems in order to motivate future contributions and to distinguish contribution…

  18. Exploring Social Networking: Developing Critical Literacies

    ERIC Educational Resources Information Center

    Watson, Pauline

    2012-01-01

    While schools have been using computers within their classrooms for years now, there has been a purposeful ignoring of the growing power of social networks such as Facebook and Twitter. Many schools ban students from accessing and using sites such as Facebook at school and many English and literacy teachers ignore or deny their value as a teaching…

  19. Unravelling the Social Network: Theory and Research

    ERIC Educational Resources Information Center

    Merchant, Guy

    2012-01-01

    Despite the widespread popularity of social networking sites (SNSs) amongst children and young people in compulsory education, relatively little scholarly work has explored the fundamental issues at stake. This paper makes an original contribution to the field by locating the study of this online activity within the broader terrain of social…

  20. Social Networking Sites as a Learning Tool

    ERIC Educational Resources Information Center

    Sanchez-Casado, Noelia; Cegarra Navarro, Juan Gabriel; Wensley, Anthony; Tomaseti-Solano, Eva

    2016-01-01

    Purpose: Over the past few years, social networking sites (SNSs) have become very useful for firms, allowing companies to manage the customer-brand relationships. In this context, SNSs can be considered as a learning tool because of the brand knowledge that customers develop from these relationships. Because of the fact that knowledge in…

  1. Social Networking Services in E-Learning

    ERIC Educational Resources Information Center

    Weber, Peter; Rothe, Hannes

    2012-01-01

    This paper is a report on the findings of a study conducted on the use of the social networking service NING in a cross-location e-learning setting named "Net Economy." We describe how we implemented NING as a fundamental part of the setting through a special phase concept and team building approach. With the help of user statistics, we examine…

  2. Social Network Structures among Groundnut Farmers

    ERIC Educational Resources Information Center

    Thuo, Mary; Bell, Alexandra A.; Bravo-Ureta, Boris E.; Okello, David K.; Okoko, Evelyn Nasambu; Kidula, Nelson L.; Deom, C. Michael; Puppala, Naveen

    2013-01-01

    Purpose: Groundnut farmers in East Africa have experienced declines in production despite research and extension efforts to increase productivity. This study examined how social network structures related to acquisition of information about new seed varieties and productivity among groundnut farmers in Uganda and Kenya.…

  3. How to Analyze Company Using Social Network?

    NASA Astrophysics Data System (ADS)

    Palus, Sebastian; Bródka, Piotr; Kazienko, Przemysław

    Every single company or institution wants to utilize its resources in the most efficient way. In order to do so they have to be have good structure. The new way to analyze company structure by utilizing existing within company natural social network and example of its usage on Enron company are presented in this paper.

  4. Social Networking Postings: Views from School Principals

    ERIC Educational Resources Information Center

    Griffin, Marlynn M.; Lake, Robert L.

    2012-01-01

    Numerous recent media accounts indicate that teachers are being fired, put on probation, or otherwise censured because of information found on their social networking sites (SNS). While the literature in business, psychology, and pharmacy shows initial investigations of the impact of SNS information on hiring decisions, this area has not been…

  5. Tractable Analysis for Large Social Networks

    ERIC Educational Resources Information Center

    Zhang, Bin

    2012-01-01

    Social scientists usually are more interested in consumers' dichotomous choice, such as purchase a product or not, adopt a technology or not, etc. However, up to date, there is nearly no model can help us solve the problem of multi-network effects comparison with a dichotomous dependent variable. Furthermore, the study of multi-network…

  6. Protecting Personal Information on Social Networking Sites

    ERIC Educational Resources Information Center

    Gallant, David T.

    2011-01-01

    Almost everyone uses social networking sites like Facebook, MySpace, and LinkedIn. Since Facebook is the most popular site in the history of the Internet, this article will focus on how one can protect his/her personal information and how that extends to protecting the private information of others.

  7. Social Networks and Youngspeak in Study Abroad

    ERIC Educational Resources Information Center

    Fernandez, Julieta

    2013-01-01

    Interactions with experienced L2 speakers can have a positive effect on study abroad (SA) students' language acquisition (e.g., development in informal vocabulary use, Schauer, 2009). Many SA students, however, experience difficulties in establishing social networks in Latin America (e.g., Isabelli-Garcia, 2006). SA experience, therefore, cannot…

  8. The Benefits and Limitations of Social Networking

    ERIC Educational Resources Information Center

    Strom, Paris; Strom, Robert

    2012-01-01

    The Center for the Digital Future at the University of Southern California surveys 2,000 households each year to find out how online technology affects Internet users. Findings in the latest report show social networks are increasing and a majority of users report feeling as strongly about their communities online as their real-world communities.…

  9. Social Networking Services in E-Learning

    ERIC Educational Resources Information Center

    Weber, Peter; Rothe, Hannes

    2016-01-01

    This paper is a report on the findings of a study conducted on the use of the social networking service NING in a cross-location e-learning setting named "Net Economy." We describe how we implemented NING as a fundamental part of the setting through a special phase concept and team building approach. With the help of user statistics, we…

  10. Social Networking Tools for Academic Libraries

    ERIC Educational Resources Information Center

    Chu, Samuel Kai-Wah; Du, Helen S.

    2013-01-01

    This is an exploratory study investigating the use of social networking tools in academic libraries, examining the extent of their use, library staff's perceptions of their usefulness and challenges, and factors influencing decisions to use or not to use such tools. Invitations to participate in a web-based survey were sent to 140 university…

  11. Social Networking: A Collaborative Open Educational Resource

    ERIC Educational Resources Information Center

    Toetenel, Lisette

    2014-01-01

    Studies undertaken since the introduction of Web 2.0 have focussed mainly on open educational resources (OERs) such as email, blogging and virtual learning environments. No consistent efforts have been undertaken to study the use of social networking sites as a tool for learning in the second language classroom. This study examined the use of…

  12. Ethical Considerations of Social Networking for Counsellors

    ERIC Educational Resources Information Center

    Bratt, William Edgar Vernon

    2010-01-01

    The use of online social networking websites has increased among Canadians in recent years. There are many professional and ethical implications for counsellors who use these sites (Boyd, 2007). Although they offer advantages to counsellors, their use can also raise issues around ethical conduct. Because the counselling literature has not yet…

  13. Effects of deception in social networks

    PubMed Central

    Iñiguez, Gerardo; Govezensky, Tzipe; Dunbar, Robin; Kaski, Kimmo; Barrio, Rafael A.

    2014-01-01

    Honesty plays a crucial role in any situation where organisms exchange information or resources. Dishonesty can thus be expected to have damaging effects on social coherence if agents cannot trust the information or goods they receive. However, a distinction is often drawn between prosocial lies (‘white’ lies) and antisocial lying (i.e. deception for personal gain), with the former being considered much less destructive than the latter. We use an agent-based model to show that antisocial lying causes social networks to become increasingly fragmented. Antisocial dishonesty thus places strong constraints on the size and cohesion of social communities, providing a major hurdle that organisms have to overcome (e.g. by evolving counter-deception strategies) in order to evolve large, socially cohesive communities. In contrast, white lies can prove to be beneficial in smoothing the flow of interactions and facilitating a larger, more integrated network. Our results demonstrate that these group-level effects can arise as emergent properties of interactions at the dyadic level. The balance between prosocial and antisocial lies may set constraints on the structure of social networks, and hence the shape of society as a whole. PMID:25056625

  14. Kinetic analysis of complex metabolic networks

    SciTech Connect

    Stephanopoulos, G.

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  15. Factors Determining Nestedness in Complex Networks

    PubMed Central

    Jonhson, Samuel; Domínguez-García, Virginia; Muñoz, Miguel A.

    2013-01-01

    Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity). We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted – as a second factor – we find that nestedness is strongly correlated with disassortativity and hence – as random networks have been recently found to be naturally disassortative – they also tend to be naturally nested just as the result of chance. PMID:24069264

  16. Managing Trust in Online Social Networks

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Touhid; Josang, Audun; Xu, Yue

    In recent years, there is a dramatic growth in number and popularity of online social networks. There are many networks available with more than 100 million registered users such as Facebook, MySpace, QZone, Windows Live Spaces etc. People may connect, discover and share by using these online social networks. The exponential growth of online communities in the area of social networks attracts the attention of the researchers about the importance of managing trust in online environment. Users of the online social networks may share their experiences and opinions within the networks about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Recommendations may be received through a chain of friends network, so the problem for the user is to be able to evaluate various types of trust opinions and recommendations. This opinion or recommendation has a great influence to choose to use or enjoy the item by the other user of the community. Collaborative filtering system is the most popular method in recommender system. The task in collaborative filtering is to predict the utility of items to a particular user based on a database of user rates from a sample or population of other users. Because of the different taste of different people, they rate differently according to their subjective taste. If two people rate a set of items similarly, they share similar tastes. In the recommender system, this information is used to recommend items that one participant likes, to other persons in the same cluster. But the collaborative filtering system performs poor when there is insufficient previous common rating available between users; commonly known as cost start problem. To overcome the cold start problem and with the dramatic growth of online social networks, trust based approach to recommendation has emerged. This approach assumes a trust network among users and makes recommendations

  17. Social contagion theory: examining dynamic social networks and human behavior.

    PubMed

    Christakis, Nicholas A; Fowler, James H

    2013-02-20

    Here, we review the research we have conducted on social contagion. We describe the methods we have employed (and the assumptions they have entailed) to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a 'three degrees of influence' property, and we review statistical approaches we have used to characterize interpersonal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations.

  18. Social contagion theory: examining dynamic social networks and human behavior

    PubMed Central

    Christakis, Nicholas A.; Fowler, James H.

    2013-01-01

    Here, we review the research we have conducted on social contagion. We describe the methods we have employed (and the assumptions they have entailed) to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a ‘three degrees of influence’ property, and we review statistical approaches we have used to characterize interpersonal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations. PMID:22711416

  19. Social encounter networks: characterizing Great Britain

    PubMed Central

    Danon, Leon; Read, Jonathan M.; House, Thomas A.; Vernon, Matthew C.; Keeling, Matt J.

    2013-01-01

    A major goal of infectious disease epidemiology is to understand and predict the spread of infections within human populations, with the intention of better informing decisions regarding control and intervention. However, the development of fully mechanistic models of transmission requires a quantitative understanding of social interactions and collective properties of social networks. We performed a cross-sectional study of the social contacts on given days for more than 5000 respondents in England, Scotland and Wales, through postal and online survey methods. The survey was designed to elicit detailed and previously unreported measures of the immediate social network of participants relevant to infection spread. Here, we describe individual-level contact patterns, focusing on the range of heterogeneity observed and discuss the correlations between contact patterns and other socio-demographic factors. We find that the distribution of the number of contacts approximates a power-law distribution, but postulate that total contact time (which has a shorter-tailed distribution) is more epidemiologically relevant. We observe that children, public-sector and healthcare workers have the highest number of total contact hours and are therefore most likely to catch and transmit infectious disease. Our study also quantifies the transitive connections made between an individual's contacts (or clustering); this is a key structural characteristic of social networks with important implications for disease transmission and control efficacy. Respondents' networks exhibit high levels of clustering, which varies across social settings and increases with duration, frequency of contact and distance from home. Finally, we discuss the implications of these findings for the transmission and control of pathogens spread through close contact. PMID:23804621

  20. Dynamic social network analysis using conversational dynamics in social networking and microblogging environments

    NASA Astrophysics Data System (ADS)

    Stocco, Gabriel; Savell, Robert; Cybenko, George

    2010-04-01

    In many security environments, the textual content of communications may be unavailable. In these instances, it is often desirable to infer the status of the network and its component entities from patterns of communication flow. Conversational dynamics among entities in the network may provide insight into important aspects of the underlying social network such as the formational dynamics of group structures, the active state of these groups, individuals' roles within groups, and the likelihood of individual participation in conversations. To gain insight into the use of conversational dynamics to facilitate Dynamic Social Network Analysis, we explore the use of interevent timings to associate entities in the Twitter social networking and micro-blogging environment. Specifically, we use message timings to establish inter-nodal relationships among participants. In addition, we demonstrate a new visualization technique for tracking levels of coordination or synchronization within the community via measures of socio-temporal coherence of the participants.

  1. Universal resilience patterns in complex networks.

    PubMed

    Gao, Jianxi; Barzel, Baruch; Barabási, Albert-László

    2016-02-18

    Resilience, a system's ability to adjust its activity to retain its basic functionality when errors, failures and environmental changes occur, is a defining property of many complex systems. Despite widespread consequences for human health, the economy and the environment, events leading to loss of resilience--from cascading failures in technological systems to mass extinctions in ecological networks--are rarely predictable and are often irreversible. These limitations are rooted in a theoretical gap: the current analytical framework of resilience is designed to treat low-dimensional models with a few interacting components, and is unsuitable for multi-dimensional systems consisting of a large number of components that interact through a complex network. Here we bridge this theoretical gap by developing a set of analytical tools with which to identify the natural control and state parameters of a multi-dimensional complex system, helping us derive effective one-dimensional dynamics that accurately predict the system's resilience. The proposed analytical framework allows us systematically to separate the roles of the system's dynamics and topology, collapsing the behaviour of different networks onto a single universal resilience function. The analytical results unveil the network characteristics that can enhance or diminish resilience, offering ways to prevent the collapse of ecological, biological or economic systems, and guiding the design of technological systems resilient to both internal failures and environmental changes. PMID:26887493

  2. Universal resilience patterns in complex networks.

    PubMed

    Gao, Jianxi; Barzel, Baruch; Barabási, Albert-László

    2016-02-18

    Resilience, a system's ability to adjust its activity to retain its basic functionality when errors, failures and environmental changes occur, is a defining property of many complex systems. Despite widespread consequences for human health, the economy and the environment, events leading to loss of resilience--from cascading failures in technological systems to mass extinctions in ecological networks--are rarely predictable and are often irreversible. These limitations are rooted in a theoretical gap: the current analytical framework of resilience is designed to treat low-dimensional models with a few interacting components, and is unsuitable for multi-dimensional systems consisting of a large number of components that interact through a complex network. Here we bridge this theoretical gap by developing a set of analytical tools with which to identify the natural control and state parameters of a multi-dimensional complex system, helping us derive effective one-dimensional dynamics that accurately predict the system's resilience. The proposed analytical framework allows us systematically to separate the roles of the system's dynamics and topology, collapsing the behaviour of different networks onto a single universal resilience function. The analytical results unveil the network characteristics that can enhance or diminish resilience, offering ways to prevent the collapse of ecological, biological or economic systems, and guiding the design of technological systems resilient to both internal failures and environmental changes.

  3. Circulation system complex networks and teleconnections

    NASA Astrophysics Data System (ADS)

    Gong, Zhi-Qiang; Wang, Xiao-Juan; Zhi, Rong; Feng, Ai-Xia

    2011-07-01

    In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90° N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific—North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30° S-90° S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks.

  4. Social networking profile correlates of schizotypy.

    PubMed

    Martin, Elizabeth A; Bailey, Drew H; Cicero, David C; Kerns, John G

    2012-12-30

    Social networking sites, such as Facebook, are extremely popular and have become a primary method for socialization and communication. Despite a report of increased use among those on the schizophrenia-spectrum, few details are known about their actual practices. In the current research, undergraduate participants completed measures of schizotypy and personality, and provided access to their Facebook profiles. Information from the profiles were then systematically coded and compared to the questionnaire data. As predicted, social anhedonia (SocAnh) was associated with a decrease in social participation variables, including a decrease in number of friends and number of photos, and an increase in length of time since communication with a friend, but SocAnh was also associated with an increase in profile length. Also, SocAnh was highly correlated with extraversion. Relatedly, extraversion uniquely predicted the number of friends and photos and length of time since communication with a friend. In addition, perceptual aberration/magical ideation (PerMag) was associated with an increased number of "black outs" on Facebook profile print-outs, a measure of paranoia. Overall, results from this naturalistic-like study show that SocAnh and extraversion are associated with decreased social participation and PerMag with increased paranoia related to information on social networking sites.

  5. Social networking profile correlates of schizotypy

    PubMed Central

    Martin, Elizabeth A.; Bailey, Drew H.; Cicero, David C.; Kerns, John G.

    2015-01-01

    Social networking sites, such as Facebook, are extremely popular and have become a primary method for socialization and communication. Despite a report of increased use among those on the schizophrenia-spectrum, few details are known about their actual practices. In the current research, undergraduate participants completed measures of schizotypy and personality, and provided access to their Facebook profiles. Information from the profiles were then systematically coded and compared to the questionnaire data. As predicted, social anhedonia (SocAnh) was associated with a decrease in social participation variables, including a decrease in number of friends and number of photos, and an increase in length of time since communication with a friend, but SocAnh was also associated with an increase in profile length. Also, SocAnh was highly correlated with extraversion. Relatedly, extraversion uniquely predicted the number of friends and photos and length of time since communication with a friend. In addition, perceptual aberration/magical ideation (PerMag) was associated with an increased number of “black outs” on Facebook profile print-outs, a measure of paranoia. Overall, results from this naturalistic-like study show that SocAnh and extraversion are associated with decreased social participation and PerMag with increased paranoia related to information on social networking sites. PMID:22796101

  6. Social networking profile correlates of schizotypy.

    PubMed

    Martin, Elizabeth A; Bailey, Drew H; Cicero, David C; Kerns, John G

    2012-12-30

    Social networking sites, such as Facebook, are extremely popular and have become a primary method for socialization and communication. Despite a report of increased use among those on the schizophrenia-spectrum, few details are known about their actual practices. In the current research, undergraduate participants completed measures of schizotypy and personality, and provided access to their Facebook profiles. Information from the profiles were then systematically coded and compared to the questionnaire data. As predicted, social anhedonia (SocAnh) was associated with a decrease in social participation variables, including a decrease in number of friends and number of photos, and an increase in length of time since communication with a friend, but SocAnh was also associated with an increase in profile length. Also, SocAnh was highly correlated with extraversion. Relatedly, extraversion uniquely predicted the number of friends and photos and length of time since communication with a friend. In addition, perceptual aberration/magical ideation (PerMag) was associated with an increased number of "black outs" on Facebook profile print-outs, a measure of paranoia. Overall, results from this naturalistic-like study show that SocAnh and extraversion are associated with decreased social participation and PerMag with increased paranoia related to information on social networking sites. PMID:22796101

  7. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  8. Can syntactic networks indicate morphological complexity of a language?

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Xu, Chunshan

    2011-01-01

    In this study, the complex-network approaches are employed to investigate the word form networks and the lemma networks extracted from dependency syntactic treebanks of fifteen different languages. The results show that it is possible to classify human languages by means of the main parameters of complex networks. The complex-network approaches can obtain language classifications as precise as achieved by contemporary word order typology. Clustering experiments point to the fact that the difference between the word form networks and the lemma networks can make for a better classification of languages. In short, the dependency syntactic networks can reflect morphological variation degrees and morphological complexity.

  9. Ants (Formicidae): models for social complexity.

    PubMed

    Smith, Chris R; Dolezal, Adam; Eliyahu, Dorit; Holbrook, C Tate; Gadau, Jürgen

    2009-07-01

    The family Formicidae (ants) is composed of more than 12,000 described species that vary greatly in size, morphology, behavior, life history, ecology, and social organization. Ants occur in most terrestrial habitats and are the dominant animals in many of them. They have been used as models to address fundamental questions in ecology, evolution, behavior, and development. The literature on ants is extensive, and the natural history of many species is known in detail. Phylogenetic relationships for the family, as well as within many subfamilies, are known, enabling comparative studies. Their ease of sampling and ecological variation makes them attractive for studying populations and questions relating to communities. Their sociality and variation in social organization have contributed greatly to an understanding of complex systems, division of labor, and chemical communication. Ants occur in colonies composed of tens to millions of individuals that vary greatly in morphology, physiology, and behavior; this variation has been used to address proximate and ultimate mechanisms generating phenotypic plasticity. Relatedness asymmetries within colonies have been fundamental to the formulation and empirical testing of kin and group selection theories. Genomic resources have been developed for some species, and a whole-genome sequence for several species is likely to follow in the near future; comparative genomics in ants should provide new insights into the evolution of complexity and sociogenomics. Future studies using ants should help establish a more comprehensive understanding of social life, from molecules to colonies. PMID:20147200

  10. Mixed-method Exploration of Social Network Links to Participation

    PubMed Central

    Kreider, Consuelo M.; Bendixen, Roxanna M.; Mann, William C.; Young, Mary Ellen; McCarty, Christopher

    2015-01-01

    The people who regularly interact with an adolescent form that youth's social network, which may impact participation. We investigated the relationship of social networks to participation using personal network analysis and individual interviews. The sample included 36 youth, age 11 – 16 years. Nineteen had diagnoses of learning disability, attention disorder, or high-functioning autism and 17 were typically developing. Network analysis yielded 10 network variables, of which 8 measured network composition and 2 measured network structure, with significant links to at least one measure of participation using the Children's Assessment of Participation and Enjoyment (CAPE). Interviews from youth in the clinical group yielded description of strategies used to negotiate social interactions, as well as processes and reasoning used to remain engaged within social networks. Findings contribute to understanding the ways social networks are linked to youth participation and suggest the potential of social network factors for predicting rehabilitation outcomes. PMID:26594737

  11. Social networks of professionals in health care organizations: a review.

    PubMed

    Tasselli, Stefano

    2014-12-01

    In this article, we provide an overview of social network research in health care, with a focus on social interactions between professionals in organizations. We begin by introducing key concepts defining the social network approach, including network density, centrality, and brokerage. We then review past and current research on the antecedents of health care professionals' social networks-including demographic attributes, professional groups, and organizational arrangements-and their consequences-including satisfaction at work, leadership, behaviors, knowledge transfer, diffusion of innovation, and performance. Finally, we examine future directions for social network research in health care, focusing on micro-macro linkages and network dynamics.

  12. Post Disaster Governance, Complexity and Network Theory

    PubMed Central

    Lassa, Jonatan A.

    2015-01-01

    This research aims to understand the organizational network typology of large­-scale disaster intervention in developing countries and to understand the complexity of post-­disaster intervention, through the use of network theory based on empirical data from post-­tsunami reconstruction in Aceh, Indonesia, during 2005/­2007. The findings suggest that the ‘ degrees of separation’ (or network diameter) between any two organizations in the field is 5, thus reflecting ‘small­ world’ realities and therefore making no significant difference with the real human networks, as found in previous experiments. There are also significant loops in the network reflecting the fact that some actors tend to not cooperate, which challenges post­ disaster coordination. The findings show the landscape of humanitarian actors is not randomly distributed. Many actors were connected to each other through certain hubs, while hundreds of actors make ‘scattered’ single ‘principal-­client’ links. The paper concludes that by understanding the distribution of degree, centrality, ‘degrees of separation’ and visualization of the network, authorities can improve their understanding of the realities of coordination, from macro to micro scales. PMID:26236562

  13. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc.

  14. A practical guide to social networks.

    PubMed

    Cross, Rob; Liedtka, Jeanne; Weiss, Leigh

    2005-03-01

    Saying that networks are important is stating the obvious. But harnessing the power of these seemingly invisible groups to achieve organizational goals is an elusive undertaking. Most efforts to promote collaboration are haphazard and built on the implicit philosophy that more connectivity is better. In truth, networks create relational demands that sap people's time and energy and can bog down entire organizations. It's crucial for executives to learn how to promote connectivity only where it benefits an organization or individual and to decrease unnecessary connections. In this article, the authors introduce three types of social networks, each of which delivers unique value. The customized response network excels at framing the ambiguous problems involved in innovation. Strategy consulting firms and new-product development groups rely on this format. By contrast, surgical teams and law firms rely mostly on the modular response network, which works best when components of the problem are known but the sequence of those components in the solution is unknown. And the routine response network is best suited for organizations like call centers, where the problems and solutions are fairly predictable but collaboration is still needed. Executives shouldn't simply hope that collaboration will spontaneously occur in the right places atthe right times in their organization. They need to develop a strategic, nuanced view of collaboration, and they must take steps to ensure that their companies support the types of social networks that best fit their goals. Drawing on examples from Novartis, the FAA, and Sallie Mae, the authors offer managers the tools they need to determine which network will deliver the best results for their organizations and which strategic investments will nurture the right degree of connectivity. PMID:15768681

  15. Functional networks in emotional moral and nonmoral social judgments.

    PubMed

    Moll, Jorge; de Oliveira-Souza, Ricardo; Bramati, Ivanei E; Grafman, Jordan

    2002-07-01

    Reading daily newspaper articles often evokes opinions and social judgments about the characters and stories. Social and moral judgments rely on the proper functioning of neural circuits concerned with complex cognitive and emotional processes. To examine whether dissociable neural systems mediate emotionally charged moral and nonmoral social judgments, we used a visual sentence verification task in conjunction with functional magnetic resonance imaging (fMRI). We found that a network comprising the medial orbitofrontal cortex, the temporal pole and the superior temporal sulcus of the left hemisphere was specifically activated by moral judgments. In contrast, judgment of emotionally evocative, but non-moral statements activated the left amygdala, lingual gyri, and the lateral orbital gyrus. These findings provide new evidence that the orbitofrontal cortex has dedicated subregions specialized in processing specific forms of social behavior. PMID:12169253

  16. Discovery of Information Diffusion Process in Social Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun

    Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.

  17. Spread of academic success in a high school social network.

    PubMed

    Blansky, Deanna; Kavanaugh, Christina; Boothroyd, Cara; Benson, Brianna; Gallagher, Julie; Endress, John; Sayama, Hiroki

    2013-01-01

    Application of social network analysis to education has revealed how social network positions of K-12 students correlate with their behavior and academic achievements. However, no study has been conducted on how their social network influences their academic progress over time. Here we investigated correlations between high school students' academic progress over one year and the social environment that surrounds them in their friendship network. We found that students whose friends' average GPA (Grade Point Average) was greater (or less) than their own had a higher tendency toward increasing (or decreasing) their academic ranking over time, indicating social contagion of academic success taking place in their social network.

  18. Unfavorable Individuals in Social Gaming Networks

    PubMed Central

    Zhang, Yichao; Chen, Guanrong; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2015-01-01

    In social gaming networks, the current research focus has been on the origin of widespread reciprocal behaviors when individuals play non-cooperative games. In this paper, we investigate the topological properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff is normally considered as a measure of fitness, the unfavorable individuals are very likely to be eliminated or change their strategy updating rules from a Darwinian perspective. Considering that humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-and-conquer game model, where individuals can interact with their neighbors in the network with appropriate strategies. We test and compare a series of highly rational strategy updating rules. In the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. Our finding suggests that the connectivity of individuals as a social capital fundamentally changes the gaming environment. Our model, therefore, provides a theoretical framework for further understanding the social gaming networks. PMID:26648549

  19. Cooperative behavior cascades in human social networks

    PubMed Central

    Fowler, James H.; Christakis, Nicholas A.

    2010-01-01

    Theoretical models suggest that social networks influence the evolution of cooperation, but to date there have been few experimental studies. Observational data suggest that a wide variety of behaviors may spread in human social networks, but subjects in such studies can choose to befriend people with similar behaviors, posing difficulty for causal inference. Here, we exploit a seminal set of laboratory experiments that originally showed that voluntary costly punishment can help sustain cooperation. In these experiments, subjects were randomly assigned to a sequence of different groups to play a series of single-shot public goods games with strangers; this feature allowed us to draw networks of interactions to explore how cooperative and uncooperative behaviors spread from person to person to person. We show that, in both an ordinary public goods game and in a public goods game with punishment, focal individuals are influenced by fellow group members’ contribution behavior in future interactions with other individuals who were not a party to the initial interaction. Furthermore, this influence persists for multiple periods and spreads up to three degrees of separation (from person to person to person to person). The results suggest that each additional contribution a subject makes to the public good in the first period is tripled over the course of the experiment by other subjects who are directly or indirectly influenced to contribute more as a consequence. These results show experimentally that cooperative behavior cascades in human social networks. PMID:20212120

  20. Unfavorable Individuals in Social Gaming Networks.

    PubMed

    Zhang, Yichao; Chen, Guanrong; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2015-01-01

    In social gaming networks, the current research focus has been on the origin of widespread reciprocal behaviors when individuals play non-cooperative games. In this paper, we investigate the topological properties of unfavorable individuals in evolutionary games. The unfavorable individuals are defined as the individuals gaining the lowest average payoff in a round of game. Since the average payoff is normally considered as a measure of fitness, the unfavorable individuals are very likely to be eliminated or change their strategy updating rules from a Darwinian perspective. Considering that humans can hardly adopt a unified strategy to play with their neighbors, we propose a divide-and-conquer game model, where individuals can interact with their neighbors in the network with appropriate strategies. We test and compare a series of highly rational strategy updating rules. In the tested scenarios, our analytical and simulation results surprisingly reveal that the less-connected individuals in degree-heterogeneous networks are more likely to become the unfavorable individuals. Our finding suggests that the connectivity of individuals as a social capital fundamentally changes the gaming environment. Our model, therefore, provides a theoretical framework for further understanding the social gaming networks. PMID:26648549