Hierarchic spatio-temporal dynamics in glycolysis
NASA Astrophysics Data System (ADS)
Shinjyo, Takahiro; Nakagawa, Yoshiyuki; Ueda, Tetsuo
Yeast extracts exhibit oscillations when the glycolytic system is far away from equilibrium. Spatio-temporal dynamics in this system was studied in the newly developed gel as well as in the solution. Small regions (about 10 um) with very complex shape with high or low concentrations of NADH appeared, and upon these small structures large-scale dynamics were superimposed. Concentration waves propagated, and the source of wave was induced by contact with high ADP. Sink of waves was generated by contacting the reaction gel to two small gels rich in ADP. Upon these spatio-temporal dynamics were superimposed much slower global oscillations throughout the system with a period of about 40 min. Similar dynamics was seen in a solution of yeast extract, but the size of domains was about ten times larger than that in the gel. In this way, the multi-enzyme system of glycolysis exhibits self-organization of hierarchy in spatio-temporal dynamics.
Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.
Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2016-01-01
Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099
The evolution of meaning: spatio-temporal dynamics of visual object recognition.
Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K
2011-08-01
Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.
Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning
NASA Astrophysics Data System (ADS)
Evenson, G. R.
2012-12-01
Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten
2013-01-01
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974
Koorehdavoudi, Hana; Bogdan, Paul
2016-01-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496
NASA Astrophysics Data System (ADS)
Koorehdavoudi, Hana; Bogdan, Paul
2016-06-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.
Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision
Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson
2014-01-01
The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339
Spatio-temporal dynamics in the origin of genetic information
NASA Astrophysics Data System (ADS)
Kim, Pan-Jun; Jeong, Hawoong
2005-04-01
We study evolutionary processes induced by spatio-temporal dynamics in prebiotic evolution. Using numerical simulations, we demonstrate that hypercycles emerge from complex interaction structures in multispecies systems. In this work, we also find that ‘hypercycle hybrid’ protects the hypercycle from its environment during the growth process. There is little selective advantage for one hypercycle to maintain coexistence with others. This brings the possibility of the outcompetition between hypercycles resulting in the negative effect on information diversity. To enrich the information in hypercycles, symbiosis with parasites is suggested. It is shown that symbiosis with parasites can play an important role in the prebiotic immunology.
Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.
Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan
2018-06-01
In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.
NASA Astrophysics Data System (ADS)
Bertazzon, Stefania
The present research focuses on the interaction of supply and demand of down-hill ski tourism in the province of Alberta. The main hypothesis is that the demand for skiing depends on the socio-economic and demographic characteristics of the population living in the province and outside it. A second, consequent hypothesis is that the development of ski resorts (supply) is a response to the demand for skiing. From the latter derives the hypothesis of a dynamic interaction between supply (ski resorts) and demand (skiers). Such interaction occurs in space, within a range determined by physical distance and the means available to overcome it. The above hypotheses implicitly define interactions that take place in space and evolve over time. The hypotheses are tested by temporal, spatial, and spatio-temporal regression models, using the best available data and the latest commercially available software. The main purpose of this research is to explore analytical techniques to model spatial, temporal, and spatio-temporal dynamics in the context of regional science. The completion of the present research has produced more significant contributions than was originally expected. Many of the unexpected contributions resulted from theoretical and applied needs arising from the application of spatial regression models. Spatial regression models are a new and largely under-applied technique. The models are fairly complex and a considerable amount of preparatory work is needed, prior to their specification and estimation. Most of this work is specific to the field of application. The originality of the solutions devised is increased by the lack of applications in the field of tourism. The scarcity of applications in other fields adds to their value for other applications. The estimation of spatio-temporal models has been only partially attained in the present research. This apparent limitation is due to the novelty and complexity of the analytical methods applied. This opens new directions for further work in the field of spatial analysis, in conjunction with the development of specific software.
NASA Astrophysics Data System (ADS)
Konapala, Goutam; Mishra, Ashok
2017-12-01
The quantification of spatio-temporal hydroclimatic extreme events is a key variable in water resources planning, disaster mitigation, and preparing climate resilient society. However, quantification of these extreme events has always been a great challenge, which is further compounded by climate variability and change. Recently complex network theory was applied in earth science community to investigate spatial connections among hydrologic fluxes (e.g., rainfall and streamflow) in water cycle. However, there are limited applications of complex network theory for investigating hydroclimatic extreme events. This article attempts to provide an overview of complex networks and extreme events, event synchronization method, construction of networks, their statistical significance and the associated network evaluation metrics. For illustration purpose, we apply the complex network approach to study the spatio-temporal evolution of droughts in Continental USA (CONUS). A different drought threshold leads to a new drought event as well as different socio-economic implications. Therefore, it would be interesting to explore the role of thresholds on spatio-temporal evolution of drought through network analysis. In this study, long term (1900-2016) Palmer drought severity index (PDSI) was selected for spatio-temporal drought analysis using three network-based metrics (i.e., strength, direction and distance). The results indicate that the drought events propagate differently at different thresholds associated with initiation of drought events. The direction metrics indicated that onset of mild drought events usually propagate in a more spatially clustered and uniform approach compared to onsets of moderate droughts. The distance metric shows that the drought events propagate for longer distance in western part compared to eastern part of CONUS. We believe that the network-aided metrics utilized in this study can be an important tool in advancing our knowledge on drought propagation as well as other hydroclimatic extreme events. Although the propagation of droughts is investigated using the network approach, however process (physics) based approaches is essential to further understand the dynamics of hydroclimatic extreme events.
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway
Shay, Elaine L.; Greer, Charles A.; Treloar, Helen B.
2009-01-01
Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses. PMID:18570250
Spatio-temporal Dynamics of Audiovisual Speech Processing
Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.
2007-01-01
The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933
Encoding dependence in Bayesian causal networks
USDA-ARS?s Scientific Manuscript database
Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...
The Voronoi spatio-temporal data structure
NASA Astrophysics Data System (ADS)
Mioc, Darka
2002-04-01
Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.
López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor
2014-01-01
Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.
2012-08-15
The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less
The use of spatio-temporal correlation to forecast critical transitions
NASA Astrophysics Data System (ADS)
Karssenberg, Derek; Bierkens, Marc F. P.
2010-05-01
Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.
Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.
2011-01-01
Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right. PMID:21858213
Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S
2011-01-01
Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right.
USDA-ARS?s Scientific Manuscript database
Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...
Travelling waves and spatial hierarchies in measles epidemics
NASA Astrophysics Data System (ADS)
Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.
2001-12-01
Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.
Spatio-temporal phenomena in complex systems with time delays
NASA Astrophysics Data System (ADS)
Yanchuk, Serhiy; Giacomelli, Giovanni
2017-03-01
Real-world systems can be strongly influenced by time delays occurring in self-coupling interactions, due to unavoidable finite signal propagation velocities. When the delays become significantly long, complicated high-dimensional phenomena appear and a simple extension of the methods employed in low-dimensional dynamical systems is not feasible. We review the general theory developed in this case, describing the main destabilization mechanisms, the use of visualization tools, and commenting on the most important and effective dynamical indicators as well as their properties in different regimes. We show how a suitable approach, based on a comparison with spatio-temporal systems, represents a powerful instrument for disclosing the very basic mechanism of long-delay systems. Various examples from different models and a series of recent experiments are reported.
A dynamic spatio-temporal model for spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.
2017-01-01
Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.
Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.
Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis
2017-10-16
Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.
Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods
Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.
2017-01-01
Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333
Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans
ERIC Educational Resources Information Center
Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.
2011-01-01
Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…
Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian
2018-06-13
The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.
Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao
2018-01-01
The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551
NASA Astrophysics Data System (ADS)
Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter
2001-12-01
This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.
How spatio-temporal habitat connectivity affects amphibian genetic structure.
Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.
Spatio-temporal dynamics of pond use and recruitment in Florida gopher frogs (Rana capito aesopus)
Cathryn H. Greenberg
2001-01-01
This study examines spatio-temporal dynamics of Florida gopher frog (Rang capito aesopus) breeding and juvenile recruitment. Ponds were situated within a hardwood-invaded or a savanna-like longleaf pine-wiregrass upland matrix. Movement (N = 1444) was monitored using intermittent drift fences with pitfall and funnel traps at eight...
Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.
Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G
2017-02-01
Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Spatio-temporal problems of geographic information system in marine fishery].
Su, Fenzhen; Zhou, Chenghu; Du, Yunyan; Zhang, Tianyu; Shao, Quanqin
2003-09-01
In marine fisheries, it is very important to understand and grasp the spatio-temporal nature. Geographical Information System (GIS) has been applied to describe or forecast the dynamic trend of resources or to set up evaluation model, which is one of high technologies in modern marine fisheries. Based on the review of the development of marine fishery GIS (MFGIS), four spatio-temporal problems it occurred were discussed, and the possible resolutions were prospected.
Finding Spatio-Temporal Patterns in Large Sensor Datasets
ERIC Educational Resources Information Center
McGuire, Michael Patrick
2010-01-01
Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…
Dynamic complexity: plant receptor complexes at the plasma membrane.
Burkart, Rebecca C; Stahl, Yvonne
2017-12-01
Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic CRM occupancy reflects a temporal map of developmental progression.
Wilczyński, Bartek; Furlong, Eileen E M
2010-06-22
Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.
Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data
Wikle, C.K.; Royle, J. Andrew
2005-01-01
Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.
Watanabe, Seiichi; Hoshino, Misaki; Koike, Takuto; Suda, Takanori; Ohnuki, Soumei; Takahashi, Heishichirou; Lam, Nighi Q
2003-01-01
We performed a dynamical-atomistic study of radiation-induced amorphization in the NiTi intermetallic compound using in situ high-resolution high-voltage electron microscopy and molecular dynamics simulations in connection with image simulation. Spatio-temporal fluctuations as non-equilibrium fluctuations in an energy-dissipative system, due to transient atom-cluster formation during amorphization, were revealed by the present spatial autocorrelation analysis.
Evrendilek, Fatih
2007-12-12
This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Sagl, Günther; Blaschke, Thomas; Beinat, Euro; Resch, Bernd
2012-01-01
Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges. PMID:23012571
Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.
Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin
2013-09-01
Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.
Resting state networks in empirical and simulated dynamic functional connectivity.
Glomb, Katharina; Ponce-Alvarez, Adrián; Gilson, Matthieu; Ritter, Petra; Deco, Gustavo
2017-10-01
It is well-established that patterns of functional connectivity (FC) - measures of correlated activity between pairs of voxels or regions observed in the human brain using neuroimaging - are robustly expressed in spontaneous activity during rest. These patterns are not static, but exhibit complex spatio-temporal dynamics. Over the last years, a multitude of methods have been proposed to reveal these dynamics on the level of the whole brain. One finding is that the brain transitions through different FC configurations over time, and substantial effort has been put into characterizing these configurations. However, the dynamics governing these transitions are more elusive, specifically, the contribution of stationary vs. non-stationary dynamics is an active field of inquiry. In this study, we use a whole-brain approach, considering FC dynamics between 66 ROIs covering the entire cortex. We combine an innovative dimensionality reduction technique, tensor decomposition, with a mean field model which possesses stationary dynamics. It has been shown to explain resting state FC averaged over time and multiple subjects, however, this average FC summarizes the spatial distribution of correlations while hiding their temporal dynamics. First, we apply tensor decomposition to resting state scans from 24 healthy controls in order to characterize spatio-temporal dynamics present in the data. We simultaneously utilize temporal and spatial information by creating tensors that are subsequently decomposed into sets of brain regions ("communities") that share similar temporal dynamics, and their associated time courses. The tensors contain pairwise FC computed inside of overlapping sliding windows. Communities are discovered by clustering features pooled from all subjects, thereby ensuring that they generalize. We find that, on the group level, the data give rise to four distinct communities that resemble known resting state networks (RSNs): default mode network, visual network, control networks, and somatomotor network. Second, we simulate data with our stationary mean field model whose nodes are connected according to results from DTI and fiber tracking. In this model, all spatio-temporal structure is due to noisy fluctuations around the average FC. We analyze the simulated data in the same way as the empirical data in order to determine whether stationary dynamics can explain the emergence of distinct FC patterns (RSNs) which have their own time courses. We find that this is the case for all four networks using the spatio-temporal information revealed by tensor decomposition if nodes in the simulation are connected according to model-based effective connectivity. Furthermore, we find that these results require only a small part of the FC values, namely the highest values that occur across time and ROI pair. Our findings show that stationary dynamics can account for the emergence of RSNs. We provide an innovative method that does not make strong assumptions about the underlying data and is generally applicable to resting state or task data from different subject populations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry
2015-04-01
Proper decomposition of the complex system into well separated "modes" is a way to reveal and understand the mechanisms governing the system behaviour as well as discover essential feedbacks and nonlinearities. The decomposition is also natural procedure that provides to construct adequate and concurrently simplest models of both corresponding sub-systems, and of the system in whole. In recent works two new methods of decomposition of the Earth's climate system into well separated modes were discussed. The first method [1-3] is based on the MSSA (Multichannel Singular Spectral Analysis) [4] for linear expanding vector (space-distributed) time series and makes allowance delayed correlations of the processes recorded in spatially separated points. The second one [5-7] allows to construct nonlinear dynamic modes, but neglects delay of correlations. It was demonstrated [1-3] that first method provides effective separation of different time scales, but prevent from correct reduction of data dimension: slope of variance spectrum of spatio-temporal empirical orthogonal functions that are "structural material" for linear spatio-temporal modes, is too flat. The second method overcomes this problem: variance spectrum of nonlinear modes falls essentially sharply [5-7]. However neglecting time-lag correlations brings error of mode selection that is uncontrolled and increases with growth of mode time scale. In the report we combine these two methods in such a way that the developed algorithm allows constructing nonlinear spatio-temporal modes. The algorithm is applied for decomposition of (i) multi hundreds years globally distributed data generated by the INM RAS Coupled Climate Model [8], and (ii) 156 years time series of SST anomalies distributed over the globe [9]. We compare efficiency of different methods of decomposition and discuss the abilities of nonlinear spatio-temporal modes for construction of adequate and concurrently simplest ("optimal") models of climate systems. 1. Feigin A.M., Mukhin D., Gavrilov A., Volodin E.M., and Loskutov E.M. (2013) "Separation of spatial-temporal patterns ("climatic modes") by combined analysis of really measured and generated numerically vector time series", AGU 2013 Fall Meeting, Abstract NG33A-1574. 2. Alexander Feigin, Dmitry Mukhin, Andrey Gavrilov, Evgeny Volodin, and Evgeny Loskutov (2014) "Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales", Geophysical Research Abstracts, Vol. 16, EGU2014-6877. 3. Dmitry Mukhin, Dmitri Kondrashov, Evgeny Loskutov, Andrey Gavrilov, Alexander Feigin, and Michael Ghil (2014) "Predicting critical transitions in ENSO models, Part II: Spatially dependent models", Journal of Climate (accepted, doi: 10.1175/JCLI-D-14-00240.1). 4. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 5. Dmitry Mukhin, Andrey Gavrilov, Evgeny M Loskutov and Alexander M Feigin (2014) "Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes", AGU 2014 Fall Meeting, Abstract NG43A-3752. 6. Andrey Gavrilov, Dmitry Mukhin, Evgeny Loskutov, and Alexander Feigin (2015) "Empirical decomposition of climate data into nonlinear dynamic modes", Geophysical Research Abstracts, Vol. 17, EGU2015-627. 7. Dmitry Mukhin, Andrey Gavrilov, Evgeny Loskutov, Alexander Feigin, and Juergen Kurths (2015) "Reconstruction of principal dynamical modes from climatic variability: nonlinear approach", Geophysical Research Abstracts, Vol. 17, EGU2015-5729. 8. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm. 9. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/.
How spatio-temporal habitat connectivity affects amphibian genetic structure
Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094
How spatio-temporal habitat connectivity affects amphibian genetic structure
Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.
Spatio-temporal networks: reachability, centrality and robustness.
Williams, Matthew J; Musolesi, Mirco
2016-06-01
Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks.
USDA-ARS?s Scientific Manuscript database
Understanding the spatio-temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasise biological control of pests. Wild populations of Trichogramma Westwood egg parasitoids are utilised for biological suppression of the potentially resistan...
NASA Astrophysics Data System (ADS)
Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.
2018-03-01
In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing
NASA Astrophysics Data System (ADS)
Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.
2016-12-01
Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.
Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
NASA Astrophysics Data System (ADS)
Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.
2018-06-01
Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.
Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Mitra, Pramita; Barhen, Jacob
2010-01-01
While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstratingmore » a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.« less
Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient
Karanth, K. Ullas; Srivathsa, Arjun; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N. Samba
2017-01-01
Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. PMID:28179511
Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient.
Karanth, K Ullas; Srivathsa, Arjun; Vasudev, Divya; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N Samba
2017-02-08
Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole ( Cuon alpinus ), leopard ( Panthera pardus ) and tiger ( Panthera tigris ) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. © 2017 The Author(s).
Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis
NASA Astrophysics Data System (ADS)
Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu
2002-02-01
Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.
Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH
NASA Astrophysics Data System (ADS)
Wang, H.; Ye, F.; Ouyang, S.; Li, Z.
2018-04-01
On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.
NASA Astrophysics Data System (ADS)
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.
Formally grounding spatio-temporal thinking.
Klippel, Alexander; Wallgrün, Jan Oliver; Yang, Jinlong; Li, Rui; Dylla, Frank
2012-08-01
To navigate through daily life, humans use their ability to conceptualize spatio-temporal information, which ultimately leads to a system of categories. Likewise, the spatial sciences rely heavily on conceptualization and categorization as means to create knowledge when they process spatio-temporal data. In the spatial sciences and in related branches of artificial intelligence, an approach has been developed for processing spatio-temporal data on the level of coarse categories: qualitative spatio-temporal representation and reasoning (QSTR). Calculi developed in QSTR allow for the meaningful processing of and reasoning with spatio-temporal information. While qualitative calculi are widely acknowledged in the cognitive sciences, there is little behavioral assessment whether these calculi are indeed cognitively adequate. This is an astonishing conundrum given that these calculi are ubiquitous, are often intended to improve processes at the human-machine interface, and are on several occasions claimed to be cognitively adequate. We have systematically evaluated several approaches to formally characterize spatial relations from a cognitive-behavioral perspective for both static and dynamically changing spatial relations. This contribution will detail our framework, which is addressing the question how formal characterization of space can help us understand how people think with, in, and about space.
USDA-ARS?s Scientific Manuscript database
Understanding spatio-temporal resource preferences is paramount in the design of policies for sustainable development. Unfortunately, resource preferences are often unknown to policy-makers and have to be inferred from data. In this paper we consider the problem of inferring agents’ preferences fro...
Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.
Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B
2013-01-01
To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.
Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective
Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J.B.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.
2016-01-01
Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main conclusions The decadal declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on the foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, the trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khalifa, Aly A.; Aly, Hussein A.; El-Sherif, Ashraf F.
2016-02-01
Near infrared (NIR) dynamic scene projection systems are used to perform hardware in-the-loop (HWIL) testing of a unit under test operating in the NIR band. The common and complex requirement of a class of these units is a dynamic scene that is spatio-temporal variant. In this paper we apply and investigate active external modulation of NIR laser in different ranges of temporal frequencies. We use digital micromirror devices (DMDs) integrated as the core of a NIR projection system to generate these dynamic scenes. We deploy the spatial pattern to the DMD controller to simultaneously yield the required amplitude by pulse width modulation (PWM) of the mirror elements as well as the spatio-temporal pattern. Desired modulation and coding of high stable, high power visible (Red laser at 640 nm) and NIR (Diode laser at 976 nm) using the combination of different optical masks based on DMD were achieved. These spatial versatile active coding strategies for both low and high frequencies in the range of kHz for irradiance of different targets were generated by our system and recorded using VIS-NIR fast cameras. The temporally-modulated laser pulse traces were measured using array of fast response photodetectors. Finally using a high resolution spectrometer, we evaluated the NIR dynamic scene projection system response in terms of preserving the wavelength and band spread of the NIR source after projection.
Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Ghosh, S. K.
2015-07-01
Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.
LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.
Ghaemi, Z; Alimohammadi, A; Farnaghi, M
2018-04-20
Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.
Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R
2014-09-10
Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.
High-throughput analysis of spatio-temporal dynamics in Dictyostelium
Sawai, Satoshi; Guan, Xiao-Juan; Kuspa, Adam; Cox, Edward C
2007-01-01
We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4% of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis. PMID:17659086
A general science-based framework for dynamical spatio-temporal models
Wikle, C.K.; Hooten, M.B.
2010-01-01
Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography. ?? 2010 Sociedad de Estad??stica e Investigaci??n Operativa.
A spatial-temporal system for dynamic cadastral management.
Nan, Liu; Renyi, Liu; Guangliang, Zhu; Jiong, Xie
2006-03-01
A practical spatio-temporal database (STDB) technique for dynamic urban land management is presented. One of the STDB models, the expanded model of Base State with Amendments (BSA), is selected as the basis for developing the dynamic cadastral management technique. Two approaches, the Section Fast Indexing (SFI) and the Storage Factors of Variable Granularity (SFVG), are used to improve the efficiency of the BSA model. Both spatial graphic data and attribute data, through a succinct engine, are stored in standard relational database management systems (RDBMS) for the actual implementation of the BSA model. The spatio-temporal database is divided into three interdependent sub-databases: present DB, history DB and the procedures-tracing DB. The efficiency of database operation is improved by the database connection in the bottom layer of the Microsoft SQL Server. The spatio-temporal system can be provided at a low-cost while satisfying the basic needs of urban land management in China. The approaches presented in this paper may also be of significance to countries where land patterns change frequently or to agencies where financial resources are limited.
Schüler, D; Alonso, S; Torcini, A; Bär, M
2014-12-01
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Spatio-temporal dynamics of security investments in an interdependent risk environment
NASA Astrophysics Data System (ADS)
Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.
2012-10-01
In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.
Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim
2017-06-15
Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.
Mapping snow cover using multi-source satellite data on big data platforms
NASA Astrophysics Data System (ADS)
Lhermitte, Stef
2017-04-01
Snowmelt is an important and dynamically changing water resource in mountainous regions around the world. In this framework, remote sensing data of snow cover data provides an essential input for hydrological models to model the water contribution from remote mountain areas and to understand how this water resource might alter as a result of climate change. Traditionally, however, many of these remote sensing products show a trade-off between spatial and temporal resolution (e.g., 16-day Landsat at 30m vs. daily MODIS at 500m resolution). With the advent of Sentinel-1 and 2 and the PROBA-V 100m products this trade-off can partially be tackled by having data that corresponds more closely to the spatial and temporal variations in snow cover typically observed over complex mountain areas. This study provides first a quantitative analysis of the trade-offs between the state-of-the-art snow cover mapping methodologies for Landsat, MODIS, PROBA-V, Sentinel-1 and 2 and applies them on big data platforms such as Google Earth Engine (GEE), RSS (ESA Research Service & Support) CloudToolbox, and the PROBA-V Mission Exploitation Platform (MEP). Second, it combines the different sensor data-cubes in one multi-sensor classification approach using newly developed spatio-temporal probability classifiers within the big data platform environments. Analysis of the spatio-temporal differences in derived snow cover areas from the different sensors reveals the importance of understanding the spatial and temporal scales at which variations occur. Moreover, it shows the importance of i) temporal resolution when monitoring highly dynamical properties such as snow cover and of ii) differences in satellite viewing angles over complex mountain areas. Finally, it highlights the potential and drawbacks of big data platforms for combining multi-source satellite data for monitoring dynamical processes such as snow cover.
Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments
NASA Astrophysics Data System (ADS)
Zhang, Shun; Guy, Robert D.; Lasheras, Juan C.; del Álamo, Juan C.
2017-05-01
The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (∼100 μm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatio-temporal patterns of calcium concentration that regulate the generation of contractile forces.
Low-energy Control of Electrical Turbulence in the Heart
Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard
2011-01-01
Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult due to the nonlinear interaction of excitation waves within a heterogeneous anatomical substrate1–4. Lacking a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation5–7. Here, we establish the relation between the response of the tissue to an electric field and the spatial distribution of heterogeneities of the scale-free coronary vascular structure. We show that in response to a pulsed electric field E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E), and a characteristic time τ for tissue depolarization that obeys a power law τ∝Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore efficient termination of fibrillation. Using this novel control strategy, we demonstrate, for the first time, low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and at the same time provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques. PMID:21753855
NASA Astrophysics Data System (ADS)
Gens, R.
2017-12-01
With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.
A Tentative Application Of Morphological Filters To Time-Varying Images
NASA Astrophysics Data System (ADS)
Billard, D.; Poquillon, B.
1989-03-01
In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.
Learning of spatio-temporal codes in a coupled oscillator system.
Orosz, Gábor; Ashwin, Peter; Townley, Stuart
2009-07-01
In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.
Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano
2016-11-15
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan
2016-08-15
This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.
Zero-inflated spatio-temporal models for disease mapping.
Torabi, Mahmoud
2017-05-01
In this paper, our aim is to analyze geographical and temporal variability of disease incidence when spatio-temporal count data have excess zeros. To that end, we consider random effects in zero-inflated Poisson models to investigate geographical and temporal patterns of disease incidence. Spatio-temporal models that employ conditionally autoregressive smoothing across the spatial dimension and B-spline smoothing over the temporal dimension are proposed. The analysis of these complex models is computationally difficult from the frequentist perspective. On the other hand, the advent of the Markov chain Monte Carlo algorithm has made the Bayesian analysis of complex models computationally convenient. Recently developed data cloning method provides a frequentist approach to mixed models that is also computationally convenient. We propose to use data cloning, which yields to maximum likelihood estimation, to conduct frequentist analysis of zero-inflated spatio-temporal modeling of disease incidence. One of the advantages of the data cloning approach is that the prediction and corresponding standard errors (or prediction intervals) of smoothing disease incidence over space and time is easily obtained. We illustrate our approach using a real dataset of monthly children asthma visits to hospital in the province of Manitoba, Canada, during the period April 2006 to March 2010. Performance of our approach is also evaluated through a simulation study. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Storyline Visualizations of Eye Tracking of Movie Viewing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balint, John T.; Arendt, Dustin L.; Blaha, Leslie M.
Storyline visualizations offer an approach that promises to capture the spatio-temporal characteristics of individual observers and simultaneously illustrate emerging group behaviors. We develop a visual analytics approach to parsing, aligning, and clustering fixation sequences from eye tracking data. Visualization of the results captures the similarities and differences across a group of observers performing a common task. We apply our storyline approach to visualize gaze patterns of people watching dynamic movie clips. Storylines mitigate some of the shortcomings of existent spatio-temporal visualization techniques and, importantly, continue to highlight individual observer behavioral dynamics.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.
Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella
2018-06-12
It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.
J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones
2012-01-01
Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...
Linking dynamics of the inhibitory network to the input structure
Komarov, Maxim
2017-01-01
Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865
A framework for standardized calculation of weather indices in Germany
NASA Astrophysics Data System (ADS)
Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til
2018-05-01
Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).
NASA Astrophysics Data System (ADS)
von Keyserlingk, Jennifer; Paton, Eva Nora; Förster, Saskia; Bronstert, Axel
2017-04-01
Many of the dry rangelands of Southern Europe are threatened by land degradation. This process not only reduces the land's ecological functioning, but also its capacity to provide ecosystem goods and services for local land users. In rangelands, one important aspect is vegetation degradation, which reduces the land's capacity to support livestock. Thus, there is an urgent need to understand the complex dynamics and drivers of land degradation. In the past, both have been difficult to study due to the extensive spatial and temporal scales involved. In the last decade, a large number of remotely sensed imageries has become available for free, which enables a new approach to this topic. The aim of this research is to study land degradation as a multidimensional process incorporating its spatial and temporal components. We developed a methodological approach that makes use of long-term satellite Landsat data. Here, we use imagery of a typical degraded Mediterranean rangeland in Southern Cyprus (Randi Forest) for the years 1998-2015. We have chosen the NDVI as a proxy for vegetation greenness and applied different spatial landscape metrics to calculate changes in vegetation patterns over time. Further, we applied a time-series based approach (BFAST) on selected pixels, to look for sudden changes and trends in the vegetation dynamics. The results promoted our knowledge on how land degradation dynamics in Mediterranean rangelands can be captured through spatio-temporal vegetation dynamics and allowed us to select the most suitable metrics for further analysis. In the long-term, we aim at using Landsat satellite data covering 30 years. To gain a functional understanding of land degradation, we want to overlay our results from the remotely sensed data with results of an eco-hydrological model (SWAT).
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara
2017-01-01
Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804
Morales-Botello, M. L.; Aguilar, J.; Foffani, G.
2012-01-01
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli. PMID:22829873
Librero, Julián; Ibañez, Berta; Martínez-Lizaga, Natalia; Peiró, Salvador; Bernal-Delgado, Enrique
2017-01-01
To illustrate the ability of hierarchical Bayesian spatio-temporal models in capturing different geo-temporal structures in order to explain hospital risk variations using three different conditions: Percutaneous Coronary Intervention (PCI), Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary Disease (COPD). This is an observational population-based spatio-temporal study, from 2002 to 2013, with a two-level geographical structure, Autonomous Communities (AC) and Health Care Areas (HA). The Spanish National Health System, a quasi-federal structure with 17 regional governments (AC) with full responsibility in planning and financing, and 203 HA providing hospital and primary care to a defined population. A poisson-log normal mixed model in the Bayesian framework was fitted using the INLA efficient estimation procedure. The spatio-temporal hospitalization relative risks, the evolution of their variation, and the relative contribution (fraction of variation) of each of the model components (AC, HA, year and interaction AC-year). Following PCI-CCC-CODP order, the three conditions show differences in the initial hospitalization rates (from 4 to 21 per 10,000 person-years) and in their trends (upward, inverted V shape, downward). Most of the risk variation is captured by phenomena occurring at the HA level (fraction variance: 51.6, 54.7 and 56.9%). At AC level, the risk of PCI hospitalization follow a heterogeneous ascending dynamic (interaction AC-year: 17.7%), whereas in COPD the AC role is more homogenous and important (37%). In a system where the decisions loci are differentiated, the spatio-temporal modeling allows to assess the dynamic relative role of different levels of decision and their influence on health outcomes.
NASA Astrophysics Data System (ADS)
Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin
2008-10-01
Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüler, D.; Alonso, S.; Bär, M.
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less
Multiscale recurrence analysis of spatio-temporal data
NASA Astrophysics Data System (ADS)
Riedl, M.; Marwan, N.; Kurths, J.
2015-12-01
The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.
Multiscale recurrence analysis of spatio-temporal data.
Riedl, M; Marwan, N; Kurths, J
2015-12-01
The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.
NASA Astrophysics Data System (ADS)
Ruiz-Pérez, Guiomar; Koch, Julian; Manfreda, Salvatore; Caylor, Kelly; Francés, Félix
2017-12-01
Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment - the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q.
2014-01-01
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress. PMID:24961469
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q
2014-06-25
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress.
Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming
2017-09-01
Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution
NASA Astrophysics Data System (ADS)
Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.
2017-10-01
Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.
Marek, Lukáš; Tuček, Pavel; Pászto, Vít
2015-01-28
Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.
NASA Astrophysics Data System (ADS)
Daya Sagar, B. S.
2005-01-01
Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.
Brownian motion on random dynamical landscapes
NASA Astrophysics Data System (ADS)
Suñé Simon, Marc; Sancho, José María; Lindenberg, Katja
2016-03-01
We present a study of overdamped Brownian particles moving on a random landscape of dynamic and deformable obstacles (spatio-temporal disorder). The obstacles move randomly, assemble, and dissociate following their own dynamics. This landscape may account for a soft matter or liquid environment in which large obstacles, such as macromolecules and organelles in the cytoplasm of a living cell, or colloids or polymers in a liquid, move slowly leading to crowding effects. This representation also constitutes a novel approach to the macroscopic dynamics exhibited by active matter media. We present numerical results on the transport and diffusion properties of Brownian particles under this disorder biased by a constant external force. The landscape dynamics are characterized by a Gaussian spatio-temporal correlation, with fixed time and spatial scales, and controlled obstacle concentrations.
A class of cellular automata modeling winnerless competition
NASA Astrophysics Data System (ADS)
Afraimovich, V.; Ordaz, F. C.; Urías, J.
2002-06-01
Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.
NASA Astrophysics Data System (ADS)
Gollas, Frank; Tetzlaff, Ronald
2009-05-01
Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal autoregressive filter models are considered, for a prediction of EEG signal values. Thus Signal features values for successive, short, quasi stationary segments of brain electrical activity can be obtained, with the objective of detecting distinct changes prior to impending epileptic seizures. Furthermore long term recordings gained during presurgical diagnostics in temporal lobe epilepsy are analyzed and the predictive performance of the extracted features is evaluated statistically. Therefore a Receiver Operating Characteristic analysis is considered, assessing the distinguishability between distributions of supposed preictal and interictal periods.
Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone
NASA Astrophysics Data System (ADS)
Khorram, Saeed; Ergil, Mustafa
2018-03-01
A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.
Understanding the Spatio-Temporal Dynamics of Denitrification in an Oregon Salt Marsh
Salt marshes are highly susceptible to a range of climate change effects (e.g., sea-level rise, salinity changes, storm severity, shifts in vegetation across watershed). It is unclear how these effects will alter the spatial and temporal dynamics of denitrification, a potential p...
Modelling of the nonlinear soliton dynamics in the ring fibre cavity
NASA Astrophysics Data System (ADS)
Razukov, Vadim A.; Melnikov, Leonid A.
2018-04-01
Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris
2016-09-01
Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.
Natural image sequences constrain dynamic receptive fields and imply a sparse code.
Häusler, Chris; Susemihl, Alex; Nawrot, Martin P
2013-11-06
In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Lee, Duncan; Mukhopadhyay, Sabyasachi; Rushworth, Alastair; Sahu, Sujit K
2017-04-01
In the United Kingdom, air pollution is linked to around 40000 premature deaths each year, but estimating its health effects is challenging in a spatio-temporal study. The challenges include spatial misalignment between the pollution and disease data; uncertainty in the estimated pollution surface; and complex residual spatio-temporal autocorrelation in the disease data. This article develops a two-stage model that addresses these issues. The first stage is a spatio-temporal fusion model linking modeled and measured pollution data, while the second stage links these predictions to the disease data. The methodology is motivated by a new five-year study investigating the effects of multiple pollutants on respiratory hospitalizations in England between 2007 and 2011, using pollution and disease data relating to local and unitary authorities on a monthly time scale. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Determining Spatio-Temporal Cadastral Data Requirement for Infrastructure of Ladm for Turkey
NASA Astrophysics Data System (ADS)
Alkan, M.; Polat, Z. A.
2016-06-01
Nowadays, the nature of land title and cadastral (LTC) data in the Turkey is dynamic from a temporal perspective which depends on the LTC operations. Functional requirements with respect to the characteristics are investigated based upon interviews of professionals in public and private sectors. These are; Legal authorities, Land Registry and Cadastre offices, Highway departments, Foundations, Ministries of Budget, Transportation, Justice, Public Works and Settlement, Environment and Forestry, Agriculture and Rural Affairs, Culture and Internal Affairs, State Institute of Statistics (SIS), execution offices, tax offices, real estate offices, private sector, local governments and banks. On the other hand, spatio-temporal LTC data very important component for creating infrastructure of Land Administration Model (LADM). For this reason, spatio-temporal LTC data needs for LADM not only updated but also temporal. The investigations ended up with determine temporal analyses of LTC data, traditional LTC system and tracing temporal analyses in traditional LTC system. In the traditional system, the temporal analyses needed by all these users could not be performed in a rapid and reliable way. The reason for this is that the traditional LTC system is a manual archiving system. The aims and general contents of this paper: (1) define traditional LTC system of Turkey; (2) determining the need for spatio-temporal LTC data and analyses for core domain model for LADM. As a results of temporal and spatio-temporal analysis LTC data needs, new system design is important for the Turkish LADM model. Designing and realizing an efficient and functional Temporal Geographic Information Systems (TGIS) is inevitable for the Turkish LADM core infrastructure. Finally this paper outcome is creating infrastructure for design and develop LADM for Turkey.
Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion
Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza
2013-01-01
Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058
Causal relations among events and states in dynamic geographical phenomena
NASA Astrophysics Data System (ADS)
Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan
2007-06-01
There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst events and states. The qualitative spatiotemporal change is an important issue in the dynamic geographic-scale phenomena. In real estate transition, the events and states are needed to be represented explicitly. In our modeling the evolution of a dynamic system, it can not avoid fetching in the view of causality. The object's transition is represented by the state of object. Event causes the state of objects changing and causes other events happen. Events connect with objects closely. The basic causal relations are the state-event and event-state relationships. Lastly, the paper concludes with the overview about the causal relations amongst events and states. And this future work is pointed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Swati, F. N. U.; Stein, Michael L.
Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model’s ability to capture spatio-temporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and non-seasonal precipitation components used to assess the spatial variations of precipitation; and (2) spatio-temporal correlation for a wide range of distances, directions, andmore » time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatio-temporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP II reanalysis data (NCEP-R2), which provides initial and lateral boundary conditions for the RCM. The RCM performs better than NCEP-R2 in capturing both the spatial variations of total and non-seasonal precipitation components and the spatio-temporal correlations of daily precipitation occurrences, which are related to dynamic behaviors of precipitating systems. The improvements are apparent not just at resolutions finer than that of NCEP-R2, but also when the RCM and observational data are aggregated to the resolution of NCEP-R2.« less
Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis.
Chao, Qianwen; Deng, Zhigang; Ren, Jiaping; Ye, Qianqian; Jin, Xiaogang
2018-02-01
We present a novel data-driven approach to populate virtual road networks with realistic traffic flows. Specifically, given a limited set of vehicle trajectories as the input samples, our approach first synthesizes a large set of vehicle trajectories. By taking the spatio-temporal information of traffic flows as a 2D texture, the generation of new traffic flows can be formulated as a texture synthesis process, which is solved by minimizing a newly developed traffic texture energy. The synthesized output captures the spatio-temporal dynamics of the input traffic flows, and the vehicle interactions in it strictly follow traffic rules. After that, we position the synthesized vehicle trajectory data to virtual road networks using a cage-based registration scheme, where a few traffic-specific constraints are enforced to maintain each vehicle's original spatial location and synchronize its motion in concert with its neighboring vehicles. Our approach is intuitive to control and scalable to the complexity of virtual road networks. We validated our approach through many experiments and paired comparison user studies.
Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram
2010-01-01
MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794
Facilitating insights with a user adaptable dashboard, illustrated by airport connectivity data
NASA Astrophysics Data System (ADS)
Dobraja, Ieva; Kraak, Menno-Jan; Engelhardt, Yuri
2018-05-01
Since the movement data exist, there have been approaches to collect and analyze them to get insights. This kind of data is often heterogeneous, multiscale and multi-temporal. Those interested in spatio-temporal patterns of movement data do not gain insights from textual descriptions. Therefore, visualization is required. As spatio-temporal movement data can be complex because size and characteristics, it is even challenging to create an overview of it. Plotting all the data on the screen will not be the solution as it likely will result into cluttered images where no data exploration is possible. To ensure that users will receive the information they are interested in, it is important to provide a graphical data representation environment where exploration to gain insights are possible not only in the overall level but at sub-levels as well. A dashboard would be a solution the representation of heterogeneous spatio- temporal data. It provides an overview and helps to unravel the complexity of data by splitting data in multiple data representation views. The adaptability of dashboard will help to reveal the information which cannot be seen in the overview.
Application research on temporal GIS in the transportation information management system
NASA Astrophysics Data System (ADS)
Wang, Wei; Qin, Qianqing; Wang, Chao
2006-10-01
The application, development and key matters of applying spatio-temporal GIS to traffic information management system are discussed in this paper by introducing the development of spatio-temporal database, current models of spatio-temporal data, traits of traffic information management system. This paper proposes a method of organizing spatio-temporal data taking road object changes into consideration, and describes its data structure in 3 aspects, including structure of spatio-temporal object, organizing method spatio-temporal data and storage means of spatio-temporal data. Trying to manage types of spatio-temporal data involved in traffic system, such as road information, river information, railway information, social and economical data, and etc, uniformly, efficiently and with low redundancy.
A geostatistical state-space model of animal densities for stream networks.
Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H
2018-06-21
Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The influence of lexical statistics on temporal lobe cortical dynamics during spoken word listening
Cibelli, Emily S.; Leonard, Matthew K.; Johnson, Keith; Chang, Edward F.
2015-01-01
Neural representations of words are thought to have a complex spatio-temporal cortical basis. It has been suggested that spoken word recognition is not a process of feed-forward computations from phonetic to lexical forms, but rather involves the online integration of bottom-up input with stored lexical knowledge. Using direct neural recordings from the temporal lobe, we examined cortical responses to words and pseudowords. We found that neural populations were not only sensitive to lexical status (real vs. pseudo), but also to cohort size (number of words matching the phonetic input at each time point) and cohort frequency (lexical frequency of those words). These lexical variables modulated neural activity from the posterior to anterior temporal lobe, and also dynamically as the stimuli unfolded on a millisecond time scale. Our findings indicate that word recognition is not purely modular, but relies on rapid and online integration of multiple sources of lexical knowledge. PMID:26072003
The 4-D approach to visual control of autonomous systems
NASA Technical Reports Server (NTRS)
Dickmanns, Ernst D.
1994-01-01
Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.
A model based on temporal dynamics of fixations for distinguishing expert radiologists' scanpaths
NASA Astrophysics Data System (ADS)
Gandomkar, Ziba; Tay, Kevin; Brennan, Patrick C.; Mello-Thoms, Claudia
2017-03-01
This study investigated a model which distinguishes expert radiologists from less experienced radiologists based on features describing spatio-temporal dynamics of their eye movement during interpretation of digital mammograms. Eye movements of four expert and four less experienced radiologists were recorded during interpretation of 120 two-view digital mammograms of which 59 had biopsy proven cancers. For each scanpath, a two-dimensional recurrence plot, which represents the radiologist's refixation pattern, was generated. From each plot, six features indicating the spatio-temporal dynamics of fixations were extracted. The first feature measured the percentage of recurrent fixations; the second indicated the percentage of recurrent fixations which was fixated later in several consecutive fixations; the third measured the percentage of recurrent fixations that form a repeated sequence of fixations and the fourth assessed whether the recurrent fixations were occurring sequentially close together. The number of switches between the two mammographic views was also measured, as was the average number of consecutive fixations in each view before switching. These six features along with total time on case and average fixation duration were fed into a support vector machine whose performance was evaluated using 10-fold cross validation. The model achieved a sensitivity of 86.3% and a specificity of 85.2% for distinguishing experts' scanpaths. The obtained result suggests that spatio-temporal dynamics of eye movements can characterize expertise level and has potential applications for monitoring the development of expertise among radiologists as a result of different training regimes and continuing education schemes.
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers
Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry
2016-01-01
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634
Geovisualization of Local and Regional Migration Using Web-mined Demographics
NASA Astrophysics Data System (ADS)
Schuermann, R. T.; Chow, T. E.
2014-11-01
The intent of this research was to augment and facilitate analyses, which gauges the feasibility of web-mined demographics to study spatio-temporal dynamics of migration. As a case study, we explored the spatio-temporal dynamics of Vietnamese Americans (VA) in Texas through geovisualization of mined demographic microdata from the World Wide Web. Based on string matching across all demographic attributes, including full name, address, date of birth, age and phone number, multiple records of the same entity (i.e. person) over time were resolved and reconciled into a database. Migration trajectories were geovisualized through animated sprites by connecting the different addresses associated with the same person and segmenting the trajectory into small fragments. Intra-metropolitan migration patterns appeared at the local scale within many metropolitan areas. At the scale of metropolitan area, varying degrees of immigration and emigration manifest different types of migration clusters. This paper presents a methodology incorporating GIS methods and cartographic design to produce geovisualization animation, enabling the cognitive identification of migration patterns at multiple scales. Identification of spatio-temporal patterns often stimulates further research to better understand the phenomenon and enhance subsequent modeling.
Learning Human Actions by Combining Global Dynamics and Local Appearance.
Luo, Guan; Yang, Shuang; Tian, Guodong; Yuan, Chunfeng; Hu, Weiming; Maybank, Stephen J
2014-12-01
In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods.
Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel
2017-03-01
Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.
A Kinect based sign language recognition system using spatio-temporal features
NASA Astrophysics Data System (ADS)
Memiş, Abbas; Albayrak, Songül
2013-12-01
This paper presents a sign language recognition system that uses spatio-temporal features on RGB video images and depth maps for dynamic gestures of Turkish Sign Language. Proposed system uses motion differences and accumulation approach for temporal gesture analysis. Motion accumulation method, which is an effective method for temporal domain analysis of gestures, produces an accumulated motion image by combining differences of successive video frames. Then, 2D Discrete Cosine Transform (DCT) is applied to accumulated motion images and temporal domain features transformed into spatial domain. These processes are performed on both RGB images and depth maps separately. DCT coefficients that represent sign gestures are picked up via zigzag scanning and feature vectors are generated. In order to recognize sign gestures, K-Nearest Neighbor classifier with Manhattan distance is performed. Performance of the proposed sign language recognition system is evaluated on a sign database that contains 1002 isolated dynamic signs belongs to 111 words of Turkish Sign Language (TSL) in three different categories. Proposed sign language recognition system has promising success rates.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
NASA Astrophysics Data System (ADS)
Kaiser, Olga; Martius, Olivia; Horenko, Illia
2017-04-01
Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.
Health impact assessment of industrial development projects: a spatio-temporal visualization.
Winkler, Mirko S; Krieger, Gary R; Divall, Mark J; Singer, Burton H; Utzinger, Jürg
2012-05-01
Development and implementation of large-scale industrial projects in complex eco-epidemiological settings typically require combined environmental, social and health impact assessments. We present a generic, spatio-temporal health impact assessment (HIA) visualization, which can be readily adapted to specific projects and key stakeholders, including poorly literate communities that might be affected by consequences of a project. We illustrate how the occurrence of a variety of complex events can be utilized for stakeholder communication, awareness creation, interactive learning as well as formulating HIA research and implementation questions. Methodological features are highlighted in the context of an iron ore development in a rural part of Africa.
Predictability of Extreme Climate Events via a Complex Network Approach
NASA Astrophysics Data System (ADS)
Muhkin, D.; Kurths, J.
2017-12-01
We analyse climate dynamics from a complex network approach. This leads to an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. This concept is then applied to Monsoon data; in particular, we develop a general framework to predict extreme events by combining a non-linear synchronization technique with complex networks. Applying this method, we uncover a new mechanism of extreme floods in the eastern Central Andes which could be used for operational forecasts. Moreover, we analyze the Indian Summer Monsoon (ISM) and identify two regions of high importance. By estimating an underlying critical point, this leads to an improved prediction of the onset of the ISM; this scheme was successful in 2016 and 2017.
Spatio temporal analysis of microbial habitats in soil-root interfaces
NASA Astrophysics Data System (ADS)
Eickhorst, Thilo; Schmidt, Hannes
2017-04-01
Microbial habitats in soils are formed by the arrangement and availability of inorganic and organic compounds. They can be characterized by physico-chemical parameters and the resulting colonization by microorganisms. Areas being preferably colonized are known as microbial hot spots which can be found in (bio)pores within the aggregatusphere or in the rhizosphere. The latter is directly influenced by plants i.e. the growth and activity of plant roots which has an influence on physico-chemical dynamics in the rhizosphere and can even shape plants' root microbiome. As microbial communities play an important role in nutrient cycling their response in soil-root interfaces is of great importance. Especially in complex systems such as paddy soils used for the cultivation of wetland rice the analysis of spatio-temporal aspects is important to get knowledge about their influence on the microbial dynamics in the respective habitats. But also other spatial variations on larger scales up to landscape scale may have an impact on the soil microorganisms in their habitats. This PICO presentation will introduce a set of techniques which are useful to analyze both the physico-chemical characteristics of microbial habitats and the microbial colonization and dynamics in soil-root interfaces. Examples will be given on various studies from rice cultivation in different paddy soils up to an European transect representing rhizosphere soils of selected plant species.
Effects of Telecoupling on Global Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Viña, A.; Liu, J.
2016-12-01
With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.
Loureiro, Adriana; Almendra, Ricardo; Costa, Cláudia; Santana, Paula
2018-01-31
Suicide is considered a public health priority. It is a complex phenomenon resulting from the interaction of several factors, which do not depend solely on individual conditions. This study analyzes the spatio-temporal evolution of suicide mortality between 1980 and 2015, identifying areas of high risk, and their variation, in the 278 municipalities of Continental Portugal. Based on the number of self-inflicted injuries and deaths from suicide and the resident population, the spatio-temporal evolution of the suicide mortality rate was assessed via: i) a Poisson joinpoint regression model, and ii) spatio-temporal clustering methods. The suicide mortality rate evolution showed statistically significant increases over three periods (1980 - 1984; 1999 - 2002 and 2006 - 2015) and two statistically significant periods of decrease (1984 - 1995 and 1995 - 1999). The spatio-temporal analysis identified five clusters of high suicide risk (relative risk >1) and four clusters of low suicide risk (relative risk < 1). The periods when suicide mortality increases seem to overlap with times of economic and financial instability. The geographical pattern of suicide risk has changed: presently, the suicide rates from the municipalities in the Center and North are showing more similarity with those seen in the South, thus increasing the ruralization of the phenomenon of suicide. Between 1980 and 2015 the spacio-temporal pattern of mortality from suicide has been changing and is a phenomenon that is currently experiencing a growing trend (since 2006) and is of higher risk in rural areas.
The Central Italy Seismic Sequence (2016): Spatial Patterns and Dynamic Fingerprints
NASA Astrophysics Data System (ADS)
Suteanu, Cristian; Liucci, Luisa; Melelli, Laura
2018-01-01
The paper investigates spatio-temporal aspects of the seismic sequence that started in Central Italy (Amatrice, Lazio region) in August 2016, causing hundreds of fatalities and producing major damage to settlements. On one hand, scaling properties of the landscape topography are identified and related to geomorphological processes, supporting the identification of preferential spatial directions in tectonic activity and confirming the role of the past tectonic periods and ongoing processes with respect to the driving of the geomorphological evolution of the area. On the other hand, relations between the spatio-temporal evolution of the sequence and the seismogenic fault systems are studied. The dynamic fingerprints of seismicity are established with the help of events thread analysis (ETA), which characterizes anisotropy in spatio-temporal earthquake patterns. ETA confirms the fact that the direction of the seismogenic normal fault-oriented (N)NW-(S)SE is characterized by persistent seismic activity. More importantly, it also highlights the role of the pre-existing compressive structures, Neogenic thrust and transpressive regional fronts, with a trend-oriented (N)NE-(S)SW, in the stress transfer. Both the fractal features of the topographic surface and the dynamic fingerprint of the recent seismic sequence point to the hypothesis of an active interaction between the Quaternary fault systems and the pre-existing compressional structures.
Dying like rabbits: general determinants of spatio-temporal variability in survival.
Tablado, Zulima; Revilla, Eloy; Palomares, Francisco
2012-01-01
1. Identifying general patterns of how and why survival rates vary across space and time is necessary to truly understand population dynamics of a species. However, this is not an easy task given the complexity and interactions of processes involved, and the interpopulation differences in main survival determinants. 2. Here, using European rabbits (Oryctolagus cuniculus) as a model and information from local studies, we investigated whether we could make inferences about trends and drivers of survival of a species that are generalizable to large spatio-temporal scales. To do this, we first focused on overall survival and then examined cause-specific mortalities, mainly predation and diseases, which may lead to those patterns. 3. Our results show that within the large-scale variability in rabbit survival, there exist general patterns that are explained by the integration of factors previously known to be important at the local level (i.e. age, climate, diseases, predation or density dependence). We found that both inter- and intrastudy survival rates increased in magnitude and decreased in variability as rabbits grow old, although this tendency was less pronounced in populations with epidemic diseases. Some causes leading to these higher mortalities in young rabbits could be the stronger effect of rainfall at those ages, as well as, other death sources like malnutrition or infanticide. 4. Predation is also greater for newborns and juveniles, especially in population without diseases. Apart from the effect of diseases, predation patterns also depended on factors, such as, density, season, and type and density of predators. Finally, we observed that infectious diseases also showed general relationships with climate, breeding (i.e. new susceptible rabbits) and age, although the association type varied between myxomatosis and rabbit haemorrhagic disease. 5. In conclusion, large-scale patterns of spatio-temporal variability in rabbit survival emerge from the combination of different factors that interrelate both directly and through density dependence. This highlights the importance of performing more comprehensive studies to reveal combined effects and complex relationships that help us to better understand the mechanisms underlying population dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Infectious diseases in space and time: noise and nonlinearity in epidemiological dynamics
NASA Astrophysics Data System (ADS)
Grenfell, Bryan
2005-03-01
I illustrate the impact of noise and nonlinearity on the spatio-temporal dynamics and evolution of epidemics using mathematical models and analyses of detailed epidemiological data from childhood infections, such as measles.
NASA Astrophysics Data System (ADS)
Li, Yangdong; Han, Zhen; Liao, Zhongping
2009-10-01
Spatiality, temporality, legality, accuracy and continuality are characteristic of cadastral information, and the cadastral management demands that the cadastral data should be accurate, integrated and updated timely. It's a good idea to build an effective GIS management system to manage the cadastral data which are characterized by spatiality and temporality. Because no sound spatio-temporal data models have been adopted, however, the spatio-temporal characteristics of cadastral data are not well expressed in the existing cadastral management systems. An event-version-based spatio-temporal modeling approach is first proposed from the angle of event and version. Then with the help of it, an event-version-based spatio-temporal cadastral data model is built to represent spatio-temporal cadastral data. At last, the previous model is used in the design and implementation of a spatio-temporal cadastral management system. The result of the application of the system shows that the event-version-based spatio-temporal data model is very suitable for the representation and organization of cadastral data.
Real time eye tracking using Kalman extended spatio-temporal context learning
NASA Astrophysics Data System (ADS)
Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu
2017-06-01
Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-22
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-01-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024
Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks
NASA Astrophysics Data System (ADS)
Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez
2016-11-01
Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.
Spatio-temporal dynamics of turbulence trapped in geodesic acoustic modes
NASA Astrophysics Data System (ADS)
Sasaki, M.; Kobayashi, T.; Itoh, K.; Kasuya, N.; Kosuga, Y.; Fujisawa, A.; Itoh, S.-I.
2018-01-01
The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes (GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the coupling equation between the GAM and the turbulence is numerically solved. The turbulence trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity increases where the second derivative of the GAM velocity (curvature of the GAM) is negative. While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spectrum, and the simulation result is compared with the experimental observation in JFT-2M tokamak, where the similar patterns are obtained. The turbulence trapping effect is a key to understand the spatial structure of the turbulence in the presence of sheared flows.
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction
Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong
2015-01-01
In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991
Hierarchical random cellular neural networks for system-level brain-like signal processing.
Kozma, Robert; Puljic, Marko
2013-09-01
Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamic imaging of protein-protein interactions by MP-FLIM
NASA Astrophysics Data System (ADS)
Ameer-Beg, Simon M.; Peter, Marion; Keppler, Melanie D.; Prag, Soren; Barber, Paul R.; Ng, Tony C.; Vojnovic, Borivoj
2005-03-01
The spatio-temporal localization of molecular interactions within cells in situ is of great importance in elucidating the key mechanisms in regulation of fundamental process within the cell. Measurements of such near-field localization of protein complexes may be achieved by the detection of fluorescence (or Forster) resonance energy transfer (FRET) between protein-conjugated fluorophores. We demonstrate the applicability of time-correlated single photon counting multiphoton microscopy to the spatio-temporal localization of protein-protein interactions in live and fixed cell populations. Intramolecular interactions between protein hetero-dimers are investigated using green fluorescent protein variants. We present an improved monomeric form of the red fluorescent protein, mRFP1, as the acceptor in biological fluorescence resonance energy transfer (FRET) experiments using the enhanced green fluorescent protein as donor. We find particular advantage in using this fluorophore pair for quantitative measurements of FRET. The technique was exploited to demonstrate a novel receptor-kinase interaction between the chemokine receptor (CXCR4) and protein kinase C (PKC) α in carcinoma cells for both live and fixed cell experiments.
Chimera states and the interplay between initial conditions and non-local coupling
NASA Astrophysics Data System (ADS)
Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard
2017-03-01
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
Chimera states and the interplay between initial conditions and non-local coupling.
Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard
2017-03-01
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
Noise focusing and the emergence of coherent activity in neuronal cultures
NASA Astrophysics Data System (ADS)
Orlandi, Javier G.; Soriano, Jordi; Alvarez-Lacalle, Enrique; Teller, Sara; Casademunt, Jaume
2013-09-01
At early stages of development, neuronal cultures in vitro spontaneously reach a coherent state of collective firing in a pattern of nearly periodic global bursts. Although understanding the spontaneous activity of neuronal networks is of chief importance in neuroscience, the origin and nature of that pulsation has remained elusive. By combining high-resolution calcium imaging with modelling in silico, we show that this behaviour is controlled by the propagation of waves that nucleate randomly in a set of points that is specific to each culture and is selected by a non-trivial interplay between dynamics and topology. The phenomenon is explained by the noise focusing effect--a strong spatio-temporal localization of the noise dynamics that originates in the complex structure of avalanches of spontaneous activity. Results are relevant to neuronal tissues and to complex networks with integrate-and-fire dynamics and metric correlations, for instance, in rumour spreading on social networks.
Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer
2008-06-20
Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.
The changing spatio-temporal dynamics of thaw lake development, Seward Peninsula, Alaska.
NASA Astrophysics Data System (ADS)
Cooper, Michael; Rees, Gareth; Bartsch, Annett
2014-05-01
Contemporary anthropogenic climatic warming is having an accelerated, and more pronounced effect upon Arctic regions than any other environment on Earth. Increased surface temperatures have led to widespread permafrost degradation and a shift in dynamics. One landscape manifestation of localised permafrost decay, seen to be ubiquitous across low-lying tundra regions of Alaska, Canada and Siberia, is the thermokarst lake - or 'thaw' lake. These features are seen to be truly dynamic, with a relatively rapid evolution and decay. The exact impacts of climatic perturbation on thaw lake development are in contention; however, recent studies have suggested an increased vulnerability of these features, owing to the susceptibility of the fundamental processes of initiation, expansion and drainage to climatic variation. It is often hypothesised that with current trends, thaw lakes will see a net increase in expansion rate, and areal extent, with a potential for increased drainage events. Increased permafrost thaw and thermokarst activity has also led to shifts in biogeochemical cycles, leading to an amplified release from large carbon reservoirs currently sequestered within permafrost. An example of carbon release exhibited from thaw lakes is that of methane ebullition (gas bubble formation); this has been theorised to have the potential to initiate a major positive climatic feedback leading to a continued rise in global temperatures. Due to the remote nature and large area over which these landforms occur, remotely sensed data has been widely used in order to both accurately classify features and measure change over spatially large and great temporal extents. As well as studies interpreting data collected in the visible and near-infrared spectra, studies have recently made use of radar or microwave products in order to capture imagery avoiding adverse atmospheric conditions, most notably cloud cover. Data from Envisat ASAR operating in Wide Swath Mode was acquired for this study region; however, the core of this research relied upon the analysis of the changing lake morphology using visible and near-infrared spectra from MODIS and Landsat products. This research explored: (1) intra-annual variability of freeze-thaw cycles and resultant effects on thaw lake development; and (2) the spatio-temporal trends and changing dynamism of thaw lake activity. Research presented here within suggests that although climatic trends do indeed influence widespread changes within thaw lake characteristics, site-specific phenomena of sediment type and ice-content and fluvial activity also play integral roles. Understanding and observing changing spatio-temporal dynamics, particularly on an intra-annual basis, has helped to gather more information concerning complex lake processes, and increase the understanding of permafrost decay and thaw lake development.
Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators
Grace, Miriam; Hütt, Marc-Thorsten
2013-01-01
In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439
Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.
Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver
2016-10-15
Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.
Hashimoto, Shoji; Matsuura, Toshiya; Nanko, Kazuki; Linkov, Igor; Shaw, George; Kaneko, Shinji
2013-01-01
The majority of the area contaminated by the Fukushima Dai-ichi nuclear power plant accident is covered by forest. To facilitate effective countermeasure strategies to mitigate forest contamination, we simulated the spatio-temporal dynamics of radiocesium deposited into Japanese forest ecosystems in 2011 using a model that was developed after the Chernobyl accident in 1986. The simulation revealed that the radiocesium inventories in tree and soil surface organic layer components drop rapidly during the first two years after the fallout. Over a period of one to two years, the radiocesium is predicted to move from the tree and surface organic soil to the mineral soil, which eventually becomes the largest radiocesium reservoir within forest ecosystems. Although the uncertainty of our simulations should be considered, the results provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident. PMID:23995073
Potential implementation of reservoir computing models based on magnetic skyrmions
NASA Astrophysics Data System (ADS)
Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin
2018-05-01
Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.
Eltaher, Hoda M; Yang, Jing; Shakesheff, Kevin M; Dixon, James E
2016-09-01
Fundamental behaviour such as cell fate, growth and death are mediated through the control of key genetic transcriptional regulators. These regulators are activated or repressed by the integration of multiple signalling molecules in spatio-temporal gradients. Engineering these gradients is complex but considered key in controlling tissue formation in regenerative medicine approaches. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor complexity but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly using GAG-binding domains to promote cell targeting, and cell penetrating peptides (CPPs) to allow cell entry. Herein we demonstrate that GET can be used in a three dimensional (3D) hydrogel matrix to produce gradients of intracellular transduction of mammalian cells. Using a compartmentalised diffusion model with a source-gel-sink (So-G-Si) assembly, we created gradients of reporter proteins (mRFP1-tagged) and a transcription factor (TF, myogenic master regulator MyoD) and showed that GET can be used to deliver molecules into cells spatio-temporally by monitoring intracellular transduction and gene expression programming as a function of location and time. The ability to spatio-temporally control the intracellular delivery of functional proteins will allow the establishment of gradients of cell programming in hydrogels and approaches to direct cellular behaviour for many regenerative medicine applications. Regenerative medicine aims to reform functional biological tissues by controlling cell behaviour. Growth factors (GFs) are soluble cues presented to cells in spatio-temporal gradients and play important roles programming cell fate and gene expression. The efficient transduction of cells by GET (Glycosaminoglycan-enhanced transducing)-tagged transcription factors (TFs) can be used to by-pass GF-stimulation and directly program cells. For the first time we demonstrate diffusion of GET proteins generate stable protein transduction gradients. We demonstrated the feasibility of creating spatio-temporal gradients of GET-MyoD and show differential programing of myogenic differentiation. We believe that GET could provide a powerful tool to program cell behaviour using gradients of recombinant proteins that allow tissue generation directly by programming gene expression with TFs. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aubrecht, Christoph; Steinnocher, Klaus; Humer, Heinrich; Huber, Hermann
2014-05-01
In the context of proactive disaster risk as well as immediate situational crisis management knowledge of locational social aspects in terms of spatio-temporal population distribution dynamics is considered among the most important factors for disaster impact minimization (Aubrecht et al., 2013a). This applies to both the pre-event stage for designing appropriate preparedness measures and to acute crisis situations when an event chain actually unfolds for efficient situation-aware response. The presented DynaPop population dynamics model is developed at the interface of those interlinked crisis stages and aims at providing basic input for social impact evaluation and decision support in crisis management. The model provides the starting point for assessing population exposure dynamics - thus here labeled as DynaPop-X - which can either be applied in a sense of illustrating the changing locations and numbers of affected people at different stages during an event or as ex-ante estimations of probable and maximum expected clusters of affected population (Aubrecht et al., 2013b; Freire & Aubrecht, 2012). DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation (Ahola et al., 2007; Bhaduri, 2008; Cockings et al., 2010). We will present ongoing developments particularly focusing on the implementation logic of the model using the emikat software tool, a data management system initially designed for inventorying and analysis of spatially resolved regional air pollutant emission scenarios. This study was performed in the framework of the EU CRISMA project. CRISMA is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. REFERENCES Ahola, T., Virrantaus, K., Krisp, J.K., Hunter, G.J. (2007) A spatio-temporal population model to support risk assessment and damage analysis for decision-making. International Journal of Geographical Information Science, 21(8), 935-953. Aubrecht, C., Fuchs, S., Neuhold, C. (2013a) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205-1216. Aubrecht, C., Özceylan, D., Steinnocher, K., Freire, S. (2013b) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Natural Hazards, 68(1), 147-163. Bhaduri, B. (2008) Population distribution during the day. In S. Shekhar & X. Hui, eds., Encyclopedia of GIS. Springer US, 880-885. Cockings, S., Martin, D. & Leung, S. (2010) Population 24/7: building space-time specific population surface models. In M. Haklay, J. Morley, & H. Rahemtulla, eds., Proceedings of the GIS Research UK 18th Annual conference. GISRUK 2010. London, UK, 41-47. Freire, S., Aubrecht, C. (2012) Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533-3543.
Rotating non-Boussinesq convection: oscillating hexagons
NASA Astrophysics Data System (ADS)
Moroz, Vadim; Riecke, Hermann; Pesch, Werner
2000-11-01
Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Bresehars, D. D.; Myers, O. B.; Barnes, F. J.
2003-12-01
Woody plant encroachment in dryland ecosystems is an issue of global concern, yet mechanisms related to encroachment are poorly understood. Mechanisms associated with woody plant encroachment likely relate to soil water dynamics, yet few long-term data sets exist to evaluate soil water heterogeneity. Here we highlight how soil water varies both temporally (wet vs. dry years and snow vs. rain dominated months) and spatially (vertically with depth and horizontally beneath vs. between the canopies of woody plants). We measured soil water content using neutron probe over a 15-year period in a pinyon-juniper woodland at the Mesita del Buey Research Site in northern New Mexico. Our objectives included assessing (1) the temporal variability of soil water, both as a function of depth and as a function of cover (canopy patches beneath trees, intercanopy patches between trees, and edges between the two patch types); and (2) implications for the vertical and horizontal distributions of plant-available water. Our results highlight (1) large temporal variations in soil water availability, driven largely by differences in winter precipitation, and (2) the potential importance of considering horizontal as well as vertical heterogeneity in soil moisture. The spatio-temporal variation in soil water that we quantify highlights the potential complexity of changes in the water budget that could be associated with woody plant encroachment and emphasizes the importance of considering horizontal as well as vertical heterogeneity in soil water in improving our understanding of mechanisms associated with woody plant encroachment.
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R. B.; Bent, Julian; Withers, Philip J.; Lee, Peter D.
2016-01-01
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding. PMID:27002902
Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...
2016-10-02
Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less
Spatio-temporal models of mental processes from fMRI.
Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos
2011-07-15
Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka
2015-01-01
Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888
Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics
USDA-ARS?s Scientific Manuscript database
1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...
Discovery of spatio-temporal patterns from location-based social networks
NASA Astrophysics Data System (ADS)
Béjar, J.; Álvarez, S.; García, D.; Gómez, I.; Oliva, L.; Tejeda, A.; Vázquez-Salceda, J.
2016-03-01
Location-based social networks (LBSNs) such as Twitter or Instagram are a good source for user spatio-temporal behaviour. These networks collect data from users in such a way that they can be seen as a set of collective and distributed sensors of a geographical area. A low rate sampling of user's location information can be obtained during large intervals of time that can be used to discover complex patterns, including mobility profiles, points of interest or unusual events. These patterns can be used as the elements of a knowledge base for different applications in different domains such as mobility route planning, touristic recommendation systems or city planning. The aim of this paper is twofold, first to analyse the frequent spatio-temporal patterns that users share when living and visiting a city. This behaviour is studied by means of frequent itemsets algorithms in order to establish some associations among visits that can be interpreted as interesting routes or spatio-temporal connections. Second, to analyse how the spatio-temporal behaviour of a large number of users can be segmented in different profiles. These behavioural profiles are obtained by means of clustering algorithms that show the different patterns of behaviour of visitors and citizens. The data analysed were obtained from the public data feeds of Twitter and Instagram within an area surrounding the cities of Barcelona and Milan for a period of several months. The analysis of these data shows that these kinds of algorithms can be successfully applied to data from any city (or general area) to discover useful patterns that can be interpreted on terms of singular places and areas and their temporal relationships.
Spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of California
Erisman, Brad; Aburto-Oropeza, Octavio; Gonzalez-Abraham, Charlotte; Mascareñas-Osorio, Ismael; Moreno-Báez, Marcia; Hastings, Philip A.
2012-01-01
We engaged in cooperative research with fishers and stakeholders to characterize the fine-scale, spatio-temporal characteristics of spawning behavior in an aggregating marine fish (Cynoscion othonopterus: Sciaenidae) and coincident activities of its commercial fishery in the Upper Gulf of California. Approximately 1.5–1.8 million fish are harvested annually from spawning aggregations of C. othonopterus during 21–25 days of fishing and within an area of 1,149 km2 of a biosphere reserve. Spawning and fishing are synchronized on a semi-lunar cycle, with peaks in both occurring 5 to 2 days before the new and full moon, and fishing intensity and catch are highest at the spawning grounds within a no-take reserve. Results of this study demonstrate the benefits of combining GPS data loggers, fisheries data, biological surveys, and cooperative research with fishers to produce spatio-temporally explicit information relevant to the science and management of fish spawning aggregations and the spatial planning of marine reserves. PMID:22359736
Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.
Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien
2018-02-01
In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ozdenerol, Esra; Taff, Gregory N.; Akkus, Cem
2013-01-01
Over the last two decades West Nile Virus (WNV) has been responsible for significant disease outbreaks in humans and animals in many parts of the World. Its extremely rapid global diffusion argues for a better understanding of its geographic extent. The purpose of this inquiry was to explore spatio-temporal patterns of WNV using geospatial technologies to study populations of the reservoir hosts, vectors, and human hosts, in addition to the spatio-temporal interactions among these populations. Review of the recent literature on spatial WNV disease risk modeling led to the conclusion that numerous environmental factors might be critical for its dissemination. New Geographic Information Systems (GIS)-based studies are monitoring occurrence at the macro-level, and helping pinpoint areas of occurrence at the micro-level, where geographically-targeted, species-specific control measures are sometimes taken and more sophisticated methods of surveillance have been used. PMID:24284356
Vanden Hole, Charlotte; Goyens, Jana; Prims, Sara; Fransen, Erik; Ayuso Hernando, Miriam; Van Cruchten, Steven; Aerts, Peter; Van Ginneken, Chris
2017-08-01
Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals. © 2017. Published by The Company of Biologists Ltd.
Mining and Integration of Environmental Data
NASA Astrophysics Data System (ADS)
Tran, V.; Hluchy, L.; Habala, O.; Ciglan, M.
2009-04-01
The project ADMIRE (Advanced Data Mining and Integration Research for Europe) is a 7th FP EU ICT project aims to deliver a consistent and easy-to-use technology for extracting information and knowledge. The project is motivated by the difficulty of extracting meaningful information by data mining combinations of data from multiple heterogeneous and distributed resources. It will also provide an abstract view of data mining and integration, which will give users and developers the power to cope with complexity and heterogeneity of services, data and processes. The data sets describing phenomena from domains like business, society, and environment often contain spatial and temporal dimensions. Integration of spatio-temporal data from different sources is a challenging task due to those dimensions. Different spatio-temporal data sets contain data at different resolutions (e.g. size of the spatial grid) and frequencies. This heterogeneity is the principal challenge of geo-spatial and temporal data sets integration - the integrated data set should hold homogeneous data of the same resolution and frequency. Thus, to integrate heterogeneous spatio-temporal data from distinct source, transformation of one or more data sets is necessary. Following transformation operation are required: • transformation to common spatial and temporal representation - (e.g. transformation to common coordinate system), • spatial and/or temporal aggregation - data from detailed data source are aggregated to match the resolution of other resources involved in the integration process, • spatial and/or temporal record decomposition - records from source with lower resolution data are decomposed to match the granularity of the other data source. This operation decreases data quality (e.g. transformation of data from 50km grid to 10 km grid) - data from lower resolution data set in the integrated schema are imprecise, but it allows us to preserve higher resolution data. We can decompose the spatio-temporal data integration to following phases: • pre-integration data processing - different data set can be physically stored in different formats (e.g. relational databases, text files); it might be necessary to pre-process the data sets to be integrated, • identification of transformation operations necessary to integrate data in spatio-temporal dimensions, • identification of transformation operations to be performed on non-spatio-temporal attributes and • output data schema and set generation - given prepared data and the set of transformation, operations, the final integrated schema is produces. Spatio-temporal dimension brings its specifics also to the problem of mining spatio-temporal data sets. Spatio-temporal relationships exist among records in (s-t) data sets and those relationships should be considered in mining operation. This means that when analyzing a record in spatio-temporal data set, the records in its spatial and/or temporal proximity should be taken into account. In addition, the relationships discovered in spatio-temporal data can be different when mining the same data on different scales (e.g. mining the same data sets on 50 km grid with daily data vs. 10 km grid with hourly data). To be able to do effective data mining, we first needed to gather a sufficient amount of environmental data covering similar area and time span. For this purpose we have engaged in cooperation with several organizations working in the environmental domain in Slovakia, some of which are also our partners from previous research efforts. The organizations which volunteered some of their data are the Slovak Hydro-meteorological Institute (SHMU), the Slovak Water Enterprise (SVP), the Soil Science and Conservation Institute (VUPOP), and the Institute of Hydrology of the Slovak Academy of Sciences (UHSAV). We have prepared scenarios from general meteorology, as well as specialized in hydrology and soil protection.
Spatio-temporal diffusion of dynamic PET images
NASA Astrophysics Data System (ADS)
Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.
2011-10-01
Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.
NASA Astrophysics Data System (ADS)
Vina, A.; Tuanmu, M.; Yang, W.; Liu, J.
2012-12-01
Human activities continue to induce the degradation of natural ecosystems, thus threatening not only the long-term survival of many wildlife species around the world, but also the resilience of natural ecosystems to global environmental changes. In response, many conservation efforts are emerging as adaptive strategies for coping with the degradation of natural ecosystems. Among them, the establishment of nature reserves is considered to be the most effective. However the effectiveness of nature reserves depends on the type and intensity of human activities occurring within their boundaries. But many of these activities constitute important livelihood systems for local human populations. Therefore, to enhance the effectiveness of conservation actions without significantly affecting local livelihood systems, it is essential to understand the complexity of human-nature interactions and their effects on the spatio-temporal dynamics of natural ecosystems. In this study, we evaluated the relation between giant panda habitat dynamics, conservation efforts and human activities in Wolong Nature Reserve for Giant Pandas, Sichuan Province, China. This reserve supports ca. 10% of the entire wild giant panda population but is also home to ca. 4,900 local residents. The spatio-temporal dynamics of giant panda habitat over the last four decades were analyzed using a time series of remotely sensed imagery acquired by different satellite sensor systems, including the Landsat Multi-Spectral Scanner, the Landsat Thematic Mapper and the Moderate Resolution Imaging Spectroradiometer (MODIS). Our assessment suggests that when local residents were actively involved in conservation efforts (through a payment for ecosystem services scheme established since around 2000) panda habitat started to recover, thus enhancing the resilience capacity of natural ecosystems in the Reserve. This reversed a long-term (> 30 years) trend of panda habitat degradation. The study not only has direct implications for wildlife habitat conservation but also increases our understanding of the complexity of human-nature interactions and their effects on the resilience of natural ecosystems.
A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations
Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui
2015-01-01
Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales. PMID:25621604
A multi-stage method for connecting participatory sensing and noise simulations.
Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui
2015-01-22
Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales.
Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification
NASA Astrophysics Data System (ADS)
Gibbs, P. J.; Imhoff, S. D.; Morris, C. L.; Merrill, F. E.; Wilde, C. H.; Nedrow, P.; Mariam, F. G.; Fezzaa, K.; Lee, W.-K.; Clarke, A. J.
2014-08-01
The formation of structural patterns during metallic solidification is complex and multiscale in nature, ranging from the nanometer scale, where solid-liquid interface properties are important, to the macroscale, where casting mold filling and intended heat transfer are crucial. X-ray and proton imaging can directly interrogate structure, solute, and fluid flow development in metals from the microscale to the macroscale. X-rays permit high spatio-temporal resolution imaging of microscopic solidification dynamics in thin metal sections. Similarly, high-energy protons permit imaging of mesoscopic and macroscopic solidification dynamics in large sample volumes. In this article, we highlight multiscale x-ray and proton imaging of bismuth-tin alloy solidification to illustrate dynamic measurement of crystal growth rates and solute segregation profiles that can be that can be acquired using these techniques.
Bio-inspired nano-sensor-enhanced CNN visual computer.
Porod, Wolfgang; Werblin, Frank; Chua, Leon O; Roska, Tamas; Rodriguez-Vazquez, Angel; Roska, Botond; Fay, Patrick; Bernstein, Gary H; Huang, Yih-Fang; Csurgay, Arpad I
2004-05-01
Nanotechnology opens new ways to utilize recent discoveries in biological image processing by translating the underlying functional concepts into the design of CNN (cellular neural/nonlinear network)-based systems incorporating nanoelectronic devices. There is a natural intersection joining studies of retinal processing, spatio-temporal nonlinear dynamics embodied in CNN, and the possibility of miniaturizing the technology through nanotechnology. This intersection serves as the springboard for our multidisciplinary project. Biological feature and motion detectors map directly into the spatio-temporal dynamics of CNN for target recognition, image stabilization, and tracking. The neural interactions underlying color processing will drive the development of nanoscale multispectral sensor arrays for image fusion. Implementing such nanoscale sensors on a CNN platform will allow the implementation of device feedback control, a hallmark of biological sensory systems. These biologically inspired CNN subroutines are incorporated into the new world of analog-and-logic algorithms and software, containing also many other active-wave computing mechanisms, including nature-inspired (physics and chemistry) as well as PDE-based sophisticated spatio-temporal algorithms. Our goal is to design and develop several miniature prototype devices for target detection, navigation, tracking, and robotics. This paper presents an example illustrating the synergies emerging from the convergence of nanotechnology, biotechnology, and information and cognitive science.
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
NASA Astrophysics Data System (ADS)
Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.
2017-11-01
We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.
Uncertainties in data-model comparisons: Spatio-temporal scales for past climates
NASA Astrophysics Data System (ADS)
Lohmann, G.
2016-12-01
Data-model comparisons are hindered by uncertainties like varying reservoir ages or potential seasonality bias of the recorder systems, but also due to the models' difficulty to represent the spatio-temporal variability patterns. For the Holocene we detect a sensitivity to horizontal resolution in the atmosphere, the representation of atmospheric dynamics, as well as the dynamics of the western boundary currents in the ocean. These features can create strong spatial heterogeneity in the North Atlantic and Pacific Oceans over long timescales (unlike a diffusive spatio-temporal scale separation). Futhermore, it is shown that such non-linear mechanisms could create a non-trivial response to seasonal insolation forcing via an atmospheric bridge inducing non-uniform temperature anomalies over the northern continents on multi-millennial time scales. Through the fluctuation-dissipation-theorem, climate variability and sensitivity are ultimately coupled. It is argued that some obvious biases between models and data may be linked to the missing key persistent component of the atmospheric dynamics, the North Atlantic blocking activity. It is shown that blocking is also linked to Atlantic multidecadal ocean variability and to extreme events. Interestingly, several proxies provide a measure of the frequency of extreme events, and a proper representation is a true challenge for climate models. Finally, case studies from deep paleo are presented in which changes in land-sea distribution or subscale parameterizations can cause relatively large effects on surface temperature. Such experiments can explore the phase space of solutions, but show the limitation of past climates to constrain climate sensitivity.
NASA Astrophysics Data System (ADS)
Floberg, J. M.; Holden, J. E.
2013-02-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.
Javidi, Bahram; Markman, Adam; Rawat, Siddharth; O'Connor, Timothy; Anand, Arun; Andemariam, Biree
2018-05-14
We present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube. Features were extracted by computing the standard deviations and the mean of the height fluctuations over time and for every location on the cell membrane, resulting in two-dimensional standard deviation and mean maps, followed by taking the standard deviations of these maps. The optical flow algorithm was used to estimate the apparent motion fields between subsequent frames (reconstructions). The standard deviation of the magnitude of the optical flow vectors across all frames was then computed. In addition, seven morphological cell (spatial) features based on optical path length were extracted from the cells to further improve the classification accuracy. A random forest classifier was trained to perform cell identification to distinguish between SCD-RBCs and h-RBCs. To the best of our knowledge, this is the first report of machine learning assisted cell identification and diagnosis of sickle cell disease based on cell membrane fluctuations and morphology using both spatio-temporal and spatial analysis.
NASA Technical Reports Server (NTRS)
Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.
2013-01-01
The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.
Local collective motion analysis for multi-probe dynamic imaging and microrheology
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2016-08-01
Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Spatio-temporal Variability of Stratified Snowpack Cold Content Observed in the Rocky Mountains
NASA Astrophysics Data System (ADS)
Schmidt, J. S.; Sexstone, G. A.; Serreze, M. C.
2017-12-01
Snowpack cold content (CCsnow) is the energy required to bring a snowpack to an isothermal temperature of 0.0°C. The spatio-temporal variability of CCsnow is complex as it is a measure that integrates the response of a snowpack to each component of the snow-cover energy balance. Snow and ice at high elevation is climate sensitive water storage for the Western U.S. Therefore, an improved understanding of the spatio-temporal variability of CCsnow may provide insight into snowpack dynamics and sensitivity to climate change. In this study, stratified snowpit observations of snow water equivalent (SWE) and snow temperature (Tsnow) from the USGS Rocky Mountain Snowpack network (USGS RMS) were used to evaluate vertical CCsnow profiles over a 16-year period in Montana, Idaho, Wyoming, Colorado and New Mexico. Since 1993, USGS RMS has collected snow chemistry, snow temperature, and SWE data throughout the Rocky Mountain region, making it well positioned for Anthropocene cryosphere benchmarking and climate change interpretation. Spatial grouping of locations based on similar CCsnow characteristics was evaluated and trend analyses were performed. Additionally, we evaluated the regional relation of CCsnow to snowmelt timing. CCsnow was more precisely calculated and more representative using vertically stratified field observed values than bulk values, which highlights the utility of the snowpack dataset presented here. Location specific annual and 16 year mean stratified snowpit profiles of SWE, Tsnow, and CCsnow well represent the physical geography and past weather patterns acting on the snowpack. Observed trends and spatial variability of CCsnow profiles explored by this study provides an improved understanding of changing snowpack behavior in the western U.S., and will be useful for assessing the regional sensitivity of snowpacks to future climate change.
Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin
2017-01-01
This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.
Identifying Changes of Complex Flood Dynamics with Recurrence Analysis
NASA Astrophysics Data System (ADS)
Wendi, D.; Merz, B.; Marwan, N.
2016-12-01
Temporal changes in flood hazard system are known to be difficult to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. Moreover hydrological time series (i.e. discharge) are often subject to measurement errors, such as rating curve error especially in the case of extremes where observation are actually derived through extrapolation. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. Sensitivity of the common measurement errors and noise on recurrence analysis will also be analyzed and evaluated against conventional methods. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic to certain flood events.
NASA Astrophysics Data System (ADS)
Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.
2011-12-01
A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.
Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities
NASA Astrophysics Data System (ADS)
De Wit, A.; Eckert, K.; Kalliadasis, S.
2012-09-01
Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field.
Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine
Pietak, Alexis; Levin, Michael
2016-01-01
Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581
Spatio-temporal hierarchy in the dynamics of a minimalist protein model
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Baba, Akinori; Li, Chun-Biu; Straub, John E.; Toda, Mikito; Komatsuzaki, Tamiki; Berry, R. Stephen
2013-12-01
A method for time series analysis of molecular dynamics simulation of a protein is presented. In this approach, wavelet analysis and principal component analysis are combined to decompose the spatio-temporal protein dynamics into contributions from a hierarchy of different time and space scales. Unlike the conventional Fourier-based approaches, the time-localized wavelet basis captures the vibrational energy transfers among the collective motions of proteins. As an illustrative vehicle, we have applied our method to a coarse-grained minimalist protein model. During the folding and unfolding transitions of the protein, vibrational energy transfers between the fast and slow time scales were observed among the large-amplitude collective coordinates while the other small-amplitude motions are regarded as thermal noise. Analysis employing a Gaussian-based measure revealed that the time scales of the energy redistribution in the subspace spanned by such large-amplitude collective coordinates are slow compared to the other small-amplitude coordinates. Future prospects of the method are discussed in detail.
Dong, Wen; Yang, Kun; Xu, Quanli; Liu, Lin; Chen, Juan
2017-10-24
A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.
A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases
Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting
2014-01-01
In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028
A hybrid spatio-temporal data indexing method for trajectory databases.
Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting
2014-07-21
In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.
Research on spatio-temporal database techniques for spatial information service
NASA Astrophysics Data System (ADS)
Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan
2007-06-01
Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).
A Molecular Smart Surface for Spatio-Temporal Studies of Cell Mobility
Lee, Eun-ju; Luo, Wei; Chan, Eugene W. L.; Yousaf, Muhammad N.
2015-01-01
Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions. PMID:26030281
NASA Astrophysics Data System (ADS)
Song, Yongli; Zhang, Tonghua; Tadé, Moses O.
2009-12-01
The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.
Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W
Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea
2014-01-01
Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242
Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.
2016-01-01
Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272
Spatio-temporal dynamics of a tree-killing beetle and its predator
Aaron S. Weed; Matthew P. Ayres; Andrew M. Liebhold; Ronald F. Billings
2016-01-01
Resolving linkages between local-scale processes and regional-scale patterns in abundance of interacting species is important for understanding long-term population stability across spatial scales. Landscape patterning in consumer population dynamics may be largely the result of interactions between consumers and their predators, or driven by spatial variation in basal...
Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans
Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude
2013-01-01
Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894
Spatio-temporal dynamics of dengue 2009 outbreak in Córdoba City, Argentina.
Estallo, E L; Carbajo, A E; Grech, M G; Frías-Céspedes, M; López, L; Lanfri, M A; Ludueña-Almeida, F F; Almirón, W R
2014-08-01
During 2009 the biggest dengue epidemic to date occurred in Argentina, affecting almost half the country. We studied the spatio-temporal dynamics of the outbreak in the second most populated city of the country, Córdoba city. Confirmed cases and the results of an Aedes aegypti monitoring during the outbreak were geolocated. The imported cases began in January, and the autochthonous in March. Thirty-three percent of the 130 confirmed cases were imported, and occurred mainly at the center of the city. The autochthonous cases were more frequent in the outskirts, specially in the NE and SE. Aedes aegypti infestation showed no difference between neighborhoods with or without autochthonous cases, neither between neighborhoods with autochthonous vs. imported cases. The neighborhoods with imported cases presented higher population densities. The majority of autochthonous cases occurred at ages between 25 and 44 years old. Cases formed a spatio-temporal cluster of up to 20 days and 12km. According to a mathematical model that estimates the required number of days needed for transmission according to daily temperature, the number of cases begun to fall when more than 15.5 days were needed. This may be a coarse estimation of mean mosquito survival in the area, provided that the study area is close to the global distribution limit of the vector, and that cases prevalence was very low. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.
Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu
2011-01-01
Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.
Mórocz, István Akos; Janoos, Firdaus; van Gelderen, Peter; Manor, David; Karni, Avi; Breznitz, Zvia; von Aster, Michael; Kushnir, Tammar; Shalev, Ruth
2012-01-01
The aim of this article is to report on the importance and challenges of a time-resolved and spatio-temporal analysis of fMRI data from complex cognitive processes and associated disorders using a study on developmental dyscalculia (DD). Participants underwent fMRI while judging the incorrectness of multiplication results, and the data were analyzed using a sequence of methods, each of which progressively provided more a detailed picture of the spatio-temporal aspect of this disease. Healthy subjects and subjects with DD performed alike behaviorally though they exhibited parietal disparities using traditional voxel-based group analyses. Further and more detailed differences, however, surfaced with a time-resolved examination of the neural responses during the experiment. While performing inter-group comparisons, a third group of subjects with dyslexia (DL) but with no arithmetic difficulties was included to test the specificity of the analysis and strengthen the statistical base with overall fifty-eight subjects. Surprisingly, the analysis showed a functional dissimilarity during an initial reading phase for the group of dyslexic but otherwise normal subjects, with respect to controls, even though only numerical digits and no alphabetic characters were presented. Thus our results suggest that time-resolved multi-variate analysis of complex experimental paradigms has the ability to yield powerful new clinical insights about abnormal brain function. Similarly, a detailed compilation of aberrations in the functional cascade may have much greater potential to delineate the core processing problems in mental disorders. PMID:22368322
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
The influence of natural factors on the spatio-temporal distribution of Oncomelania hupensis.
Cheng, Gong; Li, Dan; Zhuang, Dafang; Wang, Yong
2016-12-01
We analyzed the influence of natural factors, such as temperature, rainfall, vegetation and hydrology, on the spatio-temporal distribution of Oncomelania hupensis and explored the leading factors influencing these parameters. The results will provide reference methods and theoretical a basis for the schistosomiasis control. GIS (Geographic Information System) spatial display and analysis were used to describe the spatio-temporal distribution of Oncomelania hupensis in the study area (Dongting Lake in Hunan Province) from 2004 to 2011. Correlation analysis was used to detect the natural factors associated with the spatio-temporal distribution of O. hupensis. Spatial regression analysis was used to quantitatively analyze the effects of related natural factors on the spatio-temporal distribution of snails and explore the dominant factors influencing this parameter. (1) Overall, the spatio-temporal distribution of O. hupensis was governed by the comprehensive effects of natural factors. In the study area, the average density of living snails showed a downward trend, with the exception of a slight rebound in 2009. The density of living snails showed significant spatial clustering, and the degree of aggregation was initially weak but enhanced later. Regions with high snail density and towns with an HH distribution pattern were mostly distributed in the plain areas in the northwestern and inlet and outlet of the lake. (2) There were space-time differences in the influence of natural factors on the spatio-temporal distribution of O. hupensis. Temporally, the comprehensive influence of natural factors on snail distribution increased first and then decreased. Natural factors played an important role in snail distribution in 2005, 2006, 2010 and 2011. Spatially, it decreased from the northeast to the southwest. Snail distributions in more than 20 towns located along the Yuanshui River and on the west side of the Lishui River were less affected by natural factors, whereas relatively larger in areas around the outlet of the lake (Chenglingji) were more affected. (3) The effects of natural factors on the spatio-temporal distribution of O. hupensis were spatio-temporally heterogeneous. Rainfall, land surface temperature, NDVI, and distance from water sources all played an important role in the spatio-temporal distribution of O. hupensis. In addition, due to the effects of the local geographical environment, the direction of the influences the average annual rainfall, land surface temperature, and NDVI had on the spatio-temporal distribution of O. hupensis were all spatio-temporally heterogeneous, and both the distance from water sources and the history of snail distribution always had positive effects on the distribution O. hupensis, but the direction of the influence was spatio-temporally heterogeneous. (4) Of all the natural factors, the leading factors influencing the spatio-temporal distribution of O. hupensis were rainfall and vegetation (NDVI), and the primary factor alternated between these two. The leading role of rainfall decreased year by year, while that of vegetation (NDVI) increased from 2004 to 2011. The spatio-temporal distribution of O. hupensis was significantly influenced by natural factors, and the influences were heterogeneous across space and time. Additionally, the variation in the spatial-temporal distribution of O. hupensis was mainly affected by rainfall and vegetation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View
NASA Astrophysics Data System (ADS)
Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.
2017-09-01
Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.
Spatio-temporal Bayesian model selection for disease mapping
Carroll, R; Lawson, AB; Faes, C; Kirby, RS; Aregay, M; Watjou, K
2016-01-01
Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor. PMID:28070156
NASA Astrophysics Data System (ADS)
Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda
2012-09-01
Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.
Latour, Ewa; Latour, Marek; Arlet, Jarosław; Adach, Zdzisław; Bohatyrewicz, Andrzej
2011-07-01
Analysis of pedobarographical data requires geometric identification of specific anatomical areas extracted from recorded plantar pressures. This approach has led to ambiguity in measurements that may underlie the inconsistency of conclusions reported in pedobarographical studies. The goal of this study was to design a new analysis method less susceptible to the projection accuracy of anthropometric points and distance estimation, based on rarely used spatio-temporal indices. Six pedobarographic records per person (three per foot) from a group of 60 children aged 11-12 years were obtained and analyzed. The basis of the analysis was a mutual relationship between two spatio-temporal indices created by excursion of the peak pressure point and the center-of-pressure point on the dynamic pedobarogram. Classification of weight-shift patterns was elaborated and performed, and their frequencies of occurrence were assessed. This new method allows an assessment of body weight shift through the plantar pressure surface based on distribution analysis of spatio-temporal indices not affected by the shape of this surface. Analysis of the distribution of the created index confirmed the existence of typical ways of weight shifting through the plantar surface of the foot during gait, as well as large variability of the intrasubject occurrence. This method may serve as the basis for interpretation of foot functional features and may extend the clinical usefulness of pedobarography. Copyright © 2011 Elsevier B.V. All rights reserved.
Chimera states in complex networks: interplay of fractal topology and delay
NASA Astrophysics Data System (ADS)
Sawicki, Jakub; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard
2017-06-01
Chimera states are an example of intriguing partial synchronization patterns emerging in networks of identical oscillators. They consist of spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynamics. We analyze chimera states in networks of Van der Pol oscillators with hierarchical connectivities, and elaborate the role of time delay introduced in the coupling term. In the parameter plane of coupling strength and delay time we find tongue-like regions of existence of chimera states alternating with regions of existence of coherent travelling waves. We demonstrate that by varying the time delay one can deliberately stabilize desired spatio-temporal patterns in the system.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Spatio-temporal Hotelling observer for signal detection from image sequences
Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.
2010-01-01
Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494
Spatio-temporal Hotelling observer for signal detection from image sequences.
Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J
2009-06-22
Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.
Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS.
Hashemi Beni, Leila; Villeneuve, Sébastien; LeBlanc, Denyse I; Côté, Kevin; Fazil, Aamir; Otten, Ainsley; McKellar, Robin; Delaquis, Pascal
2012-09-01
While the value of geographic information systems (GIS) is widely applied in public health there have been comparatively few examples of applications that extend to the assessment of risks in food distribution systems. GIS can provide decision makers with strong computing platforms for spatial data management, integration, analysis, querying and visualization. The present report addresses some spatio-analyses in a complex food distribution system and defines influence areas as travel time zones generated through road network analysis on a national scale rather than on a community scale. In addition, a dynamic risk index is defined to translate a contamination event into a public health risk as time progresses. More specifically, in this research, GIS is used to map the Canadian produce distribution system, analyze accessibility to contaminated product by consumers, and estimate the level of risk associated with a contamination event over time, as illustrated in a scenario. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline
2011-11-01
In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
USDA-ARS?s Scientific Manuscript database
Spatio-temporal variability of crop production strongly depends on soil heterogeneity, meteorological conditions, and their interaction. Canopy reflectance can be used to describe crop status and yield spatial variability. The objectives of this work were to understand the spatio-temporal variabilit...
Incorporating time and spatial-temporal reasoning into situation management
NASA Astrophysics Data System (ADS)
Jakobson, Gabriel
2010-04-01
Spatio-temporal reasoning plays a significant role in situation management that is performed by intelligent agents (human or machine) by affecting how the situations are recognized, interpreted, acted upon or predicted. Many definitions and formalisms for the notion of spatio-temporal reasoning have emerged in various research fields including psychology, economics and computer science (computational linguistics, data management, control theory, artificial intelligence and others). In this paper we examine the role of spatio-temporal reasoning in situation management, particularly how to resolve situations that are described by using spatio-temporal relations among events and situations. We discuss a model for describing context sensitive temporal relations and show have the model can be extended for spatial relations.
Cathryn H. Greenberg
1998-01-01
Several species of southeastern amphibians completely or facultatively depend upon small, ephemeral isolated ponds for reproduction, and inhabit surrounding uplands for much of their adult lives. However, spatio-temporal dynamics of pond use is little known. Since 1994, eight ephemeral ponds embedded within frequently (n=4) or infrequently (n=4) burned longleaf pine...
Preferential attachment in evolutionary earthquake networks
NASA Astrophysics Data System (ADS)
Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein
2018-04-01
Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.
THE KEY ROLE OF SOLAR DYNAMICS IN THE CHROMOSPHERIC HANLE POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.ch
The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzlemore » while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from “anomalous” instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes and (spectral and spatial) shapes of the Ca i 4227 Å polarization at solar disk center, identifying a restrictive arrangement of magnetic fields, kinematics, heatings, and spatio-temporal resolution. We find that the joint action of dynamics, Hanle effect, and low temporal resolutions mimics Zeeman linear polarization profiles, the true weak-field Zeeman signals being negligible. Our results allow reinterpretation of many polarization signals of the solar spectra and support time-dependent scattering polarization as a powerful tool for deciphering the spatio-temporal distribution of chromospheric heatings and fields. This approach may be a key aid in developing the Hanle diagnosis for the solar atmosphere.« less
Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro
2013-12-22
Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.
A nonlinear circuit architecture for magnetoencephalographic signal analysis.
Bucolo, M; Fortuna, L; Frasca, M; La Rosa, M; Virzì, M C; Shannahoff-Khalsa, D
2004-01-01
The objective of this paper was to face the complex spatio-temporal dynamics shown by Magnetoencephalography (MEG) data by applying a nonlinear distributed approach for the Blind Sources Separation. The effort was to characterize and differ-entiate the phases of a yogic respiratory exercise used in the treatment of obsessive compulsive disorders. The patient performed a precise respiratory protocol, at one breath per minute for 31 minutes, with 10 minutes resting phase before and after. The two steps of classical Independent Component Approach have been performed by using a Cellular Neural Network with two sets of templates. The choice of the couple of suitable templates has been carried out using genetic algorithm optimization techniques. Performing BSS with a nonlinear distributed approach, the outputs of the CNN have been compared to the ICA ones. In all the protocol phases, the main components founded with CNN have similar trends compared with that ones obtained with ICA. Moreover, using this distributed approach, a spatial location has been associated to each component. To underline the spatio-temporal and the nonlinearly of the neural process a distributed nonlinear architecture has been proposed. This strategy has been designed in order to overcome the hypothesis of linear combination among the sources signals, that is characteristic of the ICA approach, taking advantage of the spatial information.
Poza, Jesús; Gómez, Carlos; García, María; Tola-Arribas, Miguel A; Carreres, Alicia; Cano, Mónica; Hornero, Roberto
2017-01-01
An accurate characterization of neural dynamics in mild cognitive impairment (MCI) is of paramount importance to gain further insights into the underlying neural mechanisms in Alzheimer's disease (AD). Nevertheless, there has been relatively little research on brain dynamics in prodromal AD. As a consequence, its neural substrates remain unclear. In the present research, electroencephalographic (EEG) recordings from patients with dementia due to AD, subjects with MCI due to AD and healthy controls (HC) were analyzed using relative power (RP) in conventional EEG frequency bands and a novel parameter useful to explore the spatio-temporal fluctuations of neural dynamics: the spectral flux (SF). Our results suggest that dementia due to AD is associated with a significant slowing of EEG activity and several significant alterations in spectral fluctuations at low (i.e. theta) and high (i.e. beta and gamma) frequency bands compared to HC (p < 0.05). Furthermore, subjects with MCI due to AD exhibited a specific frequency-dependent pattern of spatio-temporal abnormalities, which can help identify neural mechanisms involved in cognitive impairment preceding AD. Classification analyses using linear discriminant analysis with a leave-one-out cross-validation procedure showed that the combination of RP and within-electrode SF at the beta band was useful to obtain a 77.3 % of accuracy to discriminate between HC and AD patients. In the case of comparison between HC and MCI subjects, the classification accuracy reached a value of 79.2 %, combining within-electrode SF at beta and gamma bands. SF has proven to be a useful measure to obtain an original description of brain dynamics at different stages of AD. Consequently, SF may contribute to gain a more comprehensive understanding into neural substrates underlying MCI, as well as to develop potential early AD biomarkers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi
2017-05-01
This paper studies the dynamics of solitons to the nonlinear Schrödinger’s equation (NLSE) with spatio-temporal dispersion (STD). The integration algorithm that is employed in this paper is the Riccati-Bernoulli sub-ODE method. This leads to dark and singular soliton solutions that are important in the field of optoelectronics and fiber optics. The soliton solutions appear with all necessary constraint conditions that are necessary for them to exist. There are four types of nonlinear media studied in this paper. They are Kerr law, power law, parabolic law and dual law. The conservation laws (Cls) for the Kerr law and parabolic law nonlinear media are constructed using the conservation theorem presented by Ibragimov.
Spatio-temporal behaviour of medium-range ensemble forecasts
NASA Astrophysics Data System (ADS)
Kipling, Zak; Primo, Cristina; Charlton-Perez, Andrew
2010-05-01
Using the recently-developed mean-variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, we present an analysis of the spatio-temporal dynamics of their perturbations, and show how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. We also consider the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. We conclude by looking at how the MVL technique might assist in selecting models for inclusion in a multi-model ensemble, and suggest an experiment to test its potential in this context.
H.264/AVC digital fingerprinting based on spatio-temporal just noticeable distortion
NASA Astrophysics Data System (ADS)
Ait Saadi, Karima; Bouridane, Ahmed; Guessoum, Abderrezak
2014-01-01
This paper presents a robust adaptive embedding scheme using a modified Spatio-Temporal noticeable distortion (JND) model that is designed for tracing the distribution of the H.264/AVC video content and protecting them from unauthorized redistribution. The Embedding process is performed during coding process in selected macroblocks type Intra 4x4 within I-Frame. The method uses spread-spectrum technique in order to obtain robustness against collusion attacks and the JND model to dynamically adjust the embedding strength and control the energy of the embedded fingerprints so as to ensure their imperceptibility. Linear and non linear collusion attacks are performed to show the robustness of the proposed technique against collusion attacks while maintaining visual quality unchanged.
Learned saliency transformations for gaze guidance
NASA Astrophysics Data System (ADS)
Vig, Eleonora; Dorr, Michael; Barth, Erhardt
2011-03-01
The saliency of an image or video region indicates how likely it is that the viewer of the image or video fixates that region due to its conspicuity. An intriguing question is how we can change the video region to make it more or less salient. Here, we address this problem by using a machine learning framework to learn from a large set of eye movements collected on real-world dynamic scenes how to alter the saliency level of the video locally. We derive saliency transformation rules by performing spatio-temporal contrast manipulations (on a spatio-temporal Laplacian pyramid) on the particular video region. Our goal is to improve visual communication by designing gaze-contingent interactive displays that change, in real time, the saliency distribution of the scene.
Neurovision processor for designing intelligent sensors
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1992-03-01
A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.
Thai, Khoa T D; Cazelles, Bernard; Nguyen, Nam Van; Vo, Long Thi; Boni, Maciej F; Farrar, Jeremy; Simmons, Cameron P; van Doorn, H Rogier; de Vries, Peter J
2010-07-13
Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam. Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i) to detect and quantify dengue periodicity, (ii) to describe synchrony patterns in both time and space, (iii) to investigate the spatio-temporal waves and (iv) to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO) indices in Binh Thuan province, southern Vietnam. We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2-3-years was solely observed from 1996-2001. Synchrony in time and between districts was detected for both the annual and 2-3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2-3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2-3-year periodic band was found. A multi-annual mode of oscillation was observed and these 2-3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam.
Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia
Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu
2011-01-01
Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430
Extended quantification of the generalized recurrence plot
NASA Astrophysics Data System (ADS)
Riedl, Maik; Marwan, Norbert; Kurths, Jürgen
2016-04-01
The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing structures, turbulent spatial plankton patterns, and fractals. But, it is also successfully applied to the description of spatio-temporal dynamics and the detection of regime shifts, such as in the complex Ginzburg-Landau- equation. The recurrence plot based determinism is a central measure in this framework quantifying the level of regularities in temporal and spatial structures. We extend this measure for the generalized recurrence plot considering additional operations of symmetry than the simple translation. It is tested not only on two-dimensional regular patterns and noise but also on complex spatial patterns reconstructing the parameter space of the complex Ginzburg-Landau-equation. The extended version of the determinism resulted in values which are consistent to the original recurrence plot approach. Furthermore, the proposed method allows a split of the determinism into parts which based on laminar and non-laminar regions of the two-dimensional pattern of the complex Ginzburg-Landau-equation. A comparison of these parts with a standard method of image classification, the co-occurrence matrix approach, shows differences especially in the description of patterns associated with turbulence. In that case, it seems that the extended version of the determinism allows a distinction of phase turbulence and defect turbulence by means of their spatial patterns. This ability of the proposed method promise new insights in other systems with turbulent dynamics coming from climatology, biology, ecology, and social sciences, for example.
Saha, Tanumoy; Rathmann, Isabel; Galic, Milos
2017-07-11
Filopodia are dynamic, finger-like cellular protrusions associated with migration and cell-cell communication. In order to better understand the complex signaling mechanisms underlying filopodial initiation, elongation and subsequent stabilization or retraction, it is crucial to determine the spatio-temporal protein activity in these dynamic structures. To analyze protein function in filopodia, we recently developed a semi-automated tracking algorithm that adapts to filopodial shape-changes, thus allowing parallel analysis of protrusion dynamics and relative protein concentration along the whole filopodial length. Here, we present a detailed step-by-step protocol for optimized cell handling, image acquisition and software analysis. We further provide instructions for the use of optional features during image analysis and data representation, as well as troubleshooting guidelines for all critical steps along the way. Finally, we also include a comparison of the described image analysis software with other programs available for filopodia quantification. Together, the presented protocol provides a framework for accurate analysis of protein dynamics in filopodial protrusions using image analysis software.
NASA Astrophysics Data System (ADS)
Garrido, Marie; Lafabrie, Céline; Torre, Franck; Fernandez, Catherine; Pasqualini, Vanina
2013-09-01
Understanding what controls the capacity of a coastal lagoon ecosystem to recover following climatic and anthropogenic perturbations and how these perturbations can alter this capacity is critical to efficient environmental management. The goal of this study was to examine the resilience and stability of Cymodocea nodosa-dominated seagrass meadows in Urbino lagoon (Corsica, Mediterranean Sea) by characterizing the spatio-temporal dynamics of seagrass meadows over a 40-year period and comparing (anthropogenic and climatic) environmental fluctuations. The spatio-temporal evolution of seagrass meadows was investigated using previous maps (1973, 1979, 1990, 1994, 1996, 1999) and a 2011 map realized by aerial photography-remote sensing combined with GIS technology. Environmental fluctuation was investigated via physical-chemical parameters (rainfall, water temperature, salinity, turbidity, dissolved oxygen) and human-impact changes (aquaculture, artificial channel). The results showed a severe decline (estimated at -49%) in seagrass meadows between 1973 and 1994 followed by a period of strong recovery (estimated to +42%) between 1994 and 2011. Increased turbidity, induced either by rainfall events, dredging or phytoplankton growth, emerged as the most important driver of the spatio-temporal evolution of Cymodocea nodosa-dominated meadows in Urbino lagoon over the last four decades. Climate events associated to increased turbidity and reduced salinity and temperature could heavily impact seagrass dynamics. This study shows that Urbino lagoon, a system relatively untouched by human impact, shelters seagrass meadows that exhibit high resilience and stability.
Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents.
Bürger, Raimund; Chowell, Gerardo; Gavilán, Elvis; Mulet, Pep; Villada, Luis M
2018-02-01
In this article we describe the transmission dynamics of hantavirus in rodents using a spatio-temporal susceptible-exposed-infective-recovered (SEIR) compartmental model that distinguishes between male and female subpopulations [L.J.S. Allen, R.K. McCormack and C.B. Jonsson, Bull. Math. Biol. 68 (2006), 511--524]. Both subpopulations are assumed to differ in their movement with respect to local variations in the densities of their own and the opposite gender group. Three alternative models for the movement of the male individuals are examined. In some cases the movement is not only directed by the gradient of a density (as in the standard diffusive case), but also by a non-local convolution of density values as proposed, in another context, in [R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369--400]. An efficient numerical method for the resulting convection-diffusion-reaction system of partial differential equations is proposed. This method involves techniques of weighted essentially non-oscillatory (WENO) reconstructions in combination with implicit-explicit Runge-Kutta (IMEX-RK) methods for time stepping. The numerical results demonstrate significant differences in the spatio-temporal behavior predicted by the different models, which suggest future research directions.
Cellular automata rule characterization and classification using texture descriptors
NASA Astrophysics Data System (ADS)
Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.
2018-05-01
The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.
Spatio-temporal scaling of channels in braided streams.
A.G. Hunt; G.E. Grant; V.K. Gupta
2006-01-01
The spatio-temporal scaling relationship for individual channels in braided streams is shown to be identical to the spatio-temporal scaling associated with constant Froude number, e.g., Fr = l. A means to derive this relationship is developed from a new theory of sediment transport. The mechanism by which the Fr = l condition apparently governs the scaling seems to...
Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J
Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2010-01-01
Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823
Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).
Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter
2016-11-01
Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Extended generalized recurrence plot quantification of complex circular patterns
NASA Astrophysics Data System (ADS)
Riedl, Maik; Marwan, Norbert; Kurths, Jürgen
2017-03-01
The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Galle, J; Hoffmann, M; Aust, G
2009-01-01
Collective phenomena in multi-cellular assemblies can be approached on different levels of complexity. Here, we discuss a number of mathematical models which consider the dynamics of each individual cell, so-called agent-based or individual-based models (IBMs). As a special feature, these models allow to account for intracellular decision processes which are triggered by biomechanical cell-cell or cell-matrix interactions. We discuss their impact on the growth and homeostasis of multi-cellular systems as simulated by lattice-free models. Our results demonstrate that cell polarisation subsequent to cell-cell contact formation can be a source of stability in epithelial monolayers. Stroma contact-dependent regulation of tumour cell proliferation and migration is shown to result in invasion dynamics in accordance with the migrating cancer stem cell hypothesis. However, we demonstrate that different regulation mechanisms can equally well comply with present experimental results. Thus, we suggest a panel of experimental studies for the in-depth validation of the model assumptions.
Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela
2016-01-01
To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. DOI: http://dx.doi.org/10.7554/eLife.14770.001 PMID:27288545
Kidé, Saïkou Oumar; Manté, Claude; Dubroca, Laurent; Demarcq, Hervé; Mérigot, Bastien
2015-01-01
Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages’ structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997–2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment. PMID:26505198
Spatio-temporal cluster detection of chickenpox in Valencia, Spain in the period 2008-2012.
Iftimi, Adina; Martínez-Ruiz, Francisco; Míguez Santiyán, Ana; Montes, Francisco
2015-05-18
Chickenpox is a highly contagious airborne disease caused by Varicella zoster, which affects nearly all non-immune children worldwide with an annual incidence estimated at 80-90 million cases. To analyze the spatiotemporal pattern of the chickenpox incidence in the city of Valencia, Spain two complementary statistical approaches were used. First, we evaluated the existence of clusters and spatio-temporal interaction; secondly, we used this information to find the locations of the spatio-temporal clusters via the space-time permutation model. The first method used detects any aggregation in our data but does not provide the spatial and temporal information. The second method gives the locations, areas and time-frame for the spatio-temporal clusters. An overall decreasing time trend, a pronounced 12-monthly periodicity and two complementary periods were observed. Several areas with high incidence, surrounding the center of the city were identified. The existence of aggregation in time and space was observed, and a number of spatio-temporal clusters were located.
Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.
Sakamoto, Takuto
2016-01-01
Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.
Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery
Sakamoto, Takuto
2016-01-01
Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level. PMID:26963526
Spatializing health research: what we know and where we are heading
Yang, Tse-Chuan; Shoff, Carla; Noah, Aggie J.
2013-01-01
Beyond individual-level factors, researchers have adopted a spatial perspective to explore potentially modifiable environmental determinants of health. A spatial perspective can be integrated into health research by incorporating spatial data into studies or analyzing georeferenced data. Given the rapid changes in data collection methods and the complex dynamics between individuals and environment, we argue that GIS functions have shortcomings with respect to analytical capability and are limited when it comes to visualizing the temporal component in spatio-temporal data. In addition, we maintain that relatively little effort has been made to handle spatial heterogeneity. To that end, health researchers should be persuaded to better justify the theoretical meaning underlying the spatial matrix in analysis, while spatial data collectors, GIS specialists, spatial analysis methodologists, and the different breeds of users should be encouraged to work together making health research move forward through addressing these issues. PMID:23733281
NASA Astrophysics Data System (ADS)
Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.
2018-01-01
Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.
Roy, Venkat; Simonetto, Andrea; Leus, Geert
2018-06-01
We propose a sensor placement method for spatio-temporal field estimation based on a kriged Kalman filter (KKF) using a network of static or mobile sensors. The developed framework dynamically designs the optimal constellation to place the sensors. We combine the estimation error (for the stationary as well as non-stationary component of the field) minimization problem with a sparsity-enforcing penalty to design the optimal sensor constellation in an economic manner. The developed sensor placement method can be directly used for a general class of covariance matrices (ill-conditioned or well-conditioned) modelling the spatial variability of the stationary component of the field, which acts as a correlated observation noise, while estimating the non-stationary component of the field. Finally, a KKF estimator is used to estimate the field using the measurements from the selected sensing locations. Numerical results are provided to exhibit the feasibility of the proposed dynamic sensor placement followed by the KKF estimation method.
Nonlinear Dynamics in Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2008-11-01
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.
Nonlinear Dynamics in Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2009-03-01
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.
Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas
2013-01-01
Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888
Global Genetic Response in a Cancer Cell: Self-Organized Coherent Expression Dynamics
Tsuchiya, Masa; Hashimoto, Midori; Takenaka, Yoshiko; Motoike, Ikuko N.; Yoshikawa, Kenichi
2014-01-01
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome. PMID:24831017
Mining moving object trajectories in location-based services for spatio-temporal database update
NASA Astrophysics Data System (ADS)
Guo, Danhuai; Cui, Weihong
2008-10-01
Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.
NASA Astrophysics Data System (ADS)
Ajayakumar, J.; Shook, E.; Turner, V. K.
2017-10-01
With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the "North American storm complex" in December 2015, the "snowstorm Jonas" in January 2016, the "West Virginia floods" in June 2016, and the "Hurricane Matthew" in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with social media data and will be useful for researchers and decision makers to enhance their analysis on spatio-temporal social media responses during extreme events.
NASA Astrophysics Data System (ADS)
Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen
2017-04-01
Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy precipitation. Keywords: Complex network, event synchronization, wavelet, regional climate network, multiscale community mining
Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178
Pârvu, Ovidiu; Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.
Luan, Hui; Law, Jane; Quick, Matthew
2015-12-30
Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.
Higgins, Irina; Stringer, Simon; Schnupp, Jan
2017-01-01
The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.
Stringer, Simon
2017-01-01
The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034
NASA Astrophysics Data System (ADS)
Coats, S.; Smerdon, J. E.; Stevenson, S.; Fasullo, J.; Otto-Bliesner, B. L.
2017-12-01
The observational record, which provides only limited sampling of past climate variability, has made it difficult to quantitatively analyze the complex spatio-temporal character of drought. To provide a more complete characterization of drought, machine learning based methods that identify drought in three-dimensional space-time are applied to climate model simulations of the last millennium and future, as well as tree-ring based reconstructions of hydroclimate over the Northern Hemisphere extratropics. A focus is given to the most persistent and severe droughts of the past 1000 years. Analyzing reconstructions and simulations in this context allows for a validation of the spatio-temporal character of persistent and severe drought in climate model simulations. Furthermore, the long records provided by the reconstructions and simulations, allows for sufficient sampling to constrain projected changes to the spatio-temporal character of these features using the reconstructions. Along these lines, climate models suggest that there will be large increases in the persistence and severity of droughts over the coming century, but little change in their spatial extent. These models, however, exhibit biases in the spatio-temporal character of persistent and severe drought over parts of the Northern Hemisphere, which may undermine their usefulness for future projections. Despite these limitations, and in contrast to previous claims, there are no systematic changes in the character of persistent and severe droughts in simulations of the historical interval. This suggests that climate models are not systematically overestimating the hydroclimate response to anthropogenic forcing over this period, with critical implications for confidence in hydroclimate projections.
Novel Flood Detection and Analysis Method Using Recurrence Property
NASA Astrophysics Data System (ADS)
Wendi, Dadiyorto; Merz, Bruno; Marwan, Norbert
2016-04-01
Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.
Retkute, Renata; Townsend, Alexandra J; Murchie, Erik H; Jensen, Oliver E; Preston, Simon P
2018-05-25
Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.
The contrasting phylodynamics of human influenza B viruses.
Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G
2015-01-16
A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.
NASA Astrophysics Data System (ADS)
Olsen, S.; Zaliapin, I.
2008-12-01
We establish positive correlation between the local spatio-temporal fluctuations of the earthquake magnitude distribution and the occurrence of regional earthquakes. In order to accomplish this goal, we develop a sequential Bayesian statistical estimation framework for the b-value (slope of the Gutenberg-Richter's exponential approximation to the observed magnitude distribution) and for the ratio a(t) between the earthquake intensities in two non-overlapping magnitude intervals. The time-dependent dynamics of these parameters is analyzed using Markov Chain Models (MCM). The main advantage of this approach over the traditional window-based estimation is its "soft" parameterization, which allows one to obtain stable results with realistically small samples. We furthermore discuss a statistical methodology for establishing lagged correlations between continuous and point processes. The developed methods are applied to the observed seismicity of California, Nevada, and Japan on different temporal and spatial scales. We report an oscillatory dynamics of the estimated parameters, and find that the detected oscillations are positively correlated with the occurrence of large regional earthquakes, as well as with small events with magnitudes as low as 2.5. The reported results have important implications for further development of earthquake prediction and seismic hazard assessment methods.
Current developments in soil water sensing for climate, environment, hydrology and agriculture
USDA-ARS?s Scientific Manuscript database
Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...
Chad Babcock; Hans Andersen; Andrew O. Finley; Bruce D. Cook
2015-01-01
Models leveraging repeat LiDAR and field collection campaigns may be one possible mechanism to monitor carbon flux in remote forested regions. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska, USA to examine the potential for Bayesian spatio-temporal mapping of terrestrial forest carbon storage and uncertainty.
Disentangling multidimensional spatio-temporal data into their common and aberrant responses
Chang, Young Hwan; Korkola, James; Amin, Dhara N.; ...
2015-04-22
With the advent of high-throughput measurement techniques, scientists and engineers are starting to grapple with massive data sets and encountering challenges with how to organize, process and extract information into meaningful structures. Multidimensional spatio-temporal biological data sets such as time series gene expression with various perturbations over different cell lines, or neural spike trains across many experimental trials, have the potential to acquire insight about the dynamic behavior of the system. For this potential to be realized, we need a suitable representation to understand the data. A general question is how to organize the observed data into meaningful structures andmore » how to find an appropriate similarity measure. A natural way of viewing these complex high dimensional data sets is to examine and analyze the large-scale features and then to focus on the interesting details. Since the wide range of experiments and unknown complexity of the underlying system contribute to the heterogeneity of biological data, we develop a new method by proposing an extension of Robust Principal Component Analysis (RPCA), which models common variations across multiple experiments as the lowrank component and anomalies across these experiments as the sparse component. We show that the proposed method is able to find distinct subtypes and classify data sets in a robust way without any prior knowledge by separating these common responses and abnormal responses. Thus, the proposed method provides us a new representation of these data sets which has the potential to help users acquire new insight from data.« less
On Patterns in Affective Media
NASA Astrophysics Data System (ADS)
ADAMATZKY, ANDREW
In computational experiments with cellular automaton models of affective solutions, where chemical species represent happiness, anger, fear, confusion and sadness, we study phenomena of space time dynamic of emotions. We demonstrate feasibility of the affective solution paradigm in example of emotional abuse therapy. Results outlined in the present paper offer unconventional but promising technique to design, analyze and interpret spatio-temporal dynamic of mass moods in crowds.
Wheat landraces: A mini review
USDA-ARS?s Scientific Manuscript database
Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...
Shuaib, Aban; Hartwell, Adam; Kiss-Toth, Endre; Holcombe, Mike
2016-01-01
Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evolutionarily highly conserved. Many cells use these pathways to interpret changes to their environment and respond accordingly. The pathways are central to triggering diverse cellular responses such as survival, apoptosis, differentiation and proliferation. Though the interactions between the different MAPK pathways are complex, nevertheless, they maintain a high level of fidelity and specificity to the original signal. There are numerous theories explaining how fidelity and specificity arise within this complex context; spatio-temporal regulation of the pathways and feedback loops are thought to be very important. This paper presents an agent based computational model addressing multi-compartmentalisation and how this influences the dynamics of MAPK cascade activation. The model suggests that multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the model also establishes a link between the spatial arrangements of the cascade components and temporal activation mechanisms, and how both contribute to fidelity and specificity of MAPK mediated signalling. PMID:27243235
Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts
NASA Astrophysics Data System (ADS)
Wang, M.; Kamarianakis, Y.; Georgescu, M.
2017-12-01
A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
NASA Astrophysics Data System (ADS)
Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.
2018-02-01
A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.
Discriminability limits in spatio-temporal stereo block matching.
Jain, Ankit K; Nguyen, Truong Q
2014-05-01
Disparity estimation is a fundamental task in stereo imaging and is a well-studied problem. Recently, methods have been adapted to the video domain where motion is used as a matching criterion to help disambiguate spatially similar candidates. In this paper, we analyze the validity of the underlying assumptions of spatio-temporal disparity estimation, and determine the extent to which motion aids the matching process. By analyzing the error signal for spatio-temporal block matching under the sum of squared differences criterion and treating motion as a stochastic process, we determine the probability of a false match as a function of image features, motion distribution, image noise, and number of frames in the spatio-temporal patch. This performance quantification provides insight into when spatio-temporal matching is most beneficial in terms of the scene and motion, and can be used as a guide to select parameters for stereo matching algorithms. We validate our results through simulation and experiments on stereo video.
Niang, Makhtar; Thiam, Laty G; Loucoubar, Cheikh; Sow, Abdourahmane; Sadio, Bacary D; Diallo, Mawlouth; Sall, Amadou A; Toure-Balde, Aissatou
2017-01-19
Genetic analyses of the malaria parasite population and its temporal and spatial dynamics could provide an assessment of the effectiveness of disease control strategies. The genetic diversity of Plasmodium falciparum has been poorly documented in Senegal, and limited data are available from the Kedougou Region. This study examines the spatial and temporal variation of the genetic diversity and complexity of P. falciparum infections in acute febrile patients in Kedougou, southeastern Senegal. A total of 263 sera from patients presenting with acute febrile illness and attending Kedougou health facilities between July 2009 and July 2013 were obtained from a collection established as part of arbovirus surveillance in Kedougou. Samples identified as P. falciparum by nested PCR were characterized for their genetic diversity and complexity using msp-1 and msp-2 polymorphic markers. Samples containing only P. falciparum accounted for 60.83% (160/263) of the examined samples. All three msp-1 allelic families (K1, MAD20 and RO33) and two msp-2 allelic families (FC27 and 3D7) were detected in all villages investigated over the 5-year collection period. The average genotype per allelic family was comparable between villages. Frequencies of msp-1 and msp-2 allelic types showed no correlation with age (Fisher's exact test, P = 0.59) or gender (Fisher's exact test, P = 0.973), and were similarly distributed throughout the 5-year sampling period (Fisher's exact test, P = 0.412) and across villages (Fisher's exact test, P = 0.866). Mean multiplicity of infection (MOI) for both msp-1 and msp-2 was highest in Kedougou village (2.25 and 2.21, respectively) and among younger patients aged ≤ 15 years (2.12 and 2.00, respectively). The mean MOI was highest in 2009 and decreased progressively onward. Characterization of the genetic diversity and complexity of P. falciparum infections in Kedougou revealed no spatio-temporal variation in the genetic diversity of P. falciparum isolates. However, mean MOI varied with time of sera collection and decreased over the course of the study (July 2009 to July 2013). This suggests a slow progressive decrease of malaria transmission intensity in Kedougou Region despite the limited impact of preventive and control measures implemented by the National Malaria Control Programme on malaria morbidity and mortality.
Mandal, Rakesh; Kesari, Shreekant; Kumar, Vijay; Das, Pradeep
2018-04-02
Visceral leishmaniasis (VL) in Bihar State (India) continues to be endemic, despite the existence of effective treatment and a vector control program to control disease morbidity. A clear understanding of spatio-temporal distribution of VL may improve surveillance and control implementation. This study explored the trends in spatio-temporal dynamics of VL endemicity at a meso-scale level in Vaishali District, based on geographical information systems (GIS) tools and spatial statistical analysis. A GIS database was used to integrate the VL case data from the study area between 2009 and 2014. All cases were spatially linked at a meso-scale level. Geospatial techniques, such as GIS-layer overlaying and mapping, were employed to visualize and detect the spatio-temporal patterns of a VL endemic outbreak across the district. The spatial statistic Moran's I Index (Moran's I) was used to simultaneously evaluate spatial-correlation between endemic villages and the spatial distribution patterns based on both the village location and the case incidence rate (CIR). Descriptive statistics such as mean, standard error, confidence intervals and percentages were used to summarize the VL case data. There were 624 endemic villages with 2719 (average 906 cases/year) VL cases during 2012-2014. The Moran's I revealed a cluster pattern (P < 0.05) of CIR distribution at the meso-scale level. On average, 68 villages were newly-endemic each year. Of which 93.1% of villages' endemicity were found to have occurred on the peripheries of the previous year endemic villages. The mean CIR of the endemic villages that were peripheral to the following year newly-endemic villages, compared to all endemic villages of the same year, was higher (P < 0.05). The results show that the VL endemicity of new villages tends to occur on the periphery of villages endemic in the previous year. High-CIR plays a major role in the spatial dispersion of the VL cases between non-endemic and endemic villages. This information can help achieve VL elimination throughout the Indian subcontinent by improving vector control design and implementation in highly-endemic district.
Chandler, Richard B.; Muths, Erin L.; Sigafus, Brent H.; Schwalbe, Cecil R.; Jarchow, Christopher J.; Hossack, Blake R.
2015-01-01
Synthesis and applications. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data.
Spatio-temporal dynamics of Fusarium head blight and Trichothecene toxin types in Canada
USDA-ARS?s Scientific Manuscript database
In many parts of the world Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB), a disease of cereal crops that adversely affects crop yield, food safety, and animal health. We previously demonstrated population structure associated with differences in trichothecene toxin t...
The highest uncertainties in net nitrogen (N) fluxes between the atmosphere and biologically active pools are predominately due to denitrification (DeN). This diminishes confidence in our assessment of wetland N removal at transition zones between upland and aquatic systems. This...
SPATIO-TEMPORAL ANALYSIS OF TOTAL NITRATE CONCENTRATIONS USING DYNAMIC STATISTICAL MODELS
Atmospheric concentrations of total nitrate (TNO3), defined here as gas-phase nitric acid plus particle-phase nitrate, are difficult to simulate in numerical air quality models due to the presence of a variety of formation pathways and loss mechanisms, some of which ar...
Mitigating Spam Using Spatio-Temporal Reputation
2010-01-01
scalable; computation can occur in near real-time and over 500,000 emails can be scored an hour. 1 Introduction Roughly 90% of the total volume of email on...Sokolsky, and J. M. Smith. Dynamic trust management. IEEE Computer (Special Issue on Trust Mangement ), 2009. [11] P. Boykins and B. Roychowdhury
USDA-ARS?s Scientific Manuscript database
Reducing N loss from agricultural lands and applying N fertilizer at rates that satisfy both economic and environmental objectives is critical for sustainable agricultural management. This study investigated spatial variability in maize yield response to N and its controlling factors along a typical...
Spatio-temporal alignment of multiple sensors
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao
2018-01-01
Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.
NASA Astrophysics Data System (ADS)
Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.
2016-12-01
Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).
Jemel, Boutheina; Schuller, Anne-Marie; Goffaux, Valérie
2010-10-01
Although it is generally acknowledged that familiar face recognition is fast, mandatory, and proceeds outside conscious control, it is still unclear whether processes leading to familiar face recognition occur in a linear (i.e., gradual) or a nonlinear (i.e., all-or-none) manner. To test these two alternative accounts, we recorded scalp ERPs while participants indicated whether they recognize as familiar the faces of famous and unfamiliar persons gradually revealed in a descending sequence of frames, from the noisier to the least noisy. This presentation procedure allowed us to characterize the changes in scalp ERP responses occurring prior to and up to overt recognition. Our main finding is that gradual and all-or-none processes are possibly involved during overt recognition of familiar faces. Although the N170 and the N250 face-sensitive responses displayed an abrupt activity change at the moment of overt recognition of famous faces, later ERPs encompassing the N400 and late positive component exhibited an incremental increase in amplitude as the point of recognition approached. In addition, famous faces that were not overtly recognized at one trial before recognition elicited larger ERP potentials than unfamiliar faces, probably reflecting a covert recognition process. Overall, these findings present evidence that recognition of familiar faces implicates spatio-temporally complex neural processes exhibiting differential pattern activity changes as a function of recognition state.
Threshold exceedance risk assessment in complex space-time systems
NASA Astrophysics Data System (ADS)
Angulo, José M.; Madrid, Ana E.; Romero, José L.
2015-04-01
Environmental and health impact risk assessment studies most often involve analysis and characterization of complex spatio-temporal dynamics. Recent developments in this context are addressed, among other objectives, to proper representation of structural heterogeneities, heavy-tailed processes, long-range dependence, intermittency, scaling behavior, etc. Extremal behaviour related to spatial threshold exceedances can be described in terms of geometrical characteristics and distribution patterns of excursion sets, which are the basis for construction of risk-related quantities, such as in the case of evolutionary study of 'hotspots' and long-term indicators of occurrence of extremal episodes. Derivation of flexible techniques, suitable for both the application under general conditions and the interpretation on singularities, is important for practice. Modern risk theory, a developing discipline motivated by the need to establish solid general mathematical-probabilistic foundations for rigorous definition and characterization of risk measures, has led to the introduction of a variety of classes and families, ranging from some conceptually inspired by specific fields of applications, to some intended to provide generality and flexibility to risk analysts under parametric specifications, etc. Quantile-based risk measures, such as Value-at-Risk (VaR), Average Value-at-Risk (AVaR), and generalization to spectral measures, are of particular interest for assessment under very general conditions. In this work, we study the application of quantile-based risk measures in the spatio-temporal context in relation to certain geometrical characteristics of spatial threshold exceedance sets. In particular, we establish a closed-form relationship between VaR, AVaR, and the expected value of threshold exceedance areas and excess volumes. Conditional simulation allows us, by means of empirical global and local spatial cumulative distributions, the derivation of various statistics of practical interest, and subsequent construction of dynamic risk maps. Further, we study the implementation of static and dynamic spatial deformation under this setup, meaningful, among other aspects, for incorporation of heterogeneities and/or covariate effects, or consideration of external factors for risk measurement. We illustrate this approach though Environment and Health applications. This work is partially supported by grant MTM2012-32666 of the Spanish Ministry of Economy and Competitiveness (co-financed by FEDER).
Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W
2018-02-16
Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Alves, André T J; Nobre, Flávio F
2014-05-01
Despite increased funding for research on the human immunodeficiency virus (HIV) and the acquired immunodeficiency syndrome (AIDS), neither vaccine nor cure is yet in sight. Surveillance and prevention are essential for disease intervention, and it is recognised that spatio-temporal analysis of AIDS cases can assist the decision-making process for control of the disease. This study investigated the dynamic, spatial distribution of notified AIDS cases in the State of Rio de Janeiro, Brazil, between 2001 and 2010, based on the annual incidence in each municipality. Sequential choropleth maps were developed and used to analyse the incidence distribution and Moran's I spatial autocorrelation statistics was applied for characterisation of the spatio-temporal distribution pattern. A significant, positive spatial autocorrelation of AIDS incidence was observed indicating that municipalities with high incidence are likely to be close to other municipalities with similarly high incidence and, conversely, municipalities with low incidence are likely to be surrounded by municipalities with low incidence. Two clusters were identified; one hotspot related to the State Capital and the other with low to intermediate AIDS incidence comprising municipalities in the north-eastern region of the State of Rio de Janeiro.
Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array
NASA Technical Reports Server (NTRS)
Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor
2010-01-01
A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.
Emulating short-term synaptic dynamics with memristive devices
NASA Astrophysics Data System (ADS)
Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis
2016-01-01
Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.
Node Survival in Networks under Correlated Attacks
Hao, Yan; Armbruster, Dieter; Hütt, Marc-Thorsten
2015-01-01
We study the interplay between correlations, dynamics, and networks for repeated attacks on a socio-economic network. As a model system we consider an insurance scheme against disasters that randomly hit nodes, where a node in need receives support from its network neighbors. The model is motivated by gift giving among the Maasai called Osotua. Survival of nodes under different disaster scenarios (uncorrelated, spatially, temporally and spatio-temporally correlated) and for different network architectures are studied with agent-based numerical simulations. We find that the survival rate of a node depends dramatically on the type of correlation of the disasters: Spatially and spatio-temporally correlated disasters increase the survival rate; purely temporally correlated disasters decrease it. The type of correlation also leads to strong inequality among the surviving nodes. We introduce the concept of disaster masking to explain some of the results of our simulations. We also analyze the subsets of the networks that were activated to provide support after fifty years of random disasters. They show qualitative differences for the different disaster scenarios measured by path length, degree, clustering coefficient, and number of cycles. PMID:25932635
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco
2012-01-01
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222
Optical control and study of biological processes at the single-cell level in a live organism
NASA Astrophysics Data System (ADS)
Feng, Zhiping; Zhang, Weiting; Xu, Jianmin; Gauron, Carole; Ducos, Bertrand; Vriz, Sophie; Volovitch, Michel; Jullien, Ludovic; Weiss, Shimon; Bensimon, David
2013-07-01
Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on ‘single-cell physiology’ (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.
Muzzio, N E; Pasquale, M A; Huergo, M A C; Bolzán, A E; González, P H; Arvia, A J
2016-06-01
To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar-Parisi-Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched-KPZ equation. Seemingly, these results show a possible way of linking the cellular Potts models and the 2D colony front roughness dynamics.
Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.
Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A.
2004-01-01
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. PMID:15306292
Risk management in spatio-temporally varying field by true slime mold
NASA Astrophysics Data System (ADS)
Ito, Kentaro; Sumpter, David; Nakagaki, Toshiyuki
Revealing how lower organisms solve complicated problems is a challenging research area, which could reveal the evolutionary origin of biological information processing. Here we report on the ability of a single-celled organism, true slime mold, to find a smart solution of risk management under spatio-temporally varying conditions. We designed test conditions under which there were three food-locations at vertices of equilateral triangle and a toxic light illuminated the organism on alternating halves of the triangle. We found that the organism behavior depended on the period of the repeated illumination, even though the total exposure time was kept the same . A simple mathematical model for the experimental results is proposed from a dynamical system point of view. We discuss our results in the context of a strategy of risk management by Physarum.
NASA Astrophysics Data System (ADS)
Song, Changyong
2017-05-01
Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.
Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel
2016-02-06
The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.
NASA Astrophysics Data System (ADS)
Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah
2011-10-01
Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.
Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel
2016-01-01
The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345
Ingle, Nilesh P.; Lian, Xue; Reineke, Theresa M.
2013-01-01
Synthetic polymers are ubiquitous in the development of drug and polynucleotide delivery vehicles, offering promise for personalized medicine. However, the polymer structure plays a central yet elusive role in dictating the efficacy, safety, mechanisms, and kinetics of therapeutic transport in a spatial and temporal manner. Here, we decipher the intracellular evolutionary pathways pertaining to shape, size, location, and mechanism of four structurally-divergent polymer vehicles (Tr455, Tr477, jetPEI™ and Glycofect™) that create colloidal nanoparticles (polyplexes) when complexed with fluorescently-labeled plasmid DNA (pDNA). Multiple high resolution tomographic images of whole HeLa (human cervical adenocarcinoma) cells were captured via confocal microscopy at 4, 8, 12 and 24 hours. The images were reconstructed to visualize and quantify trends in situ in a four-dimensional spatio-temporal manner. The data revealed heretofore-unseen images of polyplexes in situ and structure-function relationships, i.e., Glycofect™ polyplexes are trafficked as the smallest polyplex complexes and Tr455 polyplexes have expedited translocation to the perinuclear region. Also, all of the polyplex types appeared to be preferentially internalized and trafficked via early endosomes affiliated with caveolae, a Rab-5-dependent pathway, actin, and microtubules. PMID:24007201
The influence of underwater turbulence on optical phase measurements
NASA Astrophysics Data System (ADS)
Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony
2016-05-01
Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.
Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping
2014-01-01
Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.
Spatio-temporal characterization imaging of Ca2+ oscillations in rat hippocampal neurons
NASA Astrophysics Data System (ADS)
Zhang, Zhihong; Lu, Jinling; Zhou, Wei; Liu, Rengang; Zeng, Shaoqun; Luo, Qingming
2001-08-01
Ca2+ is the most common signal transduction element in cells and plays critical rolls in neuronal development and plasticity. Ca2+ signals encode information in their oscillation frequency or amplitude and response time to regular cellular function. In this study, in order to reveal the spatio-temporal characterization of Ca2+ oscillations in rat hippocampal neurons, two kinds of Ca2+ fluorescent probes, yellow cameleons 2.1 (YC2.1) and Fluo-3, were used to monitor the change of the intracellular free Ca2+ concentration (]Ca2+[i). Spontaneous Ca2+ oscillations and glutamate elicited Ca2+ oscillations were observed with multi-photon excitation laser scan microscope (MPELSM) and confocal laser scan microscope (CLSM). The observation showed that the spatio- temporal characterization of either spontaneous or glutamate provoked Ca2+ oscillations had difference between the neurites and somata in individual nerons, especially in some distal end of neurites. The result indicated that Ca2+ oscillations were most important signal transduction pattern in neuronal development and activation. The spatio-temporal characterization of difference of Ca2+ signals between the distal endo of neurites and the somata might be associated with the distribution of ionotropic receptor and metabotropic glutamate receptors, and Ca2+ response mechanism mediated by two kinds of glutamate receptor. Ca2+ signal elicited by glutamate in the distal end of neurites appeared more complex and generated faster than that in the somata. It was suggested that Ca2+ signal in glutamate stimulated hippacamal neurons first generated from the distal end of neurites and then transduted to the somata. The complicated Ca2+ signal characterization in the distal end of neurites might be associated with neuronal activitation, neurotransmitter releasing, and other functions of neurons.
Modeling and Statistical Analysis of the Spatio-Temporal Patterns of Seasonal Influenza in Israel
Katriel, Guy; Yaari, Rami; Roll, Uri; Stone, Lewi
2012-01-01
Background Seasonal influenza outbreaks are a serious burden for public health worldwide and cause morbidity to millions of people each year. In the temperate zone influenza is predominantly seasonal, with epidemics occurring every winter, but the severity of the outbreaks vary substantially between years. In this study we used a highly detailed database, which gave us both temporal and spatial information of influenza dynamics in Israel in the years 1998–2009. We use a discrete-time stochastic epidemic SIR model to find estimates and credible confidence intervals of key epidemiological parameters. Findings Despite the biological complexity of the disease we found that a simple SIR-type model can be fitted successfully to the seasonal influenza data. This was true at both the national levels and at the scale of single cities.The effective reproductive number Re varies between the different years both nationally and among Israeli cities. However, we did not find differences in Re between different Israeli cities within a year. R e was positively correlated to the strength of the spatial synchronization in Israel. For those years in which the disease was more “infectious”, then outbreaks in different cities tended to occur with smaller time lags. Our spatial analysis demonstrates that both the timing and the strength of the outbreak within a year are highly synchronized between the Israeli cities. We extend the spatial analysis to demonstrate the existence of high synchrony between Israeli and French influenza outbreaks. Conclusions The data analysis combined with mathematical modeling provided a better understanding of the spatio-temporal and synchronization dynamics of influenza in Israel and between Israel and France. Altogether, we show that despite major differences in demography and weather conditions intra-annual influenza epidemics are tightly synchronized in both their timing and magnitude, while they may vary greatly between years. The predominance of a similar main strain of influenza, combined with population mixing serve to enhance local and global influenza synchronization within an influenza season. PMID:23056192
Jacquet, Stéphanie; Huber, Karine; Guis, Hélène; Setier-Rio, Marie-Laure; Goffredo, Maria; Allène, Xavier; Rakotoarivony, Ignace; Chevillon, Christine; Bouyer, Jérémy; Baldet, Thierry; Balenghien, Thomas; Garros, Claire
2016-03-11
Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread. Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012). Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge. Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.
Optimal design of tweezer control for chimera states
NASA Astrophysics Data System (ADS)
Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard
2018-01-01
Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.
Zhou, Lianjie; Chen, Nengcheng; Yuan, Sai; Chen, Zeqiang
2016-10-29
The efficient sharing of spatio-temporal trajectory data is important to understand traffic congestion in mass data. However, the data volumes of bus networks in urban cities are growing rapidly, reaching daily volumes of one hundred million datapoints. Accessing and retrieving mass spatio-temporal trajectory data in any field is hard and inefficient due to limited computational capabilities and incomplete data organization mechanisms. Therefore, we propose an optimized and efficient spatio-temporal trajectory data retrieval method based on the Cloudera Impala query engine, called ESTRI, to enhance the efficiency of mass data sharing. As an excellent query tool for mass data, Impala can be applied for mass spatio-temporal trajectory data sharing. In ESTRI we extend the spatio-temporal trajectory data retrieval function of Impala and design a suitable data partitioning method. In our experiments, the Taiyuan BeiDou (BD) bus network is selected, containing 2300 buses with BD positioning sensors, producing 20 million records every day, resulting in two difficulties as described in the Introduction section. In addition, ESTRI and MongoDB are applied in experiments. The experiments show that ESTRI achieves the most efficient data retrieval compared to retrieval using MongoDB for data volumes of fifty million, one hundred million, one hundred and fifty million, and two hundred million. The performance of ESTRI is approximately seven times higher than that of MongoDB. The experiments show that ESTRI is an effective method for retrieving mass spatio-temporal trajectory data. Finally, bus distribution mapping in Taiyuan city is achieved, describing the buses density in different regions at different times throughout the day, which can be applied in future studies of transport, such as traffic scheduling, traffic planning and traffic behavior management in intelligent public transportation systems.
Complexity Measures in Magnetoencephalography: Measuring "Disorder" in Schizophrenia
Brookes, Matthew J.; Hall, Emma L.; Robson, Siân E.; Price, Darren; Palaniyappan, Lena; Liddle, Elizabeth B.; Liddle, Peter F.; Robinson, Stephen E.; Morris, Peter G.
2015-01-01
This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of ‘disorder’ in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices). PMID:25886553
NASA Astrophysics Data System (ADS)
Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.
2017-02-01
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
Harcombe, William R.; Riehl, William J.; Dukovski, Ilija; Granger, Brian R.; Betts, Alex; Lang, Alex H.; Bonilla, Gracia; Kar, Amrita; Leiby, Nicholas; Mehta, Pankaj; Marx, Christopher J.; Segrè, Daniel
2014-01-01
Summary The inter-species exchange of metabolites plays a key role in the spatio-temporal dynamics of microbial communities. This raises the question whether ecosystem-level behavior of structured communities can be predicted using genome-scale models of metabolism for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice, and applied it to engineered consortia. First, we predicted, and experimentally confirmed, the species-ratio to which a 2-species mutualistic consortium converges, and the equilibrium composition of a newly engineered 3-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the “eclipse dilemma”: does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding, that the net outcome is beneficial, highlights the complex nature of metabolic interactions in microbial communities, while at the same time demonstrating their predictability. PMID:24794435
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal
2011-01-01
In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.
The contrasting phylodynamics of human influenza B viruses
Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne CF; Halpin, Rebecca; Lee, Raphael TC; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin JD; Barr, Ian G
2015-01-01
A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology. DOI: http://dx.doi.org/10.7554/eLife.05055.001 PMID:25594904
Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling
NASA Astrophysics Data System (ADS)
Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale
2016-07-01
PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.
Qiao, Jie; Papa, J.; Liu, X.
2015-09-24
Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. Moreover, a 1.5-meter deformable gratingmore » has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings.« less
USDA-ARS?s Scientific Manuscript database
Reducing nitrogen (N) loss from agricultural lands and applying N fertilizer at rates that satisfy both economic and environmental objectives is critical for sustainable agricultural management. This study investigated spatial variability in maize yield response to N and its controlling factors alon...
Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast
NASA Astrophysics Data System (ADS)
Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.
2017-08-01
Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.
Qi, Shuhong; Li, Hui; Lu, Lisen; Qi, Zhongyang; Liu, Lei; Chen, Lu; Shen, Guanxin; Fu, Ling; Luo, Qingming; Zhang, Zhihong
2016-01-01
The combined-immunotherapy of adoptive cell therapy (ACT) and cyclophosphamide (CTX) is one of the most efficient treatments for melanoma patients. However, no synergistic effects of CTX and ACT on the spatio-temporal dynamics of immunocytes in vivo have been described. Here, we visualized key cell events in immunotherapy-elicited immunoreactions in a multicolor-coded tumor microenvironment, and then established an optimal strategy of metronomic combined-immunotherapy to enhance anti-tumor efficacy. Intravital imaging data indicated that regulatory T cells formed an 'immunosuppressive ring' around a solid tumor. The CTX-ACT combined-treatment elicited synergistic immunoreactions in tumor areas, which included relieving the immune suppression, triggering the transient activation of endogenous tumor-infiltrating immunocytes, increasing the accumulation of adoptive cytotoxic T lymphocytes, and accelerating the infiltration of dendritic cells. These insights into the spatio-temporal dynamics of immunocytes are beneficial for optimizing immunotherapy and provide new approaches for elucidating the mechanisms underlying the involvement of immunocytes in cancer immunotherapy. DOI: http://dx.doi.org/10.7554/eLife.14756.001 PMID:27855783
DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari
2012-03-09
Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).
Osborne, Megan J; Pilger, Tyler J; Lusk, Joel D; Turner, Thomas F
2017-01-01
Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies. © 2016 John Wiley & Sons Ltd.
Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Boverman, Gregory; Fang, Qianqian; Carp, Stefan A.; Miller, Eric L.; Brooks, Dana H.; Selb, Juliette; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.
2007-07-01
We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.
Stratmann, Johannes
2017-01-01
The extensive genetic regulatory flows underlying specification of different neuronal subtypes are not well understood at the molecular level. The Nplp1 neuropeptide neurons in the developing Drosophila nerve cord belong to two sub-classes; Tv1 and dAp neurons, generated by two distinct progenitors. Nplp1 neurons are specified by spatial cues; the Hox homeotic network and GATA factor grn, and temporal cues; the hb -> Kr -> Pdm -> cas -> grh temporal cascade. These spatio-temporal cues combine into two distinct codes; one for Tv1 and one for dAp neurons that activate a common terminal selector feedforward cascade of col -> ap/eya -> dimm -> Nplp1. Here, we molecularly decode the specification of Nplp1 neurons, and find that the cis-regulatory organization of col functions as an integratory node for the different spatio-temporal combinatorial codes. These findings may provide a logical framework for addressing spatio-temporal control of neuronal sub-type specification in other systems. PMID:28414802
Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering
NASA Astrophysics Data System (ADS)
Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi
2015-04-01
This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.
An accessible method for implementing hierarchical models with spatio-temporal abundance data
Ross, Beth E.; Hooten, Melvin B.; Koons, David N.
2012-01-01
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
Complexities in Subsetting Level 2 Data
NASA Technical Reports Server (NTRS)
Huwe, Paul; Wei, Jennifer; Meyer, David; Silberstein, David S.; Alfred, Jerome; Savtchenko, Andrey K.; Johnson, James E.; Albayrak, Arif; Hearty, Thomas
2017-01-01
Satellite Level 2 data presents unique challenges for tools and services. From nonlinear spatial geometry to inhomogeneous file data structure to inconsistent temporal variables to complex data variable dimensionality to multiple file formats, there are many difficulties in creating general tools for Level 2 data support. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we are implementing a general Level 2 Subsetting service for Level 2 data to a user-specified spatio-temporal region of interest (ROI). In this presentation, we will unravel some of the challenges faced in creating this service and the strategies we used to surmount them.
Observing spatio-temporal dynamics of excitable media using reservoir computing
NASA Astrophysics Data System (ADS)
Zimmermann, Roland S.; Parlitz, Ulrich
2018-04-01
We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.
Hohmann, Nora; Koch, Marcus A
2017-10-23
Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion.
High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data
NASA Astrophysics Data System (ADS)
Salmela, Jouni; Kasvi, Elina; Alho, Petteri
2017-04-01
Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction
Contact chemosensation of phytochemicals by insect herbivores
Burse, Antje
2017-01-01
Contact chemosensation, or tasting, is a complex process governed by nonvolatile phytochemicals that tell host-seeking insects whether they should accept or reject a plant. During this process, insect gustatory receptors (GRs) contribute to deciphering a host plant's metabolic code. GRs recognise many different classes of nonvolatile compounds; some GRs are likely to be narrowly tuned and others, broadly tuned. Although primary and/or secondary plant metabolites influence the insect's feeding choice, their decoding by GRs is challenging, because metabolites in planta occur in complex mixtures that have additive or inhibitory effects; in diverse forms composed of structurally unrelated molecules; and at different concentrations depending on the plant species, its tissue and developmental stage. Future studies of the mechanism of insect herbivore GRs will benefit from functional characterisation taking into account the spatio-temporal dynamics and diversity of the plant's metabolome. Metabolic information, in turn, will help to elucidate the impact of single ligands and complex natural mixtures on the insect's feeding choice. PMID:28485430
NASA Astrophysics Data System (ADS)
Fiener, P.; Auerswald, K.; van Oost, K.
2009-04-01
In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.
Solar Radiation Patterns and Glaciers in the Western Himalaya
NASA Astrophysics Data System (ADS)
Dobreva, I. D.; Bishop, M. P.
2013-12-01
Glacier dynamics in the Himalaya are poorly understood, in part due to variations in topography and climate. It is well known that solar radiation is the dominant surface-energy component governing ablation, although the spatio-temporal patterns of surface irradiance have not been thoroughly investigated given modeling limitations and topographic variations including altitude, relief, and topographic shielding. Glaciation and topographic conditions may greatly influence supraglacial characteristics and glacial dynamics. Consequently, our research objectives were to develop a GIS-based solar radiation model that accounts for Earth's orbital, spectral, atmospheric and topographic dependencies, in order to examine the spatio-temporal surface irradiance patterns on glaciers in the western Himalaya. We specifically compared irradiance patterns to supraglacial characteristics and ice-flow velocity fields. Shuttle Radar Mapping Mission (SRTM) 90 m data were used to compute geomorphometric parameters that were input into the solar radiation model. Simulations results for 2013 were produced for the summer ablation season. Direct irradiance, diffuse-skylight, and total irradiance variations were compared and related to glacier altitude profiles of ice velocity and land-surface topographic parameters. Velocity and surface information were derived from analyses of ASTER satellite data. Results indicate that the direct irradiance significantly varies across the surface of glaciers given local topography and meso-scale relief conditions. Furthermore, the magnitude of the diffuse-skylight irradiance varies with altitude and as a result, glaciers in different topographic settings receive different amounts of surface irradiance. Spatio-temporal irradiance patterns appear to be related to glacier surface conditions including supraglacial lakes, and are spatially coincident with ice-flow velocity conditions on some glaciers. Collectively, our results demonstrate that glacier sensitivity to climate change is also locally controlled by numerous multi-scale topographic parameters.
Arctic Tundra Greening and Browning at Circumpolar and Regional Scales
NASA Astrophysics Data System (ADS)
Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.
2017-12-01
Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or regional cooling, or changes in the snow regime (e.g. depth, timing of melt). The spatio-temporal dynamics of tundra vegetation are only now beginning to get serious attention from the scientific community and the continual use of remote sensing data across spatial scales allows us to monitor these dynamics and elucidate their controls.
Research on target tracking algorithm based on spatio-temporal context
NASA Astrophysics Data System (ADS)
Li, Baiping; Xu, Sanmei; Kang, Hongjuan
2017-07-01
In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.
Factors Related to Rape Reporting Behavior in Brazil: Examining the Role of Spatio-Temporal Factors.
Melo, Silas Nogueira de; Beauregard, Eric; Andresen, Martin A
2016-07-01
The reporting of rape to police is an important component of this crime to have the criminal justice system involved and, potentially, punish offenders. However, for a number of reasons (fear of retribution, self-blame, etc.), most rapes are not reported to police. Most often, the research investigating this phenomenon considers incident and victim factors with little attention to the spatio-temporal factors of the rape. In this study, we consider incident, victim, and spatio-temporal factors relating to rape reporting in Campinas, Brazil. Our primary research question is whether or not the spatio-temporal factors play a significant role in the reporting of rape, over and above incident and victim factors. The subjects under study are women who were admitted to the Women's Integrated Healthcare Center at the State University of Campinas, Brazil, and surveyed by a psychologist or a social worker. Rape reporting to police was measured using a dichotomous variable. Logistic regression was used to predict the probability of rape reporting based on incident, victim, and spatio-temporal factors. Although we find that incident and victim factors matter for rape reporting, spatio-temporal factors (rape/home location and whether the rape was in a private or public place) play an important role in rape reporting, similar to the literature that considers these factors. This result has significant implications for sexual violence education. Only when we know why women decide not to report a rape may we begin to work on strategies to overcome these hurdles.
In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)
NASA Astrophysics Data System (ADS)
Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel
2017-03-01
Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well-established capacity of optoacoustics to resolve vascular anatomy and multiple hemodynamic parameters deep in scattering tissues, the newly developed methodology offers unprecedented capabilities for functional whole brain observations of fast calcium dynamics.
Thai, Khoa T. D.; Cazelles, Bernard; Nguyen, Nam Van; Vo, Long Thi; Boni, Maciej F.; Farrar, Jeremy; Simmons, Cameron P.; van Doorn, H. Rogier; de Vries, Peter J.
2010-01-01
Background Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam. Methodology Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i) to detect and quantify dengue periodicity, (ii) to describe synchrony patterns in both time and space, (iii) to investigate the spatio-temporal waves and (iv) to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO) indices in Binh Thuan province, southern Vietnam. Principal Findings We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2–3-years was solely observed from 1996–2001. Synchrony in time and between districts was detected for both the annual and 2–3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2–3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2–3-year periodic band was found. Conclusions A multi-annual mode of oscillation was observed and these 2–3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam. PMID:20644621
Spatio-temporal propagation of cascading overload failures in spatially embedded networks
NASA Astrophysics Data System (ADS)
Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo
2016-01-01
Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.
Spatio-temporal environmental data tide corrections for reconnaissance operations
NASA Astrophysics Data System (ADS)
Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn
2005-06-01
Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local tide variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of tide corrections provided for the area and time of interest by the Naval Research Laboratory tide prediction code PCTides. For each geographic position of the AQS-20 sonar, a tide height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.
Spatio-temporal propagation of cascading overload failures in spatially embedded networks
Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo
2016-01-01
Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065
Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet
NASA Astrophysics Data System (ADS)
Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark
2017-11-01
Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.
NASA Astrophysics Data System (ADS)
Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.
2014-10-01
Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.
Outlier Detection in Urban Air Quality Sensor Networks.
van Zoest, V M; Stein, A; Hoek, G
2018-01-01
Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly applied outlier detection methods are unsuitable for air pollutant measurements that have large spatial and temporal variations as occur in urban areas. We present a novel outlier detection method based upon a spatio-temporal classification, focusing on hourly NO 2 concentrations. We divide a full year's observations into 16 spatio-temporal classes, reflecting urban background vs. urban traffic stations, weekdays vs. weekends, and four periods per day. For each spatio-temporal class, we detect outliers using the mean and standard deviation of the normal distribution underlying the truncated normal distribution of the NO 2 observations. Applying this method to a low-cost air quality sensor network in the city of Eindhoven, the Netherlands, we found 0.1-0.5% of outliers. Outliers could reflect measurement errors or unusual high air pollution events. Additional evaluation using expert knowledge is needed to decide on treatment of the identified outliers. We conclude that our method is able to detect outliers while maintaining the spatio-temporal variability of air pollutant concentrations in urban areas.
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery
NASA Astrophysics Data System (ADS)
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.
Application of 3D Spatio-Temporal Data Modeling, Management, and Analysis in DB4GEO
NASA Astrophysics Data System (ADS)
Kuper, P. V.; Breunig, M.; Al-Doori, M.; Thomsen, A.
2016-10-01
Many of todaýs world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.
Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species
NASA Astrophysics Data System (ADS)
Murphy, James T.; Johnson, Mark P.; Walshe, Ray
2013-07-01
Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.
NASA Astrophysics Data System (ADS)
Zharnikova, M. A.; Alymbaeva, ZH B.; Ayurzhanaev, A. A.; Garmaev, E. ZH
2016-11-01
At present much attention is given to the spatio-temporal dynamics of plant communities of steppes to assess their response to the current climate changes. In this study, a mapping of a selected modeling polygon was carried out on the basis of data decoding and field surveys of vegetation cover in the semi-arid zone. The resulting large-scale map of actual vegetation reflects the current state of the vegetation cover and its horizontal structure. It is a valuable material for monitoring of changes in the chosen area. With multi-temporal satellite Landsat imagery we consider the vegetation cover dynamics of the test range. To analyze the transformation of the environment by the climatic factors, we compared series of NDVI versus the precipitation and of NDVI versus the temperatures. Then we calculated the degree of correlation between them.
The Internet As a Large-Scale Complex System
NASA Astrophysics Data System (ADS)
Park, Kihong; Willinger, Walter
2005-06-01
The Internet may be viewed as a "complex system" with diverse features and many components that can give rise to unexpected emergent phenomena, revealing much about its own engineering. This book brings together chapter contributions from a workshop held at the Santa Fe Institute in March 2001. This volume captures a snapshot of some features of the Internet that may be fruitfully approached using a complex systems perspective, meaning using interdisciplinary tools and methods to tackle the subject area. The Internet penetrates the socioeconomic fabric of everyday life; a broader and deeper grasp of the Internet may be needed to meet the challenges facing the future. The resulting empirical data have already proven to be invaluable for gaining novel insights into the network's spatio-temporal dynamics, and can be expected to become even more important when tryin to explain the Internet's complex and emergent behavior in terms of elementary networking-based mechanisms. The discoveries of fractal or self-similar network traffic traces, power-law behavior in network topology and World Wide Web connectivity are instances of unsuspected, emergent system traits. Another important factor at the heart of fair, efficient, and stable sharing of network resources is user behavior. Network systems, when habited by selfish or greedy users, take on the traits of a noncooperative multi-party game, and their stability and efficiency are integral to understanding the overall system and its dynamics. Lastly, fault-tolerance and robustness of large-scale network systems can exhibit spatial and temporal correlations whose effective analysis and management may benefit from rescaling techniques applied in certain physical and biological systems. The present book will bring together several of the leading workers involved in the analysis of complex systems with the future development of the Internet.
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-01-01
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-12-30
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
Mean field analysis of a spatial stochastic model of a gene regulatory network.
Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J
2015-10-01
A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.
NASA Astrophysics Data System (ADS)
Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.
2010-12-01
This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.
Zollo, L; Zaccheddu, N; Ciancio, A L; Morrone, M; Bravi, M; Santacaterina, F; Laineri Milazzo, M; Guglielmelli, E; Sterzi, S
2015-04-01
Ankle-foot-orthoses (AFOs) are frequently prescribed for hemiparetic patients to compensate for the foot drop syndrome. However, there is not a systematic study either on the effectiveness of AFOs in the gait recovery process or pointing out the therapeutic differences among the various types of AFOs available on the market. To perform a comparative evaluation of solid and dynamic Ankle-Foot-Orthoses (AFOs) on hemiparetic patients affected by foot drop syndrome by means of spatio-temporal, kinematic and electromyographic indicators. Crossover design with randomization for the interventions. A rehabilitation center for adults with neurologic disorders. Ten chronic hemiparetic patients with foot drop syndrome met inclusion criteria and volunteered to participate. Biomechanical gait analysis was carried out on hemiparetic subjects with foot drop syndrome under 3 conditions with randomized sequences: 1) without AFO; 2) wearing a solid AFO; 3) wearing a dynamic AFO. Significant changes in spatio-temporal, kinematic and electromyographic features of gait were investigated. Gait analysis outcomes showed that there were no significant differences among the solid and the dynamic AFO on the spatio-temporal parameters. Both AFOs led to a reduction of the range of motion of the ankle dorsi-plantar-flexion during stance with respect to the ambulation without AFO. They also had the effect of reducing the asymmetry between the paretic and the contralateral limb in terms of ankle angle at initial contact and hip flexion. The solid AFO generally led to an increase of the co-contraction of the couples of muscles involved in the gait. The proposed set of indicators showed that the AFOs were capable of limiting the effect of the foot-drop in hemiparetic patients and balancing the two limbs. Main differences between the two orthoses were related to muscular activity, being the level of co-contraction of the two couples of analysed muscles typically lower when the dynamic AFO was worn and closer to a normal pattern. A more extensive use of the proposed indicators in the clinical practice is expected in order to enable the definition of clinical guidelines for the prescription of the two devices.
Evolution of weighted complex bus transit networks with flow
NASA Astrophysics Data System (ADS)
Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei
2016-02-01
Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.
Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system
NASA Astrophysics Data System (ADS)
Witting, Tobias; Furch, Federico J.; Vrakking, Marc J. J.
2018-04-01
In recent years, OPCPA and NOPCPA laser systems have shown the potential to supersede Ti:sapphire plus post-compression based laser systems to drive next generation attosecond light sources via direct amplification of few-cycle pulses to high pulse energies at high repetition rates. In this paper, we present a sub 3-cycle, 100 kHz, 24 W NOPA laser system and characterise its spatio-temporal properties using the SEA-F-SPIDER technique. Our results underline the importance of spatio-temporal diagnostics for these emerging laser systems.
Seasonal dynamics of bacterioplankton community in a large, shallow, highly dynamic freshwater lake.
Kong, Zhaoyu; Kou, Wenbo; Ma, Yantian; Yu, Haotian; Ge, Gang; Wu, Lan
2018-05-23
The spatio-temporal shifts of bacterioplankton community can mirror their transition of functional traits in aquatic ecosystem. However, our understanding of spatio-temporal variation of bacterioplankton community composition structure (BCCs) within large, shallow and highly dynamic freshwater lake is still elusive. Here we examined the seasonal and spatial variability of BCCs in the Poyang Lake by 16S rRNA gene amplicon sequencing to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of BCCs were mainly attributed to the differences between autumn and spring/winter. Higher alpha diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significant lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1 and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature and nutrient status shaped the seasonal patterns of BCCs in the Poyang Lake.
Transport induced by mean-eddy interaction: II. Analysis of transport processes
NASA Astrophysics Data System (ADS)
Ide, Kayo; Wiggins, Stephen
2015-03-01
We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.
Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend
2013-11-01
Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Image Motion Detection And Estimation: The Modified Spatio-Temporal Gradient Scheme
NASA Astrophysics Data System (ADS)
Hsin, Cheng-Ho; Inigo, Rafael M.
1990-03-01
The detection and estimation of motion are generally involved in computing a velocity field of time-varying images. A completely new modified spatio-temporal gradient scheme to determine motion is proposed. This is derived by using gradient methods and properties of biological vision. A set of general constraints is proposed to derive motion constraint equations. The constraints are that the second directional derivatives of image intensity at an edge point in the smoothed image will be constant at times t and t+L . This scheme basically has two stages: spatio-temporal filtering, and velocity estimation. Initially, image sequences are processed by a set of oriented spatio-temporal filters which are designed using a Gaussian derivative model. The velocity is then estimated for these filtered image sequences based on the gradient approach. From a computational stand point, this scheme offers at least three advantages over current methods. The greatest advantage of the modified spatio-temporal gradient scheme over the traditional ones is that an infinite number of motion constraint equations are derived instead of only one. Therefore, it solves the aperture problem without requiring any additional assumptions and is simply a local process. The second advantage is that because of the spatio-temporal filtering, the direct computation of image gradients (discrete derivatives) is avoided. Therefore the error in gradients measurement is reduced significantly. The third advantage is that during the processing of motion detection and estimation algorithm, image features (edges) are produced concurrently with motion information. The reliable range of detected velocity is determined by parameters of the oriented spatio-temporal filters. Knowing the velocity sensitivity of a single motion detection channel, a multiple-channel mechanism for estimating image velocity, seldom addressed by other motion schemes in machine vision, can be constructed by appropriately choosing and combining different sets of parameters. By applying this mechanism, a great range of velocity can be detected. The scheme has been tested for both synthetic and real images. The results of simulations are very satisfactory.
Zhou, Lianjie; Chen, Nengcheng; Yuan, Sai; Chen, Zeqiang
2016-01-01
The efficient sharing of spatio-temporal trajectory data is important to understand traffic congestion in mass data. However, the data volumes of bus networks in urban cities are growing rapidly, reaching daily volumes of one hundred million datapoints. Accessing and retrieving mass spatio-temporal trajectory data in any field is hard and inefficient due to limited computational capabilities and incomplete data organization mechanisms. Therefore, we propose an optimized and efficient spatio-temporal trajectory data retrieval method based on the Cloudera Impala query engine, called ESTRI, to enhance the efficiency of mass data sharing. As an excellent query tool for mass data, Impala can be applied for mass spatio-temporal trajectory data sharing. In ESTRI we extend the spatio-temporal trajectory data retrieval function of Impala and design a suitable data partitioning method. In our experiments, the Taiyuan BeiDou (BD) bus network is selected, containing 2300 buses with BD positioning sensors, producing 20 million records every day, resulting in two difficulties as described in the Introduction section. In addition, ESTRI and MongoDB are applied in experiments. The experiments show that ESTRI achieves the most efficient data retrieval compared to retrieval using MongoDB for data volumes of fifty million, one hundred million, one hundred and fifty million, and two hundred million. The performance of ESTRI is approximately seven times higher than that of MongoDB. The experiments show that ESTRI is an effective method for retrieving mass spatio-temporal trajectory data. Finally, bus distribution mapping in Taiyuan city is achieved, describing the buses density in different regions at different times throughout the day, which can be applied in future studies of transport, such as traffic scheduling, traffic planning and traffic behavior management in intelligent public transportation systems. PMID:27801869
Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data
NASA Astrophysics Data System (ADS)
Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.
2014-12-01
Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.
Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung
2010-08-01
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.
Analysis of Summer-Time Ozone and Precursor Species in the Southeast United States
NASA Technical Reports Server (NTRS)
Johnson, Matthew
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to approximately 12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25 deg x 0.3125 deg resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
Analysis of Summer-time Ozone and Precursor Species in the Southeast United States
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Kuang, S.; Newchurch, M.; Hair, J. W.
2015-12-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to ~12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25° × 0.3125° resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
Chen, Tong; Ji, Dongchao; Tian, Shiping
2018-03-14
The assembly of protein complexes and compositional lipid patterning act together to endow cells with the plasticity required to maintain compositional heterogeneity with respect to individual proteins. Hence, the applications for imaging protein localization and dynamics require high accuracy, particularly at high spatio-temporal level. We provided experimental data for the applications of Variable-Angle Epifluorescence Microscopy (VAEM) in dissecting protein dynamics in plant cells. The VAEM-based co-localization analysis took penetration depth and incident angle into consideration. Besides direct overlap of dual-color fluorescence signals, the co-localization analysis was carried out quantitatively in combination with the methodology for calculating puncta distance and protein proximity index. Besides, simultaneous VAEM tracking of cytoskeletal dynamics provided more insights into coordinated responses of actin filaments and microtubules. Moreover, lateral motility of membrane proteins was analyzed by calculating diffusion coefficients and kymograph analysis, which represented an alternative method for examining protein motility. The present study presented experimental evidence on illustrating the use of VAEM in tracking and dissecting protein dynamics, dissecting endosomal dynamics, cell structure assembly along with membrane microdomain and protein motility in intact plant cells.
A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.
Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne
2014-09-01
The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NO x in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R 2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.
NASA Astrophysics Data System (ADS)
Bukh, Andrei; Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-11-01
We study numerically the dynamics of a network made of two coupled one-dimensional ensembles of discrete-time systems. The first ensemble is represented by a ring of nonlocally coupled Henon maps and the second one by a ring of nonlocally coupled Lozi maps. We find that the network of coupled ensembles can realize all the spatio-temporal structures which are observed both in the Henon map ensemble and in the Lozi map ensemble while uncoupled. Moreover, we reveal a new type of spatiotemporal structure, a solitary state chimera, in the considered network. We also establish and describe the effect of mutual synchronization of various complex spatiotemporal patterns in the system of two coupled ensembles of Henon and Lozi maps.
Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël
2012-05-01
1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Special issue dedicated to the 70th birthday of Glenn F. Webb. Preface.
Hinow, Peter; Magal, Pierre; Ruan, Shigui
2015-08-01
This special issue is dedicated to the 70th birthday of Glenn F. Webb. The topics of the 12 articles appearing in this special issue include evolutionary dynamics of population growth, spatio-temporal dynamics in reaction-diffusion biological models, transmission dynamics of infectious diseases, modeling of antibiotic-resistant bacteria in hospitals, analysis of Prion models, age-structured models in ecology and epidemiology, modeling of immune response to infections, modeling of cancer growth, etc. These topics partially represent the broad areas of Glenn's research interest.
Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter
2016-01-01
The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. DOI: http://dx.doi.org/10.7554/eLife.17812.001 PMID:27436096
Fuxe, Kjell; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Palkovits, Miklós; Tarakanov, Alexander O; Ciruela, Francisco; Agnati, Luigi F
2014-01-01
There is serious interest in understanding the dynamics of the receptor–receptor and receptor–protein interactions in space and time and their integration in GPCR heteroreceptor complexes of the CNS. Moonlighting proteins are special multifunctional proteins because they perform multiple autonomous, often unrelated, functions without partitioning into different protein domains. Moonlighting through receptor oligomerization can be operationally defined as an allosteric receptor–receptor interaction, which leads to novel functions of at least one receptor protomer. GPCR-mediated signaling is a more complicated process than previously described as every GPCR and GPCR heteroreceptor complex requires a set of G protein interacting proteins, which interacts with the receptor in an orchestrated spatio-temporal fashion. GPCR heteroreceptor complexes with allosteric receptor–receptor interactions operating through the receptor interface have become major integrative centers at the molecular level and their receptor protomers act as moonlighting proteins. The GPCR heteroreceptor complexes in the CNS have become exciting new targets for neurotherapeutics in Parkinson's disease, schizophrenia, drug addiction, and anxiety and depression opening a new field in neuropsychopharmacology. PMID:24105074
Auer, E T; Bernstein, L E; Coulter, D C
1998-10-01
Four experiments were performed to evaluate a new wearable vibrotactile speech perception aid that extracts fundamental frequency (F0) and displays the extracted F0 as a single-channel temporal or an eight-channel spatio-temporal stimulus. Specifically, we investigated the perception of intonation (i.e., question versus statement) and emphatic stress (i.e., stress on the first, second, or third word) under Visual-Alone (VA), Visual-Tactile (VT), and Tactile-Alone (TA) conditions and compared performance using the temporal and spatio-temporal vibrotactile display. Subjects were adults with normal hearing in experiments I-III and adults with severe to profound hearing impairments in experiment IV. Both versions of the vibrotactile speech perception aid successfully conveyed intonation. Vibrotactile stress information was successfully conveyed, but vibrotactile stress information did not enhance performance in VT conditions beyond performance in VA conditions. In experiment III, which involved only intonation identification, a reliable advantage for the spatio-temporal display was obtained. Differences between subject groups were obtained for intonation identification, with more accurate VT performance by those with normal hearing. Possible effects of long-term hearing status are discussed.
Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan
2017-01-01
On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9–11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used. PMID:29121108
Yeom, Seul-Ki; Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan
2017-01-01
On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9-11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used.
Possible Quantum Absorber Effects in Cortical Synchronization
NASA Astrophysics Data System (ADS)
Kämpf, Uwe
The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.
Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy
NASA Astrophysics Data System (ADS)
Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina
2015-03-01
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.
Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina
2015-03-09
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)
Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...
Cox process representation and inference for stochastic reaction-diffusion processes
NASA Astrophysics Data System (ADS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2016-05-01
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
Spatio-temporal distribution of global solar radiation for Mexico using GOES data
NASA Astrophysics Data System (ADS)
Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.
2013-05-01
Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.
Effective and efficient analysis of spatio-temporal data
NASA Astrophysics Data System (ADS)
Zhang, Zhongnan
Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.
Grant J. Williamson; Lynda D. Prior; Matt Jolly; Mark A. Cochrane; Brett P. Murphy; David M. J. S. Bowman
2016-01-01
Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-...
Patrick M.A. James; Barry Cooke; Bryan M.T. Brunet; Lisa M. Lumley; Felix A.H. Sperling; Marie-Josee Fortin; Vanessa S. Quinn; Brian R. Sturtevant
2015-01-01
Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic...
Nakayama, Madoka; Shoji, Wataru
2017-01-01
As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched ‘volcano-like’ to round and front-elevated ‘crater-like’. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms. PMID:28253348
Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field
NASA Astrophysics Data System (ADS)
Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen
2017-10-01
Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.
Tasaki, Sohei; Nakayama, Madoka; Shoji, Wataru
2017-01-01
As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched 'volcano-like' to round and front-elevated 'crater-like'. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms.
Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes
Proctor, Joshua L.
2017-01-01
Containing the recent West African outbreak of Ebola virus (EBOV) required the deployment of substantial global resources. Despite recent progress in analysing and modelling EBOV epidemiological data, a complete characterization of the spatio-temporal spread of Ebola cases remains a challenge. In this work, we offer a novel perspective on the EBOV epidemic in Sierra Leone that uses individual virus genome sequences to inform population-level, spatial models. Calibrated to phylogenetic linkages of virus genomes, these spatial models provide unique insight into the disease mobility of EBOV in Sierra Leone without the need for human mobility data. Consistent with other investigations, our results show that the spread of EBOV during the beginning and middle portions of the epidemic strongly depended on the size of and distance between populations. Our phylodynamic analysis also revealed a change in model preference towards a spatial model with power-law characteristics in the latter portion of the epidemic, correlated with the timing of major intervention campaigns. More generally, we believe this framework, pairing molecular diagnostics with a dynamic model selection procedure, has the potential to be a powerful forecasting tool along with offering operationally relevant guidance for surveillance and sampling strategies during an epidemic. PMID:29187639
Spatio-temporal dynamics of alpine snow algae measured with multi-year imaging spectrometer data
NASA Astrophysics Data System (ADS)
Painter, T.; Thomas, W. H.; Duval, B.
2003-04-01
The spatio-temporal dynamics of alpine snow algae have not been documented at the basin scale. This study focuses on the interannual variability of the concentration of alga chlamydomonas nivalis as mapped with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over the Sierra Nevada, California, USA in the springs of 2000, 2001, and 2002. AVIRIS was flown at high spatial resolution (1.5 m) and medium spatial resolution (8 m) on board the NOAA Twin Otter and the NASA ER-2. AVIRIS data were atmospherically-corrected to apparent surface reflectance using a non-linear least squares vapor-fitting algorithm coupled with the atmospheric transmission MODTRAN4. We calculated algal concentration using a model that relates concentration to the continuum-normalized integral of the coupled chlorophyll-a, b absorption features with peak at 680 nm wavelength in the snow spectral reflectance signatures (Painter et al., 2001, Applied and Environmental Microbiology). The AVIRIS data were georeferenced to a digital elevation model of the Tioga Pass, CA region generated in the NASA Shuttle Radar Topography Mission. Interannual variability in basin-wide concentration and pixel-by-pixel concentration trajectories were evaluated.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo; Au, Whitlow W. L.
2017-03-01
The Kona coast of the island of Hawaii hosts many species of odontocetes. These marine mammals are top predators and their foraging activity plays an important role in the ecosystem dynamics. Three passive acoustics recorders were used to study the temporal and spatial occurrence of the foraging activity of odontocetes (excluding beaked and sperm whales) at three locations along the Kona coast of Hawaii between 2012 and 2013. Echolocation clicks were detected using the M3R1
Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom
Bunse, Carina; Bertos-Fortis, Mireia; Sassenhagen, Ingrid; Sildever, Sirje; Sjöqvist, Conny; Godhe, Anna; Gross, Susanna; Kremp, Anke; Lips, Inga; Lundholm, Nina; Rengefors, Karin; Sefbom, Josefin; Pinhassi, Jarone; Legrand, Catherine
2016-01-01
In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner. PMID:27148206
Spatio-temporal Event Classification using Time-series Kernel based Structured Sparsity
Jeni, László A.; Lőrincz, András; Szabó, Zoltán; Cohn, Jeffrey F.; Kanade, Takeo
2016-01-01
In many behavioral domains, such as facial expression and gesture, sparse structure is prevalent. This sparsity would be well suited for event detection but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel Structured Sparsity (KSS) method that can handle both the temporal alignment problem and the structured sparse reconstruction within a common framework, and it can rely on simple features. We characterize spatio-temporal events as time-series of motion patterns and by utilizing time-series kernels we apply standard structured-sparse coding techniques to tackle this important problem. We evaluated the KSS method using both gesture and facial expression datasets that include spontaneous behavior and differ in degree of difficulty and type of ground truth coding. KSS outperformed both sparse and non-sparse methods that utilize complex image features and their temporal extensions. In the case of early facial event classification KSS had 10% higher accuracy as measured by F1 score over kernel SVM methods1. PMID:27830214
Spatio-temporal dynamics of species richness in coastal fish communities
Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.
2002-01-01
Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.
ERIC Educational Resources Information Center
Nobile, Maria; Perego, Paolo; Piccinini, Luigi; Mani, Elisa; Rossi, Agnese; Bellina, Monica; Molteni, Massimo
2011-01-01
In order to increase the knowledge of locomotor disturbances in children with autism, and of the mechanism underlying them, the objective of this exploratory study was to reliably and quantitatively evaluate linear gait parameters (spatio-temporal and kinematic parameters), upper body kinematic parameters, walk orientation and smoothness using an…
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
Liu, Hesheng; Schimpf, Paul H; Dong, Guoya; Gao, Xiaorong; Yang, Fusheng; Gao, Shangkai
2005-10-01
This paper presents a new algorithm called Standardized Shrinking LORETA-FOCUSS (SSLOFO) for solving the electroencephalogram (EEG) inverse problem. Multiple techniques are combined in a single procedure to robustly reconstruct the underlying source distribution with high spatial resolution. This algorithm uses a recursive process which takes the smooth estimate of sLORETA as initialization and then employs the re-weighted minimum norm introduced by FOCUSS. An important technique called standardization is involved in the recursive process to enhance the localization ability. The algorithm is further improved by automatically adjusting the source space according to the estimate of the previous step, and by the inclusion of temporal information. Simulation studies are carried out on both spherical and realistic head models. The algorithm achieves very good localization ability on noise-free data. It is capable of recovering complex source configurations with arbitrary shapes and can produce high quality images of extended source distributions. We also characterized the performance with noisy data in a realistic head model. An important feature of this algorithm is that the temporal waveforms are clearly reconstructed, even for closely spaced sources. This provides a convenient way to estimate neural dynamics directly from the cortical sources.
Temporal neural networks and transient analysis of complex engineering systems
NASA Astrophysics Data System (ADS)
Uluyol, Onder
A theory is introduced for a multi-layered Local Output Gamma Feedback (LOGF) neural network within the paradigm of Locally-Recurrent Globally-Feedforward neural networks. It is developed for the identification, prediction, and control tasks of spatio-temporal systems and allows for the presentation of different time scales through incorporation of a gamma memory. It is initially applied to the tasks of sunspot and Mackey-Glass series prediction as benchmarks, then it is extended to the task of power level control of a nuclear reactor at different fuel cycle conditions. The developed LOGF neuron model can also be viewed as a Transformed Input and State (TIS) Gamma memory for neural network architectures for temporal processing. The novel LOGF neuron model extends the static neuron model by incorporating into it a short-term memory structure in the form of a digital gamma filter. A feedforward neural network made up of LOGF neurons can thus be used to model dynamic systems. A learning algorithm based upon the Backpropagation-Through-Time (BTT) approach is derived. It is applicable for training a general L-layer LOGF neural network. The spatial and temporal weights and parameters of the network are iteratively optimized for a given problem using the derived learning algorithm.
Baczewski, Andrew David; Vikram, Melapudi; Shanker, Balasubramaniam; ...
2010-08-27
Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O(N s 2N t 2), where N s and N t are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The firstmore » scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(N sN tlog 2N t). Furthermore, several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.« less
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.
High resolution modeling of a small urban catchment
NASA Astrophysics Data System (ADS)
Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with respect to real flow measurements. First Results coming out show improvements obtained in terms of the model performance at high spatio-temporal resolution.
Current Approaches to Tactical Performance Analyses in Soccer Using Position Data.
Memmert, Daniel; Lemmink, Koen A P M; Sampaio, Jaime
2017-01-01
Tactical match performance depends on the quality of actions of individual players or teams in space and time during match-play in order to be successful. Technological innovations have led to new possibilities to capture accurate spatio-temporal information of all players and unravel the dynamics and complexity of soccer matches. The main aim of this article is to give an overview of the current state of development of the analysis of position data in soccer. Based on the same single set of position data of a high-level 11 versus 11 match (Bayern Munich against FC Barcelona) three different promising approaches from the perspective of dynamic systems and neural networks will be presented: Tactical performance analysis revealed inter-player coordination, inter-team and inter-line coordination before critical events, as well as team-team interaction and compactness coefficients. This could lead to a multi-disciplinary discussion on match analyses in sport science and new avenues for theoretical and practical implications in soccer.
Technological advances in real-time tracking of cell death
Skommer, Joanna; Darzynkiewicz, Zbigniew; Wlodkowic, Donald
2010-01-01
Cell population can be viewed as a quantum system, which like Schrödinger’s cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods. PMID:20519963
Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-05-01
The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.
Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar
Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping
2015-01-01
A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385
Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping
2015-12-14
A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.
Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc
2015-02-01
Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2018-07-01
In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.
Metabolic interactions and dynamics in microbial communities
NASA Astrophysics Data System (ADS)
Segre', Daniel
Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.
Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.
Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J
2014-02-01
In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.
Evidence-based Controls for Epidemics Using Spatio-temporal Stochastic Model as a Bayesian Framwork
USDA-ARS?s Scientific Manuscript database
The control of highly infectious diseases of agricultural and plantation crops and livestock represents a key challenge in epidemiological and ecological modelling, with implemented control strategies often being controversial. Mathematical models, including the spatio-temporal stochastic models con...
NASA Astrophysics Data System (ADS)
Odenweller, Adrian; Donner, Reik V.
2017-04-01
Over the last decade, complex network methods have been frequently used for characterizing spatio-temporal patterns of climate variability from a complex systems perspective, yielding new insights into time-dependent teleconnectivity patterns and couplings between different components of the Earth climate. Among the foremost results reported, network analyses of the synchronicity of extreme events as captured by the so-called event synchronization have been proposed to be powerful tools for disentangling the spatio-temporal organization of particularly extreme rainfall events and anticipating the timing of monsoon onsets or extreme floodings. Rooted in the analysis of spike train synchrony analysis in the neurosciences, event synchronization has the great advantage of automatically classifying pairs of events arising at two distinct spatial locations as temporally close (and, thus, possibly statistically - or even dynamically - interrelated) or not without the necessity of selecting an additional parameter in terms of a maximally tolerable delay between these events. This consideration is conceptually justified in case of the original application to spike trains in electroencephalogram (EEG) recordings, where the inter-spike intervals show relatively narrow distributions at high temporal sampling rates. However, in case of climate studies, precipitation extremes defined by daily precipitation sums exceeding a certain empirical percentile of their local distribution exhibit a distinctively different type of distribution of waiting times between subsequent events. This raises conceptual concerns if event synchronization is still appropriate for detecting interlinkages between spatially distributed precipitation extremes. In order to study this problem in more detail, we employ event synchronization together with an alternative similarity measure for event sequences, event coincidence rates, which requires a manual setting of the tolerable maximum delay between two events to be considered potentially related. Both measures are then used to generate climate networks from parts of the satellite-based TRMM precipitation data set at daily resolution covering the Indian and East Asian monsoon domains, respectively, thereby reanalysing previously published results. The obtained spatial patterns of degree densities and local clustering coefficients exhibit marked differences between both similarity measures. Specifically, we demonstrate that there exists a strong relationship between the fraction of extremes occurring at subsequent days and the degree density in the event synchronization based networks, suggesting that the spatial patterns obtained using this approach are strongly affected by the presence of serial dependencies between events. Given that a manual selection of the maximally tolerable delay between two events can be guided by a priori climatological knowledge and even used for systematic testing of different hypotheses on climatic processes underlying the emergence of spatio-temporal patterns of extreme precipitation, our results provide evidence that event coincidence rates are a more appropriate statistical characteristic for similarity assessment and network construction for climate extremes, while results based on event synchronization need to be interpreted with great caution.
Spatio-temporal Outlier Detection in Precipitation Data
NASA Astrophysics Data System (ADS)
Wu, Elizabeth; Liu, Wei; Chawla, Sanjay
The detection of outliers from spatio-temporal data is an important task due to the increasing amount of spatio-temporal data available and the need to understand and interpret it. Due to the limitations of current data mining techniques, new techniques to handle this data need to be developed. We propose a spatio-temporal outlier detection algorithm called Outstretch, which discovers the outlier movement patterns of the top-k spatial outliers over several time periods. The top-k spatial outliers are found using the Exact-Grid Top- k and Approx-Grid Top- k algorithms, which are an extension of algorithms developed by Agarwal et al. [1]. Since they use the Kulldorff spatial scan statistic, they are capable of discovering all outliers, unaffected by neighbouring regions that may contain missing values. After generating the outlier sequences, we show one way they can be interpreted, by comparing them to the phases of the El Niño Southern Oscilliation (ENSO) weather phenomenon to provide a meaningful analysis of the results.
Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif
2007-06-01
Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.
Aguado-Giménez, Felipe; Eguía-Martínez, Sergio; Cerezo-Valverde, Jesús; García-García, Benjamín
2018-06-14
Ichthyophagous birds aggregate at cage fish farms attracted by caged and associated wild fish. Spatio-temporal variability of such birds was studied for a year through seasonal visual counts at eight farms in the western Mediterranean. Correlation with farm and location descriptors was assessed. Considerable spatio-temporal variability in fish-eating bird density and assemblage structure was observed among farms and seasons. Bird density increased from autumn to winter, with the great cormorant being the most abundant species, also accounting largely for differences among farms. Grey heron and little egret were also numerous at certain farms during the coldest seasons. Cattle egret was only observed at one farm. No shags were observed during winter. During spring and summer, bird density decreased markedly and only shags and little egrets were observed at only a few farms. Season and distance from farms to bird breeding/wintering grounds helped to explain some of the spatio-temporal variability. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oluoch, K.; Marwan, N.; Trauth, M.; Loew, A.; Kurths, J.
2012-04-01
The African continent lie almost entirely within the tropics and as such its (tropical) climate systems are predominantly governed by the heterogeneous, spatial and temporal variability of the Hadley and Walker circulations. The variabilities in these meridional and zonal circulations lead to intensification or suppression of the intensities, durations and frequencies of the Inter-tropical Convergence Zone (ICTZ) migration, trade winds and subtropical high-pressure regions and the continental monsoons. The above features play a central role in determining the African rainfall spatial and temporal variability patterns. The current understanding of these climate features and their influence on the rainfall patterns is not sufficiently understood. Like many real-world systems, atmospheric-oceanic processes exhibit non-linear properties that can be better explored using non-linear (NL) methods of time-series analysis. Over the recent years, the complex network approach has evolved as a powerful new player in understanding spatio-temporal dynamics and evolution of complex systems. Together with NL techniques, it is continuing to find new applications in many areas of science and technology including climate research. We would like to use these two powerful methods to understand the spatial structure and dynamics of African rainfall anomaly patterns and extremes. The method of event synchronization (ES) developed by Quiroga et al., 2002 and first applied to climate networks by Malik et al., 2011 looks at correlations with a dynamic time lag and as such, it is a more intuitive way to correlate a complex and heterogeneous system like climate networks than a fixed time delay most commonly used. On the other hand, the short comings of ES is its lack of vigorous test statistics for the significance level of the correlations, and the fact that only the events' time indices are synchronized while all information about how the relative intensities propagate within network framework is lost. The new method we present is motivated by the ES and borrows ideas from signal processing where a signal is represented by its intensity and frequency. Even though the anomaly signals are not periodic, the idea of phase synchronization is not far fetched. It brings into one umbrella, the traditionally known linear Intensity correlation methods like Pearson correlation, spear-man's rank or non-linear ones like mutual information with the ES for non-linear temporal synchronization. The intensity correlation is only performed where there is a temporal synchronization. The former just measures how constant the intensity differences are. In other words, how monotonic are the two functions. The overall measure of correlation and synchronization is the product of the two coefficients. Complex networks constructed by this technique has all the advantages inherent in each of the techniques it borrows. But, it is more superior and able to uncover many known and unknown dynamical features in rainfall field or any variable of interest. The main aim of this work is to develop a method that can identify the footprints of coherent or incoherent structures within the ICTZ, the African and the Indian monsoons and the ENSO signal on the tropical African continent and their temporal evolution.
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Braga, Federica; Zaggia, Luca; Brando, Vittorio Ernesto; Giardino, Claudia; Bresciani, Mariano; Bassani, Cristiana
2018-04-01
This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for providing geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we characterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River prodelta (Northern Adriatic Sea, Italy) during the period 2013-2016. To perform this analysis, a two-pronged processing methodology was implemented and the resulting outputs were analysed through a series of statistical tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per each satellite image, providing maps of correlation and variograms. The results show a linear correlation between water discharge and turbidity variations in the points more affected by the buoyant plumes and along the southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented processing methodology is based on open source software and free satellite data, it represents a promising tool for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of sediment dynamics in estuarine and coastal waters.
Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric
2014-01-01
Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID:25426044
Teng, Santani
2017-01-01
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019
Cichy, Radoslaw Martin; Teng, Santani
2017-02-19
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches
NASA Astrophysics Data System (ADS)
Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando
2016-11-01
This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.
Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan
2015-01-01
Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We hypothesized that the latter effect can be explained by their bioturbating and bio-irrigating activities, increasing the spatial complexity of the biogeochemical environment. PMID:26102286
Expression of Glycosaminoglycan Epitopes During Zebrafish Skeletogenesis
Hayes, Anthony J; Mitchell, Ruth E; Bashford, Andrew; Reynolds, Scott; Caterson, Bruce; Hammond, Chrissy L
2013-01-01
Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede mineralisation. PMID:23576310
Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking.
Chini, Giorgia; Ranavolo, Alberto; Draicchio, Francesco; Casali, Carlo; Conte, Carmela; Martino, Giovanni; Leonardi, Luca; Padua, Luca; Coppola, Gianluca; Pierelli, Francesco; Serrao, Mariano
2017-02-01
This study aims to evaluate trunk local stability in a group of patients with degenerative primary cerebellar ataxia and to correlate it with spatio-temporal parameters, clinical variables, and history of falls. Sixteen patients affected by degenerative cerebellar ataxia and 16 gender- and age-matched healthy adults were studied by means of an inertial sensor to measure trunk kinematics and spatio-temporal parameters during over-ground walking. Trunk local dynamic stability was quantified by the maximum Lyapunov exponent with short data series of the acceleration data. According to this index, low values indicate more stable trunk dynamics, while high values denote less stable trunk dynamics. Disease severity was assessed by means of International Cooperative Ataxia Rating Scale (ICARS) according to which higher values correspond to more severe disease, while lower values correspond to less severe disease.Patients displayed a higher short-term maximum Lyapunov exponent than controls in all three spatial planes, which was correlated with the age, onset of the disease, and history of falls. Furthermore, the maximum Lyapunov exponent was negatively correlated with ICARS balance, ICARS posture, and ICARS total scores.These findings indicate that trunk local stability during gait is lower in patients with cerebellar degenerative ataxia than that in healthy controls and that this may increase the risk of falls. Local dynamic stability of the trunk seems to be an important aspect in patients with ataxia and could be a useful tool in the evaluation of rehabilitative and pharmacological treatment outcomes.
Recent Developments in X-Ray Diagnostics for Cryogenic and Optically Dense Coaxial Rocket Sprays
NASA Technical Reports Server (NTRS)
Radke, Christopher D.; Kastengren, Alan L.; Meyer, Terrence R.
2017-01-01
The mixing and atomization of propellants is often characterized by optically dense flow fields and complex breakup dynamics. In the development of propulsion systems, the complexity of relevant physics and the range of spatio-temporal scales often makes computational simulation impractical for full scale injector elements; consequently, continued research into improved systems for experimental flow diagnostics is ongoing. One area of non-invasive flow diagnostics which has seen widespread growth is using synchrotron based x-ray diagostics. Over the past 3 years, a series of water and cryogenic based experiments were performed at the Advanced Photon Source, Argonne National Lab, on a NASA in-house designed swirl co-axial rocket injector, designed for operation using liquid oxygen and liquid methane in support of Project Morpheus. A range of techniques, such as x-ray fluorescence and time-averaged radiography were performed providing qualitative and quantitative mass and phase distributions, and were complemented by investigations using time-resolved radiography and white beam imaging, which provided information on breakup and mixing dynamics. Results of these investigations are presented, and conclusions regarding the viability of x-ray based diagnostics are discussed.
Tourre, Yves M; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle
2009-11-11
Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds' dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes' bites. This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide.
Lewis, Nicola S.; Verhagen, Josanne H.; Javakhishvili, Zurab; Russell, Colin A.; Lexmond, Pascal; Westgeest, Kim B.; Bestebroer, Theo M.; Halpin, Rebecca A.; Lin, Xudong; Ransier, Amy; Fedorova, Nadia B.; Stockwell, Timothy B.; Latorre-Margalef, Neus; Olsen, Björn; Smith, Gavin; Bahl, Justin; Wentworth, David E.; Waldenström, Jonas; Fouchier, Ron A. M.
2015-01-01
Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses. PMID:25904147
Individuation of objects and events: a developmental study.
Wagner, Laura; Carey, Susan
2003-12-01
This study investigates children's ability to use language to guide their choice of individuation criterion in the domains of objects and events. Previous work (Shipley, E. F., & Shepperson, B. (1990). Countable entities: developmental changes. Cognition, 34, 109-136.) has shown that children have a strong bias to use a spatio-temporal individuation strategy when counting objects and that children will ignore a conflicting linguistic description in favor of this spatio-temporal bias. Experiment 1 asked children (3-, 4-, and 5-year-olds) and adults to count objects and events under different linguistic descriptions. In the object task, subjects counted pictures of familiar objects split into multiple pieces (as in Shipley, E. F., & Shepperson, B. (1990). Countable entities: developmental changes. Cognition, 34, 109-136.) and described either using an appropriate kind label (e.g. "car") or the general term "thing". In the event task, subjects watched short animated movies consisting of a goal-oriented event achieved via multiple, temporally separated steps. The events were described either with an appropriate telic predicate targeting the goal (e.g. "paint a flower") or with an atelic predicate targeting the steps in the process (e.g. "paint") and the subjects' task was to count the events. Relative to adults, children preferred a spatio-temporal counting strategy in both tasks; there was no difference among the three groups of children. However, children were able to significantly change their counting strategy to follow the linguistic description in the event but not the object task. Experiment 2 extended the object task to include counting of other types of non-spatio-temporal units such as sub-parts of objects and collections. Results showed that children could use the linguistic descriptions to guide their counting strategy for these new items, though they continued to show a bias for a spatio-temporal individuation strategy with the collections. We suggest potential cognitive origins for the spatio-temporal individuation bias and how it interacts with children's developing linguistic knowledge.
Mapping child maltreatment risk: a 12-year spatio-temporal analysis of neighborhood influences.
Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lila, Marisol
2017-10-18
'Place' matters in understanding prevalence variations and inequalities in child maltreatment risk. However, most studies examining ecological variations in child maltreatment risk fail to take into account the implications of the spatial and temporal dimensions of neighborhoods. In this study, we conduct a high-resolution small-area study to analyze the influence of neighborhood characteristics on the spatio-temporal epidemiology of child maltreatment risk. We conducted a 12-year (2004-2015) small-area Bayesian spatio-temporal epidemiological study with all families with child maltreatment protection measures in the city of Valencia, Spain. As neighborhood units, we used 552 census block groups. Cases were geocoded using the family address. Neighborhood-level characteristics analyzed included three indicators of neighborhood disadvantage-neighborhood economic status, neighborhood education level, and levels of policing activity-, immigrant concentration, and residential instability. Bayesian spatio-temporal modelling and disease mapping methods were used to provide area-specific risk estimations. Results from a spatio-temporal autoregressive model showed that neighborhoods with low levels of economic and educational status, with high levels of policing activity, and high immigrant concentration had higher levels of substantiated child maltreatment risk. Disease mapping methods were used to analyze areas of excess risk. Results showed chronic spatial patterns of high child maltreatment risk during the years analyzed, as well as stability over time in areas of low risk. Areas with increased or decreased child maltreatment risk over the years were also observed. A spatio-temporal epidemiological approach to study the geographical patterns, trends over time, and the contextual determinants of child maltreatment risk can provide a useful method to inform policy and action. This method can offer a more accurate description of the problem, and help to inform more localized prevention and intervention strategies. This new approach can also contribute to an improved epidemiological surveillance system to detect ecological variations in risk, and to assess the effectiveness of the initiatives to reduce this risk.
Land surface phenological responses to land use and climate variation in a changing Central Asia
NASA Astrophysics Data System (ADS)
Kariyeva, Jahan
During the last few decades Central Asia has experienced widespread changes in land cover and land use following the socio-economic and institutional transformations of the region catalyzed by the USSR collapse in 1991. The decade-long drought events and steadily increasing temperature regimes in the region came on top of these institutional transformations, affecting the long term and landscape scale vegetation responses. This research is based on the need to better understand the potential ecological and policy implications of climate variation and land use practices in the contexts of landscape-scale changes dynamics and variability patterns of land surface phenology responses in Central Asia. The land surface phenology responses -- the spatio-temporal dynamics of terrestrial vegetation derived from the remotely sensed data -- provide measurements linked to the timing of vegetation growth cycles (e.g., start of growing season) and total vegetation productivity over the growing season, which are used as a proxy for the assessment of effects of variations in environmental settings. Local and regional scale assessment of the before and after the USSR collapse vegetation response patterns in the natural and agricultural systems of the Central Asian drylands was conducted to characterize newly emerging links (since 1991) between coupled human and natural systems, e.g., socio-economic and policy drivers of altered land and water use and distribution patterns. Spatio-temporal patterns of bioclimatic responses were examined to determine how phenology is associated with temperature and precipitation in different land use types, including rainfed and irrigated agricultural types. Phenological models were developed to examine relationship between environmental drivers and effect of their altitudinal and latitudinal gradients on the broad-scale vegetation response patterns in non-cropland ecosystems of the desert, steppe, and mountainous regional landscapes of Central Asia. The study results demonstrated that the satellite derived measurements of temporal cycles of vegetation greenness and productivity data was a valuable bioclimatic integrator of climatic and land use variation in Central Asia. The synthesis of broad-scale phenological changes in Central Asia showed that linkages of natural and human systems vary across space and time comprising complex and tightly integrated patterns and processes that are not evident when studied separately.
NASA Astrophysics Data System (ADS)
Amiranoff, F.; Riconda, C.; Chiaramello, M.; Lancia, L.; Marquès, J. R.; Weber, S.
2018-01-01
The role of the global phase in the spatio-temporal evolution of the 3-wave coupled equations for backscattering is analyzed in the strong-coupling regime of Brillouin scattering. This is of particular interest for controlled backscattering in the case of plasma-based amplification to produce short and intense laser pulses. It is shown that the analysis of the envelope equations of the three waves involved, pump, seed, and ion wave, in terms of phase and amplitude fully describes the coupling dynamics. In particular, it helps understanding the role of the chirp of the laser beams and of the plasma density profile. The results can be used to optimize or quench the coupling mechanism. It is found that the directionality of the energy transfer is imposed by the phase relation at the leading edge of the pulse. This actually ensures continued energy transfer even if the intensity of the seed pulse is already higher than the pump pulse intensity.
Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, D. R.; Maluckov, A. A.
A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development ofmore » TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.« less
Bielser, Marie-Laure; Crézé, Camille; Murray, Micah M; Toepel, Ulrike
2016-12-01
How food valuation and decision-making influence the perception of food is of major interest to better understand food intake behavior and, by extension, body weight management. Our study investigated behavioral responses and spatio-temporal brain dynamics by means of visual evoked potentials (VEPs) in twenty-two normal-weight participants when viewing pairs of food photographs. Participants rated how much they liked each food item (valuation) and subsequently chose between the two alternative food images. Unsurprisingly, strongly liked foods were also chosen most often. Foods were rated faster as strongly liked than as mildly liked or disliked irrespective of whether they were subsequently chosen over an alternative. Moreover, strongly liked foods were subsequently also chosen faster than the less liked alternatives. Response times during valuation and choice were positively correlated, but only when foods were liked; the faster participants rated foods as strongly liked, the faster they were in choosing the food item over an alternative. VEP modulations by the level of liking attributed as well as the subsequent choice were found as early as 135-180ms after food image onset. Analyses of neural source activity patterns over this time interval revealed an interaction between liking and the subsequent choice within the insula, dorsal frontal and superior parietal regions. The neural responses to food viewing were found to be modulated by the attributed level of liking only when foods were chosen, not when they were dismissed for an alternative. Therein, the responses to disliked foods were generally greater than those to foods that were liked more. Moreover, the responses to disliked but chosen foods were greater than responses to disliked foods which were subsequently dismissed for an alternative offer. Our findings show that the spatio-temporal brain dynamics to food viewing are immediately influenced both by how much foods are liked and by choices taken on them. These valuation and choice processes are subserved by brain regions involved in salience and reward attribution as well as in decision-making processes, which are likely to influence prospective dietary choices in everyday life. Copyright © 2015 Elsevier Inc. All rights reserved.
Pau, Massimiliano; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Concu, Alberto; Galli, Manuela; Marrosu, Maria Giovanna; Cocco, Eleonora
2018-01-01
The purpose of this study is to quantitatively assess the effect of 6 months of supervised adapted physical activity (APA i.e. physical activity designed for people with special needs) on spatio-temporal and kinematic parameters of gait in persons with Multiple Sclerosis (pwMS). Twenty-two pwMS with Expanded Disability Status Scale scores ranging from 1.5 to 5.5 were randomly assigned either to the intervention group (APA, n = 11) or the control group (CG, n = 11). The former underwent 6 months of APA consisting of 3 weekly 60-min sessions of aerobic and strength training, while CG participants were engaged in no structured PA program. Gait patterns were analyzed before and after the training using three-dimensional gait analysis by calculating spatio-temporal parameters and concise indexes of gait kinematics (Gait Profile Score - GPS and Gait Variable Score - GVS) as well as dynamic Range of Motion (ROM) of hip, knee, and ankle joints. The training originated significant improvements in stride length, gait speed and cadence in the APA group, while GPS and GVS scores remained practically unchanged. A trend of improvement was also observed as regard the dynamic ROM of hip, knee, and ankle joints. No significant changes were observed in the CG for any of the parameters considered. The quantitative analysis of gait supplied mixed evidence about the actual impact of 6 months of APA on pwMS. Although some improvements have been observed, the substantial constancy of kinematic patterns of gait suggests that the full transferability of the administered training on the ambulation function may require more specific exercises. Implications for rehabilitation Adapted Physical Activity (APA) is effective in improving spatio-temporal parameters of gait, but not kinematics, in people with multiple sclerosis. Dynamic range of motion during gait is increased after APA. The full transferability of APA on the ambulation function may require specific exercises rather than generic lower limbs strength/flexibility training.
Streicker, Daniel G.; Fischer, Justin W.; VerCauteren, Kurt C.; Gilbert, Amy T.
2017-01-01
Background Prevention and control of wildlife disease invasions relies on the ability to predict spatio-temporal dynamics and understand the role of factors driving spread rates, such as seasonality and transmission distance. Passive disease surveillance (i.e., case reports by public) is a common method of monitoring emergence of wildlife diseases, but can be challenging to interpret due to spatial biases and limitations in data quantity and quality. Methodology/Principal findings We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis) in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy model which predicts spatio-temporal spreading while accounting for heterogeneous sampling. We estimated the distance travelled per transmission event, direction of invasion, rate of spatial spread, and effects of infection density and season. We also estimated mean transmission distance and rates of spatial spread using a phylogeographic approach on a subsample of viral sequences from the same epizootic. Both the occupancy and phylogeographic approaches predicted similar rates of spatio-temporal spread. Estimated mean transmission distances were 2.3 km (95% Highest Posterior Density (HPD95): 0.02, 11.9; phylogeographic) and 3.9 km (95% credible intervals (CI95): 1.4, 11.3; occupancy). Estimated rates of spatial spread in km/year were: 29.8 (HPD95: 20.8, 39.8; phylogeographic, branch velocity, homogenous model), 22.6 (HPD95: 15.3, 29.7; phylogeographic, diffusion rate, homogenous model) and 21.1 (CI95: 16.7, 25.5; occupancy). Initial colonization probability was twice as high in spring relative to fall. Conclusions/Significance Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies in western USA compared to a similar epizootic in raccoons in the eastern USA implies host species or landscape factors underlie the dynamics of rabies invasions. Our framework provides a straightforward method for estimating rates of spatial spread of wildlife diseases. PMID:28759576
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Observations of how the solar wind interacts with earth's magnetosphere, and its dynamical response, are increasingly becoming a data analytics challenge. Constellations of satellites observe the solar corona, the upstream solar wind and throughout earth's magnetosphere. These data are multipoint in space and extended in time, so in principle are ideal for study using dynamical networks to characterize the full time evolving spatial pattern. We focus here on analysis of data from the full set of 100+ auroral ground based magnetometer stations that have been collated by SuperMAG. Spatio-temporal patterns of correlation between the magnetometer time series can be used to form a dynamical network [1]. The properties of the network can then be captured by (time dependent) network parameters. This offers the possibility of characterizing detailed spatio-temporal pattern by a few parameters, so that many events can then be compared [2] with each other. Whilst networks are in widespread use in the data analytics of societal and commercial data, there are additional challenges in their application to physical timeseries. Determining whether two nodes (here, ground based magnetometer stations) are connected in a network (seeing the same dynamics) requires normalization w.r.t. the detailed sensitivities and dynamical responses of specific observing stations and seasonal conductivity variations and we have developed methods to achieve this dynamical normalization. The detailed properties of the network capture time dependent spatial correlation in the magnetometer responses and we will show how this can be used to infer a transient current system response to magnetospheric activity. [l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
NASA Astrophysics Data System (ADS)
Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.
2012-04-01
Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective" adaptation) or over a 30-year period centred around the date considered ("prospective" adaptation). These adaptation scenarios are translated into local-scale transient drought thresholds, as opposed to a non-adaptation scenario where the drought threshold remains constant. The perceived spatio-temporal characteristics derived from the theoretical adaptation scenarios show much reduced changes, but they call for more realistic scenarios at both the catchment and national scale in order to accurately assess the combined effect of local-scale adaptation and global-scale mitigation. This study thus proposes a proof of concept for using standardized drought indices for (1) assessing projections of spatio-temporal drought characteristics and (2) building theoretical adaptation scenarios and associated perceived changes in hydrological impact studies (Vidal et al., submitted). Vidal J.-P., Martin E., Franchistéguy L., Habets F., Soubeyroux J.-M., Blanchard M. & Baillon M. (2010) Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrology and Earth System Sciences, 14, 459-478.doi: 10.5194/hess-14-459-2010 Vidal J.-P., Martin E., Kitova N., Najac J. & Soubeyroux, J. M. (submitted) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Submitted to Hydrology and earth System Sciences
NASA Astrophysics Data System (ADS)
Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis
2013-11-01
Assessment of the cardiac Left Ventricle (LV) wall motion is generally based on visual inspection or quantitative analysis of 2D+t sequences acquired in short-axis cardiac cine-Magnetic Resonance Imaging (MRI). Most often, cardiac dynamic is globally analized from two particular phases of the cardiac cycle. In this paper, we propose an automated method to classify regional wall motion in LV function based on spatio-temporal pro les and Support Vector Machines (SVM). This approach allows to obtain a binary classi cation between normal and abnormal motion, without the need of pre-processing and by exploiting all the images of the cardiac cycle. In each short- axis MRI slice level (basal, median, and apical), the spatio-temporal pro les are extracted from the selection of a subset of diametrical lines crossing opposites LV segments. Initialized at end-diastole phase, the pro les are concatenated with their corresponding projections into the succesive temporal phases of the cardiac cycle. These pro les are associated to di erent types of information that derive from the image (gray levels), Fourier, Wavelet or Curvelet domains. The approach has been tested on a set of 14 abnormal and 6 healthy patients by using a leave-one-out cross validation and two kernel functions for SVM classi er. The best classi cation performance is yielded by using four-level db4 wavelet transform and SVM with a linear kernel. At each slice level the results provided a classi cation rate of 87.14% in apical level, 95.48% in median level and 93.65% in basal level.
NASA Astrophysics Data System (ADS)
Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping
Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river pollution control and effective water resources management.
Relating triggering processes in lab experiments with earthquakes.
NASA Astrophysics Data System (ADS)
Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.
2016-12-01
Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence of the empirical laws extends well beyond purely frictional sliding events, in contrast to what is often assumed.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zeng, Z.; Piao, S.
2014-12-01
Tropical vegetation plays an essential role for global biogeochemical cycles. An abundant literature focused on the vegetation dynamics in Amazon. It is shown that the Amazonian rainforest is strongly controlled by radiation, even during dry season. However, only few researches deal with tropical rainforest in Southeast Asia; the vegetation dynamics in Southeast Asia remain poorly understood. In this study, we investigated the spatio-temporal dynamics of vegetation in Southeast Asia with three independent satellite derived Normalized Difference Vegetation Index (NDVI) products (GIMMS AVHRR NDVI3g, SPOT, and MODIS) as well as the recently developed Sun Induced chlorophyll Fluorescence (SIF). We furthermore examined how climate drivers (precipitation, temperature and radiation) exert influences on the vegetation dynamics. We find that the three NDVI datasets are generally consistent with each other. At seasonal scale, NDVI decreases from the beginning to the end of the dry season; at interannual scale, dry season NDVI is positively correlated to precipitation but negatively correlated to radiation, while wet season NDVI is positively correlated to radiation. Compared to evergreen forests, deciduous forests have a larger NDVI decrease rate and more extended area with positive relationships between NDVI and precipitation during the dry season. SIF is lower during dry season than during wet season. Our results indicate that most forests in Southeast Asia, unlike in the Amazonian basin, are water-limited in the dry season but radiation-limited in the wet season. These results imply that droughts may have a stronger impact on forests in Southeast Asia than in Amazon.
Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter; Sweet, Barbara
2010-01-01
Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.
Fast Spatio-Temporal Data Mining from Large Geophysical Datasets
NASA Technical Reports Server (NTRS)
Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.
1995-01-01
Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.
Modeling spatio-temporal wildfire ignition point patterns
Amanda S. Hering; Cynthia L. Bell; Marc G. Genton
2009-01-01
We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-...
Michael J. Gundale; Steve Sutherland; Thomas H. DeLuca; others
2008-01-01
Bromus tectorum (cheatgrass) is an invasive annual that occupies perennial grass and shrub communities throughout the western United States. Bromus tectorum exhibits an intriguing spatio-temporal pattern of invasion in low elevation ponderosa pine Pinus ponderosa/bunchgrass communities in western Montana where it...
What Is Spatio-Temporal Data Warehousing?
NASA Astrophysics Data System (ADS)
Vaisman, Alejandro; Zimányi, Esteban
In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward
There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less
Low-Temperature Oxidation Reactions and Cool Flames at Earth and Reduced Gravity
NASA Technical Reports Server (NTRS)
Pearlman, Howard
1999-01-01
Non-isothermal studies of cool flames and low temperature oxidation reactions in unstirred closed vessels are complicated by the perturbing effects of natural convection at earth gravity. Buoyant convection due to self-heating during the course of slow reaction produces spatio-temporal variations in the thermal and thus specie concentration fields due to the Arrhenius temperature dependence of the reaction rates. Such complexities have never been quantitatively modeled and were the primary impetus for the development of CSTR's (continuously stirred tank reactors) 30 years ago. While CSTR's have been widely adopted since they offer the advantage of spatial uniformity in temperature and concentration, all gradients are necessarily destroyed along with any structure that may otherwise develop. Microgravity offers a unique environment where buoyant convection can be effectively minimized and the need for stirring eliminated. Moreover, eliminating buoyancy and the need for stirring eliminates complications associated with the induced hydrodynamic field whose influence on heat transport and hot spot formation, hence explosion limits, is not fully realized. The objective of this research is to quantitatively determine and understand the fundamental mechanisms that control the onset and evolution of low temperature reactions and cool flames in both static and flow reactors. Microgravity experiments will be conducted to obtain benchmark data on the structure (spatio-temporal temperature, concentration, flow fields), the dynamics of the chemical fronts, and the ignition diagrams (pressure vs. temperature). Ground-based experiments will be conducted to ascertain the role of buoyancy. Numerical simulations including detailed kinetics will be conducted and compared to experiment.
NASA Astrophysics Data System (ADS)
Das, I.; Oberai, K.; Sarathi Roy, P.
2012-07-01
Landslides exhibit themselves in different mass movement processes and are considered among the most complex natural hazards occurring on the earth surface. Making landslide database available online via WWW (World Wide Web) promotes the spreading and reaching out of the landslide information to all the stakeholders. The aim of this research is to present a comprehensive database for generating landslide hazard scenario with the help of available historic records of landslides and geo-environmental factors and make them available over the Web using geospatial Free & Open Source Software (FOSS). FOSS reduces the cost of the project drastically as proprietary software's are very costly. Landslide data generated for the period 1982 to 2009 were compiled along the national highway road corridor in Indian Himalayas. All the geo-environmental datasets along with the landslide susceptibility map were served through WEBGIS client interface. Open source University of Minnesota (UMN) mapserver was used as GIS server software for developing web enabled landslide geospatial database. PHP/Mapscript server-side application serve as a front-end application and PostgreSQL with PostGIS extension serve as a backend application for the web enabled landslide spatio-temporal databases. This dynamic virtual visualization process through a web platform brings an insight into the understanding of the landslides and the resulting damage closer to the affected people and user community. The landslide susceptibility dataset is also made available as an Open Geospatial Consortium (OGC) Web Feature Service (WFS) which can be accessed through any OGC compliant open source or proprietary GIS Software.
Cortical Neural Computation by Discrete Results Hypothesis
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation. PMID:27807408
Cortical Neural Computation by Discrete Results Hypothesis.
Castejon, Carlos; Nuñez, Angel
2016-01-01
One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation.
NASA Astrophysics Data System (ADS)
Barbieri, L.; Adair, C.; Galford, G. L.; Wyngaard, J.
2017-12-01
We present on a full season of low-cost sUAS agricultural monitoring for improved GHG emissions accounting and mitigation. Agriculture contributes 10-12% of global anthropogenic GHG emissions, and roughly half are from agricultural soils. A variety of land management strategies can be implemented to reduce GHG emissions, but agricultural lands are complex and heterogenous. Nutrient cycling processes that ultimately regulate GHG emission rates are affected by environmental and management dynamics that vary spatially and temporally (e.g. soil properties, manure spreading). Thus, GHG mitigation potential is also variable, and determining best practices for mitigation is challenging, especially considering potential conflicting pressure to manage agricultural lands for other objectives (e.g. decrease agricultural runoff). Monitoring complexity from agricultural lands is critical for regional GHG accounting and decision making, but current methods (e.g., static chambers) are time intensive, expensive, and use in-situ equipment. These methods lack the spatio-temporal flexibility necessary to reduce the high uncertainty in regional emissions estimates, while traditional remote sensing methods often do not provide adequate spatio-temporal resolution for robust field-level monitoring. Small Unmanned Aerial Systems (sUAS) provide the range and the rapid response data collection needed to monitor key variables on the landscape (imagery) and from the atmosphere (CO2 concentrations), and can provide ways to bridge between in-situ and remote sensing data. Initial results show good agreement between sUAS CO2 sensors with more traditional equipment, and at a fraction of the cost. We present results from test flights over managed agricultural landscapes in Vermont, showcasing capabilities from both sUAS imagery and atmospheric data collected from on-board sensors (CO2, PTH). We then compare results from two different in-flight data collection methods: Vertical Profile and Horizontal Surveys. We conclude with results from the integration of these sUAS data with concurrently collected in-field measurements from static chambers and Landsat imagery, demonstrating enhanced understanding of agricultural landscapes and improved GHG emissions monitoring with the addition of sUAS collected data.
Netzel, Pawel
2017-01-01
The United States is increasingly becoming a multi-racial society. To understand multiple consequences of this overall trend to our neighborhoods we need a methodology capable of spatio-temporal analysis of racial diversity at the local level but also across the entire U.S. Furthermore, such methodology should be accessible to stakeholders ranging from analysts to decision makers. In this paper we present a comprehensive framework for visualizing and analyzing diversity data that fulfills such requirements. The first component of our framework is a U.S.-wide, multi-year database of race sub-population grids which is freely available for download. These 30 m resolution grids have being developed using dasymetric modeling and are available for 1990-2000-2010. We summarize numerous advantages of gridded population data over commonly used Census tract-aggregated data. Using these grids frees analysts from constructing their own and allows them to focus on diversity analysis. The second component of our framework is a set of U.S.-wide, multi-year diversity maps at 30 m resolution. A diversity map is our product that classifies the gridded population into 39 communities based on their degrees of diversity, dominant race, and population density. It provides spatial information on diversity in a single, easy-to-understand map that can be utilized by analysts and end users alike. Maps based on subsequent Censuses provide information about spatio-temporal dynamics of diversity. Diversity maps are accessible through the GeoWeb application SocScape (http://sil.uc.edu/webapps/socscape_usa/) for an immediate online exploration. The third component of our framework is a proposal to quantitatively analyze diversity maps using a set of landscape metrics. Because of its form, a grid-based diversity map could be thought of as a diversity “landscape” and analyzed quantitatively using landscape metrics. We give a brief summary of most pertinent metrics and demonstrate how they can be applied to diversity maps. PMID:28358862
Sciarretta, Andrea; Tabilio, Maria Rosaria; Lampazzi, Elena; Ceccaroli, Claudio; Colacci, Marco; Trematerra, Pasquale
2018-01-01
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is a key pest of fruit crops in many tropical, subtropical and mild temperate areas worldwide. The economic importance of this fruit fly is increasing due to its invasion of new geographical areas. Efficient control and eradication efforts require adequate information regarding C. capitata adults in relation to environmental and physiological cues. This would allow effective characterisation of the population spatio-temporal dynamic of the C. capitata population at both the orchard level and the area-wide landscape. The aim of this study was to analyse population patterns of adult medflies caught using two trapping systems in a peach orchard located in central Italy. They were differentiated by adult sex (males or females) and mating status of females (unmated or mated females) to determine the spatio-temporal dynamic and evaluate the effect of cultivar and chemical treatments on trap catches. Female mating status was assessed by spermathecal dissection and a blind test was carried out to evaluate the reliability of the technique. Geostatistical methods, variogram and kriging, were used to produce distributional maps. Results showed a strong correlation between the distribution of males and unmated females, whereas males versus mated females and unmated females versus mated females showed a lower correlation. Both cultivar and chemical treatments had significant effects on trap catches, showing associations with sex and female mating status. Medfly adults showed aggregated distributions in the experimental field, but hot spots locations varied. The spatial pattern of unmated females reflected that of males, whereas mated females were largely distributed around ripening or ripe fruit. The results give relevant insights into pest management. Mated females may be distributed differently to unmated females and the identification of male hot spots through monitoring would allow localisation of virgin female populations. Based on our results, a more precise IPM strategy, coupled with effective sanitation practices, could represent a more effective approach to medfly control.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2015-01-01
This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich spatio-temporal and oscillatory dynamics can evolve from a relatively small number of interacting local circuits. PMID:26635545
Precision pharmacology for Alzheimer's disease.
Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone
2018-04-01
The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Gilbert, Kathleen; Cowan, Brett
2016-08-01
The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ 2 <;5.8×10 -4 ). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r 2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.
Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Huang, Bo; Lin, Chuan-Yao
2015-02-01
This paper explores the spatio-temporal patterns of particulate matter (PM) in Taiwan based on a series of methods. Using fuzzy c-means clustering first, the spatial heterogeneity (six clusters) in the PM data collected between 2005 and 2009 in Taiwan are identified and the industrial and urban areas of Taiwan (southwestern, west central, northwestern, and northern Taiwan) are found to have high PM concentrations. The PM10-PM2.5 relationship is then modeled with global ordinary least squares regression, geographically weighted regression (GWR), and geographically and temporally weighted regression (GTWR). The GTWR and GWR produce consistent results; however, GTWR provides more detailed information of spatio-temporal variations of the PM10-PM2.5 relationship. The results also show that GTWR provides a relatively high goodness of fit and sufficient space-time explanatory power. In particular, the PM2.5 or PM10 varies with time and space, depending on weather conditions and the spatial distribution of land use and emission patterns in local areas. Such information can be used to determine patterns of spatio-temporal heterogeneity in PM that will allow the control of pollutants and the reduction of public exposure.
Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure.
Aerts, Sam; Wiart, Joe; Martens, Luc; Joseph, Wout
2018-02-01
As both the environment and telecommunications networks are inherently dynamic, our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary location is not at all constant in time. In this study, more than a year's worth of measurement data collected in a fixed low-cost exposimeter network distributed over an urban environment was analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) signals. Though no global trend was discovered over the measuring period, the difference in measured exposure between two instances could reach up to 42dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the hour and day of the measurement, the accuracy of the surrogate model in the area under study was improved by up to 50% compared to models that neglect the daily temporal variability of the RF signals. However, further study is required to assess the extent to which the results obtained in the considered environment can be extrapolated to other geographic locations. Copyright © 2017 Elsevier Inc. All rights reserved.
Studies in nonlinear problems of energy. Progress report, October 1, 1993--September 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matkowsky, B.J.
1994-09-01
The authors concentrate on modeling, analysis and large scale scientific computation of combustion and flame propagation phenomena, with emphasis on the transition from laminar to turbulent combustion. In the transition process a flame passed through a stages exhibiting increasingly complex spatial and temporal patterns which serve as signatures identifying each stage. Often the transitions arise via bifurcation. The authors investigate nonlinear dynamics, bifurcation and pattern formation in the successive stage of transition. They describe the stability of combustion waves, and transitions to combustion waves exhibiting progressively higher degrees of spatio-temporal complexity. One aspect of this research program is the systematicmore » derivation of appropriate, approximate models from the original models governing combustion. The approximate models are then analyzed. The authors are particularly interested in understanding the basic mechanisms affecting combustion, which is a prerequisite to effective control of the process. They are interested in determining the effects of varying various control parameters, such as Nusselt number, Lewis number, heat release, activation energy, Damkohler number, Reynolds number, Prandtl number, Peclet number, etc. The authors have also considered a number of problems in self-propagating high-temperature synthesis (SHS), in which combustion waves are employed to synthesize advanced materials. Efforts are directed toward understanding fundamental mechanisms. 167 refs.« less
Earth Observation for monitoring phenology for european land use and ecosystems over 1998-2011
NASA Astrophysics Data System (ADS)
Ceccherini, Guido; Gobron, Nadine
2013-04-01
Long-term measurements of plant phenology have been used to track vegetation responses to climate change but are often limited to particular species and locations and may not represent synoptic patterns. Given the limitations of working directly with in-situ data, many researchers have instead used available satellite remote sensing. Remote sensing extends the possible spatial coverage and temporal range of phenological assessments of environmental change due to the greater availability of observations. Variations and trends of vegetation dynamics are important because they alter the surface carbon, water and energy balance. For example, the net ecosystem CO2 exchange of vegetation is strongly linked to length of the growing season: extentions and decreases in length of growing season modify carbon uptake and the amount of CO2 in the atmosphere. Advances and delays in starting of growing season also affect the surface energy balance and consequently transpiration. The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a key climate variable identified by Global Terrestrial Observing System (GTOS) that can be monitored from space. This dimensionless variable - varying between 0 and 1- is directly linked to the photosynthetic activity of vegetation, and therefore, can monitor changes in phenology. In this study, we identify the spatio/temporal patterns of vegetation dynamics using a long-term remotely sensed FAPAR dataset over Europe. Our aim is to provide a quantitative analysis of vegetation dynamics relevant to climate studies in Europe. As part of this analysis, six vegetation phenological metrics have been defined and made routinely in Europe. Over time, such metrics can track simple, yet critical, impacts of climate change on ecosystems. Validation has been performed through a direct comparison against ground-based data over ecological sites. Subsequently, using the spatio/temporal variability of this suite of metrics, we classify areas with similar vegetation dynamics. This permits assessment of variations and trends of vegetation dynamics over Europe. Statistical tests to assess the significance of temporal changes are used to evaluate trends in the metrics derived from the recorded time series of the FAPAR.
Spatiotemporal database of US congressional elections, 1896–2014
Wolf, Levi John
2017-01-01
High-quality historical data about US Congressional elections has long provided common ground for electoral studies. However, advances in geographic information science have recently made it efficient to compile, distribute, and analyze large spatio-temporal data sets on the structure of US Congressional districts. A single spatio-temporal data set that relates US Congressional election results to the spatial extent of the constituencies has not yet been developed. To address this, existing high-quality data sets of elections returns were combined with a spatiotemporal data set on Congressional district boundaries to generate a new spatio-temporal database of US Congressional election results that are explicitly linked to the geospatial data about the districts themselves. PMID:28809849
NASA Astrophysics Data System (ADS)
Medyńska-Gulij, Beata; Cybulski, Paweł
2016-06-01
This paper analyses the use of table visual variables of statistical data of hospital beds as an important tool for revealing spatio-temporal dependencies. It is argued that some of conclusions from the data about public health and public expenditure on health have a spatio-temporal reference. Different from previous studies, this article adopts combination of cartographic pragmatics and spatial visualization with previous conclusions made in public health literature. While the significant conclusions about health care and economic factors has been highlighted in research papers, this article is the first to apply visual analysis to statistical table together with maps which is called previsualisation.
Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret
2018-01-01
Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.
A three-ions model of electrodiffusion kinetics in a nanochannel
NASA Astrophysics Data System (ADS)
Sebechlebská, Táňa; Neogrády, Pavel; Valent, Ivan
2016-10-01
Nanoscale electrodiffusion transport is involved in many electrochemical, technological and biological processes. Developments in computer power and numerical algorithms allow for solving full time-dependent Nernst-Planck and Poisson equations without simplifying approximations. We simulate spatio-temporal profiles of concentration and electric potential changes after a potential jump in a 10 nm channel with two cations (with opposite concentration gradients and different mobilities) and one anion (of uniform concentration). The temporal dynamics shows three exponential phases and damped oscillations of the electric potential. Despite the absence of surface charges in the studied model, an asymmetric current-voltage characteristic was observed.
Gutiérrez, Jayson
2009-01-01
The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/− feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks. PMID:19738908
Niveaux d'étude du cerveau, et sagesse physique
NASA Astrophysics Data System (ADS)
Toulouse, Gérard
1993-02-01
The brain is a complex spatio-temporal affair. Several brain theories propose the definition of three superposed levels of study. But physics, though the experience of condensed matter physics, suggests that it is unwise to enforce onto brain theories a unified hierarchical scheme, the inspiration for which seems to come from the realm of sub-molecular physics. Le cerveau est une affaire spatio-temporelle complexe. Plusieurs théories du cerveau proposent de définir trois niveaux d'études superposés. Mais la physique, à travers l'expérience de la physique de la matière condensée, suggère qu'il n'est pas sage d'imposer sur les théories du cerveau un schéma hiérarchique unifié, dont l'inspiration semble provenir du domaine de la physique sub-moléculaire.
Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients
Beerens, James M.; Noonburg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species’ ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches. PMID:26107386
Linking dynamic habitat selection with wading bird foraging distributions across resource gradients
Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.
2015-01-01
Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.
Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina
2013-01-01
Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308
NASA Astrophysics Data System (ADS)
Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten
2018-05-01
The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.
Rushworth, Alastair; Lee, Duncan; Mitchell, Richard
2014-07-01
It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed. We present a new model for estimating the effects of air pollution on human health, which allows for residual spatio-temporal autocorrelation, and a study into the long-term effects of air pollution on human health in Greater London, England. The individual and joint effects of different pollutants are explored, via the use of single pollutant models and multiple pollutant indices. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri
2016-04-01
The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics techniques for optimization and uncertainty analysis are included in a framework that will solve partially the computational load found in the pre-runs of the case study. The work will focus on the region Fuquene basin in Colombia but this will not limit the scope of this study to have general methodological applications to other areas. Key words Modelling, WFlow_sbm, agriculture practices, climate change, optimization, flooding, spatial and temporal analysis
NASA Astrophysics Data System (ADS)
Ushakov, A. A.; Chizhov, P. A.; Bukin, V. V.; Garnov, S. V.; Savel'ev, A. B.
2018-05-01
Two 2D techniques for visualising the field of pulsed THz radiation ('shadow' and 'interferometric'), which are based on the linear electro-optical effect with application of a ZnTe detector crystal 1 × 1 cm in size, are compared. The noise level and dynamic range for the aforementioned techniques are analysed and their applicability limits are discussed.
ERIC Educational Resources Information Center
Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.
2008-01-01
We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…
Spatio-temporal dynamic climate model for Neoleucinodes elegantalis using CLIMEX
NASA Astrophysics Data System (ADS)
da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; da Silva, Ezio Marques; da Silva Galdino, Tarcisio Visintin; Picanço, Marcelo Coutinho
2017-05-01
Seasonal variations are important components in understanding the ecology of insect population of crops. Ecological studies through modeling may be a useful tool for enhancing knowledge of seasonal patterns of insects on field crops as well as seasonal patterns of favorable climatic conditions for species. Recently CLIMEX, a semi-mechanistic niche model, was upgraded and enhanced to consider spatio-temporal dynamics of climate suitability through time. In this study, attempts were made to determine monthly variations of climate suitability for Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) in five commercial tomato crop localities through the latest version of CLIMEX. We observed that N. elegantalis displays seasonality with increased abundance in tomato crops during summer and autumn, corresponding to the first 6 months of the year in monitored areas in this study. Our model demonstrated a strong accord between the CLIMEX weekly growth index (GIw) and the density of N. elegantalis for this period, thus indicating a greater confidence in our model results. Our model shows a seasonal variability of climatic suitability for N. elegantalis and provides useful information for initiating methods for timely management, such as sampling strategies and control, during periods of high degree of suitability for N. elegantalis. In this study, we ensure that the simulation results are valid through our verification using field data.
Geng, Yu; Wu, Rui; Wee, Choon Wei; Xie, Fei; Wei, Xueliang; Chan, Penny Mei Yeen; Tham, Cliff; Duan, Lina; Dinneny, José R.
2013-01-01
Plant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis. Through the use of a new high-resolution spatio-temporal transcriptional map, we identify the key hormone signaling pathways that regulate specific transcriptional programs, predict their spatial domain of action, and link the activity of these pathways to the regulation of specific phases of growth. We use tissue-specific approaches to suppress the abscisic acid (ABA) signaling pathway and demonstrate that ABA likely acts in select tissue layers to regulate spatially localized transcriptional programs and promote growth recovery. Finally, we show that salt also regulates many tissue-specific and time point–specific transcriptional responses that are expected to modify water transport, Casparian strip formation, and protein translation. Together, our data reveal a sophisticated assortment of regulatory programs acting together to coordinate spatially patterned biological changes involved in the immediate and long-term response to a stressful shift in environment. PMID:23898029