NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi
2013-04-01
We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.
Lin, Chenxi; Martínez, Luis Javier; Povinelli, Michelle L
2013-09-09
We design silicon membranes with nanohole structures with optimized complex unit cells that maximize broadband absorption. We fabricate the optimized design and measure the optical absorption. We demonstrate an experimental broadband absorption about 3.5 times higher than an equally-thick thin film.
DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures.
May, S; Ben-Shaul, A
1997-01-01
A molecular level theory is presented for the thermodynamic stability of two (similar) types of structural complexes formed by (either single strand or supercoiled) DNA and cationic liposomes, both involving a monolayer-coated DNA as the central structural unit. In the "spaghetti" complex the central unit is surrounded by another, oppositely curved, monolayer, thus forming a bilayer mantle. The "honeycomb" complex is a bundle of hexagonally packed DNA-monolayer units. The formation free energy of these complexes, starting from a planar cationic/neutral lipid bilayer and bare DNA, is expressed as a sum of electrostatic, bending, mixing, and (for the honeycomb) chain frustration contributions. The electrostatic free energy is calculated using the Poisson-Boltzmann equation. The bending energy of the mixed lipid layers is treated in the quadratic curvature approximation with composition-dependent bending rigidity and spontaneous curvature. Ideal lipid mixing is assumed within each lipid monolayer. We found that the most stable monolayer-coated DNA units are formed when the charged/neutral lipid composition corresponds (nearly) to charge neutralization; the optimal monolayer radius corresponds to close DNA-monolayer contact. These conclusions are also valid for the honeycomb complex, as the chain frustration energy is found to be negligible. Typically, the stabilization energies for these structures are on the order of 1 k(B)T/A of DNA length, reflecting mainly the balance between the electrostatic and bending energies. The spaghetti complexes are less stable due to the additional bending energy of the external monolayer. A thermodynamic analysis is presented for calculating the equilibrium lipid compositions when the complexes coexist with excess bilayer. PMID:9370436
Liu, Michael A; Morris, Paraskevi; Reeves, Peter R
2018-06-10
The Wzx flippase is a critical component of the O-antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram-negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O-unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O-unit main-chain, despite both being able to translocate several other structurally-divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O-unit residues are equally important determinants of translocation efficiency. We propose a new "Structure-Specific Triggering" model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high-frequency translocation only being triggered by Wzx interacting with one or more preferred O-unit structural elements found on its cognate O unit(s). © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
What Makes Reading Difficult: The Complexity of Structures.
ERIC Educational Resources Information Center
Schmidt, Eunice L.
The original version of the "Helen Keller Story" and a linguistically more complex version of it were used to test the hypothesis that reading comprehension is affected by the complexity of linguistic structures. Complexity was measured by four readability measures, the mean number of words per T-unit, and the Schmidt-Kittrell Linguistic…
Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Krivovichev, Sergey V.; Tananaev, Ivan G.
Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (I), (C{sub 2}H{sub 8}N){sub 3}[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (II), (C{sub 2}H{sub 8}N)[(UO{sub 2})(SeO{sub 4})(HSeO{sub 3})] (III), and (C{sub 2}H{sub 8}N)(H{sub 3}O)[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H{sub 2}O content. - Graphical abstract: Single crystals ofmore » four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules have been prepared by isothermal evaporation from aqueous solutions. Structural analysis and information-based topological complexity calculations points to the possible sequence of crystalline phases formation, showing both topological and structural branches of evolution. - Highlights: • Single crystals of four novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • Dehydration processes drives the evolution of topological complexity of 1D and 2D structural units.« less
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-06-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-03-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
Built structure identification in wildland fire decision support
David E. Calkin; Jon D. Rieck; Kevin D. Hyde; Jeffrey D. Kaiden
2011-01-01
Recent ex-urban development within the wildland interface has significantly increased the complexity and associated cost of federal wildland fire management in the United States. Rapid identification of built structures relative to probable fire spread can help to reduce that complexity and improve the performance of incident management teams. Approximate structure...
[Structuro-functional units of the salivary and lacrimal glands].
Kostilenko, Iu P; Mysliuk, I V; Deviatkin, E A
1986-09-01
By means of the multilayer graphic and plastic reconstruction methods using series of semithin sections, spatial tridimensional organization of the epithelial complexes and blood microcirculatory bed in the rat palatal salivary glands and the lacrimal gland of the human newborn have been studied. Since their ducts serve not only for discharging their secrete into the external medium, but also for accumulation (as collectors), the sublobular unit--adenomere should be referred to as a part of elementary level of organization of the epithelial complexes. The adenomere has in its composition a collecting centrally situating duct. However, while studying structure of the blood microcirculatory bed, it is found out that there is not any strict territorial correspondence between its functional units and structural units of the glandular epithelium. Nevertheless, giving a great importance to a tight syntopic connection of the collecting ducts of the adenomeres with the postcapillary venules (that belong to filtrating microvessels), these are sublobular units--adenomeres that are distinguished as structural-functional units in the glands.
Scholes, Edwin
2008-01-01
Ethology is rooted in the idea that behavior is composed of discrete units and sub-units that can be compared among taxa in a phylogenetic framework. This means that behavior, like morphology and genes, is inherently modular. Yet, the concept of modularity is not well integrated into how we envision the behavioral components of phenotype. Understanding ethological modularity, and its implications for animal phenotype organization and evolution, requires that we construct interpretive schemes that permit us to examine it. In this study, I describe the structure and composition of a complex part of the behavioral phenotype of Parotia lawesii Ramsay, 1885--a bird of paradise (Aves: Paradisaeidae) from the forests of eastern New Guinea. I use archived voucher video clips, photographic ethograms, and phenotype ontology diagrams to describe the modular units comprising courtship at various levels of integration. Results show P. lawesii to have 15 courtship and mating behaviors (11 males, 4 females) hierarchically arranged within a complex seven-level structure. At the finest level examined, male displays are comprised of 49 modular sub-units (elements) differentially employed to form more complex modular units (phases and versions) at higher-levels of integration. With its emphasis on hierarchical modularity, this study provides an important conceptual framework for understanding courtship-related phenotypic complexity and provides a solid basis for comparative study of the genus Parotia.
NASA Astrophysics Data System (ADS)
Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin
2018-03-01
The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.
NASA Astrophysics Data System (ADS)
Nikiforov, Grigori B.; Roesky, Herbert W.; Vidovic, Denis; Magull, Jörg
2003-08-01
The heterobimetallic Yb(II) mixed ligand complex L2Yb2LiI31 has been prepared by the reaction of the lithium salt of the ligand L with the ytterbium diiodide. Compound 1 is characterized by single crystal X-ray structural analysis, multinuclear NMR and mass spectrometry. Complex 1 consists of LYbI and LLi units connected with the central Yb(1) atom. The latter is surrounded by the LYbI and LLi moieties in a sandwich like structure including two bridging iodine atoms. The NCCCN unsaturated system of the ligand in each of the units is almost planar and π coordinated to the Yb(1) atom. These two planar units are tilted to each other and the pendant arms of the β-diketiminato ligand in each moiety are bent. The metal atoms are located out of the NCCCN plane of the ligands and the three metal atoms in complex 1 form almost a straight line.
Murray, Anita; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W
2018-02-01
Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.
Easton, Robert M.; Edwards, Lucy E.; Orndorff, Randall C.; Duguet, Manuel; Ferrusquia-Villafranca, Ismael
2015-01-01
Currently the North American Stratigraphic Code, (NACSN 2005, Article 37) sets restrictions on the use of the term “complex” for lithodemic units. With exceptions for “volcanic complex” and “structural complex,” a complex must consist of more than one genetic class of rock (i.e., sedimentary, igneous or metamorphic). Thus, the use of the term “complex” to describe masses of intrusive rocks is not allowed. Asimilar restriction is also included in a recent British Geological Survey proposal for using lithodemic units to classify igneous rocks (Gillespie et al. 2008).Currently the North American Stratigraphic Code, (NACSN 2005, Article 37) sets restrictions on the use of the term “complex” for lithodemic units. With exceptions for “volcanic complex” and “structural complex,” a complex must consist of more than one genetic class of rock (i.e., sedimentary, igneous or metamorphic). Thus, the use of the term “complex” to describe masses of intrusive rocks is not allowed. Asimilar restriction is also included in a recent British Geological Survey proposal for using lithodemic units to classify igneous rocks (Gillespie et al. 2008).
NASA Astrophysics Data System (ADS)
Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro
2018-01-01
Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.
Bibi, Faysal; Kraatz, Brian; Craig, Nathan; Beech, Mark; Schuster, Mathieu; Hill, Andrew
2012-01-01
Many living vertebrates exhibit complex social structures, evidence for the antiquity of which is limited to rare and exceptional fossil finds. Living elephants possess a characteristic social structure that is sex-segregated and multi-tiered, centred around a matriarchal family and solitary or loosely associated groups of adult males. Although the fossil record of Proboscidea is extensive, the origin and evolution of social structure in this clade is virtually unknown. Here, we present imagery and analyses of an extensive late Miocene fossil trackway site from the United Arab Emirates. The site of Mleisa 1 preserves exceptionally long trackways of a herd of at least 13 individuals of varying size transected by that of a single large individual, indicating the presence of both herding and solitary social modes. Trackway stride lengths and resulting body mass estimates indicate that the solitary individual was also the largest and therefore most likely a male. Sexual determination for the herd is equivocal, but the body size profile and number of individuals are commensurate with those of a modern elephant family unit. The Mleisa 1 trackways provide direct evidence for the antiquity of characteristic and complex social structure in Proboscidea. PMID:22357934
Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde
2016-10-11
Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.
Significance tests for functional data with complex dependence structure.
Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J
2015-01-01
We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.
NASA Astrophysics Data System (ADS)
Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy
2012-09-01
To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.
NASA Astrophysics Data System (ADS)
Feng, Zhicun; Zhang, Hang; Xu, Kangzhen; Song, Jirong; Zhao, Fengqi
2018-04-01
Six different energetic silver complexes of 2-(dinitromethylene)-1,3-diazacyclopentane (DNDZ), Ag(DNDZ) (1), [Ag2(H2O)(DNDZ)]n (2), Ag(NH3)DNDZ (3), Ag(CH3NH2)(DNDZ) (4), Ag(C2H5NH2)(DNDZ) (5) and Ag(C3H7NH2)(DNDZ) (6), were first synthesized and structurally characterized. Complexes 2, 3, 5 and 6 were characterized by the single crystal X-ray diffraction analysis. Complexes 2, 5 and 6 crystallize in the monoclinic crystal system with space group P21/n containing four molecules per unit cell, but the crystal of complex 3 is triclinic with space group P-1 containing two molecules in each unit cell. Complexes 2 and 3 possess Ag⋯Ag interaction and corresponding central symmetric structure, but complexes 5 and 6 do not. Thermal behaviors of complexes 1-6 were determined and analyzed. The order of thermal stability for the six complexes is 4 > 3 >1 > 2 >5 > 6. Impact sensitivities for complexes 1-6 are >12 J, > 4 J, > 13 J, > 16 J, > 8 J and >7 J respectively, which corresponds well to the results of thermal stability for the six complexes except for complex 2. Moreover, natural bond orbital (NBO) analysis was used to investigate the bonding and hybridization of complex 3.
NASA Astrophysics Data System (ADS)
Martinez, Guillermo F.; Gupta, Hoshin V.
2011-12-01
Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.
A conservation and biophysics guided stochastic approach to refining docked multimeric proteins.
Akbal-Delibas, Bahar; Haspel, Nurit
2013-01-01
We introduce a protein docking refinement method that accepts complexes consisting of any number of monomeric units. The method uses a scoring function based on a tight coupling between evolutionary conservation, geometry and physico-chemical interactions. Understanding the role of protein complexes in the basic biology of organisms heavily relies on the detection of protein complexes and their structures. Different computational docking methods are developed for this purpose, however, these methods are often not accurate and their results need to be further refined to improve the geometry and the energy of the resulting complexes. Also, despite the fact that complexes in nature often have more than two monomers, most docking methods focus on dimers since the computational complexity increases exponentially due to the addition of monomeric units. Our results show that the refinement scheme can efficiently handle complexes with more than two monomers by biasing the results towards complexes with native interactions, filtering out false positive results. Our refined complexes have better IRMSDs with respect to the known complexes and lower energies than those initial docked structures. Evolutionary conservation information allows us to bias our results towards possible functional interfaces, and the probabilistic selection scheme helps us to escape local energy minima. We aim to incorporate our refinement method in a larger framework which also enables docking of multimeric complexes given only monomeric structures.
Characterization of the NTPR and BD1 interacting domains of the human PICH-BEND3 complex.
Pitchai, Ganesha P; Hickson, Ian D; Streicher, Werner; Montoya, Guillermo; Mesa, Pablo
2016-08-01
Chromosome integrity depends on DNA structure-specific processing complexes that resolve DNA entanglement between sister chromatids. If left unresolved, these entanglements can generate either chromatin bridging or ultrafine DNA bridging in the anaphase of mitosis. These bridge structures are defined by the presence of the PICH protein, which interacts with the BEND3 protein in mitosis. To obtain structural insights into PICH-BEND3 complex formation at the atomic level, their respective NTPR and BD1 domains were cloned, overexpressed and crystallized using 1.56 M ammonium sulfate as a precipitant at pH 7.0. The protein complex readily formed large hexagonal crystals belonging to space group P6122, with unit-cell parameters a = b = 47.28, c = 431.58 Å and with one heterodimer in the asymmetric unit. A complete multiwavelength anomalous dispersion (MAD) data set extending to 2.2 Å resolution was collected from a selenomethionine-labelled crystal at the Swiss Light Source.
McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.
1999-01-01
The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.
NASA Astrophysics Data System (ADS)
Rosenthal, Michal; Schattner, Uri; Ben-Avraham, Zvi
2017-04-01
The Kinneret-Bet She'an (KBS) basin complex comprises the Sea of Galilee, Kinarot, and Bet She'an sub-basins. The complex developed at the intersection between two major tectonic boundaries: the Oligo-Miocene Azraq-Sirhan failed rift, that later developed into the southern Galilee basins and Carmel-Gilboa fault system; and the Dead Sea fault (DSF) plate boundary that developed since the Miocene. Despite numerous studies, KBS still remains one of the enigmatic basin complexes. Its structure, stratigraphy and development are vaguely understood - both inside the basin and in correlation with its surroundings. Our study presents a new and comprehensive 3D model for the structure of KBS complex. It is based on all available gravity measurements, adopted from the national gravity database, and new gravity measurements, collected in cooperation with the Geological Survey of Israel and funded by the Ministry of National Infrastructure, Energy and Water Resources. The gravity data were integrated with constraints from boreholes, surface geology, seismic surveys, potential field studies and teleseismic tomography. The dense distribution of gravity data [1] provides suitable coverage for modeling the deep structure in three dimensions. The model details the spatial distribution, depth, thickness and density of the following regional units within the KBS complex and across its surroundings: upper crust, pre-Senonian sediments, Senonian and Cenozoic sediments, Miocene volcanics, Pliocene and Quaternary volcanics. Additional local units include salt, gabbro and pyroclasts. Results indicate that the KBS complex comprises two sub-basins separated by a structural saddle: Kinneret-Kinarot ( 6-7 km deep, 45 km long) and Bet She'an ( 4 km deep, 10 km long) sub-basin. A 500 m thick layer of Miocene volcanics appears across the Bet She'an sub-basin, yet missing from the Kinneret-Kinarot sub-basin. Between the basins Zemah-1 borehole penetrated a salt unit. The model indicates that this unit is a part of a thick (1250 m) dome-shaped, perhaps diapiric, structure. A relatively thin (350 m) salt unit fills the Kinneret-Kinarot sub-basin. Above, a 700 m thick layer of Pliocene volcanics fills the entire KBS complex. These volcanics are uplifted in the Zemah area by 200 m. The Pliocene volcanics dip northward from Zemah towards the center of the Sea of Galilee, and further north the Pliocene volcanics dip southward from Korazim towards the center of the Sea of Galilee. The depth differences exceed 3 km across a distance of 15 km, forming a 11° slope below the younger Quaternary fill of the basin. A low-density, probably pyroclastic, lens is calculated within the uppermost 2 km of the Sea of Galilee fill. Scenarios for the development of the basin are discussed. [1] Rosenthal, M., Segev, A., Rybakov, M., Lyakhovsky, V. and Ben-Avraham, Z. (2015) The deep structure and density distribution of northern Israel and its surroundings. GSI Report No. GSI/12/2015, 33 pages, Jerusalem.
Integrative structure and functional anatomy of a nuclear pore complex
NASA Astrophysics Data System (ADS)
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.
2018-03-01
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
Integrative structure and functional anatomy of a nuclear pore complex.
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P
2018-03-22
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
NASA Astrophysics Data System (ADS)
Săbău, Gavril; Negulescu, Elena
2014-05-01
Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly prograde medium-grade event. The ages recorded not only question some of the currently accepted correlations among basement units, but urge to reconsideration of the way in which the basement-cover relationships are interpreted and extrapolated.
Structural analysis of the coordination of dinitrogen to transition metal complexes.
Peigné, Benjamin; Aullón, Gabriel
2015-06-01
Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Fuliang; Graduate School, Chinese Academy of Sciences, Beijing; Lou, Zhiyong
2005-06-01
Crystallization of the first rhesus macaque MHC class I complex. Simian immunodeficiency virus (SIV) infection in rhesus macaques has been used as the best model for the study of human immunodeficiency virus (HIV) infection in humans, especially in the cytotoxic T-lymphocyte (CTL) response. However, the structure of rhesus macaque (or any other monkey model) major histocompatibility complex class I (MHC I) presenting a specific peptide (the ligand for CTL) has not yet been elucidated. Here, using in vitro refolding, the preparation of the complex of the rhesus macaque MHC I allele (Mamu-A*01) with human β{sub 2}m and an immunodominant peptide,more » CTPYDINQM (Gag-CM9), derived from SIV Gag protein is reported. The complex (45 kDa) was crystallized; the crystal belongs to space group I422, with unit-cell parameters a = b = 183.8, c = 155.2 Å. The crystal contains two molecules in the asymmetric unit and diffracts X-rays to 2.8 Å resolution. The structure is being solved by molecular replacement and this is the first attempt to determined the crystal structure of a peptide–nonhuman primate MHC complex.« less
Scholastics, Pabulum, Clans, Transformation: A Journey into Otherness
ERIC Educational Resources Information Center
Lausch, David; Teman, Eric; Perry, Cody
2017-01-01
International students' identities are complex and so are their needs. Semi-structured interviews with 13 of the lead researcher's former students from Dubai, United Arab Emirates, who are multi-national, multi-lingual and pursuing degrees in law, business, economics, medicine, education, art and media, in the United States, United Kingdom and…
Geophysical studies of the Syncline Ridge area, Nevada Test Site, Nye County, Nevada
Hoover, D.B.; Hanna, W.F.; Anderson, L.A.; Flanigan, V.J.; Pankratz, L.W.
1982-01-01
A wide variety of geophysical methods were employed to study a proposed nuclear waste site at Syncline Ridge on the Nevada Test Site, Nev. The proposed site was believed to be a relatively undisturbed synclinal structure containing a thick argillite unit of Misslsslppian age, the Eleana Formation unit J, which would be the emplacement medium. Data acquisition for the geophysical studies was constrained because of rugged topography in a block of Tipplpah Limestone overlying the central part of the proposed site. This study employed gravity, magnetic, seismic refraction and reflection, and four distinct electrical methods to try and define the structural integrity and shape of the proposed repository medium. Detailed and regional gravity work revealed complex structure at the site. Magnetics helped only in identifying small areas of Tertiary volcanic rocks because of low magnetization of the rocks. Seismic refraction assisted in identifying near surface faulting and bedrock structure. Difficulty was experienced in obtaining good quality reflection data. This implied significant structural complexity but also revealed the principal features that were supported by other data. Electrical methods were used for fault identification and for mapping of a thick argillaceous unit of the Eleana Formation in which nuclear waste was to be emplaced. The geophysical studies indicate that major faults along the axis of Syncline Ridge and on both margins have large vertical offsets displacing units so as not only to make mining difficult, but also providing potential paths for waste migration to underlying carbonate aquifers. The Eleana Formation appeared heterogeneous, which was inferred to be due to structural complexity. Only a small region in the northwest part of the study area was found to contain a thick and relatively undisturbed volume of host rock.
Tsutsumi, Shinichiro; Yamazaki, Maya; Miyazaki, Taisuke; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu; Kitamura, Kazuo
2015-01-14
Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals. Copyright © 2015 the authors 0270-6474/15/350843-10$15.00/0.
Bottom-up construction of a superstructure in a porous uranium-organic crystal
NASA Astrophysics Data System (ADS)
Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.; Gómez-Gualdrón, Diego A.; Howarth, Ashlee J.; Mehdi, B. Layla; Dohnalkova, Alice; Browning, Nigel D.; O'Keeffe, Michael; Farha, Omar K.
2017-05-01
Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.
Dutkiewicz, Michał S.; Apostolidis, Christos
2017-01-01
Neptunium complexes in the formal oxidation states II, III, and IV supported by cyclopentadienyl ligands are explored, and significant differences between Np and U highlighted as a result. A series of neptunium(iii) cyclopentadienyl (Cp) complexes [Np(Cp)3], its bis-acetonitrile adduct [Np(Cp)3(NCMe)2], and its KCp adduct K[Np(Cp)4] and [Np(Cp′)3] (Cp′ = C5H4SiMe3) have been made and characterised providing the first single crystal X-ray analyses of NpIII Cp complexes. In all NpCp3 derivatives there are three Cp rings in η5-coordination around the NpIII centre; additionally in [Np(Cp)3] and K[Np(Cp)4] one Cp ring establishes a μ-η1-interaction to one C atom of a neighbouring Np(Cp)3 unit. The solid state structure of K[Np(Cp)4] is unique in containing two different types of metal–Cp coordination geometries in the same crystal. NpIII(Cp)4 units are found exhibiting four units of η5-coordinated Cp rings like in the known complex [NpIV(Cp)4], the structure of which is now reported. A detailed comparison of the structures gives evidence for the change of ionic radii of ca. –8 pm associated with change in oxidation state between NpIII and NpIV. The rich redox chemistry associated with the syntheses is augmented by the reduction of [Np(Cp′)3] by KC8 in the presence of 2.2.2-cryptand to afford a neptunium(ii) complex that is thermally unstable above –10 °C like the UII and ThII complexes K(2.2.2-cryptand)[Th/U(Cp′)3]. Together, these spontaneous and controlled redox reactions of organo-neptunium complexes, along with information from structural characterisation, show the relevance of organometallic Np chemistry to understanding fundamental structure and bonding in the minor actinides. PMID:28553487
NASA Astrophysics Data System (ADS)
Jin, Tianqi; Zhou, Junqiang; Pan, Yangyang; Huang, Yu; Jin, Chuanming
2018-05-01
Three novel supramolecular complexes, [Ag4(2-mBIM)4](ClO4)4(H2O) (1), [Ag2(2-mBIM)2](PF6)2 (2) and [Ag2(PA-BIM)2](ClO4)2(CH2Cl2) (3) (2-mBIM = bis(2-methyl- imidazol-1-yl)methane; PA-BIM = 1,1-bis[(2-phenylazo)imidazol-1-yl]methane), have been prepared and structurally characterized. The reported complexes bear [4+4]metallomacrocyclic motifs comprising four silver atoms and four ditopic bis(imidazolyl)methane ligands. Complex 1 exhibits a rare 1D infinite inorganic [2]catenane structure, which was self-assembled by the interlocking action of [4+4]metallomacrocyclic units. Complex 2 is a 2D layered supramolecular motif containing [4+4]macrometallacycle units with π-π interaction between imidazole rings. Complex 3 has a 2D sheet supramolecular framework through Ag-Ag interactions in [4+4]macrometallacyclic calix [8]phenylazoimidazole with a nanocavity. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures. The thermal stability and photoluminescence spectra of the synthesized complexes have also been discussed.
Böttcher, Thomas
2018-01-01
Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.
Electromagnetic Detection and Identification of Complex Structures
2008-12-01
1 ELECTROMAGNETIC DETECTION AND IDENTIFICATION OF COMPLEX STRUCTURES I. Kohlberg Kohlberg Associates Reston, Virginia, 20190-4440 S.A...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Kohlberg Associates Reston, Virginia, 20190-4440 8...Electromagnetic Theory, 2 nd ed. IEEE Press, New York. von Laven, S.A., Albritton, N.G., Baginski, T.A., Hodel, A.S., McMillan, R.W., Kohlberg
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
Hexanuclear gold(I) phosphide complexes as platforms for multiple redox-active ferrocenyl units.
Lee, Terence Kwok-Ming; Cheng, Eddie Chung-Chin; Zhu, Nianyong; Yam, Vivian Wing-Wah
2014-01-03
The synthesis, X-ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ(3)-ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au(6)(P-P)(n)(Fc-CH(2)-P)(2)][PF(6)](2) (n=3, P-P=dppm (bis(diphenylphosphino)methane) (1), dppe (1,2-bis(diphenylphosphino)ethane) (2), dppp (1,3-bis(diphenylphosphino)propane) (3), Ph(2)PN(C(3)H(7))-PPh(2) (4), Ph(2)PN(Ph-CH(3)-p)PPh(2) (5), dppf (1,1′-bis(diphenylphosphino)ferrocene) (6); n=2, P-P=dpepp (bis(2-diphenylphosphinoethyl)phenylphosphine) (7)), as platforms for multiple redox-active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ(3)-ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au(6)P(2) cluster core, providing an understanding of the electronic properties of the hexanuclear Au(I) cluster linkage. The present complexes also serve as an ideal system for the design of multi-electron reservoir and molecular battery systems.
Bottom-up construction of a superstructure in a porous uranium-organic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.
Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation ofmore » colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.« less
Snyder-Mackler, Noah; Alberts, Susan C; Bergman, Thore J
2014-12-01
Multilevel societies with fission-fusion dynamics--arguably the most complex animal societies--are defined by two or more nested levels of organization. The core of these societies are modular social units that regularly fission and fuse with one another. Despite convergent evolution in disparate taxa, we know strikingly little about how such societies form and how fitness benefits operate. Understanding the kinship structure of complex societies could inform us about the origins of the social structure as well as about the potential for individuals in these societies to accrue indirect fitness benefits. Here, we combined genetic and behavioural data on geladas (Theropithecus gelada), an Old World Monkey, to complete the most comprehensive socio-genetic analysis of a multilevel society to date. In geladas, individuals in the core social 'units', associate at different frequencies to form 'teams', 'bands' and, the largest aggregations, 'communities'. Units were composed of closely related females, and females remained with their close kin during permanent fissions of units. Interestingly, female-female relatedness also significantly predicted between-unit, between-team and between-band association patterns, while male-male relatedness did not. Thus, it is likely that the socio-genetic structure of gelada society results from females maintaining associations with their female relatives during successive unit fissions--possibly in an attempt to balance the direct and indirect fitness benefits of group living. Overall, the persistence of associations among related females across generations appears to drive the formation of higher levels of gelada society, suggesting that females seek kin for inclusive fitness benefits at multiple levels of gelada society. © 2014 John Wiley & Sons Ltd.
Structural building principles of complex face-centered cubic intermetallics.
Dshemuchadse, Julia; Jung, Daniel Y; Steurer, Walter
2011-08-01
Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F43m, Fd3m, Fd3, Fm3m or Fm3c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p(3)-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.
[Structure and functional organization of integrated cardiac intensive care].
Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto
2007-05-01
The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.
A novel VLSI processor architecture for supercomputing arrays
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Pattabiraman, S.; Devanathan, R.; Ahmed, Ashaf; Venkataraman, S.; Ganesh, N.
1993-01-01
Design of the processor element for general purpose massively parallel supercomputing arrays is highly complex and cost ineffective. To overcome this, the architecture and organization of the functional units of the processor element should be such as to suit the diverse computational structures and simplify mapping of complex communication structures of different classes of algorithms. This demands that the computation and communication structures of different class of algorithms be unified. While unifying the different communication structures is a difficult process, analysis of a wide class of algorithms reveals that their computation structures can be expressed in terms of basic IP,IP,OP,CM,R,SM, and MAA operations. The execution of these operations is unified on the PAcube macro-cell array. Based on this PAcube macro-cell array, we present a novel processor element called the GIPOP processor, which has dedicated functional units to perform the above operations. The architecture and organization of these functional units are such to satisfy the two important criteria mentioned above. The structure of the macro-cell and the unification process has led to a very regular and simpler design of the GIPOP processor. The production cost of the GIPOP processor is drastically reduced as it is designed on high performance mask programmable PAcube arrays.
Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium
Beveridge, T. J.; Murray, R. G. E.
1974-01-01
Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219
Typology of State-Level Community College Governance Structures
ERIC Educational Resources Information Center
Fletcher, Jeffrey A.; Friedel, Janice Nahra
2017-01-01
Despite having a well-documented history about community colleges across the United States, relatively few discussions have covered state-level governance structures. To understand the typology of state community college governance structures, it must first be recognized that community college governance is characterized as a complex web of…
Self-organization of network dynamics into local quantized states
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Self-organization of network dynamics into local quantized states.
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
2016-02-17
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of the Swift-Hohenberg continuum model-a minimal-ingredients model of nodal activation and interaction within a complex network-is able to produce a complex suite of localized patterns. Hence, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.
Self-organization of network dynamics into local quantized states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaides, Christos; Juanes, Ruben; Cueto-Felgueroso, Luis
Self-organization and pattern formation in network-organized systems emerges from the collective activation and interaction of many interconnected units. A striking feature of these non-equilibrium structures is that they are often localized and robust: only a small subset of the nodes, or cell assembly, is activated. Understanding the role of cell assemblies as basic functional units in neural networks and socio-technical systems emerges as a fundamental challenge in network theory. A key open question is how these elementary building blocks emerge, and how they operate, linking structure and function in complex networks. Here we show that a network analogue of themore » Swift-Hohenberg continuum model—a minimal-ingredients model of nodal activation and interaction within a complex network—is able to produce a complex suite of localized patterns. Thus, the spontaneous formation of robust operational cell assemblies in complex networks can be explained as the result of self-organization, even in the absence of synaptic reinforcements.« less
Paniagua, Candelas; Kirby, Andrew R; Gunning, A Patrick; Morris, Victor J; Matas, Antonio J; Quesada, Miguel A; Mercado, José A
2017-06-01
Pectins analysed by AFM are visualized as individual chains, branched or unbranched, and aggregates. To investigate the nature of these structures, sodium carbonate soluble pectins from strawberry fruits were digested with endo-polygalacturonase M2 from Aspergillus aculeatus and visualized by AFM. A gradual decrease in the length of chains was observed as result of the treatment, reaching a minimum L N value of 22nm. The branches were not visible after 2h of enzymatic incubation. The size of complexes also diminished significantly with the enzymatic digestion. A treatment to hydrolyse rhamnogalacturonan II borate diester bonds neither affected chains length or branching nor complex size but reduced the density of aggregates. These results suggest that chains are formed by a mixture of homogalacturonan and more complex molecules composed by a homogalacturonan unit linked to an endo-PG resistant unit. Homogalacturonan is a structural component of the complexes and rhamnogalacturonan II could be involved in their formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baslow, Morris H
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.
Structural analysis and design for the development of floating photovoltaic energy generation system
NASA Astrophysics Data System (ADS)
Yoon, S. J.; Joo, H. J.; Kim, S. H.
2018-06-01
In this paper, we discussed the structural analysis and design for the development of floating photovoltaic energy generation system. Series of research conducted to develop the system from the analysis and design of the structural system to the installation of the system discussed. In the structural system supporting solar panels PFRP materials and SMC FRP materials used. A unit module structure is fabricated and then the unit module structures are connected each other to assemble whole PV energy generation complex. This system connected directly to the power grid system. In addition, extensive monitoring for the efficiency of electricity generation and the soundness of the structural system is in progress for the further system enhancement.
Meriç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Ozden, Ahmet Utku
2012-01-01
The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.
High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.
Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt; Bominaar, Emile L; Yano, Junko; Hendrich, Michael P; Borovik, A S
2015-04-28
The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.
Splitting Terraced Houses Into Single Units Using Oblique Aerial Imagery
NASA Astrophysics Data System (ADS)
Dahlke, D.
2017-05-01
This paper introduces a method to subdivide complex building structures like terraced houses into single house units comparable to units available in a cadastral map. 3D line segments are detected with sub-pixel accuracy in traditional vertical true orthomosaics as well as in innovative oblique true orthomosaics and their respective surface models. Hereby high gradient strengths on roofs as well as façades are taken into account. By investigating the coplanarity and frequencies within a set of 3D line segments, individual cut lines for a building complex are found. The resulting regions ideally describe single houses and thus the object complexity is reduced for subsequent topological, semantical or geometrical considerations. For the chosen study area with 70 buidling outlines a hit rate of 80% for cut lines is achieved.
Weems, R.E.; Lewis, W.C.
2002-01-01
Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.
Quality Improvement Process in a Large Intensive Care Unit: Structure and Outcomes.
Reddy, Anita J; Guzman, Jorge A
2016-11-01
Quality improvement in the health care setting is a complex process, and even more so in the critical care environment. The development of intensive care unit process measures and quality improvement strategies are associated with improved outcomes, but should be individualized to each medical center as structure and culture can differ from institution to institution. The purpose of this report is to describe the structure of quality improvement processes within a large medical intensive care unit while using examples of the study institution's successes and challenges in the areas of stat antibiotic administration, reduction in blood product waste, central line-associated bloodstream infections, and medication errors. © The Author(s) 2015.
Complexes of carboxyl-containing polymer and monosubstituted bipyridinium salts
NASA Astrophysics Data System (ADS)
Merekalova, N. D.; Bondarenko, G. N.; Krylsky, D. W.; Zakirov, M. I.; Talroze, R. V.
2013-09-01
Semi-empirical PM3 method for the quantum calculations of molecular electronic structure based on NDDO integral approximation is used to investigate the complex formation of monosubstituted 4,4‧-bipyridinium salts BpyR (Hal) containing a halide anion interacting with the quaternary nitrogen atom and carboxylic group of the two-units construct. Significant effect of the BpyR (Hal) electronic structure is unveiled that contributes in two different structures of these salts, namely, partial charge transfer complex and ion pair structure, both having stable energy minima. We demonstrate that (i) the structure of the N-substituent modulates the energy and electronic characteristics of monosubstituted salts BpyR with chlorine and bromine anions and (ii) the coulomb interactions between quaternary N-atom, halogen anion, and the proton of carboxylic group stimulate the transformation of the charge transfer complex into the ion pair structure. Results of calculations are compared with the experimental FTIR spectra of blends of BpyR(Hal) with Eudragit copolymer.
Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.
Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji
2015-05-21
Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.
3D Complex: A Structural Classification of Protein Complexes
Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A
2006-01-01
Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. PMID:17112313
Preparation, Analysis, and Characterization of Some Transition Metal Complexes--A Holistic Approach
ERIC Educational Resources Information Center
Blyth, Kristy M.; Mullings, Lindsay R.; Philips, David N.; Pritchard, David; van Bronswijk, Wilhelm
2005-01-01
The chemical and instrumental methods used in the study of transition-metal complexes provide a complete determination of their structure, bonding, and properties. It unites concepts of analytical, inorganic, and physical chemistry in a way that students might appreciate that these areas of chemistry are not different.
Berns, Veronica M; Fredrickson, Daniel C
2014-10-06
Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.
Analysis and application of classification methods of complex carbonate reservoirs
NASA Astrophysics Data System (ADS)
Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei
2018-06-01
There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.
2012-07-10
recently the structures of the LH2 complexes has revealed the nonameric and octameric arrangement of repeating units consisting of two apoproteins and...Compartimentalization of light -harvesting and charge separation. The antenna complexes( LH2 ,LH1-RC) efficiently realize various photosynthetic functions using...cofactors (BChl a and carotenoid) assembled into the apoproteins (LH1 and LH2 ). The light-harvesting mechanisms in these light-harvesting complexes have
Baslow, Morris H.
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525
Mirus, Benjamin B.
2015-01-01
Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.
Qian, M.; Haser, R.; Payan, F.
1995-01-01
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA. PMID:7613472
The molecular structure of the isopoly complex ion, decavanadate (V10O286-)
Evans, H.T.
1966-01-01
The structure of the decavanadate ion V10O286- has been found by a determination of the crystal structure of K2Zn2V10O28?? 16H2O. The soluble, orange crystals are triclinic with space group P1 and have a unit cell with a = 10.778 A, b = 11.146 A, c = 8.774 A, ?? = 104?? 57???, ?? = 109?? 3???', and ?? = 65?? 0??? (Z = 1). The structure was solved from a three-dimensional Patterson map based on 5143 Weissenberg-film data. The full-matrix, least-squares refinement gave R = 0.094 and ?? for V-O bond lengths of 0.008 A. The unit cell contains one V10O286- unit, two Zn(H2O)62+ groups, two K+ ions, and four additional water molecules. The decavanadate ion is an isolated group of ten condensed VO6 octahedra, six in a rectangular 2 x 3 array sharing edges, and four more, two fitted in above and two below by sharing sloping edges. The structure, which is based on a sodium-chloride-like arrangement of V and O atoms, has a close relationship to other isopoly complex molybdates, niobates, and tantalates. Strong distortions in the VO6 octahedra are analogous to square-pyramid and other special coordination features known in other vanadate structures.
NASA Astrophysics Data System (ADS)
Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng
2015-12-01
Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.
Family Structure & Social Change: A Preparation for Further Study Course.
ERIC Educational Resources Information Center
Donovan, Cathy
This instructional unit, which is intended for Australians working toward a Certificate in General Education for Adults, contains activities to help learners develop the skills and knowledge to read and write complex texts while examining human relationships and the family. Aimed at both native and nonnative English speakers, the unit contains…
ERIC Educational Resources Information Center
Auchlin, Antoine
1981-01-01
Examines morphemic markers that signal the opening and closing of discourse units, emphasizing their complexity and their central role for a descriptive model of conversation. Then proceeds to analyze their functions within the overall structure of conversation, classifying them according to their properties and uses. Societe Nouvelle Didier…
Sano, Yohei; Weitz, Andrew C.; Ziller, Joseph W.; Hendrich, Michael P.; Borovik, A.S.
2013-01-01
Heterobimetallic cores are important unit within the active sites of metalloproteins, but are often difficult to duplicate in synthetic systems. We have developed a synthetic approach for the preparation of a complex with a MnII–(μ-OH)–FeIII core, in which the metal centers have different coordination environments. Structural and physical data support the assignment of this complex as a heterobimetallic system. Comparison with the analogous homobimetallic complexes, those containing MnII–(μ-OH)–MnIII and FeII–(μ-OH)–FeIII cores, further supports this assignment. PMID:23992041
NASA Astrophysics Data System (ADS)
Abramov, Ivan
2018-03-01
Development of design documentation for a future construction project gives rise to a number of issues with the main one being selection of manpower for structural units of the project's overall implementation system. Well planned and competently staffed integrated structural construction units will help achieve a high level of reliability and labor productivity and avoid negative (extraordinary) situations during the construction period eventually ensuring improved project performance. Research priorities include the development of theoretical recommendations for enhancing reliability of a structural unit staffed as an integrated construction crew. The author focuses on identification of destabilizing factors affecting formation of an integrated construction crew; assessment of these destabilizing factors; based on the developed mathematical model, highlighting the impact of these factors on the integration criterion with subsequent identification of an efficiency and reliability criterion for the structural unit in general. The purpose of this article is to develop theoretical recommendations and scientific and methodological provisions of an organizational and technological nature in order to identify a reliability criterion for a structural unit based on manpower integration and productivity criteria. With this purpose in mind, complex scientific tasks have been defined requiring special research, development of corresponding provisions and recommendations based on the system analysis findings presented herein.
NASA Astrophysics Data System (ADS)
Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.
2004-05-01
Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Youjun; Graduate School, Chinese Academy of Sciences, Beijing; Qi, Jianxun
2006-01-01
X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffractsmore » X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.« less
Idili, Andrea
2017-01-01
Abstract DNA nanotechnology takes advantage of the predictability of DNA interactions to build complex DNA-based functional nanoscale structures. However, when DNA functional and responsive units that are based on non-canonical DNA interactions are employed it becomes quite challenging to predict, understand and control their thermodynamics. In response to this limitation, here we demonstrate the use of isothermal urea titration experiments to estimate the free energy involved in a set of DNA-based systems ranging from unimolecular DNA-based nanoswitches to more complex DNA folds (e.g. aptamers) and nanodevices. We propose here a set of fitting equations that allow to analyze the urea titration curves of these DNA responsive units based on Watson–Crick and non-canonical interactions (stem-loop, G-quadruplex, triplex structures) and to correctly estimate their relative folding and binding free energy values under different experimental conditions. The results described herein will pave the way toward the use of urea titration experiments in the field of DNA nanotechnology to achieve easier and more reliable thermodynamic characterization of DNA-based functional responsive units. More generally, our results will be of general utility to characterize other complex supramolecular systems based on different biopolymers. PMID:28605461
Robinson, Colin; Connell, Simon D.
2017-01-01
Investigations of developing enamel crystals using Atomic and Chemical Force Microscopy (AFM, CFM) have revealed a subunit structure. Subunits were seen in height images as collinear swellings about 30 nM in diameter on crystal surfaces. In friction mode they were visible as positive regions. These were similar in size (30–50 nM) to collinear spherical structures, presumably mineral matrix complexes, seen in developing enamel using a freeze fracturing/freeze etching procedure. More detailed AFM studies on mature enamel suggested that the 30–50 nM structures were composed of smaller units, ~10–15 nM in diameter. These were clustered in hexagonal or perhaps a spiral arrangement. It was suggested that these could be the imprints of initiation sites for mineral precipitation. The investigation aimed at examining original freeze etched images at high resolution to see if the smaller subunits observed using AFM in mature enamel were also present in developing enamel i.e., before loss of the organic matrix. The method used was freeze etching. Briefly samples of developing rat enamel were rapidly frozen, fractured under vacuum, and ice sublimed from the fractured surface. The fractured surface was shadowed with platinum or gold and the metal replica subjected to high resolution TEM. For AFM studies high-resolution tapping mode imaging of human mature enamel sections was performed in air under ambient conditions at a point midway between the cusp and the cervical margin. Both AFM and freeze etch studies showed structures 30–50 nM in diameter. AFM indicated that these may be clusters of somewhat smaller structures ~10–15 nM maybe hexagonally or spirally arranged. High resolution freeze etching images of very early enamel showed ~30–50 nM spherical structures in a disordered arrangement. No smaller units at 10–15 nM were clearly seen. However, when linear arrangements of 30–50 nM units were visible the picture was more complex but also smaller units including ~10–15 nM units could be observed. Conclusions: Structures ~10–15 nM in diameter were detected in developing enamel. While the appearance was complex, these were most evident when the 30–5 nM structures were in linear arrays. Formation of linear arrays of subunits may be associated with the development of mineral initiation sites and attendant processing of matrix proteins. PMID:28670283
On some genetic consequences of social structure, mating systems, dispersal, and sampling
Parreira, Bárbara R.; Chikhi, Lounès
2015-01-01
Many species are spatially and socially organized, with complex social organizations and dispersal patterns that are increasingly documented. Social species typically consist of small age-structured units, where a limited number of individuals monopolize reproduction and exhibit complex mating strategies. Here, we model social groups as age-structured units and investigate the genetic consequences of social structure under distinct mating strategies commonly found in mammals. Our results show that sociality maximizes genotypic diversity, which contradicts the belief that social groups are necessarily subject to strong genetic drift and at high risk of inbreeding depression. Social structure generates an excess of genotypic diversity. This is commonly observed in ecological studies but rarely reported in population genetic studies that ignore social structure. This heterozygosity excess, when detected, is often interpreted as a consequence of inbreeding avoidance mechanisms, but we show that it can occur even in the absence of such mechanisms. Many seemly contradictory results from ecology and population genetics can be reconciled by genetic models that include the complexities of social species. We find that such discrepancies can be explained by the intrinsic properties of social groups and by the sampling strategies of real populations. In particular, the number of social groups and the nature of the individuals that compose samples (e.g., nonreproductive and reproductive individuals) are key factors in generating outbreeding signatures. Sociality is an important component of population structure that needs to be revisited by ecologists and population geneticists alike. PMID:26080393
Ordovician volcanic and plutonic complexes of the Sakmara allochthon in the southern Urals
NASA Astrophysics Data System (ADS)
Ryazantsev, A. V.; Tolmacheva, T. Yu.
2016-11-01
The Ordovician terrigenous, volcanic-sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro-tonalite-trondhjemite complex and the basalt-andesite-rhyolite sequence with massive sulfide mineralization make up a volcanic-plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.
Bioinspired Organic PV Cells Using Photosynthetic Pigment Complex for Energy Harvesting Materials
2010-05-10
ultrafast laser spectroscopy. More recently the structures of the LH2 complexes has revealed the nonameric or octameric arrangement of repeating units...Scheme 1. Compartimentalization of light harvesting and charge separation. The antenna complexes( LH2 ,LH1-RC) efficiently realize various...photosynthetic functions using cofactors (BChl a and carotenoid) assembled into the apoproteins (LH1 and LH2 ). The light-harvesting mechanisms in these
Cescutti, Paola; Foschiatti, Michela; Furlanis, Linda; Lagatolla, Cristina; Rizzo, Roberto
2010-07-02
The repeating unit of cepacian, the exopolysaccharide produced by the majority of the microorganisms belonging to the Burkholderia cepacia complex, was isolated from inner bacterial membranes and investigated by mass spectrometry, with and without prior derivatisation. Interpretation of the mass spectra led to the determination of the biological repeating unit primary structure, thus disclosing the nature of the oligosaccharide produced in vivo. Moreover, mass spectra recorded on the native sample revealed that acetyl substitution was very variable, producing a mixture of repeating units containing zero to four acyl groups. At the same time, finding acetylated oligosaccharides showed that binding of these substituents occurred in the cellular periplasmic space, before the polymerisation process took place. In the chromatographic peak containing the repeating unit, oligosaccharides shorter than the repeating unit co-eluted. Mass spectrometric analysis showed that they were biosynthetic intermediates of the repeating unit and further investigation revealed the biosynthetic sequence of cepacian building block. Copyright 2010 Elsevier Ltd. All rights reserved.
Real, Kevin; Fay, Lindsey; Isaacs, Kathy; Carll-White, Allison; Schadler, Aric
2018-01-01
This study utilizes systems theory to understand how changes to physical design structures impact communication processes and patient and staff design-related outcomes. Many scholars and researchers have noted the importance of communication and teamwork for patient care quality. Few studies have examined changes to nursing station design within a systems theory framework. This study employed a multimethod, before-and-after, quasi-experimental research design. Nurses completed surveys in centralized units and later in decentralized units ( N = 26 pre , N = 51 post ). Patients completed surveys ( N = 62 pre ) in centralized units and later in decentralized units ( N = 49 post ). Surveys included quantitative measures and qualitative open-ended responses. Patients preferred the decentralized units because of larger single-occupancy rooms, greater privacy/confidentiality, and overall satisfaction with design. Nurses had a more complex response. Nurses approved the patient rooms, unit environment, and noise levels in decentralized units. However, they reported reduced access to support spaces, lower levels of team/mentoring communication, and less satisfaction with design than in centralized units. Qualitative findings supported these results. Nurses were more positive about centralized units and patients were more positive toward decentralized units. The results of this study suggest a need to understand how system components operate in concert. A major contribution of this study is the inclusion of patient satisfaction with design, an important yet overlooked fact in patient satisfaction. Healthcare design researchers and practitioners may consider how changing system interdependencies can lead to unexpected changes to communication processes and system outcomes in complex systems.
Lutz, Martin
2010-11-01
Tris(ethylenediamine)zinc(II) sulfate, [Zn(C(2)H(8)N(2))(3)]SO(4), (I), undergoes a reversible solid-solid phase transition during cooling, accompanied by a lowering of the symmetry from high-trigonal P31c to low-trigonal P3 and by merohedral twinning. The molecular symmetries of the cation and anion change from 32 (D(3)) to 3 (C(3)). This lower symmetry allows an ordered sulfate anion and generates in the complex cation two independent N atoms with significantly different geometries. The twinning is the same as in the corresponding Ni complex [Jameson et al. (1982). Acta Cryst. B38, 3016-3020]. The low-temperature phase of tris(ethylenediamine)copper(II) sulfate, [Cu(C(2)H(8)N(2))(3)]SO(4), (II), has only triclinic symmetry and the unit-cell volume is doubled with respect to the room-temperature structure in P31c. (II) was refined as a nonmerohedral twin with five twin domains. The asymmetric unit contains two independent formula units, and all cations and anions are located on general positions with 1 (C(1)) symmetry. Both molecules of the Cu complex are in elongated octahedral geometries because of the Jahn-Teller effect. This is in contrast to an earlier publication, which describes the complex as a compressed octahedron [Bertini et al. (1979). J. Chem. Soc. Dalton Trans. pp. 1409-1414].
ERIC Educational Resources Information Center
Jocuns, Andrew
2009-01-01
Participation has presented a complex unit of analysis for interactional sociolinguistics. In this study I add another dimension to participation by considering recent theories related to sociocultural activity theory--mediated discourse analysis and distributed cognition. Drawing on examples from "maguru panggul", the traditional…
Matthew B. Russell; Christopher W. Woodall; Kevin M. Potter; Brian F. Walters; Grant M. Domke; Christopher M. Oswalt
2017-01-01
Forest understories across the northern United States (US) are a complex of tree seedlings, endemic forbs, herbs, shrubs, and introduced plant species within a forest structure defined by tree and forest floor attributes. The substantial increase in white-tailed deer (Odocoileus virginianus Zimmerman) populations over the past decades has resulted...
ERIC Educational Resources Information Center
Lee, Yoon-Joo; Park, Hye Jun
2016-01-01
The current study aimed to explore how cultural contexts influence the attitudes of mothers raising children with disabilities. Semi-structured in-depth interviews of seven immigrant Korean mothers regarding their personal experiences within the complexities of the special education system in the United States were analysed to identify factors…
Ferraroni, Marta; Da Vela, Stefano; Kolvenbach, Boris A; Corvini, Philippe F X; Scozzafava, Andrea
2017-05-01
The crystal structure of hydroquinone 1,2-dioxygenase, a Fe(II) ring cleaving dioxygenase from Sphingomonas sp. strain TTNP3, which oxidizes a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes, has been solved by Molecular Replacement, using the coordinates of PnpCD from Pseudomonas sp. strain WBC-3. The enzyme is a heterotetramer, constituted of two subunits α and two β of 19 and 38kDa, respectively. Both the two subunits fold as a cupin, but that of the small α subunit lacks a competent metal binding pocket. Two tetramers are present in the asymmetric unit. Each of the four β subunits in the asymmetric unit binds one Fe(II) ion. The iron ion in each β subunit is coordinated to three protein residues, His258, Glu264, and His305 and a water molecule. The crystal structures of the complexes with the substrate methylhydroquinone, obtained under anaerobic conditions, and with the inhibitors 4-hydroxybenzoate and 4-nitrophenol were also solved. The structures of the native enzyme and of the complexes present significant differences in the active site region compared to PnpCD, the other hydroquinone 1,2-dioxygenase of known structure, and in particular they show a different coordination at the metal center. Copyright © 2017 Elsevier B.V. All rights reserved.
Chandrasekhar, Sosale; Naik, Tangali R Ravikumar; Nayak, Susanta K; Row, Tayur N Guru
2010-06-15
The titled complex, obtained by co-crystallization (EtOH/25 degrees C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A-T pair involves a Hoogsteen interaction, and the other a Watson-Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson-Crick base pair raises intriguing questions about the basis of the DNA double helix. Copyright 2010 Elsevier Ltd. All rights reserved.
Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang
2017-01-01
The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing “bottleneck”. This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing. PMID:28880229
Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang
2017-09-07
The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing "bottleneck". This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing.
Snow, C.A.; Wakabayashi, J.; Ernst, W.G.; Wooden, J.L.
2010-01-01
We present new U/Pb ages for detrital zircons separated from six quartzose metagraywackes collected from different Franciscan Complex imbricate nappes around San Francisco Bay. All six rocks contain a broad spread of Late Jurassic-Cretaceous grains originating from the Klamath-Sierra Nevada volcanic-plutonic arc. Units young structurally downward, consistent with models of progressive underplating and offscraping within a subduction complex. The youngest specimen is from the structurally lowest San Bruno Mountain sheet; at 52 Ma, it evidently was deposited during the Eocene. None of the other metagraywackes yielded zircon ages younger than 83 Ma. Zircons from both El Cerrito units are dominated by ca. 100-160 Ma grains; the upper El Cerrito also contains several grains in the 1200-1800 Ma interval. These samples are nearly identical to 97 Ma metasedimentary rock from the Hunters Point shear zone. Zircon ages from this m??lange block exhibit a broad distribution, ranging from 97 to 200 Ma, with only a single pre-Mesozoic age. The Albany Hill specimen has a distribution of pre-Mesozoic grains from 1300 to 1800 Ma, generally similar to that of the upper El Cerrito sheet; however, it contains zircons as young as 83 Ma, suggesting that it is significantly younger than the upper El Cerrito unit. The Skaggs Spring Schist is the oldest studied unit; its youngest analyzed grains were ca. 144 Ma, and it is the only investigated specimen to display a significant Paleozoic detrital component. Sedimentation and subduction-accretion of this tract of the trench complex took place along the continental margin during Early to early-Late Cretaceous time, and perhaps into Eocene time. Franciscan and Great Valley deposition attests to erosion of an Andean arc that was active over the entire span from ca. 145 to 80 Ma, with an associated accretionary prism built by progressive underthrusting. We use these new data to demonstrate that the eastern Franciscan Complex in the northern and central Coast Ranges is a classic accretionary prism, where younger, structurally lower allochthons are exposed on the west, and older, structurally higher allochthons occur to the east, in the heavily studied San Francisco Bay area. ?? 2009 Geological Society of America.
[Continuity and discontinuity of the geomerida: the bionomic and biotic aspects].
Kafanov, A I
2005-01-01
The view of the spatial structure of the geomerida (Earth's life cover) as a continuum that prevails in modern phytocoenology is mostly determined by a physiognomic (landscape-bionomic) discrimination of vegetation components. In this connection, geography of life forms appears as subject of the landscapebionomic biogeography. In zoocoenology there is a tendency of synthesis of alternative concepts based on the assumption that there are no absolute continuum and absolute discontinuum in the organic nature. The problem of continuum and discontinuum of living cover being problem of scale aries from fractal structure of geomerida. This problem arises from fractal nature of the spatial structure of geomerida. The continuum mainly belongs to regularities of topological order. At regional and subregional scale the continuum of biochores is rather rare. The objective evidences of relative discontinuity of the living cover are determined by significant alterations of species diversity at the regional, subregional and even topological scale Alternatively to conventionally discriminated units in physionomically continuous vegetation, the same biotic complexes, represented as operational units of biogeographical and biocenological zoning, are distinguished repeatedly and independently by different researchers. An area occupied by certain flora (fauna, biota) could be considered as elementary unit of biotic diversity (elementary biotic complex).
NASA Astrophysics Data System (ADS)
Onwudiwe, Damian C.; Hosten, Eric C.
2018-01-01
The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.
Pullen, Anthony E.; Faulmann, Christophe; Pokhodnya, Konstantin I.; Cassoux, Patrick; Tokumoto, Madoka
1998-12-28
A series of metal bis-mnt complexes (mnt = 1,2-dithiolatomaleonitrile) with the trimethylammonium methylferrocene cation have been synthesized and characterized using X-ray diffraction, magnetic susceptibility, and differential scanning calorimetry measurements. The complexes have the formulas (FcCH(2)NMe(3))[Ni(mnt)(2)] (2), (FcCH(2)NMe(3))[Pt(mnt)(2)] (3), and (FcCH(2)NMe(3))(2)[Cu(mnt)(2)] (4) (where Fc = ferrocene). At 300 K, the crystal structures of 1:1 complexes 2 and 3 are very similar. They consist of pairs of [M(mnt)(2)](-) in a slipped configuration packed in stacks. Each [M(mnt)(2)](-) stack is separated from adjacent stacks by two columns of cations. Within the pairs, the [M(mnt)(2)](-) anions interact via short M.S contacts, while there are no short contacts between the pairs. Complex 4, which has a 2:1 stoichiometry, exhibits a markedly different packing arrangement of the anionic units. Due to the special position of the Cu atom in the asymmetric unit cell, [Cu(mnt)(2)](2)(-) dianions are completely isolated from each other. The magnetic susceptibility behavior of the nickel complex is consistent with the presence of magnetically isolated, antiferromagnetically (AF) coupled [Ni(mnt)(2)](-) pairs with the AF exchange parameter, J = -840 cm(-)(1). The platinum complex undergoes an endothermic structural phase transition (T(p)) at 247 K. Below T(p) its structure is characterized by the formation of magnetically isolated [Pt(mnt)(2)](2)(2)(-) dimers in an eclipsed configuration with short Pt.Pt and S.S contacts between monomers. In the magnetic properties, the structural changes reveal themselves as an abrupt susceptibility drop implying a substantial increase of the AF exchange parameter. A mechanism of the phase transition in the platinum compound is proposed. For compound 4, paramagnetic behavior is observed.
2013-05-20
More recently the structures of the LH2 complexes has revealed the nonameric and octameric arrangement of repeating units consisting of two...Compartimentalization of light -harvesting and charge separation. The antenna complexes( LH2 ,LH1-RC) efficiently realize various photosynthetic functions...using cofactors (BChl a and carotenoid) assembled into the apoproteins (LH1 and LH2 ). The light-harvesting mechanisms in these light-harvesting
Komiya; Maruyama; Masuda; Nohda; Hayashi; Okamoto
1999-09-01
A 1&rcolon;5000 scale mapping was performed in the Isukasia area of the ca. 3.8-Ga Isua supracrustal belt, southern West Greenland. The mapped area is divided into three units bounded by low-angle thrusts: the Northern, Middle, and Southern Units. The Southern Unit, the best exposed, is composed of 14 subunits (horses) with similar lithostratigraphy, bound by layer-parallel thrusts. Duplex structures are widespread in the Isua belt and vary in scale from a few meters to kilometers. Duplexing proceeded from south to north and is well documented in the relationship between link- and roof-thrusts. The reconstructed lithostratigraphy of each horse reveals a simple pattern, in ascending order, of greenstone with low-K tholeiitic composition with or without pillow lava structures, chert/banded iron-formation, and turbidites. The cherts and underlying low-K tholeiites do not contain continent- or arc-derived material. The lithostratigraphy is quite similar to Phanerozoic "oceanic plate stratigraphy," except for the abundance of mafic material in the turbidites. The evidence of duplex structures and oceanic plate stratigraphy indicates that the Isua supracrustal belt is the oldest accretionary complex in the world. The dominantly mafic turbidite composition suggests that the accretionary complex was formed in an intraoceanic environment comparable to the present-day western Pacific Ocean. The duplex polarity suggests that an older accretionary complex should occur to the south of the Isua complex. Moreover, the presence of seawater (documented by a thick, pillow, lava unit at the bottom of oceanic plate stratigraphy) indicates that the surface temperature was less than ca. 100 degrees C in the Early Archean. The oceanic geotherm for the Early Archean lithosphere as a function of age was calculated based on a model of transient half-space cooling at given parameters of surface and mantle temperatures of 100 degrees and 1450 degrees C, respectively, suggesting that the Archean oceanic lithosphere was rigid. These conclusions-rigidity and lateral plate movement-support the idea that the modern style of plate tectonics was in operation only 0.7-0.8 G.yr. after the formation of the Earth.
NASA Astrophysics Data System (ADS)
Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.
2016-12-01
Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, K.S.; Kent, J.C.; Parthasarathy, N.
1980-10-01
Chromatin is a nucleohistone complex which exhibits a repeat unit structure as inferred from nuclease digestion studies. The repeat unit, or nucleosome, is defined as approx. 200 base pairs of DNA wrapped about the surface of an octameric histone complex (two copies each of the histones H2A, H2B, H3, and H4). We report in this communication preliminary studies on the conformation of chromatin mononucleosomes and oligonucleosomes as a function of temperature and ionic strength. The methods used were conductivity, fluorescence of bound proflavine, and quasielastic light scattering.
Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu
2016-12-06
The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.
A new similarity measure for link prediction based on local structures in social networks
NASA Astrophysics Data System (ADS)
Aghabozorgi, Farshad; Khayyambashi, Mohammad Reza
2018-07-01
Link prediction is a fundamental problem in social network analysis. There exist a variety of techniques for link prediction which applies the similarity measures to estimate proximity of vertices in the network. Complex networks like social networks contain structural units named network motifs. In this study, a newly developed similarity measure is proposed where these structural units are applied as the source of similarity estimation. This similarity measure is tested through a supervised learning experiment framework, where other similarity measures are compared with this similarity measure. The classification model trained with this similarity measure outperforms others of its kind.
Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke
G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman
2011-01-01
We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...
Innovative Constructions in Dutch Turkish: An Assessment of Ongoing Contact-Induced Change
ERIC Educational Resources Information Center
Dogruöz, A. Seza; Backus, Ad
2009-01-01
Turkish as spoken in the Netherlands (NL-Turkish) sounds "different" (unconventional) to Turkish speakers in Turkey (TR-Turkish). We claim that this is due to structural contact-induced change that is, however, located within specific lexically complex units copied from Dutch. This article investigates structural change in NL-Turkish…
Muegge, I; Martin, Y C
1999-03-11
A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach presented here lies in its generality as no knowledge about measured binding affinities is needed to derive atomic interaction potentials. The use of the new scoring function in docking studies is outlined.
Sunnybrook's matrix organizational model--moving ahead.
Ellis, P H; Gaskin, P M
1988-01-01
Traditionally, hospitals have denied the true intricacy of their organization by forcing all reporting relationships into a single structure. To address this complexity, Sunnybrook has developed three independent, yet interrelated, organization dimensions. Three structures--the traditional, the clinical unit and the programmatic dimension--provide a better link of accountability by holding departments responsible for the efficiency of their operations, holding physicians accountable for the resource implication of volume and case mix, and ensuring that the activities of the hospital's departments and clinical units are in line with hospital's overall mission and programs.
Iwata, Momi; Lee, Yang; Yamashita, Tetsuo; Yagi, Takao; Iwata, So; Cameron, Alexander D; Maher, Megan J
2012-09-18
Bioenergy is efficiently produced in the mitochondria by the respiratory system consisting of complexes I-V. In various organisms, complex I can be replaced by the alternative NADH-quinone oxidoreductase (NDH-2), which catalyzes the transfer of an electron from NADH via FAD to quinone, without proton pumping. The Ndi1 protein from Saccharomyces cerevisiae is a monotopic membrane protein, directed to the matrix. A number of studies have investigated the potential use of Ndi1 as a therapeutic agent against complex I disorders, and the NDH-2 enzymes have emerged as potential therapeutic targets for treatments against the causative agents of malaria and tuberculosis. Here we present the crystal structures of Ndi1 in its substrate-free, NAD(+)- and ubiquinone- (UQ2) complexed states. The structures reveal that Ndi1 is a peripheral membrane protein forming an intimate dimer, in which packing of the monomeric units within the dimer creates an amphiphilic membrane-anchor domain structure. Crucially, the structures of the Ndi1-NAD(+) and Ndi1-UQ2 complexes show overlapping binding sites for the NAD(+) and quinone substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng
2015-12-15
Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less
Liberty and Law: The Nature of Individual Rights. Teacher and Student Manuals.
ERIC Educational Resources Information Center
Casey, Dayle A.
This social studies unit considers the nature and sources of the individual rights of American citizenship as well as the complexity of the federal system as it operates on the liberties of the individual and relates to state government. The unit is structured chronologically to indicate that the history of liberty is largely the history of legal…
Pauling, L
1991-01-01
The low-Q peaks on three pulsed-neutron powder patterns (total, U differential, and Pd differential) of the icosahedral quasicrystal Pd3SiU have been indexed on the basis of an assumed cubic structure of the crystals that by icosahedral twinning form the quasicrystal. The primitive unit cube is found to have edge length 56.20 A and to contain approximately 12,100 atoms. Similar analyses of pulsed-neutron patterns of Al55Cu10Li35, Al55Cu10Li30Mg5, and Al510Cu125Li235Mg130 give values of the cube edge length 58.3, 58.5, and 58.4 A, respectively, with approximately 11,650 atoms in the unit cube. It is suggested that the unit contains eight complexes in the beta-W positions, plus some small interstitial groups of atoms, with each complex consisting of a centered icosahedron of 13 clusters, each of 116 atoms with the icosahedral structure found in the body-centered cubic crystal Mg32(Al,Zn)49. PMID:11607201
Pauling, L
1991-08-01
The low-Q peaks on three pulsed-neutron powder patterns (total, U differential, and Pd differential) of the icosahedral quasicrystal Pd3SiU have been indexed on the basis of an assumed cubic structure of the crystals that by icosahedral twinning form the quasicrystal. The primitive unit cube is found to have edge length 56.20 A and to contain approximately 12,100 atoms. Similar analyses of pulsed-neutron patterns of Al55Cu10Li35, Al55Cu10Li30Mg5, and Al510Cu125Li235Mg130 give values of the cube edge length 58.3, 58.5, and 58.4 A, respectively, with approximately 11,650 atoms in the unit cube. It is suggested that the unit contains eight complexes in the beta-W positions, plus some small interstitial groups of atoms, with each complex consisting of a centered icosahedron of 13 clusters, each of 116 atoms with the icosahedral structure found in the body-centered cubic crystal Mg32(Al,Zn)49.
Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa
2017-10-15
An unambiguous structural characterization of the water-soluble Aureobasidium pullulans β-(1→3, 1→6)-glucan is yet to be achieved, although this β-(1→3, 1→6)-glucan is expected to exhibit excellent biofunctional properties. Thus, we herein report the elucidation of the primary structure of the A. pullulans β-(1→3, 1→6)-glucan using nuclear magnetic resonance spectroscopy, followed by comparison of the obtained structure with that of schizophyllan (SPG). Structural characterization of the A. pullulans β-(1→3, 1→6)-glucan revealed that the structural units are a β-(1→3)-d-glucan backbone with four β-(1→6)-d-glucosyl side branching units every six residues. In addition, circular dichroism spectroscopic analysis revealed that the β-(1→3, 1→6)-glucan interacted with polyadenylic acid (poly(A)) chains in DMSO solution to form a complex similar to that obtained in the complexation of SPG/poly(A). This finding indicates that β-(1→3, 1→6)-glucan forms a triple-helical conformation in aqueous solution but exhibits a random coil structure in DMSO solution, which is similar to the behavior of SPG. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pladzyk, Agnieszka; Ponikiewski, Łukasz; Stanulewicz, Natalia; Hnatejko, Zbigniew
2013-12-01
Three new zinc(II) and cadmium(II) silanethiolate complexes [Zn{SSi(OtBu)3}2(μ-bpea)ṡCH3CN]n1, [Cd{SSi(OtBu)3}2(μ-bpea)ṡ2CHCl3]n2 and [Cd{SSi(OtBu)3}2(μ-bpey)ṡC7H8]n3 with two bypiridine derivatives, [bpea = 1,2-bis(4-pyridyl)ethane and bpey = 1,2-bis(4-pyridyl)ethylene] have been synthesized and structurally characterized by X-ray crystallography. Their structures and properties have also been established with elemental analysis, IR, TGA and photoluminescent studies. Complexes 1-3 exhibit one-dimensional (1D) chain structures in which [M{SSi(OtBu)3}2] (M = Zn, Cd) units are held together by bpea or bpey bridges, respectively. Complexes are stable up to 300 °C and display blue emissions.
NASA Astrophysics Data System (ADS)
Moustaka, Eleni; Soukis, Konstantinos; Huet, Benjamin; Lozios, Stylianos; Magganas, Andreas
2014-05-01
The Attic-Cycladic complex (central Aegean Sea, Greece) experienced profound extension since at least the Oligo-Miocene boundary during which the previously thickened crust was reworked by a series of detachments forming the NE directed North Cycladic Detachment System (NCDS) and the SSW directed West Cycladic Detachment System (WCDS). South Evvia Island is located at the northwestern part of the Attic Cycladic complex linking the highly thinned and polymetamorphosed central part of the complex with mainland Greece. Furthermore, greenschists-facies retrograde metamorphism has only partially overprinted the HP mineral assemblages. Consequently, it is an ideal area to study tectonic processes associated with subduction, HP metamorphism and subsequent exhumation from eclogitic depths to the surface. Geological mapping in 1:2:000 scale revealed that the tectonostratigraphy of Mt. Ochi includes three distinct units all metamorphosed in HP conditions followed by greenschist facies overprint. These units are from top to bottom a) the Ochi Unit, a thick metavolcanosedimentary sequence with some intensely folded cipoline marble intercalations and isolated occurrences of metabasic rocks b) the ophiolitic mélange (metagabbros, metawherlites, peridotites, metabasites within a metasedimentary+serpentinite matrix) and c) the lowermost Styra Unit, a cipoline marble-dominated unit with thin mica schists and rare quartzitic layers often boudinaged. The thrust fault that was responsible for the juxtaposition of these three units acted in an early stage during HP metamorphism and it was isoclinally folded and sheared by the following syn-metamorphic deformation events. Detailed structural study in meso- and microscopic scale combined with petrological and geochemical analyses of the Mt Ochi rocks led to the distinction of at least three syn-metamorphic and two post-metamorphic deformation episodes that affected all units. The oldest structure identified is a relic foliation formed by the mineral assemblage Na-amphibole + lawsonite seen as inclusion in epidote porphyroblasts within the melange. It could represent a structure of the prograde path but it could also have formed during the peak HP event. This is followed by successive folding episodes that are related to axial plane foliations and a ~E-W intersection/stretching lineation formed by typical blueschist- to epidote-blueschist facies mineral assemblages. The main foliation that can be observed in all three units is a greenschist-facies axial plane foliation accompanied by a ~ENE-WSW stretching lineation. The shear sense during the prograde path is constantly towards the WSW. In the greenschists-facies an unambiguous top-to ENE can be observed mostly in mylonitic rocks. The following deformation episodes include semi-brittle to brittle structures (shear bands brittle open folds, crenulation cleavage, and faults with increasingly higher-angle) that are not as penetrative and record the passage of the units through the brittle-ductile transitions and to higher structural levels. The kinematics of these late episodes is also towards the NE. Based on the above, the Mt Ochi HP units exhibit a common tectonometamorphic evolution since at least the early stages of the prograde path. The Ochi Unit/Styra Unit contact is a structure that formed prior to or during peak HP metamorphism and therefore it couldn't have served as the normal fault to an extrusion wedge.
NASA Astrophysics Data System (ADS)
Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.
2017-02-01
Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.
ERIC Educational Resources Information Center
Woodside-Jiron, Haley; Gehsmann, Kristin M.
2009-01-01
This article explores the complex process of school change over a six-year period in one high-poverty, urban elementary school in a northeastern city of the United States. The school included in this instrumental case study was identified by its State Department of Education as "being in need of improvement" in March 2000. Findings…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi
Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing,more » Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.« less
DFT Study on the Complexation of Bambus[6]uril with the Perchlorate and Tetrafluoroborate Anions.
Toman, Petr; Makrlík, Emanuel; Vaňura, Petr
2011-12-01
By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril.ClO4- and bambus[6]uril.BF4- anionic complex species were derived. In these two complexes having C3 symmetry, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion.
Martínez Belmonte, Marta; Wezenberg, Sander J; Haak, Robert M; Anselmo, Daniele; Escudero-Adán, Eduardo C; Benet-Buchholz, Jordi; Kleij, Arjan W
2010-05-21
The self-assembly features of a series of (non)symmetrical Zn(salphen) complexes have been studied in detail by X-ray crystallography, NMR and UV-vis techniques. The combined data demonstrate that the stability of these dimeric assemblies and the relative position of each monomeric unit within the dinuclear structure depend on the location and combination of the aromatic ring substituents.
NASA Astrophysics Data System (ADS)
Zhao, Qing-Qing; Zhu, Min-Min; Ren, Ning; Zhang, Jian-Jun
2017-12-01
Six new lanthanide complexes [Ln(2-Br-5-MOBA)3(2,2‧-DIPY)]2 (Ln = Nd(1), Eu(2), Gd(3), Tb(4), Ho(5), Er(6); 2-Br-5-MOBA = 2-bromine-5-methoxybenzoate; 2,2‧-DIPY = 2,2‧-bipyridine) have been successfully synthesized and characterized. The complexes 1-5 are isostructural and nine-coordinated by the single-crystal X-ray diffraction analyses, while the complex 6 is eight-coordinated. The difference of crystal structure may be the result of the lanthanide contraction effect. The binuclear units were further assembled into 1D, 2D, 3D supramolecular structures by the π-π stacking and Csbnd H⋯O hydrogen bonding interactions. The thermal decomposition mechanism of complexes 1-6 was studied by TG analysis and further authenticated by TG/DSC-FTIR techniques. The solid-state luminescence properties of complexes 2 and 4 were investigated at room temperature. The results indicate that complexes 2 and 4 show characteristic emission of Eu3+ ion and Tb3+ ion, respectively. What's more, the title complexes have good antibacterial activities against Candida albicans.
Preparation and Structural Properties of InIII–H Complexes
Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.
2013-01-01
The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019
Valencia, Marta; Pereira, Ana; Müller-Bunz, Helge; Belderraín, Tomás R; Pérez, Pedro J; Albrecht, Martin
2017-07-03
Two iridium(III) complexes containing a C,N-bidentate pyridyl-triazolylidene ligand were prepared that are structurally very similar but differ in their pendant substituent. Whereas complex 1 contains a non-coordinating pyridyl unit, complex 2 has a phenyl group on the triazolylidene substituent. The presence of the basic pyridyl unit has distinct effects on the catalytic activity of the complex in the oxidative dehydrogenation of benzylic amines, inducing generally higher rates, higher selectivity towards formation of imines versus secondary amines, and notable quantities of tertiary amines when compared to the phenyl-functionalized analogue. The role of the pyridyl functionality has been elucidated from a set of stoichiometric experiments, which demonstrate hydrogen bonding between the pendant pyridyl unit and the amine protons of the substrate. Such N pyr ⋅⋅⋅H-N interactions are demonstrated by X-ray diffraction analysis, 1 H NMR, and IR spectroscopy, and suggest a pathway of substrate bond-activation that involves concerted substrate binding through the Lewis acidic iridium center and the Lewis basic pyridyl site appended to the triazolylidene ligand, in agreement with ligand-metal cooperative substrate activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.
Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2017-03-29
The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonari, M. S.; Alekseeva, O. A.; Furmanova, N. G.
2007-03-15
The crystal structures of [(cys-syn-cys-dicyclohexano-18-crown-6 . H{sub 3}O)][TaF{sub 6}] and [(cys-syn-cys-dicyclohexano-18-crown-6 . H{sub 3}O)][NbF{sub 6}] complex compounds are determined using X-ray diffraction analysis. The tantalum complex has two polymorphic modifications, namely, the monoclinic (I) and triclinic (II) modifications. The unit cell parameters of these compounds are as follows: a = 8.507(4) A, b = 11.947(5) A, c = 27.392(12) A, {beta} = 93.11(1) deg., Z = 4, and space group P2{sub 1}/n for modification I; and a = 10.828(1) A, b = 11.204(1) A, c = 12.378(1) A, {alpha} = 72.12(1) deg., {beta} = 79.40(1) deg., {gamma} = 73.70(1) deg.,more » Z = 2, and space group P-1 for modification II. The triclinic niobium complex [(cys-syn-cys-dicyclohexano-18-crown-6 . H{sub 3}O)][NbF{sub 6}] (III) with the unit cell parameters a = 10.796(3) A, b = 11.183(3) A, c = 12.352(3) A, {alpha} = 72.364(5) deg., {beta} = 79.577(5) deg., {gamma} = 73.773(4) deg., Z = 2, and space group P-1 is isostructural with tantalum complex II. The structures of all three complexes are ionic in character. The oxonium cation in complexes I-III is encapsulated by the crown ether and thus forms one ordinary and two bifurcated hydrogen bonds with the oxygen atoms of the crown ether. This macrocyclic cation is bound to the anions through the C-H...F contacts (H...F, 2.48-2.58 A). The conformation of the macrocycle in complex I differs substantially from that in complex II (III)« less
Guillet, Jesse L; Bhowmick, Indrani; Shores, Matthew P; Daley, Christopher J A; Gembicky, Milan; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H
2016-08-15
A series of heterobimetallic lantern complexes with the central unit {PtM(SAc)4(NCS)} have been prepared and thoroughly characterized. The {Na(15C5)}[PtM(SAc)4(NCS)] series, 1 (Co), 2 (Ni), 3 (Zn), are discrete compounds in the solid state, whereas the {Na(12C4)2)}[PtM(SAc)4(NCS)] series, 4 (Co), 5 (Ni), 6 (Zn), and 7 (Mn), are ion-separated species. Compound 7 is the first {PtMn} lantern of any bridging ligand (carboxylate, amide, etc.). Monomeric 1-7 have M(2+), necessitating counter cations that have been prepared as {(15C5)Na}(+) and {(12C4)2Na}(+) variants, none of which form extended structures. In contrast, neutral [PtCr(tba)4(NCS)]∞ 8 forms a coordination polymer of {PtCr}(+) units linked by (NCS)(-) in a zigzag chain. All eight compounds have been thoroughly characterized and analyzed in comparison to a previously reported family of compounds. Crystal structures are presented for compounds 1-6 and 8, and solution magnetic susceptibility measurements are presented for compounds 1, 2, 4, 5, and 7. Further structural analysis of dimerized {PtM} units reinforces the empirical observation that greater charge density along the Pt-M vector leads to more Pt···Pt interactions in the solid state. Four structural classes, one new, of {MPt}···{PtM} units are presented. Solid state magnetic characterization of 8 reveals a ferromagnetic interaction in the {PtCr(NCS)} chain between the Cr centers of J/kB = 1.7(4) K.
A wave-bending structure at Ka-band using 3D-printed metamaterial
NASA Astrophysics Data System (ADS)
Wu, Junqiang; Liang, Min; Xin, Hao
2018-03-01
Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.
NASA Astrophysics Data System (ADS)
Memeti, V.; Paterson, S. R.
2006-12-01
Data gained using various geologic tools from large, composite batholiths, such as the 95-85 Ma old Tuolumne Batholith (TB), Sierra Nevada, CA, indicate complex batholithic processes at the chamber construction site, in part since they record different increments of batholith construction through time. Large structural and compositional complexity generally occurs throughout the main batholith such as (1) geochemistry, (2) internal contacts between different units (Bateman, 1992; Zak &Paterson, 2005), (3) batholith/host rock contacts, (4) geochronology (Coleman et al., 2004; Matzel et al., 2005, 2006), and (5) internal structures such as schlieren layering and fabrics (Bateman, 1992; Zak et al., 2006) leading to controversies regarding batholith construction models. By using magmatic lobes tongues of individual batholithic units that extend into the host rock away from the main batholith we avoid some of the complexity that evolved over longer times within the main batholith. Magmatic lobes are "simpler" systems, because they are spatially separated from other units of the batholith and thus ideally represent processes in just one unit at the time of emplacement. Furthermore, they are shorter lived than the main batholith since they are surrounded by relatively cold host rock and "freeze in" (1) "snapshots" of batholith construction, and (2) relatively short-lived internal processes and resulting structures and composition in each individual unit. Thus, data from lobes of all batholith units representing different stages of a batholith's lifetime, help us to understand internal magmatic and external host rock processes during batholith construction. Based on field and analytic data from magmatic lobes of the Kuna Crest, Half Dome, and the Cathedral Peak granodiorites, we conclude that (1) the significance of internal processes in the lobes (fractionation versus mixing versus source heterogeneity) is unique for each individual TB unit; (2) emplacement mechanisms such as stoping, downward flow or ductile deformation of host rock act in a very short period of time (only a few 100,000 yrs); and (3) a variety of different magmatic fabrics, formed by strain caused by magma flow, marginal effects, or regional stress, can be found in each lobe. These data lead to the conclusion that the size of the studied lobes indicate the minimum pulse size for TB construction and that fractionation crystallization, even though slightly varying in its magnitude, is an important internal process in each individual TB unit.
Laudanski, Jonathan; Coombes, Stephen; Palmer, Alan R.
2010-01-01
We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN. PMID:20042702
Li, Nan; Xie, Yaoming; King, R Bruce; Schaefer, Henry F
2010-11-04
Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)₅ by Hieber and Braun. The binuclear H₂Re₂(CO)₈ was subsequently synthesized as a stable compound with a central Re₂(μ-H)₂ unit analogous to the B₂(μ-H)₂ unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H₂Re₂(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)₅ structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)₅ structure by removal of one or two carbonyl groups. For H₂Re₂(CO)₉ a structure HRe₂(CO)₉(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re₂(CO)₉(η²-H₂), similar to that of Re₂(CO)₁₀. For H₂Re₂(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re₂(μ-H)₂(CO)(n) structures. Higher energy dihydrogen complex structures are also found.
Bonnefoy-Cudraz, Eric; Bueno, Hector; Casella, Gianni; De Maria, Elia; Fitzsimons, Donna; Halvorsen, Sigrun; Hassager, Christian; Iakobishvili, Zaza; Magdy, Ahmed; Marandi, Toomas; Mimoso, Jorge; Parkhomenko, Alexander; Price, Susana; Rokyta, Richard; Roubille, Francois; Serpytis, Pranas; Shimony, Avi; Stepinska, Janina; Tint, Diana; Trendafilova, Elina; Tubaro, Marco; Vrints, Christiaan; Walker, David; Zahger, Doron; Zima, Endre; Zukermann, Robert; Lettino, Maddalena
2018-02-01
Acute cardiovascular care has progressed considerably since the last position paper was published 10 years ago. It is now a well-defined, complex field with demanding multidisciplinary teamworking. The Acute Cardiovascular Care Association has provided this update of the 2005 position paper on acute cardiovascular care organisation, using a multinational working group. The patient population has changed, and intensive cardiovascular care units now manage a large range of conditions from those simply requiring specialised monitoring, to critical cardiovascular diseases with associated multi-organ failure. To describe better intensive cardiovascular care units case mix, acuity of care has been divided into three levels, and then defining intensive cardiovascular care unit functional organisation. For each level of intensive cardiovascular care unit, this document presents the aims of the units, the recommended management structure, the optimal number of staff, the need for specially trained cardiologists and cardiovascular nurses, the desired equipment and architecture, and the interaction with other departments in the hospital and other intensive cardiovascular care units in the region/area. This update emphasises cardiologist training, referring to the recently updated Acute Cardiovascular Care Association core curriculum on acute cardiovascular care. The training of nurses in acute cardiovascular care is additionally addressed. Intensive cardiovascular care unit expertise is not limited to within the unit's geographical boundaries, extending to different specialties and subspecialties of cardiology and other specialties in order to optimally manage the wide scope of acute cardiovascular conditions in frequently highly complex patients. This position paper therefore addresses the need for the inclusion of acute cardiac care and intensive cardiovascular care units within a hospital network, linking university medical centres, large community hospitals, and smaller hospitals with more limited capabilities.
NASA Astrophysics Data System (ADS)
Sarkar, Bhola Nath; Bhar, Kishalay; Kundu, Subhasis; Fun, Hoong-Kun; Ghosh, Barindra Kumar
2009-11-01
Two hexacoordinated mononuclear cobalt(II)thiocyanate complexes of general formula [Co(LL) 2(NCS) 2]. nH 2O [LL = 2,2'-dipyridylamine (dpa), n = 1, 1; LL = N-((pyridin-2-yl)benzylidene)benzylamine (pbba), n = 0, 2] have been prepared and characterized using microanalytical, spectroscopic and other physicochemical results. The compounds are non-electrolytes and behave as three-electron paramagnets. Structures of 1 and 2 are solved by X-ray diffraction measurements. Structural analyses show that each metal center in 1 and 2 adopts a distorted octahedral geometry with a CoN 6 chromophore ligated through four N atoms of two bidentate LL units; the hexacoordination is completed by two N atoms of terminal thiocyanates in mutual cis orientation. The mononuclear units in 1 are engaged in weak intermolecular N-H…S and C-H…S hydrogen bonds to give a 2D sheet structure, which is further stabilized by π…π interactions among the pyridine rings of dpa units. In the long-range form, two mononuclear units of 2 are locked by weak doubly C-H…S hydrogen bonds producing a dimeric unit, which packs through C-H…π interaction leading to a 2D continuum. In MeCN solutions, the compounds show a nearly reversible one-electron oxidative response corresponding to cobalt(III)-cobalt(II) couple. The complexes display intraligand 1(π-π∗) fluorescence at room temperature and intraligand 3(π-π∗) phosphorescence in glassy solutions (DMF at 77 K).
Wybraniec, Sławomir; Jerz, Gerold; Gebers, Nadine; Winterhalter, Peter
2010-02-15
The natural pigment composition of purple bracts of Bougainvillea glabra (Nyctaginaceae) consists of a highly complex mixture of betacyanins solely differing by the substitution with a variety of acyl-oligoglycoside units. This study was focused on a two-dimensional chromatography approach, a combination of preparative high-speed countercurrent chromatography (HSCCC) and analytical C18-HPLC with ESI-DAD-MS/MS detection which finally enabled a more detailed view into the pigment profile and elucidated the existence of an overwhelming amount of varying betacyanin structures occurring in Bougainvillea bracts. The detected molecular weights of the pigments reached so far unknown high values and ranged up to maximum values of 1653 and 1683 Da for the largest molecules due to oligosaccharide linkage and multiple acyl substitutions. The preparative IP-HSCCC separation yielded 15 complex fractions containing betacyanins of enhanced polarity as well as structures with highly increased lipophilicity. Betacyanin structures extended by large oligosaccharide chains with bigger number of glycoside units and also carrying a reduced number of hydroxycinnamic acid substitutions were characteristic for polar pigments occurring mainly in the early eluting CCC fractions. IP-HSCCC was proven to be extremely effective for fractionating this complex crude betalain pigment extract into more defined 'polarity-windows'. Structural analysis by analytical LC-ESI-MS/MS in the positive ionization mode detected a total sum of 146 different betacyanin pigments in the CCC fractions of reduced complexity. Copyright 2010 Elsevier B.V. All rights reserved.
Masoudiasl, A; Montazerozohori, M; Naghiha, R; Assoud, A; McArdle, P; Safi Shalamzari, M
2016-04-01
Some new five coordinated ZnLX2 complexes, where L is N3-Schiff base ligand obtained by condensation reaction between diethylenetriamine and (E)-3-(2-nitrophenyl)acrylaldehyde and X (Cl(-), Br(-), I(-), N3(-) and NCS(-)), were synthesized and characterized by FT-IR, (1)H and (13)CNMR, UV-visible, ESI-mass spectra and molar conductivity measurements. The structures of zinc iodide and thiocyanate complexes were determined by X-ray crystallographic analysis. The X-ray results showed that the Zn (II) center in these complexes is five-coordinated in a distorted trigonal-bipyramidal configuration. Zinc iodide and thiocyanate complexes crystallize in the monoclinic and triclinic systems with space groups of C2/c and P1- with eight and two molecules per unit cell respectively. The crystal packing of the complexes consists of intermolecular interactions such as C-H(…)O and C-H(…)I, C-H(···)S, N(…)O, together with π-π stacking and some other unexpected interactions. The mentioned interactions cause three-dimensional supramolecular structure in the solid state. Zinc complexes were also prepared in nano-structure by sonochemical method confirmed by XRD, SEM and TEM analyses. Moreover, ZnO nanoparticles were synthesized by direct thermolysis of zinc iodide complex. Furthermore, antimicrobial and thermal properties of the compounds were completely investigated. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Yixia; Zhou, Shanhong; Wang, Zhixiang; Zhang, Meili; Wang, Jijiang; Cao, Jia
2017-11-01
Four new Cd(II) complexes have been prepared based on 1,2,4-trimellitic acid (H3tma) and monosodium 2-sulfoterephthalate (2-NaH2stp), formulated as [Cd2(Htma)2 (dpp)2(H2O)] (1), [Cd3 (tma)2 (2,4-bipy)4(H2O)2] (2), [Cd (2-Hstp) (2,2'-bipy)2]·2H2O (3) and [Cd (2-Hstp) (2,4-bipy) (H2O)2] (4) (dpp = dipyrido [3,2-a:2‧,3'-c] phenazine, 2,4-bipy = 2,4-bipyridine, 2,2'-bipy = 2,2'- bipyridine) by hydrothermal method. X-ray diffraction structural analyses show all these complexes crystallized in triclinic crystal system of Pī space group, but their structures are diverse. Complex 1 exhibits an infinite one-dimensional chain featuring the left- and right-handed stranded chains interweaved each other. For 2, the two-dimensional network is constructed by one-dimensional ladder-like chain linked by Cd2 ions. In complex 3, the cadmium ion is surrounded with one 2-Hstp2- anion and two 2,2'-bipy molecules. Complex 4 is also a discrete structure based on a metallic dimer unit. In all these complexes, the N-donor co-ligands take the important roles in the assembly of three-dimensional supramolecular structures. The fluorescence properties of complexes 1-4 could be assigned to the π - π* transition of organic ligands.
Tuominen, H; Salminen, A; Oksanen, E; Jämsen, J; Heikkilä, O; Lehtiö, L; Magretova, N N; Goldman, A; Baykov, A A; Lahti, R
2010-05-07
Nucleotide-binding cystathionine beta-synthase (CBS) domains serve as regulatory units in numerous proteins distributed in all kingdoms of life. However, the underlying regulatory mechanisms remain to be established. Recently, we described a subfamily of CBS domain-containing pyrophosphatases (PPases) within family II PPases. Here, we express a novel CBS-PPase from Clostridium perfringens (CPE2055) and show that the enzyme is inhibited by AMP and activated by a novel effector, diadenosine 5',5-P1,P4-tetraphosphate (AP(4)A). The structures of the AMP and AP(4)A complexes of the regulatory region of C. perfringens PPase (cpCBS), comprising a pair of CBS domains interlinked by a DRTGG domain, were determined at 2.3 A resolution using X-ray crystallography. The structures obtained are the first structures of a DRTGG domain as part of a larger protein structure. The AMP complex contains two AMP molecules per cpCBS dimer, each bound to a single monomer, whereas in the activator-bound complex, one AP(4)A molecule bridges two monomers. In the nucleotide-bound structures, activator binding induces significant opening of the CBS domain interface, compared with the inhibitor complex. These results provide structural insight into the mechanism of CBS-PPase regulation by nucleotides. Copyright 2010 Elsevier Ltd. All rights reserved.
Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaumik, Prasenjit; Horimoto, Yasumi; Xiao, Huogen
2011-09-06
Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1 {angstrom}, respectively. The apoenzyme crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with twomore » molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4{sub 3} with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.« less
Family Complexity, Siblings, and Children's Aggressive Behavior at School Entry
Fomby, Paula; Goode, Joshua A.; Mollborn, Stefanie
2016-01-01
As family structure in the United States has become increasingly dynamic and complex, children have become more likely to reside with step- or half-siblings through a variety of pathways. When these pathways are accounted for, more than one in six children in the United States lives with a half- or step-sibling at age 4. We use data from the Early Childhood Longitudinal Study-Birth Cohort (N~6,550) to assess the independent and joint influences of residing with a single parent or stepparent and with step or half-siblings on children's aggressive behavior at school entry. The influences of parents’ union status and complex sibship status on aggressive behavior are independent. Family resources partially explain the association between residing with an unpartnered mother and aggressive behavior regardless of sibship status. However, the resource hypothesis does not explain the association of complex sibship with aggressive behavior. PMID:26608795
Hierarchy Measure for Complex Networks
Mones, Enys; Vicsek, Lilla; Vicsek, Tamás
2012-01-01
Nature, technology and society are full of complexity arising from the intricate web of the interactions among the units of the related systems (e.g., proteins, computers, people). Consequently, one of the most successful recent approaches to capturing the fundamental features of the structure and dynamics of complex systems has been the investigation of the networks associated with the above units (nodes) together with their relations (edges). Most complex systems have an inherently hierarchical organization and, correspondingly, the networks behind them also exhibit hierarchical features. Indeed, several papers have been devoted to describing this essential aspect of networks, however, without resulting in a widely accepted, converging concept concerning the quantitative characterization of the level of their hierarchy. Here we develop an approach and propose a quantity (measure) which is simple enough to be widely applicable, reveals a number of universal features of the organization of real-world networks and, as we demonstrate, is capable of capturing the essential features of the structure and the degree of hierarchy in a complex network. The measure we introduce is based on a generalization of the m-reach centrality, which we first extend to directed/partially directed graphs. Then, we define the global reaching centrality (GRC), which is the difference between the maximum and the average value of the generalized reach centralities over the network. We investigate the behavior of the GRC considering both a synthetic model with an adjustable level of hierarchy and real networks. Results for real networks show that our hierarchy measure is related to the controllability of the given system. We also propose a visualization procedure for large complex networks that can be used to obtain an overall qualitative picture about the nature of their hierarchical structure. PMID:22470477
Synthesis and X-ray diffraction study of new uranyl malonate and oxalate complexes with carbamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedkov, Ya. A.; Serezhkina, L. B., E-mail: Lserezh@samsu.ru; Grigor’ev, M. S.
2016-05-15
Two new malonate-containing uranyl complexes with carbamide of the formulas [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 3}] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO{sub 2}(C{sub 2}O{sub 4})(Urea){sub 3}] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}]{sub ∞} belonging to the crystal-chemical group AT{sup 11}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, T{sup 11} = C{sub 3}H{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea) of uranyl complexes.more » Crystals II and III are composed of the molecular complexes [UO{sub 2}(L)(Urea){sub 3}], where L = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.« less
NASA Astrophysics Data System (ADS)
Wang, Xin-Fang; Du, Ceng-Ceng; Zhou, Sheng-Bin; Wang, Duo-Zhi
2017-01-01
Herein we reported six new Ni(II)/Cu(II)/Zn(II) complexes, namely, [Ni(L1)4(OH)2] (1), [Cu(L1)4(OH)2] (2), [Cu(L1)2(SiF6)]n (3), {[Cu(L2)(HCOO)2]·H2O·CH3OH}n (4), [Ni(L2)2(NO3)2]n (5) and {[Zn(L2)Cl2]·DMF}n (6) (L1 = 3,6-bis(imidazole-1-yl)pyridazine, L2 = 3,6-bis(benzimidazole-1-yl)pyridazine), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, PXRD. These complexes have been successfully constructed under interface diffusion process, heating reflux or hydrothermal conditions. The structures of 1 and 2 are mononuclear complexes. Complex 3 exhibits a 6-connected 3D topology network with the Schläfli symbol of (412·63). In complex 4, two Cu(II) were connected through two HCOO- anions to form dinuclear structure unit, which is arranged into a 1D ladder-like structure by μ2-L2 ligands. Complexes 5 and 6 are 1D zigzag chains connected by L2 ligands, but the Ni(II) ion is six-coordinated in 5 and the Zn(II) ion is four-coordinated in 6. Moreover, the solid-state luminescence property and UV-vis diffuse reflection spectrum of complex 6 have been investigated and discussed.
Credit BG. View looking north northeast at Guard House and ...
Credit BG. View looking north northeast at Guard House and entrance to Building 4505 complex. This Guard House was built in 1993 as a portable unit; it replaced an older structure. The Building 4505 complex is surrounded by a security fence. Building 4496 appears to immediate right of view - Edwards Air Force Base, North Base, Guard House, Northeast of A Street, Boron, Kern County, CA
Chandrasekhar, Vadapalli; Hossain, Sakiat; Das, Sourav; Biswas, Sourav; Sutter, Jean-Pascal
2013-06-03
The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.
NASA Astrophysics Data System (ADS)
Herrero, T. M. L.; van Wyk de Vries, B.; Lagmay, A. M. A.; Eco, R. C.
2015-12-01
The Apo Volcanic Complex (AVC) is one of the largest volcanic centers in the Philippines, located in the southern island of Mindanao. It is composed of four edifices and several smaller cones. The youngest volcanic unit, the Apo Dome, is the highest elevation in the Philippines. This unit is classified as potentially active, whereas other units, Talomo, Sibulan and Kitubod, are inactive. The study gives insight to the construction and deformation history of the volcanic units and imparts foresight to subsequent events that can affect populated areas. A morphological analysis integrating high-resolution digital terrain models and public domain satellite data and images was done to recognize and discriminate volcanic units and characterize volcano-tectonic features and processes. Morphological domains were defined based on surface textures, slope variation, degrees and controls of erosion, and lineament density and direction. This establishes the relative ages and extent of volcanic units as well as the volcano-tectonic evolution of the complex. Six edifice building events were recognized, two of which form the elevated base of Apo dome. The geodynamic setting of the region is imprinted in the volcanic units as five morphostructural lineaments. They reveal the changes in maximum regional stress through time such as the N-S extension found across the whole volcanic complex displaying the current stress regime. This has implications on the locality and propagation of geothermal activity, magma ascent, and edifice collapses. One main result of the compounded effects of inherited structures and current stress regime is the Sandawa Collapse Zone. This is a large valley formed by several collapses where NE-SW fractures propagate and the increasing lateral spreading by debuttressing continue to eat away the highest peak. The AVC is surrounded by the major metropolitan area of Davao City to the east and the cities of Kidapawan and Digos to the west and south, respectively. In addition, within 3 km of Apo Dome is a geothermal power plant. With the obvious socio-economic significance of the area, it is imperative to understand these deformations that allow structures to propagate, resulting to instability of the edifice and possibly volcanic unrest, and ultimately for the assessment of hazards and risks to the immediate sectors.
Hydrothermal synthesis, photoluminescence and photocatalytic properties of two silver(I) complexes
NASA Astrophysics Data System (ADS)
Yang, Yuan-Yuan; Zhou, Lin-Xia; Zheng, Yue-Qing; Zhu, Hong-Lin; Li, Wen-Ying
2017-09-01
Two new dinuclear silver(I) coordination complexes [Ag(Hntph)(tpyz)2/2]n1 and [Ag2(dtrz)2(Hntph)2] 2 (H2ntph=2-nitroterephthalic acid, tpyz=2,3,5-trimethylpyrazine, dtrz=3,5-dimethyl-4H-1,2,4-triazol-4-amine) have been obtained by hydrothermal reactions of Ag(I) salts with H2ntph and various N-donor ligands. Complex 1 exhibits a 2D layer structure constructed by the binuclear Ag2(Hntph)2 units and tpyz ligands. Complex 2 also shows a different binuclear unit Ag2(dtrz)2, which was assembled via hydrogen bonds interactions to a 3D supramolecular architecture. The photocatalytic experiments showed that complex 2 is an excellent visible light candidate for degradation of RhB, and the degradation ratio of RhB reached 91.4% after 7 h under the light of 90 W white LED lamp. Moreover, the photoluminescent properties and the optical band gaps of 1-2 have also been investigated.
Reed, James R.; Backes, Wayne L.
2017-01-01
Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450–P450 interactions. PMID:28194112
Structure of the alternative complex III in a supercomplex with cytochrome oxidase.
Sun, Chang; Benlekbir, Samir; Venkatakrishnan, Padmaja; Wang, Yuhang; Hong, Sangjin; Hosler, Jonathan; Tajkhorshid, Emad; Rubinstein, John L; Gennis, Robert B
2018-05-01
Alternative complex III (ACIII) is a key component of the respiratory and/or photosynthetic electron transport chains of many bacteria 1-3 . Like complex III (also known as the bc 1 complex), ACIII catalyses the oxidation of membrane-bound quinol and the reduction of cytochrome c or an equivalent electron carrier. However, the two complexes have no structural similarity 4-7 . Although ACIII has eluded structural characterization, several of its subunits are known to be homologous to members of the complex iron-sulfur molybdoenzyme (CISM) superfamily 8 , including the proton pump polysulfide reductase 9,10 . We isolated the ACIII from Flavobacterium johnsoniae with native lipids using styrene maleic acid copolymer 11-14 , both as an independent enzyme and as a functional 1:1 supercomplex with an aa 3 -type cytochrome c oxidase (cyt aa 3 ). We determined the structure of ACIII to 3.4 Å resolution by cryo-electron microscopy and constructed an atomic model for its six subunits. The structure, which contains a [3Fe-4S] cluster, a [4Fe-4S] cluster and six haem c units, shows that ACIII uses known elements from other electron transport complexes arranged in a previously unknown manner. Modelling of the cyt aa 3 component of the supercomplex revealed that it is structurally modified to facilitate association with ACIII, illustrating the importance of the supercomplex in this electron transport chain. The structure also resolves two of the subunits of ACIII that are anchored to the lipid bilayer with N-terminal triacylated cysteine residues, an important post-translational modification found in numerous prokaryotic membrane proteins that has not previously been observed structurally in a lipid bilayer.
Chromite deposits of the north-central Zambales Range, Luzon, Philippines
Rossman, D.L.
1970-01-01
Peridotite and gabbro form an intrusive complex which is exposed over an area about 35 km wide and 150 km long in the center of the Zambales Range of western Luzon. The Zambales Complex is remarkable for its total known resources, mined and still remaining, of about 15 million metric tons of chromite ore. Twenty percent of Free World production was obtained from this area between 1950 and the end of 1964; in 1960 production reached a high of 606,103 metric tons of refractory-grade ore, mostly from the Coto mine near Masinloc, and 128,426 metric tons of metallurgical ore from the Acoje mine. The United States imports 80 to 90 percent of its refractory-grade chromite from the Philippines, and its basic refractory technology has been designed upon the chemical and physical characteristics of Coto high-alumina chromite ore. Continuation of this pattern will depend upon discovery of additional ore reserves to replace those depleted by mining. The Zambales Ultramafic Complex is of the alpine type in which lenticular or podiform deposits of chromite lie in peridotite or dunite, mostly near Contacts with gabbroic rocks. Layered structures, foliation, and lineation commonly are well developed and transect boundaries between major rock units, including chromite deposits, at any angle. Accordingly, these structures cannot be used as guides in exploration and mining as they are used in stratiform complexes such as the Bushveld, where chromite layers extend for many miles. Probably 90 percent of the known deposits in the Zambales Complex are located in two belts in its northern part. One zone containing high-aluminua refractory-grade deposits extends northeast from the Coto mine and Chromite Reservation No. I along a peridotite contact with olivine gabbro, and another of high-chromium metallurgical grade chromite extends south through the Zambales and Acoje properties, and swings westward around the south side of Mount Lanai along a peridotite contact with norite. The textures of ores, association of chromite with dunite as gangue and as halos, and the transecting nature of the layering, foliation, and lineation in relation to chromite, are similar in all deposits regardless of composition of the chromite mineral itself. Textures in chromite ores, and structural relationships between chromite deposits and country rocks, show that layering and related foliation and lineation were formed or modified by flowage. Gabbro is believed to form the upper part of the Complex in general. Geophysical methods have been rather unsuccessful in finding chromite in the Zambales Complex. Gravity surveys, in order to be successful, must correct for all features influencing gravity except for the chromite itself. Too often the uncertainties in position of rock units and in knowledge of rock densities or position of hidden geologic features (dikes, zones of alteration) preclude the possibility of making adequate corrections. Magnetic surveys have failed to reveal any magnetic patterns attributable to the presence of chromite. Exploration for chromite should be guided by the knowledge that chromite occurs only in certain geologic environments. Thus because nearly all known chromite deposits in the Zambales Complex lie in peridotite near the gabbro contact, search for chromite should be concentrated there. Likewise it is evident from structural evidence presented here that there is little relation between layering and distribution of either major rock units or chromite deposits. Thus one is not justified in using the layered structure to predict either the position or attitude of major rock unit contacts, or presence or position of chromite deposits. In such a productive complex it is geologically certain that unknown deposits still remain undiscovered. The most promising areas for exploration are near known groups of large deposits like Acoje and Chromite Reservation No. 1. Underground drilling has been very successful in finding buried tabular
Bøggild, Andreas; Sofos, Nicholas; Andersen, Kasper R.; Feddersen, Ane; Easter, Ashley D.; Passmore, Lori A.; Brodersen, Ditlev E.
2012-01-01
Summary The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex at 2.8 Å resolution, comprising both the RelB-inhibited RelE and the RelB dimerization domain that binds DNA. RelE and RelB associate into a V-shaped heterotetrameric complex with the ribbon-helix-helix (RHH) dimerization domain at the apex. Our structure supports a model in which relO is optimally bound by two adjacent RelB2E heterotrimeric units, and is not compatible with concomitant binding of two RelB2E2 heterotetramers. The results thus provide a firm basis for understanding the model of conditional cooperativity at the molecular level. PMID:22981948
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)
Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.
2012-01-01
A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031
NASA Astrophysics Data System (ADS)
Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.
2015-07-01
A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.
NASA Astrophysics Data System (ADS)
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-07-12
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.
ERIC Educational Resources Information Center
Easterday, Shelece Michelle
2017-01-01
The syllable is a natural unit of organization in spoken language. Strong cross-linguistic tendencies in syllable size and shape are often explained in terms of a universal preference for the CV structure, a type which is also privileged in abstract models of the syllable. Syllable patterns such as those found in Itelmen "qsa?txt??"…
Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S.
1996-01-01
The Beartooth-Bighorn magmatic zone (BBMZ) and the Montana metasedimentary province (MMP) are two major subprovinces of the Archean Wyoming province. In the northwestern Beartooth Mountains, these subprovinces are separated by a structurally, lithologically and metamorphically complex assemblage of lithotectonic units that include: (1) a strongly deformed complex of trondhjemitic gneiss and interlayered amphibolites; and (2) an amphibolite facies mafic unit that occurs in a nappe that structurally overlies the gneiss complex. Zircons from a trondhjemitic blastomylonite in the gneiss complex yield concordant U-Pb ages of 3.5 Ga, establishing it as the oldest rock yet documented in the Wyoming province. Two younger events are also recorded by zircons in this rock: (1) an apparently protracted period of high-grade metamorphism and/or intrusion of additional magmas at ??? 3.25 Ga; and (2) growth of hydrothermal zircon at ??? 2.55 Ga, apparently associated with ductile deformation that immediately preceded structural emplacement of the gneiss. Although this latter event appears confined to areas along the BBMZ-MMP boundary, evidence of ??? 3.25 Ga igneous activity is found in the overlying amphibolite (3.24 Ga) and throughout the MMP. These data suggest that this boundary first developed as a major intracratonic zone of displacement at or before 3.25 Ga. The limited occurrences of 2.8 Ga magmatic activity in the MMP suggest that it had a controlling influence on late Archean magmatism as well.
NASA Astrophysics Data System (ADS)
Soliman, Saied M.; El-Faham, Ayman
2018-07-01
Self assembly of Mn(II) perchlorate and bis(pyrazolo)-s-triazine pincer ligand (L) in methanol-water mixture afforded the homoleptic [MnL2](ClO4)2 complex (1) as plate colorless crystals. Following the crystallization process till the near dryness of the solution, we noted few needle like crystals of the heteroleptic [MnL(H2O)3](ClO4)2·H2O complex (2). Their molecular and supramolecular structures were analyzed using single crystal structure combined with Hirshfeld analysis. The packing of complexes 1 and 2 is dominated by weak Csbnd H⋯O and strong Osbnd H⋯O hydrogen bonds, respectively, as well as anion-π stacking interactions. Using Hirshfeld analysis, the percentages of the O⋯H intermolecular contacts are 32.7% and 36.8% for 1 and 2, respectively. The Mnsbnd N distances correlated well with the atoms in molecules (AIM) topological parameters. The amount of electron density transferred from the ligand units to the manganese centre are nearly the same (0.9 e) in both complexes.
Analysis of mixed-layer clay mineral structures
Bradley, W.F.
1953-01-01
Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.
Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i
NASA Astrophysics Data System (ADS)
Rottas, K. M.; Houghton, B. F.
2012-09-01
The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.
NASA Astrophysics Data System (ADS)
Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed
2017-04-01
A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.
Guo, Xiaodan; Zhu, Guangshan; Sun, Fuxing; Li, Zhongyue; Zhao, Xiaojun; Li, Xiaotian; Wang, Hanchang; Qiu, Shilun
2006-03-20
A series of microporous lanthanide metal-organic frameworks, Tb3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(H2O) (1) and Ln3(BDC)(4.5)(DMF)2(H2O)3.(DMF)(C2H5OH)(0.5)(H2O)(0.5) [Ln = Dy (2), Ho (3), Er (4)], have been synthesized by the reaction of the lanthanide metal ion (Ln3+) with 1,4-benzenedicarboxylic acid and triethylenetetramine in a mixed solution of N,N'-dimethylformamide (DMF), water, and C(2)H(5)OH. X-ray diffraction analyses reveal that they are extremely similar in structure and crystallized in triclinic space group P. An edge-sharing metallic dimer and 4 metallic monomers assemble with 18 carboxylate groups to form discrete inorganic rod-shaped building units [Ln6(CO2)18], which link to each other through phenyl groups to lead to three-dimensional open frameworks with approximately 4 x 6 A rhombic channels along the [0,-1,1] direction. A water sorption isotherm proves that guest molecules in the framework of complex 1 can be removed to create permanent microporosity and about four water molecules per formula unit can be adsorbed into the micropores. These complexes exhibit blue fluorescence, and complex 1 shows a Tb3+ characteristic emission in the range of 450-650 nm.
NASA Astrophysics Data System (ADS)
Güngör, Seyit Ali; Kose, Muhammet
2017-12-01
In this study, a Ni2Ce complex [(NiL)2Ce(NO3)2](NO3) was synthesized and characterized by spectroscopic and analytical methods. The structure of the complex was determined by single crystal X-ray diffraction study. In the structure of the complex, a Ce(III) ion is sandwiched between the two NiL units, which are virtually parallel to each other. The Ce(III) center is 12-coordinate, surrounded by 12 oxygen atoms; four are from phenolic groups, four from methoxy groups, and four from two bidentate nitrate ligands. Hirshfeld surface analysis was used to evaluate the inter-molecular interactions within the crystal packing. The complex molecules are linked by H⋯ONO2 interactions. The largest contribution is H⋯O/O⋯H with 41.6% contribution and followed by H⋯H contacts with 39.1%. The complex showed an excitation band in the range of 510-580 nm. A band in the range of 520-580 nm observed in the emission spectrum almost completely overlapped. This suggests that the band in the emission spectrum of the complex is not the actual fluorescence emission and is assigned to the Rayleigh scattering band. Electrochemical and thermal behaviours of the complex were also investigated.
Structure and metamorphism of the Franciscan Complex, Mt. Hamilton area, Northern California
Blake, M.C.; Wentworth, C.M.
1999-01-01
Truncation of metamorphic isograds and fold axes within coherent terranes of Franciscan metagraywacke by intervening zones of melange indicate that the melange is tectonic and formed after the subduction-related metamorphism and folding. These relations are expressed in two terranes of blueschist-facies rocks of the Franciscan Complex in the Mt. Hamilton area, northern California-the Jurassic Yolla Bolly terrane and the structurally underlying Cretaceous Burnt Hills terrane. Local preservation in both terranes of basal radiolarian chert and oceanic basalt beneath continent-derived metagraywacke and argillite demonstrates thrust repetition within the coherent terranes, although these relations are scarce near Mt. Hamilton. The metagraywackes range from albite-pumpellyite blueschists to those containing well-crystallized jadeitic pyroxene, and a jadeite-in isograd can be defined in parts of the area. Primary bedding defines locally coherent structural orientations and folds within the metagraywacke units. These units are crosscut by thin zones of tectonic melange containing blocks of high-grade blueschist, serpentinite, and other exotic rocks, and a broader, but otherwise identical melange zone marks the discordant boundary between the two terranes.
Salassa, Giovanni; Coenen, Michiel J J; Wezenberg, Sander J; Hendriksen, Bas L M; Speller, Sylvia; Elemans, Johannes A A W; Kleij, Arjan W
2012-04-25
A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.
Automatic high-throughput screening of colloidal crystals using machine learning
NASA Astrophysics Data System (ADS)
Spellings, Matthew; Glotzer, Sharon C.
Recent improvements in hardware and software have united to pose an interesting problem for computational scientists studying self-assembly of particles into crystal structures: while studies covering large swathes of parameter space can be dispatched at once using modern supercomputers and parallel architectures, identifying the different regions of a phase diagram is often a serial task completed by hand. While analytic methods exist to distinguish some simple structures, they can be difficult to apply, and automatic identification of more complex structures is still lacking. In this talk we describe one method to create numerical ``fingerprints'' of local order and use them to analyze a study of complex ordered structures. We can use these methods as first steps toward automatic exploration of parameter space and, more broadly, the strategic design of new materials.
Monomer and metallopolymer compounds of Tb(III) as precursors for OLEDs
NASA Astrophysics Data System (ADS)
Irina, Savchenko; Oleksandra, Berezhnytska; Olena, Trunova; Yaroslav, Fedorov; Sergiy, Smola; Nataliya, Rusakova
2018-03-01
The Terbium (III) complexes [Tb(III)-water, mixed-ligand complex Tb(III)-phenanthroline] with 2-methyl-5-phenyl-1-pentene-3,5-dione were synthesized. The polycomplex was obtained by free-radical polymerization. The results of above studies have shown that the configuration of the chelate unit is unchanged during the polymerization. As a result, the type of coordination was determined and the structure of coordination polyhedra was assumed. The luminescence spectra of obtained metallocomplexes and polymer were investigated and analyzed. The solubilization of terbium complex with phenanthroline, was shown to change luminescence intensity in this complex.
Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.
Toman, Petr; Makrlík, Emanuel; Vanura, Petr
2013-01-01
By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.
Model-Based Compositional Reasoning for Complex Systems of Systems (SoS)
2016-11-01
more structured approach for finding flaws /weaknesses in the systems . As the system is updated, either in response to a found flaw or new...AFRL-RQ-WP-TR-2016-0172 MODEL-BASED COMPOSITIONAL REASONING FOR COMPLEX SYSTEMS OF SYSTEMS (SoS) M. Anthony Aiello, Benjamin D. Rodes...LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE
NASA Astrophysics Data System (ADS)
Rana, Love Karan; Sharma, Sanyog; Hundal, Geeta
2018-02-01
Two new ligands N,N,N‧,N‧-tetraisopropyl/butyl-3,5-pyridinedicarboxamide (L3-L4) and six of their Hg(II)X2 complexes (where X = Cl-, Br- and I-), have been synthesized and characterized using single crystal X-ray diffraction and spectroscopic techniques. Complexes of L3 (1-3) with HgCl2/Br2/I2, have dimeric structure, with the ligand behaving as a 2-C linker. Complexes 4-6 are 1D coordination polymers with either 3- or 2-C, L4 linker and bridging halides. A delicate balance of anion, solvent, denticity and conformation of the ligands on the ensuing molecular and crystal structures has been delineated. Various non-covalent interactions, extending the dimensionality of the complexes are calculated, analyzed and discussed. A significant role of semi-localized LP···π non-covalent interactions in stabilizing the basic dimeric unit in the complexes, has been discerned.
Pauling, Linus
1989-01-01
A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092
Pauling, L
1989-12-01
A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.
Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik
2015-02-16
Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable. Overall, the different exchange-correlation functionals provided a qualitatively consistent and plausible picture of the low-energy d-d excited states of the complexes.
Vela, Sergi; Novoa, Juan J; Ribas-Arino, Jordi
2014-12-28
Iron(II) complexes of the [Fe(II)(1-bpp2)](2+) type (1-bpp = 2,6-di(pyrazol-1-yl)pyridine) have been intensively investigated in the context of crystal engineering of switchable materials because their spin-crossover (SCO) properties dramatically depend on the counterions. Here, by means of DFT + U calculations at the molecular and solid state levels we provide a rationale for the different SCO behaviour of the BF4(-) and ClO4(-) salts of the parent complex; the former features Fe(II) complexes with a regular coordination geometry and undergoes a spin transition, whereas the Fe(II) complexes of the latter adopt a distorted structure and remain in the high-spin state at all temperatures. The different SCO behaviour of both salts can be explained on the basis of a combination of thermodynamic and kinetic effects. The shape of the SCO units at high temperature is thermodynamically controlled by the intermolecular interactions between the SCO units and counterions within the crystal. The spin trapping at low temperatures in the ClO4(-) salt, in turn, is traced back to a kinetic effect because our calculations have revealed the existence of a more stable polymorph having SCO units in their low-spin state that feature a regular structure. From the computational point of view, it is the first time that the U parameter is fine-tuned on the basis of CASPT2 calculations, thereby enabling an accurate description of the energetics of the spin transition at both molecular and solid-state levels.
Economic development and wage inequality: A complex system analysis
Pugliese, Emanuele; Pietronero, Luciano
2017-01-01
Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country’s economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990–2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990–2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States. PMID:28926577
Economic development and wage inequality: A complex system analysis.
Sbardella, Angelica; Pugliese, Emanuele; Pietronero, Luciano
2017-01-01
Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country's economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990-2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990-2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallmeyer, R.D.; Gee, D.G.; Beckholmen, M.
In central portions of the Scandinavian Caledonides, greenschist facies volcanosedimentary successions within the Koeli Nappe Complex have been thrust several hundred kilometers eastward onto the Baltoscandian platform. These were derived from eugeoclinal terranes situated outboard (west) of the Baltica continent during the early Paleozoic. The Koeli Nappe Complex is tectonically underlain by higher grade units within the Seve Nappe Complex. These are composed of amphibolite and granulite facies rocks and locally contain eclogites. The Seve Nappes tectonically separate Koeli units from structurally lower allochthons derived from more inboard environments along the Baltoscandian miogeocline. Previous mineral isotopic age-determinations from Seve andmore » Koeli units have been in the 430 to 390 Ma range and have been interpreted to presumably date cooling following Scandian (Middle Silurian to Early Devonian) metamorphism. However, incremental-release /sup 40/Ar//sup 39/Ar dates recorded by minerals within some of the Koeli and Seve Nappes exposed in Jaemtland, Sweden (Taennforsen and Are districts) provide evidence of earlier tectonothermal activity. Hornblendes from the Seve and Koeli Nappe Complexes display variably discordant age spectra as a result of low-temperature, experimental evolution of loosely bound extraneous argon components. However, in most analyses plateau ages of 510 to 475 Ma (Koeli) and 465 to 455 Ma (Seve) are defined. In contrast, muscovite and biotite from all tectonic units record Scandian cooling ages between 245 and 410 Ma. The older events recorded by hornblende within these Seve and Koeli units are evidence of early Caledonian tectonothermal activity and subsequent diachronous cooling during the Early-Middle Ordovician.« less
Dong, Xiu-Yan; Zhao, Qing; Wei, Zhi-Li; Mu, Hao-Ran; Zhang, Han; Dong, Wen-Kui
2018-04-25
A novel heterotrinuclear complex [Cu₂(L)Na( µ -NO₃)]∙CH₃OH∙CHCl₃ derived from a symmetric bis(salamo)-type tetraoxime H₄L having a naphthalenediol unit, was prepared and structurally characterized via means of elemental analyses, UV-Vis, FT-IR, fluorescent spectra and single-crystal X-ray diffraction. The heterobimetallic Cu(II)⁻Na(I) complex was acquired via the reaction of H₄L with 2 equivalents of Cu(NO₃)₂·2H₂O and 1 equivalent of NaOAc. Clearly, the heterotrinuclear Cu(II)⁻Na(I) complex has a 1:2:1 ligand-to-metal (Cu(II) and Na(I)) ratio. X-ray diffraction results exhibited the different geometric behaviors of the Na(I) and Cu(II) atoms in the heterotrinuclear complex; the both Cu(II) atoms are sited in the N₂O₂ coordination environments of fully deprotonated (L) 4− unit. One Cu(II) atom (Cu1) is five-coordinated and possesses a geometry of slightly distorted square pyramid, while another Cu(II) atom (Cu2) is four-coordination possessing a square planar coordination geometry. Moreover, the Na(I) atom is in the O₆ cavity and adopts seven-coordination with a geometry of slightly distorted single triangular prism. In addition, there are abundant supramolecular interactions in the Cu(II)⁻Na(I) complex. The fluorescence spectra showed the Cu(II)⁻Na(I) complex possesses a significant fluorescent quenching and exhibited a hypsochromic-shift compared with the ligand H₄L.
Multiscale structure in eco-evolutionary dynamics
NASA Astrophysics Data System (ADS)
Stacey, Blake C.
In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.
Hsieh, Chung-Hung; Erdem, Ozlen F; Harman, Scott D; Singleton, Michael L; Reijerse, Edward; Lubitz, Wolfgang; Popescu, Codrina V; Reibenspies, Joseph H; Brothers, Scott M; Hall, Michael B; Darensbourg, Marcetta Y
2012-08-08
The compounds of this study have yielded to complementary structural, spectroscopic (Mössbauer, EPR/ENDOR, IR), and computational probes that illustrate the fine control of electronic and steric features that are involved in the two structural forms of (μ-SRS)[Fe(CO)2PMe3]2(0,+) complexes. The installation of bridgehead bulk in the -SCH2CR2CH2S- dithiolate (R = Me, Et) model complexes produces 6-membered FeS2C3 cyclohexane-type rings that produce substantial distortions in Fe(I)Fe(I) precursors. Both the innocent (Fc(+)) and the noninnocent or incipient (NO(+)/CO exchange) oxidations result in complexes with inequivalent iron centers in contrast to the Fe(I)Fe(I) derivatives. In the Fe(II)Fe(I) complexes of S = 1/2, there is complete inversion of one square pyramid relative to the other with strong super hyperfine coupling to one PMe3 and weak SHFC to the other. Remarkably, diamagnetic complexes deriving from isoelectronic replacement of CO by NO(+), {(μ-SRS)[Fe(CO)2PMe3] [Fe(CO)(NO)PMe3](+)}, are also rotated and exist in only one isomeric form with the -SCH2CR2CH2S- dithiolates, in contrast to R = H ( Olsen , M. T. ; Bruschi , M. ; De Gioia , L. ; Rauchfuss , T. B. ; Wilson , S. R. J. Am. Chem. Soc. 2008 , 130 , 12021 -12030 ). The results and redox levels determined from the extensive spectroscopic analyses have been corroborated by gas-phase DFT calculations, with the primary spin density either localized on the rotated iron in the case of the S = 1/2 compound, or delocalized over the {Fe(NO)} unit in the S = 0 complex. In the latter case, the nitrosyl has effectively shifted electron density from the Fe(I)Fe(I) bond, repositioning it onto the spin coupled Fe-N-O unit such that steric repulsion is sufficient to induce the rotated structure in the Fe(II)-{Fe(I)((•)NO)}(8) derivatives.
Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona
Anderson, S.R.
1987-01-01
This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern Arizona. (Author 's abstract)
Del Río, José C; Prinsen, Pepijn; Cadena, Edith M; Martínez, Ángel T; Gutiérrez, Ana; Rencoret, Jorge
2016-05-01
Two types of lignins occurred in different lignin-carbohydrate fractions, a lignin enriched in syringyl units, less condensed, preferentially associated with xylans, and a lignin with more guaiacyl units, more condensed, associated with glucans. Lignin-carbohydrate complexes (LCC) were isolated from the fibers of sisal (Agave sisalana) and abaca (Musa textilis) according to a plant biomass fractionation procedure recently developed and which was termed as "universally" applicable to any type of lignocellulosic material. Two LCC fractions, namely glucan-lignin (GL) and xylan-lignin (XL), were isolated and differed in the content and composition of carbohydrates and lignin. In both cases, GL fractions were enriched in glucans and comparatively depleted in lignin, whereas XL fractions were depleted in glucans, but enriched in xylans and lignin. Analysis by two-dimensional Nuclear Magnetic Resonance (2D-NMR) and Derivatization Followed by Reductive Cleavage (DFRC) indicated that the XL fractions were enriched in syringyl (S)-lignin units and β-O-4' alkyl-aryl ether linkages, whereas GL fractions have more guaiacyl (G)-lignin units and less β-O-4' alkyl-aryl ether linkages per lignin unit. The data suggest that the structural characteristics of the lignin polymers are not homogeneously distributed within the same plant and that two different lignin polymers with different composition and structure might be present. The analyses also suggested that acetates from hemicelluloses and the acyl groups (acetates and p-coumarates) attached to the γ-OH of the lignin side chains were extensively hydrolyzed and removed during the LCC fractionation process. Therefore, caution must be paid when using this fractionation approach for the structural characterization of plants with acylated hemicelluloses and lignins. Finally, several chemical linkages (phenylglycosides and benzyl ethers) could be observed to occur between lignin and xylans in these plants.
NASA Astrophysics Data System (ADS)
Chen, Miaoxiang; Kobashi, Kazufumi
2012-09-01
Hybridizing air-stable organic-molecules with advanced III-V semiconductor quantum-dots (QDs) structures can be utilized to create a new generation of biochemical sensing devices. In order to enhance their optical performances, the active regions in these QDs structures commonly consist of multistacked dots-in-a-well (DWELL) units. The effects of grafted molecules on the performances of the QDs structures with multistacked DWELLs, however, still remain unclear. Here, we show the significant improvements in the optical properties of InAs QDs in a hybrid nanosystem obtained by grafting biocompatible diazonium salt compound (amine donor) atop InAs QDs structure. Since its interface between the QDs structure and molecular monolayer retains an uncontaminated and non-oxidized condition, the nanosystem is an ideal platform to study the intrinsic properties of charge-carrier transport inside the system. Because of the complexity of the energy-levels in the QDs structure due to the existing surface QDs and DWELLs, selective excitation wavelengths (400, 633, and 885 nm, respectively) with different photo-energies are used to exactly analyze the complete charging mechanism in these QDs. A clear view of charge-carrier transfer inside the nanosystem is revealed by employing photoluminescence technique under selective-wavelength excitations. The present work provides new quantitative evidences for exploiting inorganic QDs applications in complex biological systems.
Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W
2017-06-07
We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.
Guo, Liwei; Zhang, Yikun; Ma, Mengqi; Liu, Qiang; Zhang, Yanan; Peng, Youliang; Liu, Junfeng
2018-04-01
RGA5 is a component of the Pia resistance-protein pair (RGA4/RGA5) from Oryza sativa L. japonica. It acts as an immune receptor that directly recognizes the effector AVR1-CO39 from Magnaporthe oryzae via a C-terminal non-LRR domain (RGA5A_S). The interaction between RGA5A_S and AVR1-CO39 relieves the repression of RGA4, leading to effector-independent cell death. To determine the structure of the complex of RGA5A_S and AVR1-CO39 and to understand the details of this interaction, the complex was prepared by fusing the proteins together, by mixing them in vitro or by co-expressing them in one host cell. Samples purified via the first two strategies were crystallized under two different conditions. A mixture of AVR1-CO39 and RGA5A_S (complex I) crystallized in 1.1 M ammonium tartrate dibasic, 0.1 M sodium acetate-HCl pH 4.6, while crystals of the fusion complex RGA5A_S-TEV-AVR1-CO39 (complex II) were grown in 2 M NaCl. The crystal of complex I belonged to space group P3 1 21, with unit-cell parameters a = b = 66.2, c = 108.8 Å, α = β = 90, γ = 120°. The crystals diffracted to a Bragg spacing of 2.4 Å, and one molecule each of RGA5A_S and AVR1-CO39 were present in the asymmetric unit of the initial model. The crystal of complex II belonged to space group I4, with unit-cell parameters a = b = 137.4, c = 66.2 Å, α = β = γ = 90°. The crystals diffracted to a Bragg spacing of 2.72 Å, and there were two molecules of RGA5A_S and two molecules of AVR1-CO39 in the asymmetric unit of the initial model. Further structural characterization of the interaction between RGA5A_S and AVR1-CO39 will lead to a better understanding of the mechanism underlying effector recognition by R proteins.
Precedent approach to the formation of programs for cyclic objects control
NASA Astrophysics Data System (ADS)
Kulakov, S. M.; Trofimov, V. B.; Dobrynin, A. S.; Taraborina, E. N.
2018-05-01
The idea and procedure for formalizing the precedent method of formation of complex control solutions (complex control programs) is discussed with respect to technological or organizational objects, the operation of which is organized cyclically. A typical functional structure of the system of precedent control by complex technological unit is developed, including a subsystem of retrospective optimization of actually implemented control programs. As an example, the problem of constructing replaceable planograms for the operation of the link of a heading-and-winning machine on the basis of precedents is considered.
Molecular modeling of the neurophysin I/oxytocin complex
NASA Astrophysics Data System (ADS)
Kazmierkiewicz, R.; Czaplewski, C.; Lammek, B.; Ciarkowski, J.
1997-01-01
Neurophysins I and II (NPI and NPII) act in the neurosecretory granules as carrier proteinsfor the neurophyseal hormones oxytocin (OT) and vasopressin (VP), respectively. The NPI/OTfunctional unit, believed to be an (NPI/OT)2 heterotetramer, was modeled using low-resolution structure information, viz. the Cα carbon atom coordinates of the homologousNPII/dipeptide complex (file 1BN2 in the Brookhaven Protein Databank) as a template. Itsall-atom representation was obtained using standard modeling tools available within theINSIGHT/Biopolymer modules supplied by Biosym Technologies Inc. A conformation of theNPI-bound OT, similar to that recently proposed in a transfer NOE experiment, was dockedinto the ligand-binding site by a superposition of its Cys1-Tyr2 fragment onto the equivalentportion of the dipeptide in the template. The starting complex for the initial refinements wasprepared by two alternative strategies, termed Model I and Model II, each ending with a˜100 ps molecular dynamics (MD) simulation in water using the AMBER 4.1 force field. The freehomodimer NPI2 was obtained by removal of the two OT subunits from their sites, followedby a similar structure refinement. The use of Model I, consisting of a constrained simulatedannealing, resulted in a structure remarkably similar to both the NPII/dipeptide complex anda recently published solid-state structure of the NPII/OT complex. Thus, Model I isrecommended as the method of choice for the preparation of the starting all-atom data forMD. The MD simulations indicate that, both in the homodimer and in the heterotetramer, the310-helices demonstrate an increased mobility relative to the remaining body of the protein.Also, the C-terminal domains in the NPI2 homodimer are more mobile than the N-terminalones. Finally, a distinct intermonomer interaction is identified, concentrated around its mostprominent, although not unique, contribution provided by an H-bond from Ser25Oγ in one NPI unit to Glu81 Oɛ in the other unit. This interaction is present in the heterotetramer(NPI/OT)2 and absent or weak in the NPI2 homodimer. We speculate that this interaction,along with the increased mobility of the 310-helices and the carboxy domains, may contributeto the allosteric communication between ligand binding and NPI dimerization.
Technology for Subsea 3D Printing Structures for Oil and Gas Production in Arctic Region
NASA Astrophysics Data System (ADS)
Musipov, H. N.; Nikitin, V. S.; Bakanovskaya, L. N.
2017-11-01
The article considers an unconventional technology of offshore oil production and the prospects for its further development. The complexity of Arctic shelf development and the use of subsea production units have been analyzed. An issue of the subsea drilling unit construction technology with the help of 3D printers has been considered. An approximate economic efficiency calculation of the 3D printer technology introduction has been given.
Research on energy stock market associated network structure based on financial indicators
NASA Astrophysics Data System (ADS)
Xi, Xian; An, Haizhong
2018-01-01
A financial market is a complex system consisting of many interacting units. In general, due to the various types of information exchange within the industry, there is a relationship between the stocks that can reveal their clear structural characteristics. Complex network methods are powerful tools for studying the internal structure and function of the stock market, which allows us to better understand the stock market. Applying complex network methodology, a stock associated network model based on financial indicators is created. Accordingly, we set threshold value and use modularity to detect the community network, and we analyze the network structure and community cluster characteristics of different threshold situations. The study finds that the threshold value of 0.7 is the abrupt change point of the network. At the same time, as the threshold value increases, the independence of the community strengthens. This study provides a method of researching stock market based on the financial indicators, exploring the structural similarity of financial indicators of stocks. Also, it provides guidance for investment and corporate financial management.
Prychid, C. J.; Bruhl, J. J.
2013-01-01
Background and Aims In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum. Methods A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses. Key Results The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia. Conclusions Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract. PMID:23723258
Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann
2013-01-01
Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502
A controlled experiment on the impact of software structure on maintainability
NASA Technical Reports Server (NTRS)
Rombach, Dieter H.
1987-01-01
The impact of software structure on maintainability aspects including comprehensibility, locality, modifiability, and reusability in a distributed system environment is studied in a controlled maintenance experiment involving six medium-size distributed software systems implemented in LADY (language for distributed systems) and six in an extended version of sequential PASCAL. For all maintenance aspects except reusability, the results were quantitatively given in terms of complexity metrics which could be automated. The results showed LADY to be better suited to the development of maintainable software than the extension of sequential PASCAL. The strong typing combined with high parametrization of units is suggested to improve the reusability of units in LADY.
Charge delocalization characteristics of regioregular high mobility polymers
Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...
2017-01-01
Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less
Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.
2008-01-01
This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.
Fischer-Baum, Simon; Englebretson, Robert
2016-08-01
Reading relies on the recognition of units larger than single letters and smaller than whole words. Previous research has linked sublexical structures in reading to properties of the visual system, specifically on the parallel processing of letters that the visual system enables. But whether the visual system is essential for this to happen, or whether the recognition of sublexical structures may emerge by other means, is an open question. To address this question, we investigate braille, a writing system that relies exclusively on the tactile rather than the visual modality. We provide experimental evidence demonstrating that adult readers of (English) braille are sensitive to sublexical units. Contrary to prior assumptions in the braille research literature, we find strong evidence that braille readers do indeed access sublexical structure, namely the processing of multi-cell contractions as single orthographic units and the recognition of morphemes within morphologically-complex words. Therefore, we conclude that the recognition of sublexical structure is not exclusively tied to the visual system. However, our findings also suggest that there are aspects of morphological processing on which braille and print readers differ, and that these differences may, crucially, be related to reading using the tactile rather than the visual sensory modality. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geotechnical Sciences Group Bechtel Nevada
2006-01-01
A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less
Directing folding pathways for multi-component DNA origami nanostructures with complex topology
NASA Astrophysics Data System (ADS)
Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.
2016-05-01
Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.
Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki
2017-08-01
Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.
Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don
2015-03-16
[Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.
2013-09-01
Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2017-05-01
In this study, three new complexes (4aepyH)2[Ni(CN)4] (1), (4aepyH)2[Pd(CN)4] (2) and (4aepyH)2[Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine] have been synthesized and characterized by elemental, thermal, vibrational (FT-IR and Raman) and single-crystal X-ray diffraction techniques. The crystallographic analyses reveal that the complexes crystallize in the monoclinic system, space group C2/c. The asymmetric units of the complexes contain one M(II) ion, two cyanide ligands and one non-coordinated the 4aepy ligand. Each M(II) ion is four coordinated with four cyanide-carbon atoms in a square planar geometry and the [M(CN)4]2- anions act as a counter ion. The 4aepyH cations in the complexes compose of the protonation of the 4aepy. The vibrational spectral data also supported to the crystal structures of the complexes. Thermal stabilities and decomposition products of the complexes were investigated in the temperature range 40-700 °C in the static air atmosphere.
Ghosh, Pokhraj; Ding, Shengda; Chupik, Rachel B; Quiroz, Manuel; Hsieh, Chung-Hung; Bhuvanesh, Nattami; Hall, Michael B; Darensbourg, Marcetta Y
2017-12-01
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN 2 S 2 or [(NO)Fe]N 2 S 2 as donors to (η 5 -C 5 H 5 )Fe(CO) + or [Fe(NO) 2 ] +/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H + ··· - H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H - ···H - via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe 2 (NO) 3 ] - derivative. Computational studies also account for the inactivity of a Ni 2 Fe complex resulting from entanglement of added H + in a pinched -S δ - ···H + ··· δ - S- arrangement.
Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha
2012-06-01
Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.
Rabiee Kenaree, Amir; Sauvé, Ethan R; Ragogna, Paul J; Gilroy, Joe B
2016-02-21
The synthesis and characterization of a series of Group 6 metal pentacarbonyl complexes of air stable primary, secondary, and tertiary phosphines containing ferrocenylethyl substituents are reported [M(CO)5L: M = Cr, Mo, W; L = PH2(CH2CH2Fc), PH(CH2CH2Fc)2, P(CH2CH2Fc)3]. The structure and composition of the complexes were confirmed by multinuclear NMR spectroscopy, IR and UV-Vis absorption spectroscopy, mass spectrometry, X-ray crystallography, and elemental analysis. The solid-state structural data reported revealed trends in M-C and M-P bond lengths that mirrored those of the atomic radii of the Group 6 metals involved. UV-Vis absorption spectroscopy and cyclic voltammetry highlighted characteristics consistent with electronically isolated ferrocene units including wavelengths of maximum absorption between 435 and 441 nm and reversible one-electron (per ferrocene unit) oxidation waves between 10 and -5 mV relative to the ferrocene/ferrocenium redox couple. IR spectroscopy confirmed that the σ donating ability of the phosphines increased as ferrocenylethyl substituents were introduced and that the tertiary phosphine ligand described is a stronger σ donor than PPh3 and a weaker σ donor than PEt3, respectively.
Van Rinsveld, Amandine; Brunner, Martin; Landerl, Karin; Schiltz, Christine; Ugen, Sonja
2015-01-01
Solving arithmetic problems is a cognitive task that heavily relies on language processing. One might thus wonder whether this language-reliance leads to qualitative differences (e.g., greater difficulties, error types, etc.) in arithmetic for bilingual individuals who frequently have to solve arithmetic problems in more than one language. The present study investigated how proficiency in two languages interacts with arithmetic problem solving throughout language acquisition in adolescents and young adults. Additionally, we examined whether the number word structure that is specific to a given language plays a role in number processing over and above bilingual proficiency. We addressed these issues in a German–French educational bilingual setting, where there is a progressive transition from German to French as teaching language. Importantly, German and French number naming structures differ clearly, as two-digit number names follow a unit-ten order in German, but a ten-unit order in French. We implemented a transversal developmental design in which bilingual pupils from grades 7, 8, 10, 11, and young adults were asked to solve simple and complex additions in both languages. The results confirmed that language proficiency is crucial especially for complex addition computation. Simple additions in contrast can be retrieved equally well in both languages after extended language practice. Additional analyses revealed that over and above language proficiency, language-specific number word structures (e.g., unit-ten vs. ten-unit) also induced significant modulations of bilinguals' arithmetic performances. Taken together, these findings support the view of a strong relation between language and arithmetic in bilinguals. PMID:25821442
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M
2012-11-06
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.
Crystal structure of cis-tetra-aqua-dichlorido-cobalt(II) sulfolane disolvate.
Boudraa, Mhamed; Bouacida, Sofiane; Bouchareb, Hasna; Merazig, Hocine; Chtoun, El Hossain
2015-02-01
In the title compound, [CoCl2(H2O)4]·2C4H8SO2, the Co(II) cation is located on the twofold rotation axis and is coordinated by four water mol-ecules and two adjacent chloride ligands in a slightly distorted octa-hedral coordination environment. The cisoid angles are in the range 83.27 (5)-99.66 (2)°. The three transoid angles deviate significantly from the ideal linear angle. The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O-H⋯Cl hydrogen bonds between two water mol-ecules from one complex unit towards one chloride ligand of the neighbouring complex. Two solvent mol-ecules per complex are attached to this infinite chain via O-H⋯O hydrogen bonds in which water mol-ecules act as the hydrogen-bond donor and sulfolane O atoms as the hydrogen-bond acceptor sites.
NASA Astrophysics Data System (ADS)
Mogk, D. W.
1984-12-01
Six major rock units in the North Snowy Block in an Archean mobile belt are recognized between all units representing discontinuities in metamorphic grade, structural style, geochemistry, and isotopic ages. Four of the units occur in NE trending linear belts; the Basement Gneiss; the phyllitic Davis Creek Schist; the mount cowen augen gneis; the Paragneiss unit. Overlying the linear units is the 3.2 Ga old Pine Creek Nappe Complex, an isoclinally folded, middle to upper amphibolite facies, thrust nappe consisting of the Barney Creek Amphibolite, George Lake Marble and Jewel Quartzite. The highest structural units, including a thick sequence of upper amphibolite grade supracrustal rocks and a lower section of injected 3.4 Ga old granitic to tonalitic migmatitic rocks were emplaced on the Columbine Thrust. It is shown that there was secular variation in tectonic style in the Archean of southwest Montana. Three stages are recognized: (1) melting of ancient matic crust produced trondhjemitic continental nuclei; (2) numerous ensialic basins were created and destroyed, resulting in high grade metamorphism and mignatization of supracrustal rocks; and (3) contemporary style plate tectonics resulted in generation of large volumes of andesities and calc-alkaline granitic rocks, transcurrent faulting, and thrust faulting.
Structure, age and origin of the bay-mouth shoal deposits, Chesapeake Bay, Virginia
Colman, Steven M.; Berquist, C.R.; Hobbs, C. H.
1988-01-01
The mouth of Chesapeake Bay contains a distinctive shoal complex and related deposits that result from the complex interaction of three different processes: (1) progradation of a barrier spit at the southern end of the Delmarva Peninsula, (2) strong, reversing tidal currents that transport and rework sediment brought to the bay mouth from the north, and (3) landward (bayward) net non-tidal circulation and sediment transport. Together, these processes play a major role in changing the configuration of the estuary and filling it with sediment. The deposits at the mouth of the bay hold keys both to the evolution of the bay during the Holocene transgression and to the history of previous generations of the bay. The deposit associated with the shoals at the mouth of the bay, the bay-mouth sand, is a distinct stratigraphic unit composed mostly of uniform, gray, fine sand. The position and internal structure of the unit shows that it is related to near-present sea level, and thus is less than a few thousand years old. The processes affecting the upper surface of the deposit and the patterns of erosion and deposition at this surface are complex, but the geometry and structure of the deposit indicate that it is a coherent unit that is prograding bayward and tending to fill the estuary. The source of the bay-mouth sand is primarily outside the bay in the nearshore zone of the Delmarva Peninsula and on the inner continental shelf. The internal structure of the deposit, its surface morphology, its heavy-mineral composition, bottom-current studies, comparative bathymetry, and sediment budgets all suggest that sand is brought to the bay mouth by southerly longshore drift along the Delmarva Peninsula and then swept into the bay. In addition to building the southward- and bayward-prograding bay-mouth sand, these processes result in sand deposition tens of kilometers into the bay. ?? 1988.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-01-01
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589
Ivanova, O A; Venyaminova, A G; Repkova, M N; Drygin, Yu F
2005-09-01
We propose that therapy of patients with anticancer drugs that poison DNA topoisomerases induces formation of covalent complexes of cellular RNAs and DNA topoisomerases. The appearance of these complexes can be detected with antibodies against a synthetic hapten mimicking the covalent linkage unit Tyr-pU(p) of picornavirus RNA and VPg. We synthesized hapten [N(Ac),CO(NH2)]Tyr-(5 P --> O)Up-O-(CH2)6NH2, conjugated it with BSA, and immunized rabbits with the antigen obtained. The raised polyclonal antibodies were purified by successive affinity chromatography on BSA-Sepharose and hapten-Sepharose columns. Target antibodies recognized hapten and encephalomyocarditis virus RNA-VPg complex specifically as found using the dot-immunogold method. We believe that these antibodies might be useful to study mechanism of picorna and similar virus RNA synthesis. The discovery and qualitative determination of the cellular RNA-DNA topoisomerases covalent complexes with these antibodies might be useful to monitor therapy efficacy by drugs "freezing" dead-end complexes of DNA topoisomerases and nucleic acids and to understand the mechanism of DNA topoisomerase poisoning in situ.
Rancan, Marzio; Dolmella, Alessandro; Seraglia, Roberta; Orlandi, Simonetta; Quici, Silvio; Sorace, Lorenzo; Gatteschi, Dante; Armelao, Lidia
2012-05-07
Highly versatile coordinating ligands are designed and synthesized with two β-diketonate groups linked at the carbon 3 through a phenyl ring. The rigid aromatic spacer is introduced in the molecules to orient the two acetylacetone units along different angles and coordination vectors. The resulting para, meta, and ortho bis-(3-acetylacetonate)benzene ligands show efficient chelating properties toward Cu(II) ions. In the presence of 2,2'-bipyridine, they promptly react and yield three dimers, 1, 2, and 3, with the bis-acetylacetonate unit in bridging position between two metal centers. X-ray single crystal diffraction shows that the compounds form supramolecular chains in the solid state because of intermolecular interactions. Each of the dinuclear complexes shows a magnetic behavior which is determined by the combination of structural parameters and spin polarization effects. Notably, the para derivative (1) displays a moderate antiferromagnetic coupling (J = -3.3 cm(-1)) along a remarkably long Cu···Cu distance (12.30 Å).
A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes
Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean
2008-01-01
Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475
Subsurface structures of buried features in the lunar Procellarum region
NASA Astrophysics Data System (ADS)
Wang, Wenrui; Heki, Kosuke
2017-07-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.
Plüisch, Claudia Simone; Wittemann, Alexander
2013-12-01
Anisometric polymer colloids are likely to behave differently when compared with centrosymmetric particles. Their study may not only shine new light on the organization of matter; they may also serve as building units with specific symmetries and complexity to build new materials from them. Polymer colloids of well-defined complex geometries can be obtained by packing a limited number of spherical polymer particles into clusters with defined configurations. Such supracolloidal architectures can be fabricated at larger scales using narrowly dispersed emulsion droplets as templates. Assemblies built from at least two different types of particles as elementary building units open perspectives in selective targeting of colloids with specific properties, aiming for mesoscale building blocks with tailor-made morphologies and multifunctionality. Polymer colloids with defined geometries are also ideal to study shape-dependent properties such as the diffusion of complex particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Canard, Gabriel; Koeller, Sylvain; Bernardinelli, Gérald; Piguet, Claude
2008-01-23
The beneficial entropic effect, which may be expected from the connection of three tridentate binding units to a strain-free covalent tripod for complexing nine-coordinate cations (Mz+ = Ca2+, La3+, Eu3+, Lu3+), is quantitatively analyzed by using a simple thermodynamic additive model. The switch from pure intermolecular binding processes, characterizing the formation of the triple-helical complexes [M(L2)3]z+, to a combination of inter- and intramolecular complexation events in [M(L8)]z+ shows that the ideal structural fit observed in [M(L8)]z+ indeed masks large energetic constraints. This limitation is evidenced by the faint effective concentrations, ceff, which control the intramolecular ring-closing reactions operating in [M(L8)]z+. This predominence of the thermodynamic approach over the usual structural analysis agrees with the hierarchical relationships linking energetics and structures. Its simple estimation by using a single microscopic parameter, ceff, opens novel perspectives for the molecular tuning of specific receptors for the recognition of large cations, a crucial point for the programming of heterometallic f-f complexes under thermodynamic control.
Staging in polyacetylene-iodine conductors
NASA Astrophysics Data System (ADS)
Baughman, R. H.; Murthy, N. S.; Miller, G. G.; Shacklette, L. W.
1983-07-01
Evidence is presented for the existence of highly conducting polyacetylene complexes with structures related to high-stage graphite, as well as structures related to first-stage graphite. X-ray diffraction measurements on polyacetylene-iodine complexes indicate equatorial lines at 7.7-8.0 and 13.8-14.3 Å. The shorter spacing arises in part from a structure in which iodine-rich planes alternate with planes of polyacetylene chains. The longer spacing, which disappears upon atmospheric exposure, is consistent with a structure analogous to third-stage graphite in which dopant-rich planes are separated by three close-packed planes of polyacetylene chains. The third-stage complex can be viewed as a perturbation of the structure of undoped polyacetylene, with the region between dopant layers consisting essentially of a one unit cell thickness of the parent polymer structure. Packing calculations for this model, in which a linear column of anions (I3- and/or I5-) displaces either every chain or every other chain in the dopant-rich layer, provide an interlayer spacing which is equal to that observed. Evidence consistent with third-stage structures (with both fractional occupation and complete occupation of the dopant plane) is also found by reexamination of published sorption data, which provides slope changes at close to the calculated limiting compositions for these structures [(CHI0.056)x and (CHI0.13)x]. However, a first-stage structure with alternating dopant arrays and polymer chains in the dopant plane [for which (CHI0.13)x is calculated] provides a better explanation for the second slope change, as well as for the composition obtained under dynamic vacuum, (CHI0.14)x. These results for iodine complexes are compared with those derived for the group VA halide complexes of polyacetylene.
Dowling, Daniel P; Gantt, Stephanie L; Gattis, Samuel G; Fierke, Carol A; Christianson, David W
2008-12-23
Metal-dependent histone deacetylases (HDACs) require Zn(2+) or Fe(2+) to regulate the acetylation of lysine residues in histones and other proteins in eukaryotic cells. Isozyme HDAC8 is perhaps the archetypical member of the class I HDAC family and serves as a paradigm for studying structure-function relationships. Here, we report the structures of HDAC8 complexes with trichostatin A and 3-(1-methyl-4-phenylacetyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide (APHA) in a new crystal form. The structure of the APHA complex reveals that the hydroxamate CO group accepts a hydrogen bond from Y306 but does not coordinate to Zn(2+) with favorable geometry, perhaps due to the constraints of its extended pi system. Additionally, since APHA binds to only two of the three protein molecules in the asymmetric unit of this complex, the structure of the third monomer represents the first structure of HDAC8 in the unliganded state. Comparison of unliganded and liganded structures illustrates ligand-induced conformational changes in the L2 loop that likely accompany substrate binding and catalysis. Furthermore, these structures, along with those of the D101N, D101E, D101A, and D101L variants, support the proposal that D101 is critical for the function of the L2 loop. However, amino acid substitutions for D101 can also trigger conformational changes of Y111 and W141 that perturb the substrate binding site. Finally, the structure of H143A HDAC8 complexed with an intact acetylated tetrapeptide substrate molecule confirms the importance of D101 for substrate binding and reveals how Y306 and the active site zinc ion together bind and activate the scissile amide linkage of acetyllysine.
Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; ...
2016-02-18
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less
Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.
2016-01-01
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less
Implementing the dynamic appraisal of situational aggression in mental health units.
Lantta, Tella; Daffern, Michael; Kontio, Raija; Välimäki, Maritta
2015-01-01
The aims of this study are to explain the intervention of implementing a structured violence risk assessment procedure in mental health inpatient units using the Ottawa Model of Research Use (OMRU) as a guiding framework and to consider nurses' perspectives of its clinical utility and implementation process. Patient aggression toward staff is a global concern in mental health units. The limited extant literature exploring the use of structured violence risk assessments in mental health units, although small and inconsistent, reveals some positive impacts on the incidence of aggression and staff's use of restrictive interventions. Although numerous violence risk assessment instruments have been developed and tested, their systematic implementation and use are still limited. A project titled "Safer Working Management" (111298) was conducted in a Finnish hospital district, across 3 mental health units. The 6 steps of OMRU were followed during implementation of the Dynamic Appraisal of Situational Aggression (DASA). Nurses' views toward structured violence risk assessment procedures varied. Although implementation of the DASA was seen as a useful method to increase discussions with patients and nursing staff, some staff preferred their own clinical judgment for assessment of violence risk. It is possible to use a specific model to promote the implementation of risk assessment instruments in mental health units. However, the complex mental health inpatient environment and the difficulties in understanding and managing aggressive patients present challenges for the implementation of structured violence risk assessment methods. The OMRU provides a tool for clinical nurse specialists to guide implementation process in mental health units. Clinical nurse specialists must promote training for staff regarding use of new innovations, such as the DASA. Implementation processes should be reviewed so that clinical nurse specialists can lead and support mental health staff to properly use structured violence risk assessment measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Wujie; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050; Lu, Ping
Quite a few interesting but controversial phenomena, such as simple chemical composition but complex structures, well-defined high-temperature cubic structure but intriguing phase transition, coexist in Cu{sub 2}Se, originating from the relatively rigid Se framework and “soft” Cu sublattice. However, the electrical transport properties are almost uninfluenced by such complex substructures, which make Cu{sub 2}Se a promising high-performance thermoelectric compound with extremely low thermal conductivity and good power factor. Our work reveals that the crystal structure of Cu{sub 2}Se at the temperature below the phase-transition point (∼400 K) should have a group of candidate structures that all contain a Se-dominated face-centered-cubic-likemore » layered framework but nearly random site occupancy of atoms from the “soft” Cu sublattice. The energy differences among those structures are very low, implying the coexistence of various structures and thus an intrinsic structure complexity with a Se-based framework. Detailed analyses indicate that observed structures should be a random stacking of those representative structure units. The transition energy barriers between each two of those structures are estimated to be zero, leading to a polymorphous phase transition of Cu{sub 2}Se at increasing temperature. Those are all consistent with experimental observations.« less
Unprecedented linking of two polyoxometalate units with a metal-metal multiple bond.
Sokolov, Maxim N; Korenev, Vladimir S; Izarova, Natalya V; Peresypkina, Eugenia V; Vicent, Cristian; Fedin, Vladimir P
2009-03-02
The reaction of (Bu(4)N)(2)[Re(2)Cl(8)] with lacunary Keggin polyoxometalate K(7)[PW(11)O(39)] in water produces a new dumbbell-shaped heteropolyoxometalate anion, [Re(2)(PW(11)O(39))(2)](8-), whose structure contains a central Re(2) core with a quadruple bond between Re atoms (Re-Re 2.25 A), coordinated to two polyoxometalate units. This complex represents the first example of the direct linking of two polyoxometalate units via a metal-metal multiple bond. The compounds were characterized by X-ray analysis, IR, and electrospray ionization mass spectrometry.
Units of analysis and kinetic structure of behavioral repertoires
Thompson, Travis; Lubinski, David
1986-01-01
It is suggested that molar streams of behavior are constructed of various arrangements of three elementary constituents (elicited, evoked, and emitted response classes). An eight-cell taxonomy is elaborated as a framework for analyzing and synthesizing complex behavioral repertoires based on these functional units. It is proposed that the local force binding functional units into a smoothly articulated kinetic sequence arises from temporally arranged relative response probability relationships. Behavioral integration is thought to reflect the joint influence of the organism's hierarchy of relative response probabilities, fluctuating biological states, and the arrangement of environmental and behavioral events in time. PMID:16812461
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.
1980-01-01
The methodology of remote sensing applied to geological study in a complex area was evaluated. Itatiaia was selected as a test area, which covers the alkaline massives and its precambrian basement. LANDSAT-MSS and radar mosaic of the RADAMBRASIL Project were used for photointerpretation. Previous geological works were consulted and many discrepancies in the distribution of stratigraphic units were found. Moreover, structural lineaments and talus deposits were clearly delineated.
Crystallographic and theoretical studies of an inclusion complex of β-cyclodextrin with fentanyl.
Ogawa, Noriko; Nagase, Hiromasa; Loftsson, Thorsteinn; Endo, Tomohiro; Takahashi, Chisato; Kawashima, Yoshiaki; Ueda, Haruhisa; Yamamoto, Hiromitsu
2017-10-15
The crystal structure of an inclusion complex of β-cyclodextrin (β-CD) with fentanyl was determined by single crystal X-ray diffraction analysis. The crystal belongs to the triclinic space group P1 and the complex comprises one fentanyl, two β-CD, and several water molecules. β-CD and fentanyl form a host-guest inclusion complex at a ratio of 2:1 and the asymmetric unit of the complex contains two host molecules (β-CDs) in a head-to-head arrangement that form dimers through hydrogen bonds between the secondary hydroxyl groups of β-CD and one guest molecule. Fentanyl is totally contained within the β-CD cavity and the structure of the phenylethyl part of fentanyl inside the dimeric cavity of the complex is disordered. Furthermore, theoretical molecular conformational calculations were conducted to clarify the mobility of the guest molecule in the β-CD cavity using CONFLEX software. Crystal optimization and crystal energy calculations were also conducted. The results of the theoretical calculations confirmed that the conformation of disorder part 1, which was high in occupancy by crystal structure analysis, was more stable. The phenylethyl part of fentanyl existed in several stable conformations. Copyright © 2017 Elsevier B.V. All rights reserved.
Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi
2010-05-01
The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq-RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq-RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 A, while the type 2 Hfq-RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 A. Diffraction data were collected to a resolution of 2.20 A from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis.
Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.
Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego
2015-01-01
The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Antsyshkina, A. S.; Koksharova, T. V.
2007-09-15
The [Co{sub 2}L{sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] coordination compound of cobalt(II) valerate with nicotinamide (L) is synthesized and studied by IR spectroscopy. The crystal structure of the synthesized compound is determined. The crystals are triclinic, and the unit cell parameters are as follows: a = 10.2759(10) A, b = 16.3858(10) A, c = 16.4262(10) A, {alpha} = 100.538(10) deg., {beta} = 101.199(10) deg., {gamma} = 90.813 (10) deg., Z = 2, and space group P1-bar. The structural units of the crystal are dimeric molecular complexes in which pairs of cobalt atoms are linked by triple bridges formed by oxygenmore » atoms of two bidentately coordinated valerate anions and a water molecule. The octahedral coordination of each cobalt atom is complemented by the pyridine nitrogen atoms of two nicotinamide ligands and the oxygen atom of the monodentate valerate group. The hydrocarbon chains of the valerate anions are disordered over two or three positions each.« less
Jacobi, James D.
2017-01-01
This vegetation map was produced to serve as an updated habitat base for management of natural resources of the Hakalau Forest Unit (HFU) of the Big Island National Wildlife Refuge Complex (Refuge) on the island of Hawai‘i. The map is based on a vegetation map originally produced as part of the U.S. Fish and Wildlife Service’s Hawai‘i Forest Bird Survey to depict the distribution, structure, and composition of plant communities on the island of Hawai‘i as they existed in 1977. The current map has been updated to represent current conditions of plant communities in the HFU, based on WorldView 2 imagery taken in 2012 and very-high-resolution imagery collected by Pictometry International from 2010 to 2014. Thirty-one detailed plant communities are identified on this map, and fourteen of these units are found within the boundaries of HFU. Additionally, the mapped units can be displayed as five tree canopy cover units, three moisture zones units, eight dominant tree species units, and four habitat status units by choosing the various fields to group the units from the map attribute table. This updated map will provide a foundation for the refinement and tracking of management actions on the Refuge for the near future, particularly as the habitats in this area are subject to projected climate change.
Laser-assisted fabrication of single-layer flexible touch sensor
Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul
2016-01-01
Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device. PMID:27703204
Structural and functional diversity in Listeria cell wall teichoic acids.
Shen, Yang; Boulos, Samy; Sumrall, Eric; Gerber, Benjamin; Julian-Rodero, Alicia; Eugster, Marcel R; Fieseler, Lars; Nyström, Laura; Ebert, Marc-Olivier; Loessner, Martin J
2017-10-27
Wall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from Listeria species. We unveiled more than 10 different types of WTA polymers that vary in their linkage and repeating units. Disparity in GlcNAc to ribitol connectivity, as well as variable O -acetylation and glycosylation of GlcNAc contribute to the structural diversity of WTAs. Notably, SPR analysis indicated that constitution of WTA determines the recognition by bacteriophage endolysins. Collectively, these findings provide detailed insight into Listeria cell wall-associated carbohydrates, and will guide further studies on the structure-function relationship of WTAs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
NASA Astrophysics Data System (ADS)
Neubauer, F.; Cao, S.
2012-04-01
Structures of hangingwall units of major detachment systems in extensional settings leading to metamorphic core complexes are equally important to the generally well-studied footwall rocks. Here, we describe hanging-wall structures of the North-Cycladic Detachment System on Naxos Island of the Aegean Sea and found that they well monitor the structural evolution of hanging blocks complementary to the footwall structures, vertical fluid flow as well as late-stage inversion of the whole extensional system. On Naxos, Upper Oligocene-Miocene and Pliocene sedimentary successions are deposited on the hangingwall unit, which is largely an ophiolite. The Upper Oligocene-Miocene and Pliocene sedimentary successions are separated by a hiatus arguing for a two-step evolution. Whereas the first step, Miocene, indicate moderate subsidence and relief, and only denudation of the hangingwall unit, the Pliocene conglomerates indicate a sharply increasing relief and an over-steepened topography. Hydrothermal systems developed in hangingwall rock succession (e.g. Miocene at Steladia) play an important role and resulted in large-scale silica precipitation and associated alteration similar as these found in subvolcanic epithermal systems. This constrains a close link between footwall granodiorite intrusion and near-surface processes. The Pliocene coarse boulder conglomerate with its abundant first appearance of granite/granodiorite, and subsequent marble-rich debris on distant places like Palatia indicate a sudden erosion and high-gradient relief leading to erosion of the mantle of the migmatite dome during Pliocene. On Naxos, we recognize, therefore, a three-stage tectonic evolution in the hangingwall unit: (i) moderate subsidence of an Upper Oligocene-Miocene basin, in part below sea level; (2) a second stage with deposition of Pliocene coarse conglomerates, and (iii) post-Pliocene faulting affecting the conglomerates. During the second stage, surface exposure of the metamorphic core complex was reached resulting in catastrophic alluvial fans. Structural data from the Upper Oligocene-Miocene rocks indicate that NNE-SSW extension still prevailed up to the Miocene/Pliocene boundary. Together with structural data from Pliocene conglomerates, we can distinguish between three major events: The first stage is characterized by mostly NNE-dipping and subordinate SSW-dipping normal faults indicating together ca. NNE-SSW extension. A second palaeostress tensor group (B) mainly comprises ca. NW-trending dextral and WSW-trending sinistral strike-slip faults indicating together ca. E-W strike-slip compression and monitor, therefore, inversion and compression perpendicular to the previous extension direction. The third palaeostress tensor group (C) is characterized by dominating mostly NE-trending subvertical sinistral strike-slip faults and steep NNW-trending dextral strike-slip faults constituting together ca. N-S strike-slip compression. In a few cases, S- to SW-dipping reverse faults also occur. On a general level, our study allows for the following major conclusions: (1) Structures of hangingwall units of major detachments above metamorphic core complexes are equally important compared to the generally well-studied footwall rocks. They allow date several tectonic events not necessarily found in footwall rocks. (2) On Naxos, we can distinguish between three major tectonic events, which are in accordance with large-scale tectonic processes in the Aegean Sea: (a) ca. NNE-SSW extension; (b) ca. E-W strike-slip compression and monitor therefore inversion and compression perpendicular to the previous extension direction, and (c) N-S strike-slip compression.
Harkins, Seth B; Mankad, Neal P; Miller, Alexander J M; Szilagyi, Robert K; Peters, Jonas C
2008-03-19
A series of dicopper diamond core complexes that can be isolated in three different oxidation states ([Cu2(mu-XR2)]n+, where n = 0, 1, 2 and X = N or P) is described. Of particular interest is the relative degree of oxidation of the respective copper centers and the bridging XR2 units, upon successive oxidations. These dicopper complexes feature terminal phosphine and either bridging amido or phosphido donors, and as such their metal-ligand bonds are highly covalent. Cu K-edge, Cu L-edge, and P K-edge spectroscopies, in combination with solid-state X-ray structures and DFT calculations, provides a complementary electronic structure picture for the entire set of complexes that tracks the involvement of a majority of ligand-based redox chemistry. The electronic structure picture that emerges for these inorganic dicopper diamond cores shares similarities with the Cu2(mu-SR)2 CuA sites of cytochrome c oxidases and nitrous oxide reductases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Berdalieva, Zh. I., E-mail: kakin@inbox.ru; Chernaya, T. S.
2009-03-15
The pyridoxine complexes with zinc and cadmium sulfates are synthesized. The IR absorption spectra and thermal behavior of the synthesized compounds are described. Crystals of the [M(C{sub 8}H{sub 11}O{sub 3}N){sub 2}(H{sub 2}O){sub 2}]SO{sub 4} . 3H{sub 2}O (M = Zn, Cd) compounds are investigated using X-ray diffraction. In the structures of both compounds, the M atoms are coordinated by the oxygen atoms of the deprotonated OH group and the CH{sub 2}OH group retaining its own hydrogen atom, as well as by two H{sub 2}O molecules, and have an octahedral coordination. The nitrogen atom of the heterocycle is protonated, so thatmore » the heterocycle acquires a pyridinium character. The cationic complexes form layers separated by the anions and crystallization water molecules located in between. The structural units of the crystals are joined together by a complex system of hydrogen bonds.« less
Multicriteria Analysis of Assembling Buildings from Steel Frame Structures
NASA Astrophysics Data System (ADS)
Miniotaite, Ruta
2017-10-01
Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.
NASA Astrophysics Data System (ADS)
Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng
2018-04-01
Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.
Li, Xiansen; Michaelis, Vladimir K.; Ong, Ta-Chung; Smith, Stacey J.; Griffin, Robert G.; Wang, Evelyn N.
2014-01-01
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. We report the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes via a novel transesterification mechanism. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+-O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counterions as a result of unique atomic arrangement in its structure. On the other hand, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity. PMID:24737615
THE RECRUITMENT AND TRAINING OF AUTOMOBILE MECHANICS.
ERIC Educational Resources Information Center
LESH, SEYMOUR
A SURVEY OF 20 EMPLOYERS, ASSOCIATION REPRESENTATIVES, AND UNION LEADERS INDICATED THAT DIFFICULTIES IN RECRUITING CAPABLE YOUTH FOR THE AUTOMOBILE MECHANICS TRADE ARE CAUSED BY (1) A CHAOTIC STRUCTURE, INCLUDING UNCLEAR DEFINITION OF FUNCTION, VARIETY OF PLACES OF EMPLOYMENT, AND SIZE OF THE EMPLOYING UNITS, (2) THE COMPLEXITIES OF TRAINING AND…
ERIC Educational Resources Information Center
Hunter, Christine
2015-01-01
Imagine a microscopic world filled with tiny motors, ratchets, switches, and pumps controlled by complex signaling and feedback systems. Now imagine that these parts can assemble themselves. This is the world presented to students in the protein structure unit of a genetic engineering course. Students learn how protein folding gives rise to the…
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum is an important pathogen of salmonids worldwide. Multilocus sequence typing (MLST) has identified a recombinogenic population structure from which emerged a few epidemic clonal complexes particularly threatening for salmonid aquaculture. To date, MLST genotypes for this ...
The United States’ water and wastewater infrastructure is large (i.e., 16,000 publicly owned treatment works, 59,000 community water supplies, 600,000 miles of sewer, 1,000,000 miles of drinking water distribution piping), complex and expensive. The reliable and efficient functio...
STRUCTURES AND BINDING ENERGIES OF METHYL TERT-BUTYL ETHER-WATER COMPLEXES
Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...
A CURRICULUM FOR ENGLISH, GRADE 5, UNITS 45-57.
ERIC Educational Resources Information Center
Nebraska Univ., Lincoln. Curriculum Development Center.
THE NEBRASKA ENGLISH CURRICULUM FOR GRADE FIVE CONTINUES THE PRESENTATION OF LITERARY TECHNIQUES USED TO PRODUCE WORKS OF IMAGINATION. IN "TALL TALE AMERICAN," RAPUNZEL," AND OTHER FAIRY TALES, THE AMERICAN AND EUROPEAN FOLK TRADITIONS ARE COMPARED FOR COMMON STYLISTIC AND STRUCTURAL DEVICES. A MORE COMPLEX USE OF TECHNIQUES USED IN…
Crystallization of Macromolecules
Friedmann, David; Messick, Troy; Marmorstein, Ronen
2014-01-01
X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560
Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E
2018-05-07
Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.
Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru
2017-08-01
The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.
Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi
2017-01-01
The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP–FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP–FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation. PMID:28771466
Rosas, Antonio; Bastir, Markus
2004-06-01
Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.
Cyclic tetraureas with variable flexibility--synthesis, crystal structures and properties.
Meshcheryakov, Denys; Arnaud-Neu, Françoise; Böhmer, Volker; Bolte, Michael; Cavaleri, Julien; Hubscher-Bruder, Véronique; Thondorf, Iris; Werner, Sabine
2008-09-21
Macrocyclic molecules containing several amide or urea functions may serve as anion receptors. We describe the synthesis of 32-membered macrocycles, in which four rigid xanthene units (X) and/or diphenyl ether units (D) as flexible analogues are linked via urea groups. All six possible combinations of these units (XXXX, XXXD, XXDD, XDXD, XDDD and DDDD) were synthesized and two examples were characterised by single-crystal X-ray analyses (DDDD and two structures for XXXD). Both macrocycles showed distinct differences in their overall conformation and consequently in their hydrogen-bonding pattern. Hydrogen-bonded solvent molecules are found for both compounds and intramolecular hydrogen bonds for the two structures of XXXD, but surprisingly no direct intermolecular hydrogen bonds between the macrocyclic tetraurea molecules. The interaction with various anions was studied by (1)H NMR spectroscopy. Stability constants for all tetramers were determined by UV spectroscopy for complexes with chloride, bromide, acetate and dihydrogenphosphate in acetonitrile-THF (3:1). The strongest binding was found for XXXD and acetate (log beta = 7.4 +/- 0.2), the weakest for XXXX and acetate (log beta = 5.1 +/- 0.5). MD simulations in chloroform and acetonitrile boxes show that all molecules except DDDD adopt very similar conformations characterized by an up-down-up-down arrangement of the spacer groups. Clustered solvation shells of acetonitrile molecules around XXXX and DDDD suggest their preorganization for spherical/planar and tetrahedral/bidentate anions, respectively, which in turn was corroborated by simulation of the corresponding complexes with chloride and dihydrogenphosphate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Rosario, E-mail: r_oh@ciencias.unam.mx; Kouznetsova, Anna, E-mail: Anna.Kouznetsova@ki.se; Echeverría-Martínez, Olga M., E-mail: omem@ciencias.unam.mx
The synaptonemal complex (SC) is a proteinaceous structure that holds the homologous chromosomes in close proximity while they exchange genetic material in a process known as meiotic recombination. This meiotic recombination leads to genetic variability in sexually reproducing organisms. The ultrastructure of the SC is studied by electron microscopy and it is observed as a tripartite structure. Two lateral elements (LE) separated by a central region (CR) confer its classical tripartite organization. The LEs are the anchoring platform for the replicated homologous chromosomes to properly exchange genetic material with one another. An accurate assembly of the LE is indispensable formore » the proper completion of meiosis. Ultrastructural studies suggested that the LE is organized as a multilayered unit. However, no validation of this model has been previously provided. In this ultrastructural study, by using mice with different genetic backgrounds that affect the LE width, we provide further evidence that support a multilayered organization of the LE. Additionally, we provide data suggesting additional roles of the different cohesin complex components in the structure of the LEs of the SC. - Highlights: • The lateral element of the synaptonemal complex is a multilayered structure. • The width of the lateral element in synaptonemal complex-null mice is different. • Two cohesin complex cores plus one axial element form a wild-type lateral element. • The layers of the lateral element can be analyzed in different null mice models.« less
Trávnícek, Zdenek; Krystof, Vladimír; Sipl, Michal
2006-02-01
The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is also discussed.
Complex Adaptive Systems and the Development of Force Structures for the United States Air Force
2014-12-01
the ideas of self -organized criticality to the theory of international relations—and by extension to the formation of na- tional policy to interact...and Bak and Paczuski, “Complexity, Contingency, and Criticality,” 6689–96. More recent work applies the theory of self -organized criticality to the... theory of international relations. 15. Mann, “Chaos, Criticality, and Strategic Thought,” 45–50. 16. Brunk, “ Self -Organized Criticality,” 427–45. A
NASA Astrophysics Data System (ADS)
Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario
2017-07-01
Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (< 2 kbar). One of these, the San Blas intrusive complex formed over millions of years (≤ 2-3 m.y.) through three periods of magma additions that are characterized by variations in magma sources and emplacement style. The main units, mostly felsic granitoids, have U-Pb zircon crystallization ages within the error range. From older to younger (based on cross-cutting relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.
Noll, Julian; Korb, Marcus; Lang, Heinrich
2016-01-01
The structure of the title compound, [Ag(C18H15P)4]2[Ag(C6H6NO6)(C18H15P)], exhibits trigonal (P-3) symmetry, with a C 3 axis through all three complex ions, resulting in an asymmetric unit that contains one third of the atoms present in the formula unit. The formula unit thus contains two of the cations, one anion and disordered molecules of methanol as the packing solvent. Attempts to refine the solvent model were unsuccessful, indicating uninterpretable disorder. Thus, the SQUEEZE procedure in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9–18] was applied, accounting for 670 electrons per unit cell, representing approximately 18 molecules of methanol in the formula unit. The stated crystal data for M r, μ etc do not take these into account. PMID:27006796
NASA Astrophysics Data System (ADS)
Puszyńska-Tuszkanow, Mariola; Zierkiewicz, Wiktor; Grabowski, Tomasz; Daszkiewicz, Marek; Maciejewska, Gabriela; Adach, Anna; Kucharska-Ziembicka, Katarzyna; Wietrzyk, Joanna; Filip-Psurska, Beata; Cieślak-Golonka, Maria
2017-04-01
The composition and structure of the magnesium complex with cinnamic acid, [Mg(cinn)2(H2O)2]n(1), were determined using single crystal X-ray diffraction data, IR, NMR spectroscopies, thermal and mass spectrometry analysis. Magnesium cinnamate complex, like the isostructural cobalt(II) species reported in the literature, appears to belong to the group of coordination polymers forming layered solids with pseudooctahedral coordination around the metal centre and Osbnd Csbnd O bridging units. The vibrational assignments of the experimental spectra of the complex (1) were performed on the basis of the DFT results obtained for the [Mg(cinn)4(H2O)2]2- ion, serving as a model. The complex was found to exhibit a very low cytotoxicity against neoplastic: A549 (lung), MCF-7 (breast), P388 (murine leukemia) and normal BALB3T3 (mouse fibroblasts) cell lines. In silico pharmacokinetical parameter calculations for (1) and seven known magnesium complexes with carboxylic acids: lactic, malic, glutamic, hydroaspartic and aspartic allowed for comparison of their potential bioavailability. Magnesium cinnamate complex appeared to exhibit a superior lipophilic property that suggests an optimal pharmacokinetics profile.
Farrugia, Mark A.; Han, Linjie; Zhong, Yueyang; Boer, Jodi L.; Ruotolo, Brandon T.; Hausinger, Robert P.
2013-01-01
Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation. PMID:23797863
Kinematic stratification in the hinterland of the central Scandinavian Caledonides
Gilotti, J.A.; Hull, J.M.
1993-01-01
A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBackere, John R.; Mercier, Helene P. A; Schrobilgen, Gary J.
2014-02-03
The synthesis of high-purity Hg(OTeF 5) 2 has resulted in its structural characterization in the solid state by Raman spectroscopy and single-crystal X-ray diffraction (XRD) and in solution by 19F NMR spectroscopy. The crystal structure of Hg(OTeF 5) 2 (-173 °C) consists of discrete Hg(OTeF 5) 2 units having gauche-conformations that interact through long Hg---O and Hg---F intramolecular contacts to give a chain structure. Furthermore, the Lewis acidity of Hg(OTeF 5) 2 toward NgF 2 (Ng = Xe, Kr) was investigated in SO 2ClF solvent and shown to form stable coordination complexes with NgF 2 at -78 °C. Both complexesmore » were characterized by low-temperature Raman spectroscopy (-155 °C) and single-crystal XRD. The complexes are isostructural and are formulated as Hg(OTeF 5) 2·1.5NgF 2. The Hg(OTeF 5) 2 units of Hg(OTeF 5) 2·1.5NgF 2 also have gauche-conformations and are linked through bridging NgF 2 molecules, also resulting in chain structures. The complexes represent the only examples of coordination compounds where NgF 2 coordinates to mercury in a neutral covalent compound and the only example of mercury coordinated to KrF 2. Moreover, the Hg(OTeF 5) 2·1.5KrF 2 complex is the only KrF 2 complex known to contain a bridging KrF 2 ligand. Energy-minimized gas-phase geometries and vibrational frequencies for the model compounds, [Hg(OTeF5) 2] 3 and [Hg(OTeF 5) 2] 3·2NgF 2, were obtained and provide good approximations of the local environments of Hg(OTeF 5) 2 and NgF 2 in the crystal structures of Hg(OTeF5)2 and Hg(OTeF 5) 2·1.5NgF 2. Assignments of the Raman spectra of Hg(OTeF 5) 2 and Hg(OTeF 5) 2·1.5NgF 2 are based on the calculated vibrational frequencies of the model compounds. Natural bond orbital analyses provided the associated bond orders, valencies, and natural population analysis charges.« less
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
Levy, Matthew E; Wilton, Leo; Phillips, Gregory; Glick, Sara Nelson; Kuo, Irene; Brewer, Russell A; Elliott, Ayana; Watson, Christopher; Magnus, Manya
2014-05-01
Structural-level factors have contributed to the substantial disproportionate rates of HIV among Black men who have sex with men (BMSM) in the United States. Despite insufficient HIV testing patterns, however, there is a void in research investigating the relationship between structural factors and access to HIV testing and prevention services among BMSM. Building on previous scholarly work and incorporating a dynamic social systems conceptual framework, we conducted a comprehensive review of the literature on structural barriers to HIV testing and prevention services among BMSM across four domains: healthcare, stigma and discrimination, incarceration, and poverty. We found that BMSM experience inadequate access to culturally competent services, stigma and discrimination that impede access to services, a deficiency of services in correctional institutions, and limited services in areas where BMSM live. Structural interventions that eliminate barriers to HIV testing and prevention services and provide BMSM with core skills to navigate complex systems are needed.
Wilton, Leo; Phillips, Gregory; Glick, Sara Nelson; Kuo, Irene; Brewer, Russell A.; Elliott, Ayana; Watson, Christopher; Magnus, Manya
2015-01-01
Structural-level factors have contributed to the substantial disproportionate rates of HIV among Black men who have sex with men (BMSM) in the United States. Despite insufficient HIV testing patterns, however, there is a void in research investigating the relationship between structural factors and access to HIV testing and prevention services among BMSM. Building on previous scholarly work and incorporating a dynamic social systems conceptual framework, we conducted a comprehensive review of the literature on structural barriers to HIV testing and prevention services among BMSM across four domains: healthcare, stigma and discrimination, incarceration, and poverty. We found that BMSM experience inadequate access to culturally competent services, stigma and discrimination that impede access to services, a deficiency of services in correctional institutions, and limited services in areas where BMSM live. Structural interventions that eliminate barriers to HIV testing and prevention services and provide BMSM with core skills to navigate complex systems are needed. PMID:24531769
Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.
2015-01-01
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037
Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A
2015-04-21
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).
Pellis, Lorenzo; Ball, Frank; Trapman, Pieter
2012-01-01
The basic reproduction number R0 is one of the most important quantities in epidemiology. However, for epidemic models with explicit social structure involving small mixing units such as households, its definition is not straightforward and a wealth of other threshold parameters has appeared in the literature. In this paper, we use branching processes to define R0, we apply this definition to models with households or other more complex social structures and we provide methods for calculating it. PMID:22085761
An Adaptive Complex Network Model for Brain Functional Networks
Gomez Portillo, Ignacio J.; Gleiser, Pablo M.
2009-01-01
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902
Vasiliev, Alexander D; Molokeev, Maxim S; Baidina, Iraida A; Belyaev, Anatoly V; Vorob'eva, Sofiya N
2013-12-15
The rhodium complexes [RhCl3(NH3)3], (I), and [Rh(NO3)3(NH3)3], (II), are built from octahedral RhX3(NH3)3 units; in (I) they are isolated units, while in (II) the units are stacked in columns with partially filled sites for the Rh atoms. The octahedra of monoclinic crystals of (I) are linked by N-H···Cl hydrogen bonds and the Rh(3+) ions are located on the mirror planes. In the trigonal crystals of (II), the discontinuous `columns' along the threefold axis are linked by N-H···O hydrogen bonds. The structure of (I) has been solved using laboratory powder diffraction data, the structure of (II) has been solved by single-crystal methods using data from a merohedrally twinned sample. Both compounds possess low solubility in water.
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...
2015-07-13
The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less
O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.
Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J
2016-01-11
A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chaperonin polymers in archaea: The cytoskeleton of prokaryotes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, J.D.; Kagawa, H.K.; Zaluzec, N.J.
Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1more » mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.« less
Chaperonin Polymers in Archaea: The Cytoskeleton of Prokaryotes?
DOE R&D Accomplishments Database
Trent, J. D.; Kagawa, H. K.; Zaluzec, N. J.
1997-07-01
Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.
"Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery.
Bathula, Surendar Reddy; Akondi, Srirama Murthy; Mainkar, Prathama S; Chandrasekhar, Srivari
2015-06-21
The source or inspiration of many marketed drugs can be traced back to natural product research. However, the chemical structure of natural products covers a wide spectrum from very simple to complex. With more complex structures it is often desirable to simplify the molecule whilst retaining the desired biological activity. This approach seeks to identify the structural unit or pharmacophore responsible for the desired activity. Such pharmacophores have been the start point for a wide range of lead generation and optimisation programmes using techniques such as Biology Oriented Synthesis, Diversity Oriented Synthesis, Diverted Total Synthesis, and Fragment Based Drug Discovery. This review discusses the literature precedence of simplification strategies in four areas of natural product research: proteins, polysaccharides, nucleic acids, and compounds isolated from natural product extracts, and their impact on identifying therapeutic products.
NASA Astrophysics Data System (ADS)
Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati
2008-12-01
A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.
Matching of energetic, mechanic and control characteristics of positioning actuator
NASA Astrophysics Data System (ADS)
Y Nosova, N.; Misyurin, S. Yu; Kreinin, G. V.
2017-12-01
The problem of preliminary choice of parameters of the automated drive power channel is discussed. The drive of the mechatronic complex divides into two main units - power and control. The first determines the energy capabilities and, as a rule, the overall dimensions of the complex. The sufficient capacity of the power unit is a necessary condition for successful solution of control tasks without excessive complication of the control system structure. Preliminary selection of parameters is carried out based on the condition of providing the necessary drive power. The proposed approach is based on: a research of a sufficiently developed but not excessive dynamic model of the power block with the help of a conditional test control system; a transition to a normalized model with the formation of similarity criteria; constructing the synthesis procedure.
Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers
NASA Astrophysics Data System (ADS)
Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.
2017-04-01
FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.
Seismic Observations of the Mid-Pacific Large Low Shear Velocity Province
NASA Astrophysics Data System (ADS)
Chan, A.; Helmberger, D. V.; Sun, D.; Li, D.; Jackson, J. M.
2015-12-01
Seismic data from earthquakes originating in the Fiji-Tonga region exhibits waveform complexity of a number of phases which may be attributed to various structures along ray paths to stations of USArray, including anomalous structures at the core-mantle boundary. The data shows variation in multipathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific Large Low Shear Velocity Province (LLSVP). This study examines data from earthquake events while the Transportable Array portion of USArray was situated in the midwest United States, reinforcing previous studies that indicate late arrivals occurring as long as 26 seconds after the primary arrivals (To et al., 2011). Using earth flattening transformations and finite difference methods, simulations of tapered wedge structures of low velocity material allow for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances, with such structures having characteristic properties of, for example, a height of 70 km, in-plane extent more than 1000 km, and shear wave velocity drop of 3% at the top to 15% at the bottom relative to PREM. Differential arrival times for SH and SV components suggest anisotropy and possible wave propagation through downgoing slabs beneath the source region. The arrivals of the SPdKS phase further support the presence of an ultra-low velocity zone (ULVZ) within a two-humped LLSVP. Some systematic delays in arrival times of multiple phases for distances less than 102º are accounted for and attributed to the presence of a mantle slab underneath the continental United States. Comparisons to seismic data from earthquakes originating from other locations further constrain depths of the deep mantle structures. Possible explanations include iron-enrichment of deep mantle phases.
Gil, Diego M; Carbonio, Raúl E; Gómez, María Inés
2015-04-15
The metallo-organic complex Pb[Mn(C3H2O4)2(H2O)2] was synthesized and characterized by IR and Raman spectroscopy and powder X-ray diffraction methods. The cell parameters for the complex were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail method with the Fullprof program. A hexagonal unit cell was determined with a=b=13.8366(7)Å, c=9.1454(1)Å, γ=120°. The DFT calculated geometry of the complex anion [Mn(C3H2O4)2(H2O)2](2-) is very close to the experimental data reported for similar systems. The IR and Raman spectra and the thermal analysis of the complex indicate that only one type of water molecules is present in the structure. The thermal decomposition of Pb[Mn(C3H2O4)2(H2O)2] at 700 °C in air produces PbO and Pb2MnO4 as final products. The crystal structure of the mixed oxide is very similar to that reported for Pb3O4. Copyright © 2015 Elsevier B.V. All rights reserved.
The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.
Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen
2015-01-01
The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.
Structural analysis of muscles elevating the hyolaryngeal complex.
Pearson, William G; Langmore, Susan E; Yu, Louis B; Zumwalt, Ann C
2012-12-01
A critical event of pharyngeal swallowing is the elevation of the hyolaryngeal complex to open the upper esophageal sphincter. Current swallowing theory assigns this function to the submental and thyrohyoid muscles. However, the attachments of the long pharyngeal muscles indicate that they could contribute to this function, yet their role is uninvestigated in humans. In addition, there is evidence the posterior digastric and stylohyoid contribute to hyoid elevation. A cadaver model was used to document the structural properties of muscles. These properties were used to model muscle groups as force vectors and analyze their potential for hyolaryngeal elevation. Vector magnitude was determined using physiological cross-sectional areas (PCSAs) of muscles calculated from structural properties of muscle taken from 12 hemisected cadaver specimens. Vector direction (lines of action) was calculated from the three-dimensional coordinates of muscle attachment sites. Unit force vectors in the superior direction of submental, suprahyoid (which includes the submental muscles), long pharyngeal, and thyrohyoid muscles were derived and compared by an analysis of variance (ANOVA) to document each muscle's potential contribution to hyolaryngeal elevation. An ANOVA with Tukey HSD post hoc analysis of unit force vectors showed no statistically significant difference between the submental (0.92 ± 0.24 cm(2)) and long pharyngeal (0.73 ± 0.20 cm(2)) muscles. Both demonstrated greater potential to elevate the hyolaryngeal complex than the thyrohyoid (0.49 ± 0.18 cm(2)), with P < 0.01 and P < 0.05, respectively. The suprahyoid muscles (1.52 ± 0.35 cm(2)) demonstrated the greatest potential to elevate the hyolaryngeal complex: greater than both the long pharyngeal muscles (P < 0.01) and the thyrohyoid (P < 0.01). The submental and thyrohyoid muscles by convention are thought to elevate the hyolaryngeal complex. This study demonstrates that structurally the long pharyngeal muscles have similar potential to contribute to this critical function, with the suprahyoid muscles having the greatest potential. If verified by functional data, these findings would amend current swallowing theory.
Using the self-select paradigm to delineate the nature of speech motor programming.
Wright, David L; Robin, Don A; Rhee, Jooyhun; Vaculin, Amber; Jacks, Adam; Guenther, Frank H; Fox, Peter T
2009-06-01
The authors examined the involvement of 2 speech motor programming processes identified by S. T. Klapp (1995, 2003) during the articulation of utterances differing in syllable and sequence complexity. According to S. T. Klapp, 1 process, INT, resolves the demands of the programmed unit, whereas a second process, SEQ, oversees the serial order demands of longer sequences. A modified reaction time paradigm was used to assess INT and SEQ demands. Specifically, syllable complexity was dependent on syllable structure, whereas sequence complexity involved either repeated or unique syllabi within an utterance. INT execution was slowed when articulating single syllables in the form CCCV compared to simpler CV syllables. Planning unique syllables within a multisyllabic utterance rather than repetitions of the same syllable slowed INT but not SEQ. The INT speech motor programming process, important for mental syllabary access, is sensitive to changes in both syllable structure and the number of unique syllables in an utterance.
Electron Beam Freeform Fabrication Technology Development for Aerospace Applications
NASA Technical Reports Server (NTRS)
Taminger, Karen M.
2006-01-01
NASA Langley has developed a the EBF(sup 3)process and currently has two EBF(sup 3) systems in house. EBF(sup 3) process offers potential cost reduction and fabrication of complex unitized structures out of metals. EBF(sup 3) has been successfully demonstrated on Al, Al-Li, Ti, and Ni alloys to date.
Service beyond Silos: Analyzing Data Trends to Inform the One-Stop Model
ERIC Educational Resources Information Center
Fifolt, Matthew
2010-01-01
Institutions of higher education, like other large organizations, can have complex and complicated administrative structures. Nowhere is this more true than in the area of student services. Internal systems and processes that have become almost second nature to the individuals who staff administrative units can seem confusing and frustrating to…
Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming
2011-10-14
Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics
Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; ...
2015-04-03
In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O 3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less
Herklotz, Andreas; Dorr, Kathrin; Ward, Thomas Zac; ...
2015-04-03
To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determinemore » the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n+1Ti nO 3 n+1 Ruddlesden-Popper phases are grown with good long-range order. Furthermore, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less
Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization
NASA Astrophysics Data System (ADS)
Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin
2018-05-01
Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.
Stíbal, David; Süss-Fink, Georg; Therrien, Bruno
2015-10-01
The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].
Verhoeven, Esther E. A.; van Kesteren, Marian; Turner, John J.; van der Marel, Gijs A.; van Boom, Jacques H.; Moolenaar, Geri F.; Goosen, Nora
2002-01-01
Nucleotide excision repair in Escherichia coli involves formation of the UvrB–DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB–DNA complex. Both stable and unstable UvrB–DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB–DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix–hairpin–helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5′ incision on a substrate containing a (cis-Pt)·GG adduct, but not for 3′ incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3′ and/or 5′ incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system. PMID:12034838
Zhao, Qing; Wei, Zhi-Li; Kang, Quan-Peng; Zhang, Han; Dong, Wen-Kui
2018-06-02
Four homo/heterometallic complexes [Cu 3 (L)(μ 2 -OAc) 9 (CH 3 OH) 9 ]·3CHCl 3 (1), [Cu 2 (L)Ca(μ 2 -NO 3 ) 9 ] (9), [{Cu 2 (L)Sr(μ 2 -NO 3 ) 9 } 9 ]·CH 3 CH 2 OH (11) and [Cu 2 (L)Ba(μ 2 -OAc) 9 (OAc)] (14), containing an acyclic naphthalenediol-based ligand H 4 L, were synthesized and characterized by elemental analyses, IR, UV-Vis, fluorescence spectra, TG-DTA and X-ray crystallography. The complex 1 was obtained by the reaction of H 4 L with 11 equivalents of Cu(OAc) 9 ·2H 2 O. The heterometallic complexes 9, 11, 14 were acquired by the reaction of H 4 L with 9 equivalents of Cu(OAc) 9 ·2H 2 O or Cu(NO 3 ) 9 ·2H 2 O and 1 equivalent of M(OAc) 9 (M = Ca, Sr and Ba). Owing to the different coordination cavities of the N 2 O 2 and O 6 of the completely deprotonated (L) 14- unit, the crystal structures showed the N 2 O 2 sites were occupied by Cu(II) atoms, alkaline earth metal(II) atoms occupied the O 6 site of the ligand (L) 14- unit, respectively. Furthermore, the fluorescence properties and TG-DTA analyses were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Cescutti, Paola; Impallomeni, Giuseppe; Garozzo, Domenico; Rizzo, Roberto
2011-12-27
Cepacian is an exopolysaccharide produced by the majority of the isolates belonging to the Burkholderia cepacia complex bacteria, a group of 17 species, some of which infect cystic fibrosis patients, sometime with fatal outcome. The repeating unit of cepacian consists of a backbone having a trisaccharidic repeating unit with three side chains, as reported in the formula below. The exopolysaccharide is also acetylated, carrying from one to three acetyl esters per repeating unit, depending on the strain examined. The consequences of O-acetyl substitution in a polysaccharide are important both for its biological functions and for industrial applications, including the preparation of conjugated vaccines, since O-acetyl groups are important immunogenic determinants. The location of acetyl groups was achieved by NMR spectroscopy and ESI mass spectrometry and revealed that these substituents are scattered in non-stoichiometric ratio on many sugar residues in different positions, a feature which adds to the already unique carbohydrate structure of the polysaccharide. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Al-Jaar, Robert Y.; Desrochers, Alan A.
1989-01-01
The main objective of this research is to develop a generic modeling methodology with a flexible and modular framework to aid in the design and performance evaluation of integrated manufacturing systems using a unified model. After a thorough examination of the available modeling methods, the Petri Net approach was adopted. The concurrent and asynchronous nature of manufacturing systems are easily captured by Petri Net models. Three basic modules were developed: machine, buffer, and Decision Making Unit. The machine and buffer modules are used for modeling transfer lines and production networks. The Decision Making Unit models the functions of a computer node in a complex Decision Making Unit Architecture. The underlying model is a Generalized Stochastic Petri Net (GSPN) that can be used for performance evaluation and structural analysis. GSPN's were chosen because they help manage the complexity of modeling large manufacturing systems. There is no need to enumerate all the possible states of the Markov Chain since they are automatically generated from the GSPN model.
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey
2015-03-01
The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.
Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
Oi, Hiroki; Fujita, Daisuke; Suzuki, Yuki; Sugiyama, Hiroshi; Endo, Masayuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya
2017-05-01
RNA is a biopolymer that is attractive for constructing nano-scale objects with complex structures. Three-dimensional (3D) structures of naturally occurring RNAs often have modular architectures. The 3D structure of a group I (GI) ribozyme from Tetrahymena has a typical modular architecture, which can be separated into two structural modules (ΔP5 and P5abc). The fully active ribozyme can be reconstructed by assembling the two separately prepared modules through highly specific and strong assembly between ΔP5 ribozyme and P5abc RNA. Such non-covalent assembly of the two modules allows the design of polygonal RNA nano-structures. Through rational redesign of the parent GI ribozyme, we constructed variant GI ribozymes as unit RNAs for polygonal-shaped (closed) oligomers with catalytic activity. Programmed trimerization and tetramerization of the unit RNAs afforded catalytically active nano-sized RNA triangles and squares, the structures of which were directly observed by atomic force microscopy (AFM). © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Isolation of integrin-based adhesion complexes.
Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J
2015-03-02
The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.
Xu, Wei; Ren, Ya-Nan; Xie, Miao; Zhou, Lin-Xia; Zheng, Yue-Qing
2018-03-28
A new series of uranium coordination polymers have been hydrothermally synthesized by using 1,4-naphthalene dicarboxylic acid (H 2 NDC), namely, (H 3 O) 2 [(UO 2 ) 2 (NDC) 3 ]·H 2 O (1), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·EtOH·5H 2 O (2), (H 2 -bpe) 2/2 [(UO 2 ) 2 (NDC) 3 ]·EtOH (3), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·5H 2 O (4), (H 2 -bpp)[(UO 2 )(HNDC)(NDC)] 2 ·2H 2 O (5), and (H 2 -bpy)[(UO 2 )(NDC) 2 ] (6) [bpp = 1,3-di(4-pyridyl) propane, bpe = 4,4'-vinylenedipyridine, bpy = 4,4'-bipyridine]. Single-crystal X-ray diffraction demonstrates that complex 1 represents the uranyl-organic polycatenated framework derived from a simple two-dimensional honeycomb grid network structure via a H 2 NDC linker. Complexes 2-4 contain the dinuclear motifs of the two UO 7 pentagonal and one UO 8 hexagonal bipyramids which are linked by NDC 2- anions creating a (UO 2 ) 4 (NDC) 2 unit, and further extend to a 2D layer through NDC 2- anions. Complex 5 displays a 1D zigzag double chain structure, in which the carboxylate groups of the NDC 2- anions adopt a chelate mode and further extends to a 2D framework via hydrogen bonds. The 1D structure of complex 6 is similar to the zigzag chain of complex 5. In addition, powder X-ray diffraction, elemental analysis, IR, thermal stability and luminescence properties of all complexes have also been investigated in this paper. The photocatalytic properties of the six complexes for the degradation of tetracycline hydrochloride (TC) under UV irradiation have been examined. Moreover, density functional theory (DFT) calculations were carried out to explore the electronic structural and bonding properties of the uranyl complexes 1-6.
Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas
2013-12-15
The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.
Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi
2010-01-01
The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq–RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq–RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 Å, while the type 2 Hfq–RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 Å. Diffraction data were collected to a resolution of 2.20 Å from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis. PMID:20445260
Lü, Xing-Qiang; Jiang, Ji-Jun; Chen, Chun-Long; Kang, Bei-Sheng; Su, Cheng-Yong
2005-06-27
The reactions of Cu(II) with the mixed nitrilotriacetic acid (H3NTA) and 4,4'-bipyridyl (4,4'-bpy) ligands in different metal-to-ligand ratios in the presence of NaOH and NaClO4 afforded two complexes, Na3[Cu2(NTA)2(4,4'-bpy)]ClO4 x 5H2O (1) and [Cu2(NTA) (4,4'-bpy)2]ClO4 x 4H2O (2). The two complexes have been characterized by elemental analysis, IR, XRD, and single-crystal X-ray diffraction. 1 contains a basic doubly negatively charged [Cu2(NTA)2(4,4'-bpy)]2- dinuclear unit which was further assembled via multiple Na-O and O-H...O interactions into a three-dimensional (3D) pillared-layer structure. 2 features a two-dimensional (2D) undulated brick-wall architecture containing a basic doubly positively charged [Cu4(NTA)2(4,4'-bpy)2]2+ tetranuclear unit. The 2D network possesses large cavities hosting guest molecules and was further assembled via O-H...O hydrogen bonds into a 3D structure with several channels running in different directions.
NASA Astrophysics Data System (ADS)
Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp
2016-10-01
Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.
Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations
Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego
2015-01-01
The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by “communities” of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information. PMID:26226226
NASA Astrophysics Data System (ADS)
Böhm, Stanislav; Makrlík, Emanuel; Vaňura, Petr
2017-07-01
By using quantum chemical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril-ClO4-, dodecabenzylbambus[6]uril-MnO4-, dodecabenzylbambus[6]uril-TcO4- and dodecabenzylbambus[6]uril-ReO4- were derived. In these four complexes, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. Further, the corresponding interaction energies of the investigated four anionic complexes were calculated; the absolute values of these calculated energies increase in the series of ReO4- < TcO4- < MnO4- < ClO4-.
Linnemann, Jelena R; Meixner, Lisa K; Miura, Haruko; Scheel, Christina H
2017-01-01
We have developed a three-dimensional organotypic culture system for primary human mammary epithelial cells (HMECs) in which the cells are cultured in free floating collagen type I gels. In this assay, luminal cells predominantly form multicellular spheres, while basal/myoepithelial cells form complex branched structures resembling terminal ductal lobular units (TDLUs), the functional units of the human mammary gland in situ. The TDLU-like organoids can be cultured for at least 3 weeks and can then be passaged multiple times. Subsequently, collagen gels can be stained with carmine or by immunofluorescence to allow for the analysis of morphology, protein expression and polarization, and to facilitate quantification of structures. In addition, structures can be isolated for gene expression analysis. In summary, this technique is suitable for studying branching morphogenesis, regeneration, and differentiation of HMECs as well as their dependence on the physical environment.
Multiple-component covalent organic frameworks
Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin
2016-01-01
Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607
Multiple-component covalent organic frameworks
NASA Astrophysics Data System (ADS)
Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin
2016-07-01
Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.
Crystallography of metal–organic frameworks
Gándara, Felipe; Bennett, Thomas D.
2014-01-01
Metal–organic frameworks (MOFs) are one of the most intensely studied material types in recent times. Their networks, resulting from the formation of strong bonds between inorganic and organic building units, offer unparalled chemical diversity and pore environments of growing complexity. Therefore, advances in single-crystal X-ray diffraction equipment and techniques are required to characterize materials with increasingly larger surface areas, and more complex linkers. In addition, whilst structure solution from powder diffraction data is possible, the area is much less populated and we detail the current efforts going on here. We also review the growing number of reports on diffraction under non-ambient conditions, including the response of MOF structures to very high pressures. Such experiments are important due to the expected presence of stresses in proposed applications of MOFs – evidence suggesting rich and complex behaviour. Given the entwined and inseparable nature of their structure, properties and applications, it is essential that the field of structural elucidation is able to continue growing and advancing, so as not to provide a rate-limiting step on characterization of their properties and incorporation into devices and applications. This review has been prepared with this in mind. PMID:25485136
Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.
Jamwal, Prashant K; Hussain, Shahid; Tsoi, Yun Ho; Ghayesh, Mergen H; Xie, Sheng Quan
2017-05-01
A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Fertilization and Genetic Population Structure in a Colonizing Land Snail
Selander, Robert K.; Kaufman, Donald W.
1973-01-01
The pulmonate land snail Rumina decollata in its native Mediterranean range is a complex of monogenic or weakly polygenic strains generated by a breeding system of facultative self-fertilization. One strain colonized North America and now occupies much of the southern United States and northern Mexico. No genetic variation within or among populations in the United States was detected in an electrophoretic analysis of proteins encoded by 25 loci. These findings emphasize the potential for adaptive convergence in the genetic systems of hermaphroditic animals and plants. PMID:16592078
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tan, Gai-Xiu; Liu, Bao-Lin; Dai, Yu-Bei; Xu, Na; Wen, Wei-Fen; Cao, Chong; Xiao, Hong-Ping
2017-05-01
Five Ag(I) coordination complexes, namely, [Ag6(2-stp)2(3-methyl-2-apy)3·H2O]n (1), [Ag3(2-stp)(4-methyl-2-apy)3]n (2), [Na2Ag18(2-stp)4(2-Hstp)4(5-methyl-2-apy)16 (H2O)4·11H2O]n (3), Ag3(2-stp)(6-methy-2-apy)4·H2O (4), and [Ag6(2-stp)2(6-methyl-2-apy)8(H2O)2·H2O]n (5) (2-NaH2stp = 2-sulfoterephthalic acid monosodium salt, 3-methyl-2-apy = 3-methyl-2-aminopyridine, 4-methyl-2-apy = 4-methyl-2-aminopyridine, 5-methyl-2-apy = 5-methyl-2-aminopyridine, 6-methyl-2-apy = 6-methyl-2-aminopyridine), have been synthesized and structurally characterized. Complexes 1 and 2 show two-dimensional network. In complex 3, the adjacent Ag10 units are bridged by 5-methyl-2-apy ligands to form a 2D infinite undulated sheet. Adjacent 2D sheets are linked by coordinative bonds between carboxylic oxygen atoms and Na(I) ions to form a 3D coordination polymer. Complex 4 is a 0-D discrete trinuclear molecule, and the self-complementary the Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds incorporating hydrogen bond motifs extend these molecules into a 2D supramolecular framework. Compound 5 exhibits 1D-chain structure. However, complex 5 shows 3D supramolecular structure results from the linkage of neighboring layers through a rich hydrogen-bonding between uncoordinated sulfonates, amino groups and coordinated carboxylates. The thermogravimetric analyses and photoluminescence of the complexes were also investigated.
Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo
2015-01-01
The centrosymmetric dinuclear complex bis(μ-3-carboxy-6-methylpyridine-2-carboxylato)-κ3 N,O 2:O 2;κ3 O 2:N,O 2-bis[(2,2′-bipyridine-κ2 N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methylpyridine-2,3-dicarboxylic acid (mepydcH2) and 2,2′-bipyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3 N,O 2:O 2-mepydcH− anion, an N,N′-bidentate 2,2′-bipyridine group and an O-monodentate nitrate anion, and is completed with a methanol solvent molecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH− carboxylate O atom to complete the dinuclear complex molecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octahedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form interstitial columnar voids that are filled by the methanol solvent molecules. These in turn interact with the complex molecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH− ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound. PMID:26396748
Pniok, Miroslav; Kubíček, Vojtěch; Havlíčková, Jana; Kotek, Jan; Sabatie-Gogová, Andrea; Plutnar, Jan; Huclier-Markai, Sandrine; Hermann, Petr
2014-06-23
Diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three (45)Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc =0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc =1.75 ppm) and 0.01 M [Sc(ox)4](5-) (ox(2-) = oxalato) in 1 M aq. K2C2O4 (δSc =8.31 ppm). In solution, [Sc(dtpa)](2-) complex (δSc = 83 ppm, Δν = 770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)](-) anion (δSc = 100 ppm, Δν = 4300 Hz). The solid-state structure of K8[Sc2(ox)7]⋅13 H2O contains two [Sc(ox)3](3-) units bridged by twice "side-on" coordinated oxalate anion with Sc(3+) ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)](2-) and [Sc(dota)](-) in [(Hguanidine)]2[Sc(dtpa)]⋅3 H2O and K[Sc(dota)][H6 dota]Cl2⋅4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)](-) unit exhibits twisted square-antiprismatic arrangement without an axial ligand (TSA' isomer) and [Sc(dota)](-) and (H6 dota)(2+) units are bridged by a K(+) cation. A surprisingly high value of the last DOTA dissociation constant (pKa =12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and (45)Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc(3+) ion is much faster than with trivalent lanthanides. Proton-assisted decomplexation of the [Sc(dota)](-) complex (τ1/2 =45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)](-) complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium radioisotopes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Kovrugin, Vadim M.; Tyumentseva, Olga S.
2015-09-15
Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (I), [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O)] (II), [C{sub 4}H{sub 15}N{sub 3}][H{sub 3}O]{sub 0.5}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 2.93}(SeO{sub 3}){sub 0.07}(H{sub 2}O)](NO{sub 3}){sub 0.5} (III), [C{sub 2}H{sub 8}N]{sub 3}[H{sub 5}O{sub 2}][(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub 2}(H{sub 2}O){sub 5} (IV), [C{sub 2}H{sub 8}N]{sub 2}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 4}(HSeO{sub 3})(H{sub 2}O)](H{sub 2}SeO{sub 3}){sub 0.2} (V), [C{sub 4}H{sub 12}N]{sub 3}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 5}(H{sub 2}O)] (VI), and [C{sub 2}H{sub 8}N]{sub 3}(C{sub 2}H{sub 7}N)[(UO{sub 2}){sub 3}(SeO{sub 4}){submore » 4}(HSeO{sub 3})(H{sub 2}O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite–selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U–O{sub br}–Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers. - Graphical abstract: Crystal structures of the seven novel Se-contaning uranyl oxysalts that contain protonated organic molecules as interlayer species have been investigated from the viewpoints of topology of interpolyhedral linkages, isomeric variations and flexibility of structural units. - Highlights: • Single crystals of seven novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • The method of orientation matrices was applied to distinguish geometrical isomers. • The flexibility of structural complexes specifies the undulation of layered structural units.« less
Crystal structure of tin(IV) chloride octahydrate
Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang
2014-01-01
The title compound, [SnCl4(H2O)2]·6H2O, was crystallized according to the solid–liquid phase diagram at lower temperatures. It is built-up of SnCl4(H2O)2 octahedral units (point group symmetry 2) and lattice water molecules. An intricate three-dimensional network of O—H⋯O and O—H⋯Cl hydrogen bonds between the complex molecules and the lattice water molecules is formed in the crystal structure. PMID:25552971
Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope
Boswell, R.; Rose, K.; Collett, T.S.; Lee, M.; Winters, W.; Lewis, K.A.; Agena, W.
2011-01-01
Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log, core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs, particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the structural closure. Porous and permeable zones within the C unit sand are only partially charged due most likely to limited structural trapping in the reservoir lithofacies during the period of primary charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D units and along the crest of the fold is consistent with an interpretation that these deposits are converted free gas accumulations formed prior to the imposition of gas hydrate stability conditions. ?? 2009.
Multilayer network of language: A unified framework for structural analysis of linguistic subsystems
NASA Astrophysics Data System (ADS)
Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana
2016-09-01
Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.
Optical vortex knots in tightly-focused light beams
NASA Astrophysics Data System (ADS)
Dennis, Mark; Sugic, Danica
Optical vortices, that is, zero lines of complex amplitude in a propagating light field, can be knotted or linked in a controlled way. This was demonstrated previously in experiments where a computer-controlled hologram determined the amplitude of paraxial laser light, meaning the longitudinal extent of the knot was several orders of magnitude larger than its width. We describe what happens to these optical knots when the transverse width of the beam, and hence the knot, is reduced. Outside the paraxial regime, the field's polarization becomes highly inhomogeneous, and knotted structures occur in a variety of polarization singularities. We propose experiments realising these knotted polarization structures in tightly-focused beams, which should yield optical knots of unit aspect ratio, of several optical wavelengths in size, which could be suitable for embedding knotted defect structures in liquid crystals, Bose-Einstein condensates and photopolymers. This work was supported by the Leverhulme Trust Programme Grant ''Scientific Properties of Complex Knots''.
Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lok, Shee-Mei; Kostyuchenko, Victor; Nybakken, Grant E.
The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization ofmore » the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.« less
Seven, Omer; Bolte, Michael; Lerner, Hans-Wolfram
2013-01-01
The crystal structure of the title compound, [Mg2Br2(C9H11)2(C4H10O)2], features a centrosymmetric two-centre magnesium complex with half a mol-ecule in the asymmetric unit. The Mg atom is in a considerably distorted Br2CO coordination. Bond lengths and angles are comparable with already published values. The crystal packing is stabilized by C-H⋯π inter-actions linking the complexes into sheets parallel to (0-11).
Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.
Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya
2018-03-05
The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.
Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex.
Schiering, N; Casale, E; Caccia, P; Giordano, P; Battistini, C
2000-11-07
Src homology 2 (SH2) domains are key modules in intracellular signal transduction. They link activated cell surface receptors to downstream targets by binding to phosphotyrosine-containing sequence motifs. The crystal structure of a Grb2-SH2 domain-phosphopeptide complex was determined at 2.4 A resolution. The asymmetric unit contains four polypeptide chains. There is an unexpected domain swap so that individual chains do not adopt a closed SH2 fold. Instead, reorganization of the EF loop leads to an open, nonglobular fold, which associates with an equivalent partner to generate an intertwined dimer. As in previously reported crystal structures of canonical Grb2-SH2 domain-peptide complexes, each of the four hybrid SH2 domains in the two domain-swapped dimers binds the phosphopeptide in a type I beta-turn conformation. This report is the first to describe domain swapping for an SH2 domain. While in vivo evidence of dimerization of Grb2 exists, our SH2 dimer is metastable and a physiological role of this new form of dimer formation remains to be demonstrated.
NASA Astrophysics Data System (ADS)
Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.
2017-12-01
The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.
Cell structure and function in the visual cortex of the cat
Kelly, J. P.; Van Essen, D. C.
1974-01-01
1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579
NASA Astrophysics Data System (ADS)
Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.
2018-04-01
A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.
van der Meer, Margarethe; Rechkemmer, Yvonne; Frank, Uta; Breitgoff, Frauke D; Hohloch, Stephan; Su, Cheng-Yong; Neugebauer, Petr; Marx, Raphael; Dörfel, María; van Slageren, Joris; Sarkar, Biprajit
2016-09-19
Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anderson, Christopher B; Elliott, Anastasia B S; Lewis, James E M; McAdam, C John; Gordon, Keith C; Crowley, James D
2012-12-28
The syntheses of the 4-n-propyl and 4-phenyl substituted fac-Re(CO)(3) complexes of the tridentate "click" ligand (2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine) are described. The complexes were obtained by refluxing methanol solutions of [Re(CO)(5)Cl], AgPF(6) and either the 4-propyl or 4-phenyl substituted ligand for 16 h. The ligands and the two rhenium(I) complexes were characterised by elemental analysis, HR-ESMS, ATR-IR, (1)H and (13)C NMR spectroscopy and the molecular structures of both complexes were confirmed by X-ray crystallography. The electronic structure of the fac-Re(CO)(3) "click" complexes was probed using UV-Vis, Raman and emission spectroscopy, cyclic voltammetry and DFT calculations. Altering the electronic nature of the ligand's substituent, from aromatic to alkyl, had little effect on the absorption/emission maxima and electrochemical properties of the complexes indicating that the 1,2,3-triazole unit may insulate the metal centre from the electronic modification at the ligands' periphery. Both Re(I) complexes were found to be weakly emitting with short excited state lifetimes. The electrochemistry of the complexes is defined by quasi-reversible Re oxidation and irreversible triazole-based ligand reduction processes.
A new subdivision of the central Sesia Zone (Aosta Valley, Italy)
NASA Astrophysics Data System (ADS)
Giuntoli, Francesco; Engi, Martin; Manzotti, Paola; Ballèvre, Michel
2015-04-01
The Sesia Zone in the Western Alps is a continental terrane probably derived from the NW-Adriatic margin and polydeformed at HP conditions during Alpine convergence. Subdivisions of the Sesia Zone classically have been based on the dominant lithotypes: Eclogitic Micaschist Complex, Seconda Zona Diorito-Kinzigitica, and Gneiss Minuti Complex. However, recent work (Regis et al., 2014) on what was considered a single internal unit has revealed that it comprises two or more tectonic slices that experienced substantially different PTDt-evolutions. Therefore, detailed regional petrographic and structural mapping (1:3k to 1:10k) was undertaken and combined with extensive sampling for petrochronological analysis. Results allow us to propose a first tectonic scheme for the Sesia Zone between the Aosta Valley and Val d'Ayas. A set of field criteria was developed and applied, aiming to recognize and delimit the first order tectonic units in this complex structural and metamorphic context. The approach rests on three criteria used in the field: (1) Discontinuously visible metasedimentary trails (mostly carbonates) considered to be monocyclic (Permo-Mesozoic protoliths); (2) mappable high-strain zones; and (3) visible differences in the metamorphic imprint. None of these key features used are sufficient by themselves, but in combination they allow us to propose a new map that delimits main units. We propose an Internal Complex with three eclogitic sheets, each 0.5-3 km thick. Dominant lithotypes include micaschists associated with mafic rocks and minor orthogneiss. The main foliation is of HP, dipping moderately NW. Each of these sheets is bounded by (most likely monometamorphic) sediments, <10-50 m thick. HP-relics (of eclogite facies) are widespread, but a greenschist facies overprint locally is strong close to the tectonic contact to neighbouring sheets. An Intermediate Complex lies NW of the Internal Complex and comprises two thinner, wedge-shaped units termed slices. These are composed of siliceous dolomite marbles, meta-granites and -diorites with few mafic boudins. The main foliation dips SE and is of greenschist facies, but omphacite, glaucophane, and garnet occur as relics. Towards the SW, the width of the Intermediate Complex is reduced from 0.5 km to a few meters. In the External Complex several discontinuous lenses occur; these comprise 2DK-lithotypes and are aligned with greenschist facies shear zones mapped within Gneiss Minuti. By combining these features, three main sheets were delimited in the External Complex, with the main foliation being of greenschist facies and dipping moderately SE. Petrological work and in situ U-Th-Pb dating of accessory phases is underway in several of these subunits of the Sesia Zone to constrain their PTDt-history and thus their Alpine assembly. REFERENCE Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., Engi, M., 2014. Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. J.Petrol. 55, 1429-1456.
Proshek, Benjamin; Dupuis, Julian R; Engberg, Anna; Davenport, Ken; Opler, Paul A; Powell, Jerry A; Sperling, Felix A H
2015-04-25
The Mormon Metalmark (Apodemia mormo) species complex occurs as isolated and phenotypically variable colonies in dryland areas across western North America. Lange's Metalmark, A. m. langei, one of the 17 subspecies taxonomically recognized in the complex, is federally listed under the U.S. Endangered Species Act of 1973. Metalmark taxa have traditionally been described based on phenotypic and ecological characteristics, and it is unknown how well this nomenclature reflects their genetic and evolutionary distinctiveness. Genetic variation in six microsatellite loci and mitochondrial cytochrome oxidase subunit I sequence was used to assess the population structure of the A. mormo species complex across 69 localities, and to evaluate A. m. langei's qualifications as an Evolutionarily Significant Unit. We discovered substantial genetic divergence within the species complex, especially across the Continental Divide, with population genetic structure corresponding more closely with geographic proximity and local isolation than with taxonomic divisions originally based on wing color and pattern characters. Lange's Metalmark was as genetically divergent as several other locally isolated populations in California, and even the unique phenotype that warranted subspecific and conservation status is reminiscent of the morphological variation found in some other populations. This study is the first genetic treatment of the A. mormo complex across western North America and potentially provides a foundation for reassessing the taxonomy of the group. Furthermore, these results illustrate the utility of molecular markers to aid in demarcation of biological units below the species level. From a conservation point of view, Apodemia mormo langei's diagnostic taxonomic characteristics may, by themselves, not support its evolutionary significance, which has implications for its formal listing as an Endangered Species.
NASA Astrophysics Data System (ADS)
Yue, Cheng-Yang; Lei, Xiao-Wu; Tian, Ya-Wei; Xu, Jing; Bai, Yi-Qun; Wang, Fei; Zhou, Peng-Fei; Liu, Xiao-Fan; Yi, Fei-Yan
2016-03-01
The incorporation of unsaturated [Mn(1,2-dap)]2+, [Mn(1,2-dap)2]2+, [Mn(2,2-bipy)]2+ (1,2-dap=1,2-diaminopropane) complex cations with thioarsenate anions of [AsIIIS3]3- and [AsVS4]3- led to three new hybrid manganese thioarsenates, namely, [Mn(1,2-dap)]2MnAs2S6 (1), [Mn(1,2-dap)2]{[Mn(1,2-dap)]2As2S8} (2) and (NH4)[Mn(2,2-bipy)2]AsS4 (3). In compound 1, the unsaturated [Mn(1,2-dap)]2+ complexes, [MnS4]6- tetrahedra and [AsIIIS3]3- trigonal-pyramids are condensed to form the 1D [Mn(1,2-dap)]2MnAs2S6 chain, whereas compound 2 features 2D layer composed of [Mn(1,2-dap)]2+ and [Mn(1,2-dap)2]2+ complexes as well as [AsVS4]3- tetrahedral units. For compound 3, two [AsVS4]3- anions bridge two [Mn(2,2-bipy)]2+ complex cations into a butterfly like {[Mn(2,2-bipy)]2As2S8}2- anionic unit. Magnetic measurements indicate the ferrimagnetic behavior for compound 1 and antiferromagnetic (AF) behaviors for compounds 2-3. The UV-vis diffuse-reflectance measurements and electronic structural calculations based on density functional theory (DFT) revealed the title compounds belong to semiconductors with band gaps of 2.63, 2.21, and 1.97 eV, respectively. The narrow band-gap of compound 3 led to the efficient and stable photocatalytic degradation activity over organic pollutant than N-doped P25 under visible light irradiation.
ERIC Educational Resources Information Center
Samier, Eugenie
2015-01-01
The United Arab Emirates (UAE) is a small state transitioning from traditional communities into a modern society. This is a complex process: it involves instilling a national identity over tribal structures; modernising and technologising while retaining Islam; ensuring a high level of security while allowing for a liberal and relatively free…
ERIC Educational Resources Information Center
Whittaker, Lynn Page
1991-01-01
This annual publication contains reading materials designed to help students understand the complexities of the domestic and foreign policy issues facing the United States. The first portion of the book features background reading on the structure of the Federal Government. Next, 10 domestic policy issues are covered: the economy, education, civil…
Future wildfire trends, impacts, and mitigation options in the Southern United States
Yongqiang Liu; Jeffrey P. Prestemon; Scott L. Goodrick; Thomas P. Holmes; John A. Stanturf; James M. Vose; Ge Sun
2014-01-01
Wildfire is among the most common forest disturbances, affecting the structure, composition, and functions of many ecosystems. The complex role that wildfire plays in shaping forests has been described in terms of vegetation responses, which are characterized as dependent on, sensitive to, independent of, or influenced by fire (Myers 2006). Fire is essential in areas...
ERIC Educational Resources Information Center
Conway, Christopher M.; Karpicke, Jennifer; Pisoni, David B.
2007-01-01
Spoken language consists of a complex, sequentially arrayed signal that contains patterns that can be described in terms of statistical relations among language units. Previous research has suggested that a domain-general ability to learn structured sequential patterns may underlie language acquisition. To test this prediction, we examined the…
Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations
NASA Astrophysics Data System (ADS)
Gupta, M.; Singh, D. J.; Gupta, R.
2005-03-01
The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.
Identification of breathing cracks in a beam structure with entropy
NASA Astrophysics Data System (ADS)
Wimarshana, Buddhi; Wu, Nan; Wu, Christine
2016-04-01
A cantilever beam with a breathing crack is studied to detect and evaluate the crack using entropy measures. Closed cracks in engineering structures lead to proportional complexities to their vibration responses due to weak bi-linearity imposed by the crack breathing phenomenon. Entropy is a measure of system complexity and has the potential in quantifying the complexity. The weak bi-linearity in vibration signals can be amplified using wavelet transformation to increase the sensitivity of the measurements. A mathematical model of harmonically excited unit length steel cantilever beam with a breathing crack located near the fixed end is established, and an iterative numerical method is applied to generate accurate time domain dynamic responses. The bi-linearity in time domain signals due to the crack breathing are amplified by wavelet transformation first, and then the complexities due to bi-linearity is quantified using sample entropy to detect the possible crack and estimate the crack depth. It is observed that the method is capable of identifying crack depths even at very early stages of 3% with the increase in the entropy values more than 10% compared with the healthy beam. The current study extends the entropy based damage detection of rotary machines to structural analysis and takes a step further in high-sensitivity structural health monitoring by combining wavelet transformation with entropy calculations. The proposed technique can also be applied to other types of structures, such as plates and shells.
NASA Astrophysics Data System (ADS)
Gangu, Kranthi Kumar; Maddila, Suresh; Mukkamala, Saratchandra Babu; Jonnalagadda, Sreekantha B.
2017-09-01
Two mono nuclear coordination complexes, namely, [Co(4,5-Imdc)2 (H2O)2] (1) and [Cd(4,5-Imdc)2(H2O)3]·H2O (2) were constructed using Co(II) and Cd(II) metal salts with 4,5-Imidazoledicarboxylic acid (4,5-Imdc) as organic ligand. Both 1, 2 were structurally characterized by single crystal XRD and the results reveal that 1 belongs to P21/n space group with unit cell parameters [a = 5.0514(3) Å, b = 22.5786(9) Å, c = 6.5377(3) Å, β = 111.5°] whereas, 2 belongs to P21/c space group with unit cell parameters [a = 6.9116(1) Å, b = 17.4579(2) Å, c = 13.8941(2) Å, β = 97.7°]. While Co(II) in 1 exhibited a six coordination geometry with 4,5-Imdc and water molecules, Cd(II) ion in 2 showed a seven coordination with the same ligand and solvent. In both 1 and 2, the hydrogen bond interactions with mononuclear unit generated 3D-supramolecular structures. Both complexes exhibit solid state fluorescent emission at room temperature. The efficacy of both the complexes as heterogeneous catalysts was examined in the green synthesis of six pyrano[2,3,c]pyrazole derivatives with ethanol as solvent via one-pot reaction between four components, a mixture of aromatic aldehyde, malononitrile, hydrazine hydrate and dimethyl acetylenedicarboxylate. Both 1 and 2 have produced pyrano [2,3,c]pyrazoles in impressive yields (92-98%) at room temperature in short interval of times (<20 min), with no need for any chromatographic separations. With good stability, ease of preparation and recovery plus reusability up to six cycles, both 1 and 2 prove to be excellent environmental friendly catalysts for the value-added organic transformations using green principles.
Engineering complex orthopaedic tissues via strategic biomimicry.
Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H
2015-03-01
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.
Engineering Complex Orthopaedic Tissues via Strategic Biomimicry
Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.
2014-01-01
The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration. PMID:25465616
New cubic structure compounds as actinide host phases
NASA Astrophysics Data System (ADS)
Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.
2010-03-01
Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite structure oxide as an extra phase have leach and radiation resistance similar to the other well-known actinide waste forms.
Crystalline structures of particles interacting through the harmonic-repulsive pair potential
NASA Astrophysics Data System (ADS)
Levashov, V. A.
2017-09-01
The behavior of identical particles interacting through the harmonic-repulsive pair potential has been studied in 3D using molecular dynamics simulations at a number of different densities. We found that at many densities, as the temperature of the systems decreases, the particles crystallize into complex structures whose formation has not been anticipated in previous studies on the harmonic-repulsive pair potential. In particular, at certain densities, crystallization into the structure I a 3 ¯ d (space group #230) with 16 particles in the unit cell occupying Wyckoff special positions (16b) was observed. This crystal structure has not been observed previously in experiments or in computer simulations of single component atomic or soft matter systems. At another density, we observed a liquid which is rather stable against crystallization. Yet, we observed crystallization of this liquid into the monoclinic C2/c (space group #15) structure with 32 particles in the unit cell occupying four different non-special Wyckoff (8f) sites. In this structure particles located at different Wyckoff sites have different energies. From the perspective of the local atomic environment, the organization of particles in this structure resembles the structure of some columnar quasicrystals. At a different value of the density, we did not observe crystallization at all despite rather long molecular dynamics runs. At two other densities, we observed the formation of the β S n distorted diamond structures instead of the expected diamond structure. Possibly, we also observed the formation of the R 3 ¯ c hexagonal lattice with 24 particles per unit cell occupying non-equivalent positions.
Narayanan, Rajeevan T.; Egger, Robert; Johnson, Andrew S.; Mansvelder, Huibert D.; Sakmann, Bert; de Kock, Christiaan P.J.; Oberlaender, Marcel
2015-01-01
Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exact 3D model of vS1 revealed that the majority of intracortical (IC) axons project far beyond the borders of the principal column. We defined the corresponding innervation volume as the IC-unit. Deconstructing this structural cortical unit into its cell type-specific components, we found asymmetric projections that innervate columns of either the same whisker row or arc, and which subdivide vS1 into 2 orthogonal [supra-]granular and infragranular strata. We show that such organization could be most effective for encoding multi whisker inputs. Communication between columns is thus organized by multiple highly specific horizontal projection patterns, rendering IC-units as the primary structural entities for processing complex sensory stimuli. PMID:25838038
NASA Astrophysics Data System (ADS)
Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie
2018-05-01
Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.
Combined UMC- DFT prediction of electron-hole coupling in unit cells of pentacene crystals.
Leal, Luciano Almeida; de Souza Júnior, Rafael Timóteo; de Almeida Fonseca, Antonio Luciano; Ribeiro Junior, Luiz Antonio; Blawid, Stefan; da Silva Filho, Demetrio Antonio; da Cunha, Wiliam Ferreira
2017-05-01
Pentacene is an organic semiconductor that draws special attention from the scientific community due to the high mobility of its charge carriers. As electron-hole interactions are important aspects in the regard of such property, a computationally inexpensive method to predict the coupling between these quasi-particles is highly desired. In this work, we propose a hybrid methodology of combining Uncoupled Monte Carlo Simulations (UMC) and Density functional Theory (DFT) methodologies to obtain a good compromise between computational feasibility and accuracy. As a first step in considering a Pentacene crystal, we describe its unit cell: the Pentacene Dimer. Because many conformations can be encountered for the dimer and considering the complexity of the system, we make use of UMC in order to find the most probable structures and relative orientations for the Pentacene-Pentacene complex. Following, we carry out electronic structure calculations in the scope of DFT with the goal of describing the electron-hole coupling on the most probable configurations obtained by UMC. The comparison of our results with previously reported data on the literature suggests that the methodology is well suited for describing transfer integrals of organic semiconductors. The observed accuracy together with the smaller computational cost required by our approach allows us to conclude that such methodology might be an important tool towards the description of systems with higher complexity.
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert
Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase
Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; ...
2015-06-02
Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less
The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers
Olek, Anna T.; Rayon, Catherine; Makowski, Lee; ...
2014-07-10
Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice ( Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain,more » elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less
The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.
Olek, Anna T; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; Himmel, Michael E; Bolin, Jeffrey T; Carpita, Nicholas C
2014-07-01
Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. © 2014 American Society of Plant Biologists. All rights reserved.
Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito
2012-01-16
Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.
New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties
NASA Astrophysics Data System (ADS)
Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi
2017-04-01
In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.
Mihelj, Tea; Tomašić, Vlasta; Biliškov, Nikola; Liu, Feng
2014-04-24
18-crown-6 ether (18C6) complexes with the following anionic surfactants: sodium n-dodecylsulfate (18C6-NaDS), sodium 4-(1-pentylheptyl)benzenesulfonate (18C6-NaDBS); and potassium picrate (18C6-KP) were synthesized and studied in terms of their thermal and structural properties. Physico-chemical properties of new solid 1:1 coordination complexes were characterized by infrared (IR) spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, X-ray diffraction and microscopic observations. The strength of coordination between Na(+) and oxygen atoms of 18C6 ligand does not depend on anionic part of the surfactant, as established by thermodynamical parameters obtained by temperature-dependent IR spectroscopy. Each of these complexes exhibit different kinds of endothermic transitions in heating scan. Diffraction maxima obtained by SAXS and WAXS, refer the behavior of the compounds 18C6-NaDS and 18C6-NaDBS as smectic liquid crystalline. Distortion of 18C6-NaDS and 18C6-KP complexes occurs in two steps. Temperature of the decomplexation of solid crystal complex 18C6-KP is considerably higher than of mesophase complexes, 18C6-NaDS, and 18C6-NaDBS. The structural and liquid crystalline properties of novel 18-crown-ether complexes are function of anionic molecule geometry, type of chosen cation (Na(+), K(+)), as well as architecture of self-organized aggregates. A good combination of crown ether unit and amphiphile may provide a possibility for preparing new functionalized materials, opening the research field of ion complexation and of host-guest type behavior. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis, structural characterization and photoluminescence properties of a novel La(III) complex
NASA Astrophysics Data System (ADS)
Köse, Muhammet; Ceyhan, Gökhan; Atcı, Emine; McKee, Vickie; Tümer, Mehmet
2015-05-01
In this study, a novel La(III) complex [La(H2L)2(NO3)3(MeOH)] of a Schiff base ligand was synthesized and characterized by spectroscopic and analytical methods. Single crystals of the complex suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a MeOH solution of the complex which was found to crystallise as [La(H2L)2(NO3)3(MeOH)]ṡ2MeOHṡH2O. The structure was solved in monoclinic crystal system, P21/n space group with unit cell parameters a = 10.5641(11), b = 12.6661(16), c = 16.0022(17) Å, α = 67.364(2), β = 83.794(2)°, γ = 70.541(2)°, V = 1862.9(4) Å3 and Z = 2 with R final value of 0.526. In the complex, the La(III) ion is ten-coordinated by O atoms, five of which come from three nitrate ions, four from the two Schiff base ligands and one from MeOH oxygen atom. The Schiff base ligands in the structure are in a zwitter ion form with the phenolic H transferred to the imine N atom. Thermal properties of the La(III) complex were examined by thermogravimetric analysis and the complex was found to be thermally stable up to 310 °C. The Schiff base ligand and its La(II) complex were screened for their in vitro antimicrobial activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus (Gram positive bacteria), Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa (Gram negative bacteria), Candida albicans,Yarrowia lipolytica (fungus) and Saccharomyces cerevisiae (yeast). The complex shows more antimicrobial activity than the free ligand.
The Cimmerian accretionary wedge of Anarak, Central Iran
NASA Astrophysics Data System (ADS)
Zanchi, Andrea; Malaspina, Nadia; Zanchetta, Stefano; Berra, Fabrizio; Benciolini, Luca; Bergomi, Maria; Cavallo, Alessandro; Javadi, Hamid Reza; Kouhpeyma, Meyssam
2015-04-01
The occurrence in Iran of several ophiolite belts dating between Late Palaeozoic to Triassic poses several questions on the possible existence of various sutures marking the closure of the Palaeotethys ocean between Eurasia and this Gondwana-derived microplate. In this scenario, the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted, as: (1) relict of an accretionary wedge developed at the Eurasia margin during the Palaeotethys subduction as part of the Cimmerian suture zone of NE Iran, displaced to Central Iran by a large counter-clockwise rotation of the central Iranian blocks; (2) autochthonous unit forming a secondary branch of the main suture zone. Our structural, petrographic and geochemical data indicate that the AMC consists of several metamorphic units also including dismembered "ophiolites" which display different tectono-metamorphic evolutions. Three main ductile deformational events can be distinguished in the AMC. The Morghab and Chah Gorbeh complexes preserve a different M1 metamorphism, characterized by blueschist relics in the S1 foliation of the former unit, and greenschist assemblages in the latter. They share a subsequent similar D2 deformational and M2 metamorphic history, showing a prograde metamorphism with syn- to post-deformation growth of blueschist facies mineral assemblages on pre-existing greenschist facies associations. High pressure, low temperature (HP/LT) metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the contact between the Chah Gorbeh Complex and serpentinites. Evidence of HP/LT metamorphism also occurs in glaucophane-bearing meta-pillow lavas and serpentinites, which contain antigorite and form most of the "ophiolites" within the AMC. Structural relationships show that the Chah Gorbeh and Morghab units and the "ophiolites" were tectonically coupled within an accretionary wedge before the D2 folding stage. The other units of the AMC lack evidence of HP metamorphism in the area around Anarak, especially the Lakh Marble, a large thrust sheet that occupies the uppermost structural position in the AMC. Available radiometric ages of trondhjemite dikes and stocks that intruded the accretionary wedge, as well as our new data, constrain the subduction event at the end of the Carboniferous, before 290 Ma. These data suggest that the AMC is part of an allochthonous crustal fragment belonging to the Variscan belt developed along the southern Eurasian margin before the Cimmerian collision of Iran. Subsequent deformational events that occurred during the Mesozoic and the Cenozoic, up to the Miocene and possibly later, resulted in folding, thrusting and faulting that dismembered the original structure of the wedge accompanying its displacement to the present day position.
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
NASA Astrophysics Data System (ADS)
Antonijević-Nikolić, Mirjana; Antić-Stanković, Jelena; Tanasković, Sladjana B.; Korabik, Maria J.; Gojgić-Cvijović, Gordana; Vučković, Gordana
2013-12-01
New cationic Cu(II) complexes with N, N‧, N″, N″‧-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and aliphatic dicarboxylic acids: pentanedioic (glutaric acid = glutH2), hexanedioic acid (adipic acid = adipH2) and decanedioic acid (sebacic acid = sebH2) of general formula [Cu4(L)(tpmc)2](ClO4)6·xH2O, L = glut, x = 2; L = adip, x = 7; L = seb, x = 6 were isolated. Their composition and charges are proposed based on elemental analyses and molar conductivity measurements. By the comparison of their UV-Vis, reflectance, FTIR and EPR spectral data, CV and SQUID magnetic measurements, with those for the complex with butanedioic acid (succinic acid = succH2) of known molecular structure and analysis of LC/MS spectra, geometry with two [Cu2tpmc]4+ units bridged by dicarboxylate dianion engaging all oxygens is proposed. Within units, Cu(II) ions are also bridged with N portion of cyclam ring. All four complexes were screened to in vitro antimicrobial and cytotoxic activity along with free primary and secondary ligands, Cu(II) salt and solvent controls. Detected antibacterial and cytotoxic activity for the complexes was enhanced in most cases than the corresponding controls.
Van Bogaert, Peter; Peremans, Lieve; Diltour, Nadine; Van heusden, Danny; Dilles, Tinne; Van Rompaey, Bart; Havens, Donna Sullivan
2016-01-01
The aim of the study reported in this article was to investigate staff nurses’ perceptions and experiences about structural empowerment and perceptions regarding the extent to which structural empowerment supports safe quality patient care. To address the complex needs of patients, staff nurse involvement in clinical and organizational decision-making processes within interdisciplinary care settings is crucial. A qualitative study was conducted using individual semi-structured interviews of 11 staff nurses assigned to medical or surgical units in a 600-bed university hospital in Belgium. During the study period, the hospital was going through an organizational transformation process to move from a classic hierarchical and departmental organizational structure to one that was flat and interdisciplinary. Staff nurses reported experiencing structural empowerment and they were willing to be involved in decision-making processes primarily about patient care within the context of their practice unit. However, participants were not always fully aware of the challenges and the effect of empowerment on their daily practice, the quality of care and patient safety. Ongoing hospital change initiatives supported staff nurses’ involvement in decision-making processes for certain matters but for some decisions, a classic hierarchical and departmental process still remained. Nurses perceived relatively high work demands and at times viewed empowerment as presenting additional. Staff nurses recognized the opportunities structural empowerment provided within their daily practice. Nurse managers and unit climate were seen as crucial for success while lack of time and perceived work demands were viewed as barriers to empowerment. PMID:27035457
Van Bogaert, Peter; Peremans, Lieve; Diltour, Nadine; Van heusden, Danny; Dilles, Tinne; Van Rompaey, Bart; Havens, Donna Sullivan
2016-01-01
The aim of the study reported in this article was to investigate staff nurses' perceptions and experiences about structural empowerment and perceptions regarding the extent to which structural empowerment supports safe quality patient care. To address the complex needs of patients, staff nurse involvement in clinical and organizational decision-making processes within interdisciplinary care settings is crucial. A qualitative study was conducted using individual semi-structured interviews of 11 staff nurses assigned to medical or surgical units in a 600-bed university hospital in Belgium. During the study period, the hospital was going through an organizational transformation process to move from a classic hierarchical and departmental organizational structure to one that was flat and interdisciplinary. Staff nurses reported experiencing structural empowerment and they were willing to be involved in decision-making processes primarily about patient care within the context of their practice unit. However, participants were not always fully aware of the challenges and the effect of empowerment on their daily practice, the quality of care and patient safety. Ongoing hospital change initiatives supported staff nurses' involvement in decision-making processes for certain matters but for some decisions, a classic hierarchical and departmental process still remained. Nurses perceived relatively high work demands and at times viewed empowerment as presenting additional. Staff nurses recognized the opportunities structural empowerment provided within their daily practice. Nurse managers and unit climate were seen as crucial for success while lack of time and perceived work demands were viewed as barriers to empowerment.
The impact of economic complexity on carbon emissions: evidence from France.
Can, Muhlis; Gozgor, Giray
2017-07-01
This paper reanalyzes the determinants of the CO 2 emissions in France. For this purpose, it considers the unit root test with two structural breaks and a dynamic ordinary least squares estimation. The paper also considers the effects of the energy consumption and the economic complexity on CO 2 emissions. First, it is observed that the EKC hypothesis is valid in France. Second, the positive effect of the energy consumption on CO 2 emissions is obtained. Third, it is observed that a higher economic complexity suppresses the level of CO 2 emissions in the long run. The findings imply noteworthy environmental policy implications to decrease the level of CO 2 emissions in France.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.
1981-01-01
Remote sensing methods applied to geologically complex areas, through interaction of ground truth and information obtained from multispectral LANDSAT images and radar mosaics were evaluated. The test area covers parts of Minos Gerais, Rio De Janeiro and Sao Paulo states and contains the alkaline complex of Itatiaia and surrounding Precambrian terrains. Geological and structural mapping was satisfactory; however, lithological varieties which form the massif's could not be identified. Photogeological lineaments were mapped, some of which represent the boundaries of stratigraphic units. Automatic processing was used to classify sedimentary areas, which includes the talus deposits of the alkaline massifs.
The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.R.; Julian, F.E.
1993-02-01
The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less
Kawai, Akito; Higuchi, Shigesada; Tsunoda, Masaru; Nakamura, Kazuo T.; Miyamoto, Shuichi
2012-01-01
Uracil-DNA glycosylase (UDG) specifically removes uracil from DNA by catalyzing hydrolysis of the N-glycosidic bond, thereby initiating the base-excision repair pathway. Although a number of UDG structures have been determined, the structure of archaeal UDG remains unknown. In this study, a deletion mutant of UDG isolated from Sulfolobus tokodaii strain 7 (stoUDGΔ) and stoUDGΔ complexed with uracil were crystallized and analyzed by X-ray crystallography. The crystals were found to belong to the orthorhombic space group P212121, with unit-cell parameters a = 52.2, b = 52.3, c = 74.7 Å and a = 52.1, b = 52.2, c = 74.1 Å for apo stoUDGΔ and stoUDGΔ complexed with uracil, respectively. PMID:22949205
NASA Astrophysics Data System (ADS)
Kamzolkin, V. A.; Latyshev, A. V.; Vidyapin, Yu. P.; Somin, M. L.; Smul'skaya, A. I.; Ivanov, S. D.
2018-05-01
The paper presents new data on the composition, age, and relationships (with host and overlying deposits) of intrusive rocks in the basement of the Fore Range zone (Greater Caucasus), in the Malaya Laba River Basin. The evolutionary features of intrusive units located within the Blyb metamorphic complex are described. It is shown for the first time that the lower levels of this complex are, in a structural sense, outcrops of the Late Vendian basement. The basement is composed of the Balkan Formation and a massif of quartz metadiorites that intrudes it; for the rocks of this massif, ages ranging from 549 ± 7.4 to 574.1 ± 6.7 Ma are obtained for three U-Pb datings by the SHRIMP-II method. The Herzyinan magmatic event is represented by a group of granodiorite intrusions penetrating the Blyb complex on a series of faults extending along its boundary with the Main Range zone. The obtained estimate for the U-Pb age of one of the intrusions (319 ± 3.8 Ma) corresponds to the end of the Serpukhovian stage of the Early Carboniferous.
NASA Technical Reports Server (NTRS)
Duraj, Stan A.; Andras, Maria T.; Hepp, Aloysius F.
1990-01-01
In order to use sulfur-containing resources economically and with minimal environmental damage, it is important to understand the desulfurization processes. Hydrodesulfurization, for example, is carried out on the surface of a heterogeneous metal sulfide catalyst. Studies of simple, soluble inorganic systems provide information regarding the structure and reactivity of sulfur-containing compounds with metal complexes. Further, consistent with recent trends in materials chemistry, many model compounds warrant further study as catalyst precursors. The reactivity of low-valent organometallic sandwich pi-complexes toward dithiocarboxylic acids is described. For example, treatment of bisbenzene vanadium with CH3CSSH affords a divanadium tetrakis(dithioacetate) complex. The crystallographically determined V-V bond distance, 2.800(2), is nearly the same as the V-V bond distance in a V(mu-nu squared-S2)2V' unit in the mineral patonite (VS4)n. The stability of the V2S4 core in the dimer is demonstrated by evidence of V2S4(+) in the mass spectrum (70 eV, solid probe) of the vanadium dimer. Several other systems relevant to HDS catalysis are also discussed.
Spacetime algebra as a powerful tool for electromagnetism
NASA Astrophysics Data System (ADS)
Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco
2015-08-01
We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.
NASA Astrophysics Data System (ADS)
Gaballa, Akmal S.; Wagner, Christoph; Teleb, Said M.; Nour, El-Metwally; Elmosallamy, M. A. F.; Kaluđerović, Goran N.; Schmidt, Harry; Steinborn, Dirk
2008-03-01
Charge-transfer (CT) complexes formed in the reactions of 2,9-dimethyl-1,10-phenanthroline (Me 2phen) with some acceptors such as chloranil (Chl), picric acid (HPA) and chloranilic acid (H 2CA) have been studied in the defined solvent at room temperature. Based on elemental analysis and infrared spectra of the solid CT-complexes along with the photometric titration curves for the reactions, obtained data indicate the formation of 1:1 charge-transfer complexes [(Me 2phen)(Chl)] ( 1), [(Me 2phenH)(PA)] ( 2) and [(Me 2phenH)(HCA)] ( 3), respectively, was proposed. In the three complexes, infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction and as far as complexes 2 and 3 are concerned this interaction is associated with a hydrogen bonding. The formation constants for the complexes ( KC) were shown to be dependent upon the nature of the electron acceptors used. The X-ray structure of complex 3 indicate the formation of dimeric units [Me 2phenH] 2[(HCA) 2] in which the two anions (HCA) - are connected by two O-H⋯O hydrogen bonds whereas the cations and anions are joined together by strong three-center (bifurcated) N-H⋯O hydrogen bonds. Furthermore, the cations are arranged in a π-π stacking.
Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system
Miller, J.A.; Renken, R.A.
1988-01-01
Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)
A series of silver(I) coordination polymers with saccarinate and flexible aliphatic diamines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr; Karamahmut, Bingül; Semerci, Fatih
A series of Ag(I) complexes with aliphatic diamines having a different chain length (NH{sub 2}-(CH{sub 2}){sub n}-NH{sub 2}, n=4–9), with the formulas, [Ag(μ-sac)(μ-db){sub 0.5}]{sub n} (1), ([Ag{sub 4}(sac){sub 4}(μ-dp){sub 2}]·4H{sub 2}O){sub n} (2){sub ,} ([Ag{sub 2}(sac){sub 2}(μ-dz)]·2H{sub 2}O){sub n} (3), ([Ag{sub 2}(sac){sub 2}(μ-dh)]·H{sub 2}O){sub n} (4), ([Ag{sub 2}(sac){sub 2}(μ-do)]·H{sub 2}O){sub n} (5a), [Ag{sub 2}(sac){sub 2}(μ-do){sub 2}] (5b) and [Ag{sub 4}(sac){sub 4}(μ-dn){sub 2}]·2H{sub 2}O (6), where sac=saccharinate, db=1,4-diaminobutane, dp=1,5-diaminopentane, dz=1,6-diaminohexane, dh=1,7-diaminoheptane, do=1,8-diaminooctane and dn=1,9-diaminononane, were synthesized and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. In 1, the sac ligand bridges adjacent Ag(I) ions through the nitrogen andmore » carbonyl oxygen atoms to form eight-membered bimetallic rings with the Ag···Ag distance being 3.897 Å, which are linked by db ligands to give a 1D zigzag chain. The complexes 2–5a consist of a one-dimensional (1D) linear cationic chains and discrete mononuclear anions. The discreet complex units are further connected by ligand unsupported argentophilic interactions. In 6, the dn ligands bridge adjacent silver centers to form 24-membered macrometallacyclic rings, which are further connected to the anionic [Ag(sac){sub 2}]{sup -} units by argentophilic Ag1···Ag2 interactions to form a tetranuclear structure. The adjacent dinuclear units are further linked together through ligand-unsupported argentophilic Ag···Ag (3.207(1) Å) interactions, generating a one-dimensional linear chain. The most striking feature of complexes is the presence of the rare intermolecular C-H···Ag interactions. In 5b, the do ligand bridges two Ag(I) ions to form a dinuclear with a 22-membered macrometallacyclic ring. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes were investigated. - Graphical abstract: In this study, six new silver coordination compounds were synthesized by using saccharinate and flexible aliphatic diamine derivatives. All the compounds were characterized by elemental analysis, IR and single-crystal X-ray analysis. TG/DTA. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes have been investigated. Complexes 1–5a and 6 were synthesized with the same reactant ratio and room temperature by using a mixture of AgNO{sub 3}, sac and different length diamine derivatives. The complex 5b is also synthesized was similar to that of 1 at 80 °C. In the complexes, the diamine derivatives ligands show bis(bridging) coordination mode. The sac ligand exhibits a µ-bridging coordination mode in 1 and N-donor monodentate coordination mode in 2–6. Complexes 1–5 exhibit 1D chain structure while complex 6 are tetranuclear structure. In the crystal packing of complexes, 3D supramolecular frameworks are formed via C-H···Ag, Ag···π and Ag···Ag interactions.« less
Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres.
Arkhipova, Irina R; Yushenova, Irina A; Rodriguez, Fernando
2017-09-01
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3'-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3'-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Polarization curling and flux closures in multiferroic tunnel junctions
NASA Astrophysics Data System (ADS)
Peters, Jonathan J. P.; Apachitei, Geanina; Beanland, Richard; Alexe, Marin; Sanchez, Ana M.
2016-11-01
Formation of domain walls in ferroelectrics is not energetically favourable in low-dimensional systems. Instead, vortex-type structures are formed that are driven by depolarization fields occurring in such systems. Consequently, polarization vortices have only been experimentally found in systems in which these fields are deliberately maximized, that is, in films between insulating layers. As such configurations are devoid of screening charges provided by metal electrodes, commonly used in electronic devices, it is wise to investigate if curling polarization structures are innate to ferroelectricity or induced by the absence of electrodes. Here we show that in unpoled Co/PbTiO3/(La,Sr)MnO3 ferroelectric tunnel junctions, the polarization in active PbTiO3 layers 9 unit cells thick forms Kittel-like domains, while at 6 unit cells there is a complex flux-closure curling behaviour resembling an incommensurate phase. Reducing the thickness to 3 unit cells, there is an almost complete loss of switchable polarization associated with an internal gradient.
Polarization curling and flux closures in multiferroic tunnel junctions
Peters, Jonathan J. P.; Apachitei, Geanina; Beanland, Richard; Alexe, Marin; Sanchez, Ana M.
2016-01-01
Formation of domain walls in ferroelectrics is not energetically favourable in low-dimensional systems. Instead, vortex-type structures are formed that are driven by depolarization fields occurring in such systems. Consequently, polarization vortices have only been experimentally found in systems in which these fields are deliberately maximized, that is, in films between insulating layers. As such configurations are devoid of screening charges provided by metal electrodes, commonly used in electronic devices, it is wise to investigate if curling polarization structures are innate to ferroelectricity or induced by the absence of electrodes. Here we show that in unpoled Co/PbTiO3/(La,Sr)MnO3 ferroelectric tunnel junctions, the polarization in active PbTiO3 layers 9 unit cells thick forms Kittel-like domains, while at 6 unit cells there is a complex flux-closure curling behaviour resembling an incommensurate phase. Reducing the thickness to 3 unit cells, there is an almost complete loss of switchable polarization associated with an internal gradient. PMID:27848970
Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov
2015-08-01
Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; De, Arjun K.; Phukan, Arnab; Lal, Ram A.
2014-08-01
Three new homotrinuclear copper(II) complexes [Cu3(slmh)(μ-Cl)2(CH3OH)3]ṡ0.5CH3OH (1), [Cu3(slmh)(NO3)2(CH3OH)5]ṡ1.5CH3OH (2) and [Cu3(slmh)(μ-ClO4)2(CH3OH)3]ṡ2CH3OH (3) from disalicylaldehyde malonoyldihydrazone have been synthesized and characterized. The composition of the complexes has been established on the basis of data obtained from analytical and thermoanalytical data. The structure of the complexes has been discussed in the light of molar conductance, electronic, FT-IR and far-IR spectral data, magnetic moment and EPR spectral studies. The molar conductance values for the complexes in DMSO solution indicate that all of them are non-electrolyte. The magnetic moment values for the complexes suggest considerable metal-metal intramolecular interaction between metal ions in the structural unit of the complexes. The EPR spectral features reveal that at RT, the ground state for the complexes is a mixture of the quartet state (S = 3/2) and doublet state (S = ½). At lower temperature, the ground state for the complexes is dx2-y2 with considerable contribution from dz2 orbital. Dihydrazone ligand is present in enol form in all of the complexes. The complexes have distorted square pyramidal stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Hydrogen peroxide mediated oxidation of benzyl alcohol catalyzed by complex 1 has been studied.
NASA Astrophysics Data System (ADS)
Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos
2016-03-01
The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.
Byrnes, Matthew J; Chisholm, Malcolm H; Patmore, Nathan J
2005-12-12
The reactions between M2(O2CtBu)4, where M=Mo or W, and thienyl-3,4-dicarboxylic acid (0.5-1.5 equiv) in toluene proceed via a series of detectable intermediates to the compounds M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6, which are isolated as air-sensitive yellow (M=Mo) or red (M=W) powders and show parent molecular ions in their mass spectra (MALDI). The structure of the molybdenum complex was determined by single-crystal X-ray crystallography and shown to contain an unusual M8 polygon involving four Mo2 quadruply bonded units linked via the agency of the six 3,4-thienylcarboxylate groups. The structure has crystallographically imposed S4 symmetry and may be described in terms of a highly distorted tetrahedron of Mo2 units or a bisphenoid in which two Mo2 units are linked by a thienyldicarboxylate such that intramolecular Mo2...O bonding is present, while the other thienylcarboxylate bridges merely serve to link these two [Mo2]...[Mo2] units together. The color of the compounds arises from intense M2 delta-to-thienyl pi transitions and, in THF, the complexes are redox-active and show four successive quasi-reversible oxidation waves. The [M8]+ radical cations, generated by one-electron oxidation with AgPF6, are shown to be valence-trapped (class II) by UV-vis-near-IR and electron paramagnetic resonance spectroscopy. These results are supported by the electronic structure calculations on model compounds M8(O2CH)4(mu-SC4H2-3,4-{CO}2)6 employing density functional theory that reveal only a small splitting of the M2 delta manifold via mixing with the 3,4-thienylcarboxylate pi system.
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
NASA Astrophysics Data System (ADS)
Naydenov, Kalin; Peytcheva, Irena; von Quadt, Albrecht; Sarov, Stoyan; Kolcheva, Krastina; Dimov, Dimo
2013-06-01
The present study describes the characteristics of the Maritsa Shear Zone (MSZ), a major tectonic element in the Balkanides in South Central Bulgaria. Metamorphic rocks of four lithotectonic units — Madan, Chepinska, Asenitsa and Thrace units crop out in the study area. Strike-slip ductile deformation in MSZ affects the Thrace Lithotectonic Unit (TLU) for up to 15 km. The stratigraphy of this unit is divided in two: Parvenets succession and variegated succession. U-Pb zircon dating reveals Late Jurassic protolith age for metagranitoids and metagabbros of the variegated succession. For its metasedimentary part Triassic to Upper Jurassic age is suggested based on the strontium isotope signature of the marbles. The Parvenets succession affiliates to the Variscan metamorphic basement of Europe. The metamorphic evolution of the zone is subdivided into synmetamorphic strike-slip deformations and annealing stages. The ductile shearing occurred in greenschist to lower amphibolite facies between 130 Ma (discordant U-Pb ages) and 82-78 Ma (late-syntectonic granites). This stage is connected with the oblique collision of the Rhodope Late Jurassic arc with the European platform. With the docking of the arc and the triggering of the strike-slip movements, MSZ represents an orogen-scale border between the Rhodope south-vergent thrust complex and the north-vergent deformations in the Srednogorie and Sakar-Strandzha zones. During the Late Cretaceous MSZ is the contact between the Srednogorie magmatic arc (part of the Apuseni-Banat-Timok-Srednogorie Belt) and the Rhodopean metamorphic core complexes. NW-SE dextral faulting characterized the brittle tectonics along the zone. Strike-slip faults of the southern border of the TLU are transferred into reverse faults, along which the TLU overthrusted Oligocene sediments. MSZ is an orogen-scale transpressional shear zone and an important border in the structure of the Balkanides. This multidisciplinary research emphasizes its role as a major tectonic element by presenting new structural, petrographic and isotope geochronology data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troffer-Charlier, Nathalie; Cura, Vincent; Hassenboehler, Pierre
2007-04-01
Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM1{sub 28–507} and two structural states of CARM1{sub 140–480} were expressed, purified and crystallized. Crystals of CARM1{submore » 28–507} belong to space group P6{sub 2}22, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM1{sub 28–507} was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1{sub 140–480} belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1{sub 140–480} in complex with S-adenosyl-l-homocysteine belong to space P2{sub 1}2{sub 1}2, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1{sub 140–480} were solved by molecular-replacement techniques from the structure of CARM1{sub 28–507}.« less
Triest, Sarah; Wohlkönig, Alexandre; Pardon, Els; Steyaert, Jan
2014-11-01
GPCR-G-protein complexes are one of the most important components of cell-signalling cascades. Extracellular signals are sensed by membrane-associated G-protein-coupled receptors (GPCRs) and transduced via G proteins towards intracellular effector molecules. Structural studies of these transient complexes are crucial to understand the molecular details of these interactions. Although a nucleotide-free GPCR-G-protein complex is stable, it is not an ideal sample for crystallization owing to the intrinsic mobility of the Gαs α-helical domain (AHD). To stabilize GPCR-G-protein complexes in a nucleotide-free form, nanobodies were selected that target the flexible GαsAHD. One of these nanobodies, CA9177, was co-crystallized with the GαsAHD. Initial crystals were obtained using the sitting-drop method in a sparse-matrix screen and further optimized. The crystals diffracted to 1.59 Å resolution and belonged to the monoclinic space group P2₁, with unit-cell parameters a=44.07, b=52.55, c=52.66 Å, α=90.00, β=107.89, γ=90.00°. The structure of this specific nanobody reveals its binding epitope on GαsAHD and will help to determine whether this nanobody could be used as crystallization chaperone for GPCR-G-protein complexes.
Semchonok, Dmitry A.; Chauvin, Jean-Paul; Frese, Raoul N.; Jungas, Colette; Boekema, Egbert J.
2012-01-01
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)—antenna complexes (RC–LH1–PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC–LH1–PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC. PMID:23148268
Pay Attention to the Phrasal Structures: Going beyond T-Units--A Response to Weiwei Yang
ERIC Educational Resources Information Center
Biber, Douglas; Gray, Bethany; Poonpon, Kornwipa
2013-01-01
WeiWei Yang, in her forum piece, raises two main criticisms of the authors' "TQ" article on grammatical complexity: "The study the authors conducted [1] is not capable of answering development-related questions and [2] is mathematically questionable" (Yang, 2013, p. 190). In addition, Yang's article has a third goal that is not explicitly…
ERIC Educational Resources Information Center
Hunt, Neil D.
2012-01-01
The development of critical sensibilities in English Language Teaching (ELT) in recent years has seen challenges to assumptions and methodologies in the field, placing an explicit focus on the manifestation of structures and relations of power. The critical stance affords a growing acceptance of English Language Teaching as a complex situated…
Wound Healing: Biochemical Pathways and in vivo Studies.
1980-02-01
glycosaminoglycans (mucopolysaccharides) and glycoproteins (proteins with covalently bound hetero- polysaccharide chains). The matrix portion of the collagen unit is...the monosaccharides to the more complex mucopolysaccharides and glycoproteins and their role in the production and structure of collagen is evolving...glucosamine, and hexoses--glucose, galac- tose, and mannose. The monosaccharide pattern was similar in the wound tissue of the three species. These
ERIC Educational Resources Information Center
Adams, James D.; Clemmons, J. Roger
2009-01-01
Due to improving information technology, the growing complexity of research problems, and policies designed to foster interdisciplinary research, the practice of science in the United States has undergone significant structural change. Using a sample of 110 top U.S. universities observed during the late 20th century we find that knowledge flows,…
ERIC Educational Resources Information Center
London, Chad
2011-01-01
The head of department position has been an integral role in the organisational structure of colleges and universities for over a hundred years. Recently, many institutions of higher education have called on department heads to provide advancing quality management and leadership to academic units in response to an increasingly complex and…
B. A. Richardson; N. B. Klopfenstein; P. J. Zambino; G. I. McDonald; B. W. Geils; L. M. Carris
2008-01-01
Cronartium ribicola, the causal agent of white pine blister rust, has been devastating to five-needled white pines in North America since its introduction nearly a century ago. However, dynamic and complex interactions occur among C. ribicola, five-needled white pines, and the environment. To examine potential evolutionary...
The US business cycle: power law scaling for interacting units with complex internal structure
NASA Astrophysics Data System (ADS)
Ormerod, Paul
2002-11-01
In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Rabadanov, M. Kh.; Chernaya, T. S.
2008-03-15
Two isostructural complexes of dioxonium [H{sub 5}O{sub 2}]{sup +} with tetrabenzo-30-crown-10 of the compositions [(tetrabenzo-30-crown-10 . H{sub 5}O{sub 2})][TaF{sub 6}] (I) and [(tetrabenzo-30-crown-10 . H{sub 5}O{sub 2})][NbF{sub 6}] (II) are studied using X-ray diffraction. The complexes crystallize in the monoclinic crystal system (space group C2/c, Z = 4). The unit cell parameters of these compounds are as follows: a = 15.6583(12) A, b = 15.2259(13) A, c = 16.4473(13) A, and {beta} = 99.398(6) deg. for complex I and a = 15.7117(12) A, b = 15.2785(15) A, c = 16.5247(15) A, and {beta} = 99.398(7) deg. for complex II. Thesemore » complexes belong to the ionic type. The dioxonium cation [H{sub 5}O{sub 2}]{sup +} in the form of the two-unit cluster [H{sub 3}O . H{sub 2}O]{sup +} is stabilized by the strong hydrogen bond OH-O [O-O, 2.353(4) A] and encapsulated by the crown ether. Each oxygen atom of the dioxonium cation also forms two oxygen bonds O-O(crown). The crown ether adopts an unusual two-level (pocket-like) conformation, which provides a complete encapsulation of the oxonium associate. The interaction of the cationic complex with the anion in the crystal occurs through contacts of the C-H-F type.« less
NASA Astrophysics Data System (ADS)
Furmanova, N. G.; Rabadanov, M. Kh.; Chernaya, T. S.; Fonari, M. S.; Simonov, Yu. A.; Ganin, É. V.; Gelmboldt, V. O.; Grigorash, R. Ya.; Kotlyar, S. A.; Kamalov, G. L.
2008-03-01
Two isostructural complexes of dioxonium [H5O2]+ with tetrabenzo-30-crown-10 of the compositions [(tetrabenzo-30-crown-10 · H5O2)][TaF6] ( I) and [(tetrabenzo-30-crown-10 · H5O2)][NbF6] ( II) are studied using X-ray diffraction. The complexes crystallize in the monoclinic crystal system (space group C2/ c, Z = 4). The unit cell parameters of these compounds are as follows: a = 15.6583(12) Å, b = 15.2259(13) Å, c = 16.4473(13) Å, and β = 99.398(6)° for complex I and a = 15.7117(12) Å, b = 15.2785(15) Å, c = 16.5247(15) Å, and β = 99.398(7)° for complex II. These complexes belong to the ionic type. The dioxonium cation [H5O2]+ in the form of the two-unit cluster [H3O · H2O]+ is stabilized by the strong hydrogen bond OH⋯O [O⋯O, 2.353(4) Å] and encapsulated by the crown ether. Each oxygen atom of the dioxonium cation also forms two oxygen bonds O⋯O(crown). The crown ether adopts an unusual two-level (pocket-like) conformation, which provides a complete encapsulation of the oxonium associate. The interaction of the cationic complex with the anion in the crystal occurs through contacts of the C-H⋯F type.
NASA Astrophysics Data System (ADS)
Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel
2016-04-01
Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector-inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS) at Goethe University, Frankfurt. A total of 399 U-Pb spot analyses were carried out on zircons from the sandstones of the Orhanlar Unit. 84% of the data yielded Precambrian ages, which is in marked contrast with the typical arkosic sandstones of the Karakaya Complex in which Precambrian zircons form only 10% of the population. Three zircon grains of Ladinian age suggest a maximum depositional age for the Orhanlar Unit. The most prominent zircon population is of Ediacaran-Cryogenian age (31%). The second largest population is Tonian-Stenian (22%), the third largest Cryogenian-Tonian (9%) and the fourth Devonian-Carboniferous (7%). There are also minor zircon populations of Palaeoproterozoic and Neo-Archean ages. The Precambrian zircon populations in the Orhanlar Unit sandstones are identical to those in the schists of the Sakarya continental crust (P.A. Ustaömer et al. 2012; this study). Their Hf isotope compositions also overlap, suggesting that the Sakarya continental crust could be a source for the sandstones of the Orhanlar Unit. On the other hand, the Hf(t) values of most of the Devonian and Carboniferous detrital zircons differ from those of the Devonian and Carboniferous granites that intrude the Sakarya continental crust. The Karakaya Complex as a whole appears to have been derived from two different source terranes, of which the Orhanlar Unit sandstones represent a minor, but significant component. Possible explanations are that two different source terranes already existed in the same region but that these were not exposed to erosion at the same time or, if exposed simultaneously, experienced different depositional pathways (without mixing); alternatively, the Orhanar Unit represents part of a different tectono-stratigraphic terrane from the other Karakaya Complex units, with which it was tectonically amalgamated prior to Early Jurassic deposition of a common sedimentary cover. Ustaömer PA, Ustaömer T, Robertson AHF (2012), Turkish Journal of Earth Sciences, doi:10.3906/yer-1103-1 Ustaömer T, Ustaömer PA, Robertson AHF, Gerdes A (2015), International Journal of Earth Sciences, DOI 10.1007/s00531-015-1225-8. This work was supported by TUBITAK, Project no 111R015
Ligand placement based on prior structures: the guided ligand-replacement method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov
2014-01-01
A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR leverages prior knowledge from earlier structures to facilitate ligand placement in the current structure.« less
Active faults of the Baikal depression
Levi, K.G.; Miroshnichenko, A.I.; San'kov, V. A.; Babushkin, S.M.; Larkin, G.V.; Badardinov, A.A.; Wong, H.K.; Colman, S.; Delvaux, D.
1997-01-01
The Baikal depression occupies a central position in the system of the basins of the Baikal Rift Zone and corresponds to the nucleus from which the continental lithosphere began to open. For different reasons, the internal structure of the Lake Baikal basin remained unknown for a long time. In this article, we present for the first time a synthesis of the data concerning the structure of the sedimentary section beneath Lake Baikal, which were obtained by complex seismic and structural investigations, conducted mainly from 1989 to 1992. We make a brief description of the most interesting seismic profiles which provide a rough idea of a sedimentary unit structure, present a detailed structural interpretation and show the relationship between active faults in the lake, heat flow anomalies and recent hydrothermalism.
Complementary ab initio and X-ray nanodiffraction studies of Ta2O5
Hollerweger, R.; Holec, D.; Paulitsch, J.; Bartosik, M.; Daniel, R.; Rachbauer, R.; Polcik, P.; Keckes, J.; Krywka, C.; Euchner, H.; Mayrhofer, P.H.
2015-01-01
The complex structure of Ta2O5 led to the development of various structural models. Among them, superstructures represent the most stable configurations. However, their formation requires kinetic activity and long-range ordering processes, which are hardly present during physical vapor deposition. Based on nano-beam X-ray diffraction and concomitant ab initio studies, a new metastable orthorhombic basic structure is introduced for Ta2O5 with lattice parameters a = 6.425 Å, b = 3.769 Å and c = 7.706 Å. The unit cell containing only 14 atoms, i.e. two formula unit blocks in the c direction, is characterized by periodically alternating the occupied oxygen site between two possible positions in succeeding 002-planes. This structure can be described by the space group 53 (Pncm) with four Wyckoff positions, and exhibits an energy of formation of −3.209 eV atom−1. Among all the reported basic structures, its energy of formation is closest to those of superstructures. Furthermore, this model exhibits a 2.5 eV band gap, which is closer to experimental data than the band gap of any other basic-structure model. The sputtered Ta2O5 films develop only a superstructure if annealed at temperatures >800 °C in air or vacuum. Based on these results and the conveniently small unit cell size, it is proposed that the basic-structure model described here is an ideal candidate for both structure and electronic state descriptions of orthorhombic Ta2O5 materials. PMID:25642136
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
Using the Self-Select Paradigm to Delineate the Nature of Speech Motor Programming
Wright, David L.; Robin, Don A.; Rhee, Jooyhun; Vaculin, Amber; Jacks, Adam; Guenther, Frank H.; Fox, Peter T.
2015-01-01
Purpose The authors examined the involvement of 2 speech motor programming processes identified by S. T. Klapp (1995, 2003) during the articulation of utterances differing in syllable and sequence complexity. According to S. T. Klapp, 1 process, INT, resolves the demands of the programmed unit, whereas a second process, SEQ, oversees the serial order demands of longer sequences. Method A modified reaction time paradigm was used to assess INT and SEQ demands. Specifically, syllable complexity was dependent on syllable structure, whereas sequence complexity involved either repeated or unique syllabi within an utterance. Results INT execution was slowed when articulating single syllables in the form CCCV compared to simpler CV syllables. Planning unique syllables within a multisyllabic utterance rather than repetitions of the same syllable slowed INT but not SEQ. Conclusions The INT speech motor programming process, important for mental syllabary access, is sensitive to changes in both syllable structure and the number of unique syllables in an utterance. PMID:19474396
Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.
Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J
2003-10-01
Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.
Mediation of donor–acceptor distance in an enzymatic methyl transfer reaction
Zhang, Jianyu; Kulik, Heather J.; Martinez, Todd J.; Klinman, Judith P.
2015-01-01
Enzymatic methyl transfer, catalyzed by catechol-O-methyltransferase (COMT), is investigated using binding isotope effects (BIEs), time-resolved fluorescence lifetimes, Stokes shifts, and extended graphics processing unit (GPU)-based quantum mechanics/molecular mechanics (QM/MM) approaches. The WT enzyme is compared with mutants at Tyr68, a conserved residue that is located behind the reactive sulfur of cofactor. Small (>1) BIEs are observed for an S-adenosylmethionine (AdoMet)-binary and abortive ternary complex containing 8-hydroxyquinoline, and contrast with previously reported inverse (<1) kinetic isotope effects (KIEs). Extended GPU-based computational studies of a ternary complex containing catecholate show a clear trend in ground state structures, from noncanonical bond lengths for WT toward solution values with mutants. Structural and dynamical differences that are sensitive to Tyr68 have also been detected using time-resolved Stokes shift measurements and molecular dynamics. These experimental and computational results are discussed in the context of active site compaction that requires an ionization of substrate within the enzyme ternary complex. PMID:26080432
Chen, Zhaosan; Zhang, Nianzhi; Lu, Shuangshuang; Tariq, Mansoor; Wang, Junya; Xia, Chun
2015-01-01
β2-Microglobulin (β2m) noncovalently associates with the heavy chain of major histocompatibility complex class I (MHC I) molecules, which bind foreign antigen peptides to control the cytotoxic T lymphocyte (CTL) immune response. In contrast to mammals, there are distinct types of β2ms derived from two loci in a number of teleost species. In order to clarify the structures of the β2ms, the zebrafish (Danio rerio) β2ms Dare-β2m-I and Dare-β2m-II were expressed in Escherichia coli, purified and crystallized, and diffraction data were collected to 1.6 and 1.9 Å resolution, respectively. Both crystals belonged to space group P212121. The unit-cell parameters were determined to be a = 38.2, b = 50.4, c = 50.9 Å for Dare-β2m-I and a = 38.9, b = 52.7, c = 65.8 Å for Dare-β2m-II. Each asymmetric unit was constituted of one molecule, with Matthews coefficients of 2.22 and 3.01 Å3 Da−1 and solvent contents of 45 and 59% for Dare-β2m-I and Dare-β2m-II, respectively. These two β2m structures will provide relevant information for further studies of the structures of the MHC I complex. PMID:26057815
Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena.
De Domenico, Manlio
2017-04-21
Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.
Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena
NASA Astrophysics Data System (ADS)
De Domenico, Manlio
2017-04-01
Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.
Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.
Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R
2009-04-06
A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.
Varpio, Lara; Bidlake, Erin; Humphrey-Murto, Sue; Sutherland, Stephanie; Hamstra, Stanley J
2014-08-01
Growth in the field of medical education is evidenced by the proliferation of units dedicated to advancing Medical Education Research and Innovation (MERI). While a review of the literature discovered narrative accounts of MERI unit development, we found no systematic examinations of the dimensions of and structures that facilitate the success of these units. We conducted qualitative interviews with the directors of 12 MERI units across Canada. Data were analyzed using qualitative description (Sandelowski in Res Nurs Health 23:334-340, 2000). Final analysis drew on Bourdieu's (Outline of a theory of practice. Cambridge University Press, Cambridge, 1977; Media, culture and society: a critical reader. Sage, London, 1986; Language and symbolic power. Harvard University Press, Cambridge, 1991) concepts of field, habitus, and capital, and more recent research investigating the field of MERI (Albert in Acad Med 79:948-954, 2004; Albert et al. in Adv Health Sci Educ 12:103-115, 2007). When asked about the metrics by which they define their success, directors cited: teaching, faculty mentoring, building collaborations, delivering conference presentations, winning grant funding, and disseminating publications. Analyzed using Bourdieu's concepts, these metrics are discussed as forms of capital that have been legitimized in the MERI field. All directors, with the exception of one, described success as being comprised of elements (capital) at both ends of the service-research spectrum (i.e., Albert's PP-PU structure). Our analysis highlights the forms of habitus (i.e., behaviors, attitudes, demeanors) directors use to negotiate, strategize and position the unit within their local context. These findings may assist institutions in developing a new-or reorganizing an existing-MERI unit. We posit that a better understanding of these complex social structures can help units become savvy participants in the MERI field. With such insight, units can improve their academic output and their status in the MERI context-locally, nationally, and internationally.
Vaselli, Orlando; Nisi, Barbara; Rappuoli, Daniele; Cabassi, Jacopo; Tassi, Franco
2017-04-15
Mercury has a strong environmental impact since both its organic and inorganic forms are toxic, and it represents a pollutant of global concern. Liquid Hg is highly volatile and can be released during natural and anthropogenic processes in the hydrosphere, biosphere and atmosphere. In this study, the distribution of Gaseous Elemental Mercury (GEM) and the total and leached mercury concentrations on paint, plaster, roof tiles, concrete, metals, dust and wood structures were determined in the main buildings and structures of the former Hg-mining area of Abbadia San Salvatore (Siena, Central Italy). The mining complex (divided into seven units) covers a surface of about 65 ha and contains mining structures and managers' and workers' buildings. Nine surveys of GEM measurements were carried out from July 2011 to August 2015 for the buildings and structures located in Units 2, 3 and 6, the latter being the area where liquid mercury was produced. Measurements were also performed in February, April, July, September and December 2016 in the edifices and mining structures of Unit 6. GEM concentrations showed a strong variability in time and space mostly depending on ambient temperature and the operational activities that were carried out in each building. The Unit 2 surveys carried out in the hotter period (from June to September) showed GEM concentrations up to 27,500 ng·m -3 , while in Unit 6, they were on average much higher, and occasionally, they saturated the GEM measurement device (>50,000 ng·m -3 ). Concentrations of total (in mg·kg -1 ) and leached (in μg·L -1 ) mercury measured in different building materials (up to 46,580 mg·kg -1 and 4470 mg·L -1 , respectively) were highly variable, being related to the edifice or mining structure from which they were collected. The results obtained in this study are of relevant interest for operational cleanings to be carried out during reclamation activities.
Structure and Magnetic Properties of a Dodecanuclear Twisted-Ring Iron(III) Cluster.
Caneschi, Andrea; Cornia, Andrea; Fabretti, Antonio C; Gatteschi, Dante
1999-05-03
An unprecedented nonplanar structure characterizes the complex [Fe(OCH 3 ) 2 (dbm)] 12 (on the left in the picture), which contains the largest cyclic ferric cluster yet reported with chemically equivalent bridging units. It is made up of twelve high-spin, antiferromagnetically coupled iron(III) centers and neatly reacts with Na I or Li I templates in organic solution to give hexairon(III) coronates (right). Fe=•, O=○, NaI or LiI=• Hdbm=dibenzoylmethane. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Validation of the Transient Structural Response of a Threaded Assembly: Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.; Hemez, Francois M.; Robertson, Amy N.
2004-04-01
This report explores the application of model validation techniques in structural dynamics. The problem of interest is the propagation of an explosive-driven mechanical shock through a complex threaded joint. The study serves the purpose of assessing whether validating a large-size computational model is feasible, which unit experiments are required, and where the main sources of uncertainty reside. The results documented here are preliminary, and the analyses are exploratory in nature. The results obtained to date reveal several deficiencies of the analysis, to be rectified in future work.
Hexakis(N,N-dimethylformamide-κO)cobalt(II) bis(perchlorate)
Eissmann, Frank; Böhle, Tony; Mertens, Florian O. R. L.; Weber, Edwin
2010-01-01
The asymmetric unit of the title complex, [Co(DMF)6](ClO4)2 (DMF = N,N-dimethylformamide, C3H7NO), consists of two half complex cations with the Co2+ metal ions located on centers of inversion and two perchlorate anions. In the crystal packing, each Co2+ ion is coordinated by six molecules of DMF in a slightly distorted octahedral geometry. The crystal structure is mainly stabilized by coordinative, ionic and C—H⋯O hydrogen-bonding interactions. PMID:21580225
Casas, José S; Castaño, María V; Cifuentes, María C; García-Monteagudo, Juán C; Sánchez, Agustín; Sordo, José; Abram, Ulrich
2004-06-01
Dichloro[2-(dimethylaminomethyl)phenyl- phenyl-C1,N]gold(III), [Au(damp-C1,N)Cl2], reacts with the formylferrocene thiosemicarbazones derived from 4-methyl-, 4-phenyl-, 4-ethyl- and 4,4-dimethyl-3-thiosemicarbazides, HFcTSC, to give complexes of general formula [Au(Hdamp-1C)Cl(FcTSC)]Cl. These complexes were isolated and characterized by elemental analysis, mass spectrometry and IR, 1H NMR and (13)C NMR spectroscopy. In some cases, cyclic voltammetric studies were carried out and these showed that the complexation of gold affects the redox behaviour of the ferrocene unit. The in vitro antitumor activity against the HeLa cell line was also determined for the more soluble complexes. The IC(50) values were found to be higher than that of cisplatin but the maximum antiproliferative activity was similar.
Begel, Svetlana; Puchta, Ralph; van Eldik, Rudi
2013-01-01
The selectivity of the cryptands [2.2.bpy] and [2.bpy.bpy] for the endohedral complexation of alkali, alkaline-earth and earth metal ions was predicted on the basis of the DFT (B3LYP/LANL2DZp) calculated structures and complex-formation energies. The cavity size in both cryptands lay between that for [2.2.2] and [bpy.bpy.bpy], such that the complexation of K(+), Sr(2+) and Tl(3+) is most favorable. While the [2.2.bpy] is moderately larger, preferring Rb(+) complexation and demonstrating equal priority for Sr(2+) and Ba(2+), the slightly smaller [2.bpy.bpy] yields more stable cryptates with Na(+) and Ca(2+). Although the CH2-units containing molecular bars fixed at the bridgehead nitrogen atoms determine the flexibility of the cryptands, the twist angles associated with the bipyridine and glycol building blocks also contribute considerably.
Menachemi, Nir; Yeager, Valerie A; Duncan, W Jack; Katholi, Charles R; Ginter, Peter M
2012-01-01
State public health preparedness units (SPHPUs) were developed in response to federal funding to improve response to disasters: a responsibility that had not traditionally been within the purview of public health. The SPHPUs were created within the existing public health organizational structure, and their placement may have implications for how the unit functions, how communication takes place, and ultimately how well the key responsibilities are performed. This study empirically identifies a taxonomy of similarly structured SPHPUs and examines whether this structure is associated with state geographic, demographic, and threat-vulnerability characteristics. Data representing each SPHPU were extracted from publically available sources, including organizational charts and emergency preparedness plans for 2009. A cross-sectional segmentation analysis was conducted of variables representing structural attributes. Fifty state public health departments. Variables representing "span of control" and "hierarchal levels" were extracted from organizational charts. Structural "complexity" and "centralization" were extracted from state emergency preparedness documents and other secondary sources. On average, 6.6 people report to the same manager as the SPHPU director; 2.1 levels separate the SPHPU director from the state health officer; and a mean of 13.5 agencies collaborate with SPHPU during a disaster. Despite considerable variability in how SPHPUs had been structured, results of the cluster and principal component analysis identified 7 similarly structured groups. Neither the taxonomic groups nor the individual variables representing structure were found to be associated with state characteristics, including threat vulnerabilities. Our finding supports the hypothesis that SPHPUs are seemingly inadvertently (eg, not strategically) organized. This taxonomy provides the basis for which future research can examine how SPHPU structure relates to performance measures and preparedness strategies.
Sinars, Cindy R.; Cheung-Flynn, Joyce; Rimerman, Ronald A.; Scammell, Jonathan G.; Smith, David F.; Clardy, Jon
2003-01-01
The ability to bind immunosuppressive drugs such as cyclosporin and FK506 defines the immunophilin family of proteins, and the FK506-binding proteins form the FKBP subfamily of immunophilins. Some FKBPs, notably FKBP12 (the 12-kDa FK506-binding protein), have defined roles in regulating ion channels or cell signaling, and well established structures. Other FKBPs, especially the larger ones, participate in important biological processes, but their exact roles and the structural bases for these roles are poorly defined. FKBP51 (the 51-kDa FKBP) associates with heat shock protein 90 (Hsp90) and appears in functionally mature steroid receptor complexes. In New World monkeys, FKBP51 has been implicated in cortisol resistance. We report here the x-ray structures of human FKBP51, to 2.7 Å, and squirrel monkey FKBP51, to 2.8 Å, by using multiwavelength anomalous dispersion phasing. FKBP51 is composed of three domains: two consecutive FKBP domains and a three-unit repeat of the TPR (tetratricopeptide repeat) domain. This structure of a multi-FKBP domain protein clarifies the arrangement of these domains and their possible interactions with other proteins. The two FKBP domains differ by an insertion in the second that affects the formation of the progesterone receptor complex. PMID:12538866
Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.
Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R
2017-07-13
We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.
Marginal elasticity of periodic triangulated origami
NASA Astrophysics Data System (ADS)
Chen, Bryan; Sussman, Dan; Lubensky, Tom; Santangelo, Chris
Origami, the classical art of folding paper, has inspired much recent work on assembling complex 3D structures from planar sheets. Origami, and more generally hinged structures with rigid panels, where all faces are triangles have special properties due to having a bulk balance of mechanical degrees of freedom and constraints. We study two families of periodic triangulated origami structures, one based on the Miura ori and one based on a kagome-like pattern due to Ron Resch. We point out the consequences of the balance of degrees of freedom and constraints for these ''metamaterial plates'' and show how the elasticity can be tuned by changing the unit cell geometry.
Oikonomakos, N. G.; Zographos, S. E.; Tsitsanou, K. E.; Johnson, L. N.; Acharya, K. R.
1996-01-01
It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550
Geochemistry of the Bela Ophiolite, Pakistan
NASA Astrophysics Data System (ADS)
Khan, M.; Nicholson, K. N.; Mahmood, K.
2008-12-01
The Bela ophiolite complex of Balochistan, Pakistan has been the subject of several geochemical and tectonic studies in the past. However until now there has never been a combined structural, geochemical and tectonic assimilation study which adequately explains the observed geochemistry and structural geology in a global tectonic framework. Here we present the geochemical findings of our work. The Bela ophiolite complex consists of two major units: the basal section or Lower Unit, and the Upper Unit, between the two is a mélange zone. The Lower Unit is relatively homogeneous and consists almost entirely of flow basalts and pillow basalts. The base of the Upper Unit is the metamorphic sole which is overlain by a sequence of massive basalts flows and intrusions of gabbro and granites. The entire Upper Unit is cut by doleritic dykes and sills. Geochemically the Lower Unit is comprised of basaltic lavas with E-MORB affinities. These lavas are tholeiitic, low-K series lavas with trace element signatures of E-type MORB. For example ratios such as V/Ti, Zr/Y, Nb/Th, Th/La and Nb/U all suggest these lavas are E-MORB. Previous workers have suggested these lavas are back-arc basin (BAB) however the samples lack the characteristic signatures of subduction modified MORB. This conclusion is supported by chondrite and N-MORB normalized spider diagrams where the Lower Unit lavas are enriched in the LILE with respect to the HFSE. The Upper Unit of the Bela Ophiolite sequence has a slightly more complex history. The older lavas sequences, the massive basalt flows, gabbros and granites, all formed in an oceanic arc environment. These lavas exhibit classic arc signatures such as a negative Nb and Ti anomalies, are enriched in LILE and LREE relative to HSFE, and plot in the volcanic arc and island arc fields in classic ternary plots such as 2Nb- Zr/4-Y and Y/15-La/10-Nb/8. The younger sequence of intrusions found in the Bela ophiolite appear to have BAB signatures. These lavas have relatively flat MORB normalized plots, are slightly depleted in the LILE relative the HFSE, and have a very small negative Nb anomaly. Source characteristics for both units have been determined using trace element data. This work suggests that the E-MORB lavas are derived from partial melting of enriched mantle. The lavas found in the Upper Unit have all been sourced from depleted or N-MORB mantle which has been modified by subducting fluids. It is possible that the younger BAB samples have a slightly more enriched source than the corresponding arc lavas which might indicate movement of the subduction zone allowing the influx of new mantle material below the wedge. In conclusion, our new geochemical work shows that the Bela ophiolite contains three distinct magmatic sequences: a lower E-MORB sequence over lain by a series of volcanic arc lavas which are cut by BAB-type sills and dykes.
Covariant symplectic structure of the complex Monge-Ampère equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
2000-04-01
The complex Monge-Ampère equation is invariant under arbitrary holomorphic changes of the independent variables with unit Jacobian. We present its variational formulation where the action remains invariant under this infinite group. The new Lagrangian enables us to obtain the first symplectic 2-form for the complex Monge-Ampère equation in the framework of the covariant Witten-Zuckerman approach to symplectic structure. We base our considerations on a reformulation of the Witten-Zuckerman theory in terms of holomorphic differential forms. The first closed and conserved Witten-Zuckerman symplectic 2-form for the complex Monge-Ampère equation is obtained in arbitrary dimension and for all cases elliptic, hyperbolic and homogeneous. The connection of the complex Monge-Ampère equation with Ricci-flat Kähler geometry suggests the use of the Hilbert action principle as an alternative variational formulation. However, we point out that Hilbert's Lagrangian is a divergence for Kähler metrics and serves as a topological invariant rather than yielding the Euclideanized Einstein field equations. Nevertheless, since the Witten-Zuckerman theory employs only the boundary terms in the first variation of the action, Hilbert's Lagrangian can be used to obtain the second Witten-Zuckerman symplectic 2-form. This symplectic 2-form vanishes on shell, thus defining a Lagrangian submanifold. In its derivation the connection of the second symplectic 2-form with the complex Monge-Ampère equation is indirect but we show that it satisfies all the properties required of a symplectic 2-form for the complex elliptic, or hyperbolic Monge-Ampère equation when the dimension of the complex manifold is 3 or higher. The complex Monge-Ampère equation admits covariant bisymplectic structure for complex dimension 3, or higher. However, in the physically interesting case of n=2 we have only one symplectic 2-form. The extension of these results to the case of complex Monge-Ampère-Liouville equation is also presented.
Ghosh, Pokhraj; Ding, Shengda; Chupik, Rachel B.; Quiroz, Manuel; Hsieh, Chung-Hung; Bhuvanesh, Nattami; Hall, Michael B.
2017-01-01
Experimental and computational studies address key questions in a structure–function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually “softened” by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe–S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S–H+···–H–Fe units of the “harder” bimetallic arrangements with more localized electron density, while softer units convert H–···H–via reductive elimination from two Fe–H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]– derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched –Sδ–···H+···δ–S– arrangement. PMID:29619175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Cheng-Yang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002; Lei, Xiao-Wu, E-mail: xwlei_jnu@163.com
2016-03-15
The incorporation of unsaturated [Mn(1,2-dap)]{sup 2+}, [Mn(1,2-dap){sub 2}]{sup 2+}, [Mn(2,2-bipy)]{sup 2+} (1,2-dap=1,2-diaminopropane) complex cations with thioarsenate anions of [As{sup III}S{sub 3}]{sup 3−} and [As{sup V}S{sub 4}]{sup 3−} led to three new hybrid manganese thioarsenates, namely, [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} (1), [Mn(1,2-dap){sub 2}]{[Mn(1,2-dap)]_2As_2S_8} (2) and (NH{sub 4})[Mn(2,2-bipy){sub 2}]AsS{sub 4} (3). In compound 1, the unsaturated [Mn(1,2-dap)]{sup 2+} complexes, [MnS{sub 4}]{sup 6−} tetrahedra and [As{sup III}S{sub 3}]{sup 3−} trigonal-pyramids are condensed to form the 1D [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} chain, whereas compound 2 features 2D layer composed of [Mn(1,2-dap)]{sup 2+} and [Mn(1,2-dap){sub 2}]{sup 2+} complexes as well as [As{sup V}S{sub 4}]{sup 3−}more » tetrahedral units. For compound 3, two [As{sup V}S{sub 4}]{sup 3−} anions bridge two [Mn(2,2-bipy)]{sup 2+} complex cations into a butterfly like {[Mn(2,2-bipy)]_2As_2S_8}{sup 2−} anionic unit. Magnetic measurements indicate the ferrimagnetic behavior for compound 1 and antiferromagnetic (AF) behaviors for compounds 2–3. The UV–vis diffuse-reflectance measurements and electronic structural calculations based on density functional theory (DFT) revealed the title compounds belong to semiconductors with band gaps of 2.63, 2.21, and 1.97 eV, respectively. The narrow band-gap of compound 3 led to the efficient and stable photocatalytic degradation activity over organic pollutant than N-doped P25 under visible light irradiation. - Highlights: Three new hybrid manganese thioarsenates have been prepared and structurally characterized. These hybrid phases feature interesting magnetic and visible light responding photocatalytic properties.« less
Stamouli, Amalia; Kafi, Sidig; Klein, Dionne C G; Oosterkamp, Tjerk H; Frenken, Joost W M; Cogdell, Richard J; Aartsma, Thijs J
2003-04-01
The main function of the transmembrane light-harvesting complexes in photosynthetic organisms is the absorption of a light quantum and its subsequent rapid transfer to a reaction center where a charge separation occurs. A combination of freeze-thaw and dialysis methods were used to reconstitute the detergent-solubilized Light Harvesting 2 complex (LH2) of the purple bacterium Rhodopseudomonas acidophila strain 10050 into preformed egg phosphatidylcholine liposomes, without the need for extra chemical agents. The LH2-containing liposomes opened up to a flat bilayer, which were imaged with tapping and contact mode atomic force microscopy under ambient and physiological conditions, respectively. The LH2 complexes were packed in quasicrystalline domains. The endoplasmic and periplasmic sides of the LH2 complexes could be distinguished by the difference in height of the protrusions from the lipid bilayer. The results indicate that the complexes entered in intact liposomes. In addition, it was observed that the most hydrophilic side, the periplasmic, enters first in the membrane. In contact mode the molecular structure of the periplasmic side of the transmembrane pigment-protein complex was observed. Using Föster's theory for describing the distance dependent energy transfer, we estimate the dipole strength for energy transfer between two neighboring LH2s, based on the architecture of the imaged unit cell.
NASA Astrophysics Data System (ADS)
Amato, J. M.; Pavlis, T. L.; Worthman, C.; Kochelek, E.; Day, E. M.; Clift, P. D.; Hecker, J.
2011-12-01
In southeast Alaska the Chugach terrane represents an accretionary complex associated with several arcs active at 200-65 Ma. This lithostratigraphic unit consists of blueschists with Early Jurassic metamorphic ages and uncertain depositional ages; the Jurassic-Cretaceous McHugh Complex; and the Late Cretaceous Valdez Group. Detrital zircon ages from densely sampled transects reveals patterns in the assembly of the complex. Blueschists are almost totally barren of zircon, suggesting protoliths derived from mafic-intermediate volcanic protoliths far from a continental source. There is an age gap between the blueschists and the McHugh complex interpreted to be caused by an episode of tectonic erosion. The McHugh Complex is two separate units that are lithologically and geochronologically distinct. The older McHugh is a melange is dominated by stratally disrupted volcanic rocks, chert, and argillite. The oldest McHugh rocks have maximum depositional ages (MDA) of 177-150 Ma at Seldovia and 157-145 Ma at Turnagain Arm; the lack of older rocks at Turnagain Arm suggests removal of structural section by faulting. The MDAs of the older McHugh rocks do not decrease progressively away from the arc. There is a 45 m.y. gap in MDA between the older McHugh and the Late Cretaceous McHugh rocks. The younger McHugh rocks are dominated by volcanogenic sandstone and coarse conglomerate and MDA decreases from 100 Ma near the boundary with the older McHugh mesomelange to 85 Ma near the Valdez Group. The Valdez Group consists of coherently bedded turbidites with a MDA range of 85-60 Ma that decreases progressively outboard of the arc source. A sample from the Orca Group of the Prince William terrane is lithologically similar to the Valdez Group and there is no gap in MDA between Valdez and Orca Groups. 55 Ma dikes cut the McHugh and Valdez Groups in the western Chugach and Kenai Mountains. The oldest units of the Chugach terrane are the most deformed, with deformation and metamorphism becoming progressively less intense. The older part of the McHugh Complex was likely also subducted deeper than younger units but not beyond greenschist facies. Another period of tectonic erosion was initiated by ridge subduction at ~120 Ma, followed by continuous accretion the younger McHugh complex, the Valdez Group, and continued <60 Ma in the Orca Group.
Conceptual design of distillation-based hybrid separation processes.
Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang
2013-01-01
Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakova, I. N.; Poznyak, A. L.; Sergienko, V. S.
2006-07-15
The synthesis and X-ray diffraction study of three Ca[Co(Nta)X] . nH{sub 2}O complexes [X{sup -} = Cl, n = 2.3 (I); X{sup -} = Br, n = 2 (II); and X{sup -} = NCS, n = 2 (III)] are performed. The main structural units of crystals I-III are the [CoX(Nta)]{sup 2-} anionic complexes and hydrated Ca{sup 2+} cations. The anionic complexes have similar structures. The coordination of the Co{sup 2+} atom in the shape of a trigonal bipyramid is formed by N + 3O atoms of the Nta{sup 3-} ligand and the X{sup -} anion in the trans position withmore » respect to N. In structures I-III, the Co-O and Co-N bond lengths lie in the ranges 1.998-2.032 and 2.186-2.201 A, respectively. The Co-X bond lengths are 2.294 (I), 2.436 and 2.445 (II), and 1.982 A (III). The environments of the Ca{sup 2+} cations include oxygen atoms of one or two water molecules and six or seven O(Nta) atoms with the coordination number of 9 in I or 8 in II and III. The Ca-O(Nta) bonds form a three-dimensional framework in I or layers in II and III. Water molecules are involved in the hydrogen bonds O(w)-H...O(Nta), O(w)-H...X, and O(w)-H...O(w). Structural data for crystals I-III are deposited with the Cambridge Structural Database (CCDC nos. 287 814-287 816)« less
Allen, Felicity; Montgomery, Stephen; Maruszczak, Maciej; Kusel, Jeanette; Adlard, Nicholas
2015-09-01
Several disease-modifying therapies have marketing authorizations for the treatment of relapsing-remitting multiple sclerosis (RRMS). Given their appraisal by the National Institute for Health and Care Excellence, the objective was to systematically identify and critically evaluate the structures and assumptions used in health economic models of disease-modifying therapies for RRMS in the United Kingdom. Embase, MEDLINE, The Cochrane Library, and the National Institute for Health and Care Excellence Web site were searched systematically on March 3, 2014, to identify articles relating to health economic models in RRMS with a UK perspective. Data sources, techniques, and assumptions of the included models were extracted, compared, and critically evaluated. Of 386 results, 26 full texts were evaluated, leading to the inclusion of 18 articles (relating to 12 models). Early models varied considerably in method and structure, but convergence over time toward a Markov model with states based on disability score, a 1-year cycle length, and a lifetime time horizon was apparent. Recent models also allowed for disability improvement within the natural history of the condition. Considerable variety remains, with increasing numbers of comparators, the need for treatment sequencing, and different assumptions around efficacy waning and treatment withdrawal. Despite convergence over time to a similar Markov structure, there are still significant discrepancies between health economic models of RRMS in the United Kingdom. Differing methods, assumptions, and data sources render the comparison of model implementation and results problematic. The commonly used Markov structure leads to problems such as incapability to deal with heterogeneous populations and multiplying complexity with the addition of treatment sequences; these would best be solved by using alternative models such as discrete event simulations. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Barral, M Carmen; Gallo, Teresa; Herrero, Santiago; Jiménez-Aparicio, Reyes; Torres, M Rosario; Urbanos, Francisco A
2006-05-01
The reaction of Ru2Cl(O2CMe)(DPhF)3 (DPhF = N,N'-diphenylformamidinate) with mono- and polycarboxylic acids gives a clean substitution of the acetate ligand, leading to the formation of complexes Ru2Cl(O2CC6H5)(DPhF)3 (1), Ru2Cl(O2CC6H4-p-CN)(DPhF)3 (2), [Ru2Cl(DPhF)3(H2O)]2(O2C)2 (3), [Ru2Cl(DPhF)3]2[C6H4-p-(CO2)2] (4), and [Ru2Cl(DPhF)3]3[C6H3-1,3,5-(CO2)3] (5). The preparation of [Ru2(NCS)(DPhF)3]3[C6H3-1,3,5-(CO2)3] (6) and {[Ru2(DPhF)3(H2O)]3[C6H3-1,3,5-(CO2)3]}(SO3CF3)3 (7) from 5 is also described. All complexes are characterized by elemental analysis, IR and electronic spectroscopy, mass spectrometry, cyclic voltammetry, and variable-temperature magnetic measurements. The crystal structure determinations of complexes 2.0.5THF and 3.THF.4H2O (THF = tetrahydrofuran) are reported. The reactions carried out demonstrate the high chemical stability of the fragment [Ru2(DPhF)3]2+, which is preserved in all tested experimental conditions. The stability of this fragment is also corroborated by the mass spectra. Electrochemical measurements reveal in all complexes one redox process due to the equilibrium Ru2(5+) <--> Ru2(6+). In the polynuclear complex 7, some additional oxidation processes are also observed that have been ascribed to the presence of two types of dimetallic units rather than two consecutive reversible oxidations. The magnetic behavior toward temperature for complexes 1-7 from 300 to 2 K is analyzed. Complexes 1-7 show low values of antiferromagnetic coupling in accordance with the molecular nature in 1 and 2 and the absence of important antiferromagnetic interaction through the carboxylate bridging ligands in 3-7, respectively. In addition, the magnetic properties of complex 7 do not correspond to any magnetic behavior described for diruthenium(II,III) complexes. The experimental data of compound 7 are simulated considering a physical mixture of S = 1/2 and 3/2 spin states. This magnetic study demonstrates the high sensitivity of the electronic configuration of the unit [Ru2(DPhF)3]2+ to small changes in the nature of the axial ligands. Finally, the energy gap between the pi and delta orbitals in these types of compounds allows the tentative assignment of the transition pi --> delta.
Anguita Sánchez, Manuel; Lambert Rodríguez, José Luis; Bover Freire, Ramón; Comín Colet, Josep; Crespo Leiro, María G; González Vílchez, Francisco; Manito Lorite, Nicolás; Segovia Cubero, Javier; Ruiz Mateas, Francisco; Elola Somoza, Francisco Javier; Íñiguez Romo, Andrés
2016-10-01
The prevalence of heart failure remains high and represents the highest disease burden in Spain. Heart failure units have been developed to systematize the diagnosis, treatment, and clinical follow-up of heart failure patients, provide a structure to coordinate the actions of various entities and personnel involved in patient care, and improve prognosis and quality of life. There is ample evidence on the benefits of heart failure units or programs, which have become widespread in Spain. One of the challenges to the analysis of heart failure units is standardization of their classification, by determining which "programs" can be identified as heart failure "units" and by characterizing their complexity level. The aim of this article was to present the standards developed by the Spanish Society of Cardiology to classify and establish the requirements for heart failure units within the SEC-Excellence project. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Kueny, Angela; Shever, Leah L; Lehan Mackin, Melissa; Titler, Marita G
2015-01-01
Nurse managers (NMs) play an important role promoting evidence-based practice (EBP) on clinical units within hospitals. However, there is a dearth of research focused on NM perspectives about institutional contextual factors to support the goal of EBP on the clinical unit. The purpose of this article is to identify contextual factors described by NMs to drive change and facilitate EBP at the unit level, comparing and contrasting these perspectives across nursing units. This study employed a qualitative descriptive design using interviews with nine NMs who were participating in a large effectiveness study. To stratify the sample, NMs were selected from nursing units designated as high or low performing based on implementation of EBP interventions, scores on the Meyer and Goes research use scale, and fall rates. Descriptive content analysis was used to identify themes that reflect the complex nature of infrastructure described by NMs and contextual influences that supported or hindered their promotion of EBP on the clinical unit. NMs perceived workplace culture, structure, and resources as facilitators or barriers to empowering nurses under their supervision to use EBP and drive change. A workplace culture that provides clear communication of EBP goals or regulatory changes, direct contact with CEOs, and clear expectations supported NMs in their promotion of EBP on their units. High-performing unit NMs described a structure that included nursing-specific committees, allowing nurses to drive change and EBP from within the unit. NMs from high-performing units were more likely to articulate internal resources, such as quality-monitoring departments, as critical to the implementation of EBP on their units. This study contributes to a deeper understanding of institutional contextual factors that can be used to support NMs in their efforts to drive EBP changes at the unit level.
Yang, Xi; Wang, Shanshan; Ghiviriga, Ion; ...
2015-05-19
A novel synthetic method to create gold based metallo–oligomers/polymers via the combination of inorganic click (iClick) with intermolecular aurophilic interactions is demonstrated. Complexes [PEt 3Au] 4(μ-N 3C 2C 6H 5) (1) and [PPhMe 2Au] 43C 2C 6H 5) (2) and {[PEt 3Au] 4[(μ-N 3C 2) 2-9,9-dihexyl-9H-fluorene]} n (8) have been synthesized via iClick. The tetranuclear structures of 1 and 2, induced by aurophilic bonding, are confirmed in the solid state through single crystal X-ray diffraction experiments and in solution via variable temperature NMR spectroscopy. The extended 1D structure of 8 is constructed by aurophilic induced self-assembly. 1H DOSY NMR analysismore » reveals that the aurophilic bonds in 1, 2, and 8 are retained in the solution phase. The degree of polymerization within complex 8 is temperature and concentration dependent, as determined by 1H DOSY NMR. The complex 8 is a rare example of a solution stable higher ordered structure linked by aurophilic interactions.« less
Boudalis, Athanassios K; Aston, Robyn E; Smith, Sarah J; Mirams, Ruth E; Riley, Mark J; Schenk, Gerhard; Blackman, Allan G; Hanton, Lyall R; Gahan, Lawrence R
2007-11-28
The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe(4)(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH(2))(2)]ClO(4) x 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X-ray crystallography, magnetic susceptibility measurements and variable-temperature Mössbauer spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.
P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained aftermore » some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.« less
NASA Technical Reports Server (NTRS)
Vlasse, Marcus; Paley, Mark S.
1993-01-01
The crystal and molecular structure of an asymmetric diacetylene monomer has been determined from x-ray diffraction data. The crystals, obtained from an acetone/pentane solution, are orthorhombic, Fdd2 with Z = 16 in a unit cell having dimensions of a = 42.815(6) A, b = 22.224(5) A, c = 4.996(l) A. The structure was solved by direct methods and refined by least- squares techniques to an R(sub F) of 6.4% for 988 reflections and 171 variables. The diacetylene chains are disposed in the unit cell in a complex manner in order to satisfy the hydrogen- bonding, crystal packing, and symmetry requirements of the system. The solid state polymerization mechanism is discussed with respect to the geometric disposition of the diacetylene chains. These chains are far apart and incorrectly oriented with respect to each other to permit polymerization in the crystal by means of 1,4-addition, consistent with the Baughman mechanistic model.
Elucidation of neurophysin/bioligand interactions from molecular modeling.
Kaźmierkiewicz, R; Czaplewski, C; Ciarkowski, J
1997-01-01
This is a review of our recent modeling work aimed at: (i) development and assessment of techniques for reliable refinement of low-resolution protein structures and (ii) using these techniques, at solving specific problems pertinent to neurophysin-bioligand interactions. Neurophysins I and II (NPI and NPII) serve in the neurosecretory granules of the posterior pituitary as carrier proteins for the neurophyseal hormones oxytocin (OT) and vasopressin (VP), respectively, until the latter are released into blood. NPs are homologous two-domain, sulphur rich small proteins (93-95 residues, 7 disulphide bridges per monomer), capable of being aggregated. The C2 symmetrical NPI2 and NPII2 homodimers, and the (NPI/OT)2 and (NPII/VP)2 heterotetramers, all believed to be the smallest functional units, were modeled using low-resolution structure information, i.e. the C alpha-carbon coordinates of the homologous NPII/dipeptide complex as a template. The all-atom representations of the models were obtained using the SYBYL suite of programs (by Tripos, Inc.). Subsequently, they were relaxed, using a constrained simulated annealing (CSA) protocol, and submitted to about 100 ps molecular dynamics (MD) in water, using the AMBER 4.1 force field. The (NPI/OT)2 and (NPII/VP)2 structures, averaged after the last 20 ps of MD, were remarkably similar to those recently reported either for NPII/dipeptide or NPII/oxytocin complex in the solid state (Chen et al., 1991, Proc. Natl. Acad. Sci., U.S.A. 88, 4240-4244; Rose et al., 1996, Nature Struct. Biol. 3, 163-169). The results indicate that the 3(10) helices (terminating the amino domains) and the carboxyl domains are more mobile than the remainder of the NP monomers. The hormones become anchored by residues 1-3 and 6 to the host, leaving residues 4-5 and 7-9 exposed on the surface and free to move. A cluster of attractive interactions, extending from the ligand binding site, Tyr-24-Ile-26 of unit 1(2), to the inter-monomer interface Val-36 of unit 1(2), Cys-79 and Ile-72 of unit 2(1), is clearly seen. We suggest that both these interactions as well as the increased mobility of the 3(10) helix and the carboxyl domain may contribute to the allosteric communication between the ligand and the unit1-unit2 interface.
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Pfister, L.; Blume, T.; Schröder, B.; Westhoff, M.; Jackisch, C.; Schymanski, S. J.; Weiler, M.; Schulz, K.; Allroggen, N.; Tronicke, J.; Dietrich, P.; Scherer, U.; Eccard, J.; Wulfmeyer, V.; Kleidon, A.
2014-03-01
This opinion paper proposes a novel framework for exploring how spatial organization alongside with spatial heterogeneity controls functioning of intermediate scale catchments of organized complexity. Key idea is that spatial organization in landscapes implies that functioning of intermediate scale catchments is controlled by a hierarchy of functional units: hillslope scale lead topologies and embedded elementary functional units (EFUs). We argue that similar soils and vegetation communities and thus also soil structures "co-developed" within EFUs in an adaptive, self-organizing manner as they have been exposed to similar flows of energy, water and nutrients from the past to the present. Class members of the same EFU (class) are thus deemed to belong to the same ensemble with respect to controls of the energy balance and related vertical flows of capillary bounded soil water and heat. Class members of superordinate lead topologies are characterized by the same spatially organized arrangement of EFUs along the gradient driving lateral flows of free water as well as a similar surface and bedrock topography. We hence postulate that they belong to the same ensemble with respect to controls on rainfall runoff transformation and related vertical and lateral fluxes of free water. We expect class members of these functional units to have a distinct way how their architecture controls the interplay of state dynamics and integral flows, which is typical for all members of one class but dissimilar among the classes. This implies that we might infer on the typical dynamic behavior of the most important classes of EFU and lead topologies in a catchment, by thoroughly characterizing a few members of each class. A major asset of the proposed framework, which steps beyond the concept of hydrological response units, is that it can be tested experimentally. In this respect, we reflect on suitable strategies based on stratified observations drawing from process hydrology, soil physics, geophysics, ecology and remote sensing which are currently conducted in replicates of candidate functional units in the Attert basin (Luxembourg), to search for typical and similar functional and structural characteristics. A second asset of this framework is that it blueprints a way towards a structurally more adequate model concept for water and energy cycles in intermediate scale catchments, which balances necessary complexity with falsifiability. This is because EFU and lead topologies are deemed to mark a hierarchy of "scale breaks" where simplicity with respect to the energy balance and stream flow generation emerges from spatially organized process-structure interactions. This offers the opportunity for simplified descriptions of these processes that are nevertheless physically and thermodynamically consistent. In this respect we reflect on a candidate model structure that (a) may accommodate distributed observations of states and especially terrestrial controls on driving gradients to constrain the space of feasible model structures and (b) allows testing the possible added value of organizing principles to understand the role of spatial organization from an optimality perspective.
Miocene to Recent geological evolution of the Lazufre segment in the Andean volcanic arc
NASA Astrophysics Data System (ADS)
Naranjo, J. A.; Villa, V.; Ramírez, C.; Pérez de Arce, C.
2014-12-01
The volcano-tectonic setting in which the InSAR-detected Lazufre deformation is developing is particularly relevant in the evolution of this Andean volcanic arc segment (25-26°S). Through regional mapping techniques, a comprehensive field control in addition to geochronological sampling, various volcanic units comprising stratovolcanoes, volcanic complexes, ignimbrites and caldera structures are distinguished. The Lazufre intumescence is located above the overlying block of the NE trending Middle Miocene, Pedernales-Arizaro overthrust. This area comprises an Upper Miocene (8-4 Ma) basal unit of andesitic-dacitic volcanoes and lava fields, upon which nine volcanic complexes of similar composition, including Caletones de Cori Ignimbrite and Escorial Volcano, Lastarria, Cordón del Azufre and Bayo volcanic complexes, were emplaced in several pulses between 3.5 Ma and Holocene times. Coalescing Lazufre structure, immediately to the SE, we have discovered the Miocene (9.8 Ma) Los Colorados caldera. This caldera is 30 km in diameter and sourced the homonymous dacitic ignimbrite of about 500 km3. The caldera scarp was formed in Paleozoic rocks, Miocene dacitic-rhyolitic ignimbrites and ~16 and 10 Ma volcanoes. A 6.9-6.8 Ma andesitic-dacitic volcano ridge formed by Abra Grande, Río Grande and Aguas Calientes stratovolcanoes, from NE to SW, is nested on the caldera floor. Lavas of early stages of Cordón del Azufre and Bayo complexes were shed into the NW part of the caldera. The coalescing structure formed by the Lazufre intumescence and Los Colorados caldera is conjugate at about 30° to the Pedernales-Arizaro overthrust, and has a NW-SE orientation, parallel to the Archibarca lineament. A SE to NW migration of volcanism is observed along this structure at least since the Middle Miocene. We proposed that, since Miocene, tectonic spaces with no surficial fault displacements and conjugated to the main compressive structures within the upper crust, have been created as a result of tensional stresses. Subsequently, the so increased lithostatic gradient could play a major role in the vertical traction of magma rising, favoring crustal assimilation processes. The available geochronological data indicate that the deformation that preceded the Los Colorados caldera occurred in a maximum period between 13 and 10 Ma.
Atomic-scale visualization of oxide thin-film surfaces.
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro
2018-01-01
The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.
A variable circular-plot method for estimated bird numbers
Reynolds, R.T.; Scott, J.M.; Nussbaum, R.A.
1980-01-01
A bird census method is presented that is designed for tall, structurally complex vegetation types, and rugged terrain. With this method the observer counts all birds seen or heard around a station, and estimates the horizontal distance from the station to each bird. Count periods at stations vary according to the avian community and structural complexity of the vegetation. The density of each species is determined by inspecting a histogram of the number of individuals per unit area in concentric bands of predetermined widths about the stations, choosing the band (with outside radius x) where the density begins to decline, and summing the number of individuals counted within the circle of radius x and dividing by the area (Bx2). Although all observations beyond radius x are rejected with this procedure, coefficients of maximum distance.
Carbene based photochemical molecular assemblies for solar driven hydrogen generation.
Peuntinger, Katrin; Pilz, T David; Staehle, Robert; Schaub, Markus; Kaufhold, Simon; Petermann, Lydia; Wunderlin, Markus; Görls, Helmar; Heinemann, Frank W; Li, Jing; Drewello, Thomas; Vos, Johannes G; Guldi, Dirk M; Rau, Sven
2014-09-28
Novel photocatalysts based on ruthenium complexes with NHC (N-heterocyclic carbene)-type bridging ligands have been prepared and structurally and photophysically characterised. The identity of the NHC-unit of the bridging ligand was established unambiguously by means of X-ray structural analysis of a heterodinuclear ruthenium-silver complex. The photophysical data indicate ultrafast intersystem crossing into an emissive and a non-emissive triplet excited state after excitation of the ruthenium centre. Exceptionally high luminescence quantum yields of up to 39% and long lifetimes of up to 2 μs are some of the triplet excited state characteristics. Preliminary studies into the visible light driven photocatalytic hydrogen formation show no induction phase and constant turnover frequencies that are independent on the concentration of the photocatalyst. In conclusion this supports the notion of a stable assembly under photocatalytic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemi, Merja, E-mail: merja.niemi@joensuu.fi; Jänis, Janne; Jylhä, Sirpa
The high-resolution mass-spectrometric characterization, crystallization and X-ray diffraction studies of a recombinant IgE Fab fragment in complex with bovine β-lactoglobulin are reported. A D1 Fab fragment containing the allergen-binding variable domains of the IgE antibody was characterized by ESI FT–ICR mass spectrometry and crystallized with bovine β-lactoglobulin (BLG) using the hanging-drop vapour-diffusion method at 293 K. X-ray data suitable for structure determination were collected to 2.8 Å resolution using synchrotron radiation. The crystal belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.0, b = 100.6, c = 168.1 Å. The three-dimensional structure ofmore » the D1 Fab fragment–BLG complex will provide the first insight into IgE antibody–allergen interactions at the molecular level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Lingguang; Gu Lina; Hu Gang
2009-03-15
Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen){sub 2}(H{sub 2}O){sub 2}]{sup 2+} (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M{sup 1}(H{sub 2}O){sub 6}].[M{sup 2}(phen){sub 2}(H{sub 2}O){sub 2}]{sub 2}.2(BTC).xH{sub 2}O (M{sup 1}, M{sup 2}=Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24),more » were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit.« less
Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater
Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.
2015-01-01
Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chuyang; Cheng, Tao; Xiao, Hai
The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis-(paraquat-p-phenylene) bisradical dicationic (CBPQT 2 (•+)) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY •+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY +) and/or neutral 3,5- dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT 4+ ring and the dumbbells containing BIPY 2+ units with zinc dust in acetonitrile solutions. Whereas UV–Vis–NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexesmore » depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K a) for complex formation vary over a wide range, from 800 M–1 for the weakest to 180 000 M –1 for the strongest. While Coulombic repulsions emanating from PY + groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY •+ units stand to gain some additional stabilization from C–H···π interactions between the CBPQT 2(•+) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY •+ units influence their non-covalent bonding interactions with CBPQT 2(•+) rings. Different secondary effects (Coulombic repulsions versus C–H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. Lastly, a fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.« less
Cheng, Chuyang; Cheng, Tao; Xiao, Hai; ...
2016-07-06
The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis-(paraquat-p-phenylene) bisradical dicationic (CBPQT 2 (•+)) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY •+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY +) and/or neutral 3,5- dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT 4+ ring and the dumbbells containing BIPY 2+ units with zinc dust in acetonitrile solutions. Whereas UV–Vis–NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexesmore » depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K a) for complex formation vary over a wide range, from 800 M–1 for the weakest to 180 000 M –1 for the strongest. While Coulombic repulsions emanating from PY + groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY •+ units stand to gain some additional stabilization from C–H···π interactions between the CBPQT 2(•+) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY •+ units influence their non-covalent bonding interactions with CBPQT 2(•+) rings. Different secondary effects (Coulombic repulsions versus C–H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. Lastly, a fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.« less
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz
2014-01-01
The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948
Marisa S. Graça; João F. Gonçalves; Paulo J.M. Alves; David J. Nowak; Robert Hoehn; Alexis Ellis; Paulo Farinha-Marques; Mario Cunha
2017-01-01
According to UN estimates, it is expected that the world population living in cities will exceed 66% in 2050 (United Nations, 2014). The complex and intense interaction of ecological and socioeconomic systems shaping cities has highlighted the need to foster an interdisciplinary approach to urban issues integrating Natural and Social Sciences (Alberti et al., 2003)....
ERIC Educational Resources Information Center
Gillingham, Mark G.
A study examined what happened when a group of adult students read a hypertext for the goal of answering specific questions. Subjects, 30 students enrolled in an upper-division psychology course at a state university in the northwestern United States, read a binary tree-structured hypertext to answer three two-part questions on the topic of…
Analysis of Prebiotic Oligosaccharides
NASA Astrophysics Data System (ADS)
Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.
Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.
ERIC Educational Resources Information Center
Albrecht, Don E.
This report demonstrates the complexity and diversity of agricultural structures in the United States and discusses changes produced in the family farm by agricultural industrialization. Data from the Economic Research Service of the U.S. Department of Agriculture and the 1978 Census of Agriculture describe similarities and differences in social…
Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...
A new test set for validating predictions of protein-ligand interaction.
Nissink, J Willem M; Murray, Chris; Hartshorn, Mike; Verdonk, Marcel L; Cole, Jason C; Taylor, Robin
2002-12-01
We present a large test set of protein-ligand complexes for the purpose of validating algorithms that rely on the prediction of protein-ligand interactions. The set consists of 305 complexes with protonation states assigned by manual inspection. The following checks have been carried out to identify unsuitable entries in this set: (1) assessing the involvement of crystallographically related protein units in ligand binding; (2) identification of bad clashes between protein side chains and ligand; and (3) assessment of structural errors, and/or inconsistency of ligand placement with crystal structure electron density. In addition, the set has been pruned to assure diversity in terms of protein-ligand structures, and subsets are supplied for different protein-structure resolution ranges. A classification of the set by protein type is available. As an illustration, validation results are shown for GOLD and SuperStar. GOLD is a program that performs flexible protein-ligand docking, and SuperStar is used for the prediction of favorable interaction sites in proteins. The new CCDC/Astex test set is freely available to the scientific community (http://www.ccdc.cam.ac.uk). Copyright 2002 Wiley-Liss, Inc.
Variability in Rheumatology day care hospitals in Spain: VALORA study.
Hernández Miguel, María Victoria; Martín Martínez, María Auxiliadora; Corominas, Héctor; Sanchez-Piedra, Carlos; Sanmartí, Raimon; Fernandez Martinez, Carmen; García-Vicuña, Rosario
To describe the variability of the day care hospital units (DCHUs) of Rheumatology in Spain, in terms of structural resources and operating processes. Multicenter descriptive study with data from a self-completed questionnaire of DCHUs self-assessment based on DCHUs quality standards of the Spanish Society of Rheumatology. Structural resources and operating processes were analyzed and stratified by hospital complexity (regional, general, major and complex). Variability was determined using the coefficient of variation (CV) of the variable with clinical relevance that presented statistically significant differences when was compared by centers. A total of 89 hospitals (16 autonomous regions and Melilla) were included in the analysis. 11.2% of hospitals are regional, 22,5% general, 27%, major and 39,3% complex. A total of 92% of DCHUs were polyvalent. The number of treatments applied, the coordination between DCHUs and hospital pharmacy and the post graduate training process were the variables that showed statistically significant differences depending on the complexity of hospital. The highest rate of rheumatologic treatments was found in complex hospitals (2.97 per 1,000 population), and the lowest in general hospitals (2.01 per 1,000 population). The CV was 0.88 in major hospitals; 0.86 in regional; 0.76 in general, and 0.72 in the complex. there was variability in the number of treatments delivered in DCHUs, being greater in major hospitals and then in regional centers. Nonetheless, the variability in terms of structure and function does not seem due to differences in center complexity. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Construction and optical properties of infinite Cd and finite Cu molecules stairs
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Mao, Wutao; Shen, Zhi; Wang, Qinghong; Zhou, Qian
2017-02-01
Two coordination complexes, namely [(hpdq)(pta)Cd]n (1) and [(pptp)(pta)Cu2Cl] (2) have been synthesized by solvothermal method based on two polypyridyl ligands, 2,3,6,7,10,11-hexakis- (2-pyridyl)dipyrazino[2,3-f:2‧,3‧-h]quinoxaline) (hpdq), 4‧-(4- (3H-pyrrol-3-yl)phenyl)- 2,2‧:6‧,2″- terpyridine (pptp) and auxiliary ligand p-phthalic acid (pta), respectively. Single crystal x-ray diffraction analyses reveal that complexes 1 and 2 assembled based on distinct asymmetric unit comprising one and two respective polypyridyl ligands but one Cd(II) and two Cu(I)ions, respectively. Among them, The asymmetric units in 1 was extended to one dimensional chain via the link of auxiliary ligand pta, just like infinite layers of stairs that connected by cadmium ions as the node. While that in 2 to Zero dimensional tetranuclear structure via the link of auxiliary ligand pta, just like finite four layers of stairs that Copper ion as the node connection. Furthermore, solid fluorescence spectra properties of two complexes were also investigated, and the result shows the fluorescence intensity of complex 1 is stronger than that of the hpdq ligand, but the fluorescence intensity of complex 2 is weaker than that of the pptp ligand. CCDC number of 1and 2 are 1483301 and 1483302.
Procházková, Soňa; Kubíček, Vojtěch; Böhmová, Zuzana; Holá, Kateřina; Kotek, Jan; Hermann, Petr
2017-08-08
The new ligand H 6 do3aP ida combines the macrocyclic DOTA-like cavity and the open-chain iminodiacetate group connected through a coordinating phosphinate spacer. Its acid-base and coordination properties in solution were studied by potentiometry. Thermodynamic coordination characteristics of both chelating units are similar to those reported for H 4 dota and iminodiacetic acid themselves, respectively, so, macrocyclic and iminodiacetate units behave independently. The formation kinetics of the Ce(iii)-H 6 do3aP ida complex was studied by UV-Vis spectrophotometry. Various out-of-cage intermediates were identified with 1 : 1, 1 : 2 and 2 : 1 ligand-to-metal ratios. The presence of the strongly coordinating iminodiacetate group significantly slows down the metal ion transfer into the macrocyclic cavity and, so, the formation of the in-cage complex is two orders of magnitude slower than that reported for the Ce(iii)-H 4 dota system. The kinetic inertness of the [Ce(do3aP ida )] 3- complex towards acid-assisted dissociation is comparable to that of the [Ce(dota)] - complex. The coordination modes of the ligand are demonstrated in the solid-state structure of [Cu 4 (do3aP ida )(OH)(H 2 O) 4 ]Cl·7.5H 2 O.
Baum, Amanda E.; Park, Heaweon; Wang, Denan; Lindeman, Sergey V.; Fiedler, Adam T.
2012-01-01
Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)] [2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)] [1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies. PMID:22930005
Gavrish, Sergey P; Lampeka, Yaroslaw D; Pritzkow, Hans; Lightfoot, Philip
2010-09-07
The crystal structures of the palladium(II) complexes of the open-chain and macrocyclic ligands PdL(1).3H(2)O, PdL(2).6H(2)O and PdL(3).5H(2)O have been determined (H(2)L(1) = 1,4,8,11-tetraazaundecane-5,7-dione, H(2)L(2) = 1,4,8,11-tetraazacyclotetradecane-5,7-dione, H(2)L(3) = 1,4,8,11-tetraazacyclotridecane-5,7-dione). The coordination polyhedra of the palladium(II) ions in all complexes are formed by two deprotonated amide and two amine donors with Pd-N distances being similar in PdL(1) and PdL(2) and substantially shorter in PdL(3). A detailed analysis of the (1)H NMR spectra of the macrocyclic complexes supports the formation in aqueous solution of only N-meso isomers of both compounds in agreement with the X-ray data. The spectra of the palladium(II) macrocyclic complexes are shifted downfield as a whole as compared to those of the nickel(II) analogues with the shifts being essentially non-uniform. The latter feature can be related to the differences in magnetic anisotropy of the M-N bonds. The maxima of d-d absorption bands of the palladium(II) complexes demonstrate weaker dependence on the macrocycle size as compared to those of the nickel(II) analogues. Both macrocyclic compounds PdL(2).6H(2)O and PdL(3).5H(2)O are characterized by lamellar crystal structures consisting of interleaved layers formed by macrocyclic units and by water molecules with similar metal complex layers and different 2D water sheets. A columnar crystal structure is inherent for PdL(1).3H(2)O with the water molecules present as discrete (H(2)O)(3) clusters.
Shimizu, Hideyuki; Cojal González, José D; Hasegawa, Masashi; Nishinaga, Tohru; Haque, Tahmina; Takase, Masayoshi; Otani, Hiroyuki; Rabe, Jürgen P; Iyoda, Masahiko
2015-03-25
Two isomers of a multifunctional π-expanded macrocyclic oligothiophene 8-mer, E,E-1 and Z,Z-1, were synthesized using a McMurry coupling of a dialdehyde composed of four 2,5-thienylene and three ethynylene units under high dilution conditions. On the other hand, cyclo[8](2,5-thienylene-ethynylene) 2 was synthesized by intramolecular Sonogashira cyclization of ethynyl bromide 5. From STM measurements, both E,E-1 and Z,Z-1 formed self-assembled monolayers at the solid-liquid interface to produce porous networks, and from X-ray analyses of E,E-1 and 2, both compounds had a round shape with a honeycomb stacked structure. E,E-1 formed various fibrous polymorphs due to nanophase separation of the macrorings. E,E-1 and Z,Z-1 in solution exhibited photochromism upon irradiation with visible and UV light, respectively, and this photoisomerization was confirmed by using STM. Furthermore, amorphous films of Z,Z-1 and E,E-1 showed photoisomerization, although single crystals, fibers, and square tubes of E,E-1 remained unchanged under similar conditions. E,E-1 with a 12.5-14.7 Å inner cavity incorporated fullerene C60 in the cavity in solution and the solid state to produce a Saturn-like complex, whose structure was determined by X-ray analysis. 2 also formed a Saturn-like complex with C60 in the solid state. These Saturn-like complexes are stabilized by van der Waals interactions between the sulfur atoms of 8-mer and C60. The complexes exhibited charge-transfer interactions in the solid state. Like E,E-1, Saturn-like complex E,E-1⊃C60 formed small cube and fiber structures depending on the solvent used, whereas those of Saturn-like complex 2⊃C60 were limited due to the rigidity of the macroring of 2.
Atria, Ana María; Parada, José; Moreno, Yanko; Suárez, Sebastián; Baggio, Ricardo; Peña, Octavio
2018-01-01
The title mononuclear Co II complex, [Co(C 5 H 7 N 6 ) 2 (C 14 H 8 O 5 ) 2 (H 2 O) 2 ]·2H 2 O, has been synthesized and its crystal structure determined by X-ray diffraction. The complex crystallizes in the triclinic space group P-1, with one formula unit per cell (Z = 1 and Z' = 1/2). It consists of a mononuclear unit with the Co II ion on an inversion centre coordinated by two 2,6-diamino-7H-purin-1-ium cations, two 4,4'-oxydibenzoate anions (in a nonbridging κO-monodentate coordination mode, which is less common for the anion in its Co II complexes) and two water molecules, defining an octahedral environment around the metal atom. There is a rich assortment of nonbonding interactions, among which a strong N + -H...O - bridge, with a short N...O distance of 2.5272 (18) Å, stands out, with the H atom ostensibly displaced away from its expected position at the donor side, towards the acceptor. The complex molecules assemble into a three-dimensional hydrogen-bonded network. A variable-temperature magnetic study between 2 and 300 K reveals an orbital contribution to the magnetic moment and a weak antiferromagnetic interaction between Co II centres as the temperature decreases. The model leads to the following values: A (crystal field strength) = 1.81, λ (spin-orbit coupling) = -59.9 cm -1 , g (Landé factor) = 2.58 and zJ (exchange coupling) = -0.5 cm -1 .
NASA Astrophysics Data System (ADS)
Sauermilch, Isabel; Weigelt, Estella; Jokat, Wilfried
2018-07-01
The Arctic Ocean region plays, and has played in the geological past, a key role for Earth's climate and oceanic circulation and their evolution. Studying the Lomonosov Ridge, a narrow submarine continental ridge in the central Arctic Ocean, is essential to answer fundamental questions related to the complex tectonic evolution of the Arctic basins, the glacial history, and the details of known paleoceanographic changes in the Cenozoic. In this study, we present a new seismic dataset that provides insights into the sedimentary structures along the ridge, their possible origin, age and formation. We compare the structure and stratigraphy of the deeper parts of the ridge between 83°N and 84°30‧N to its conjugate, the Severnaya Zemlya Archipelago at the Eurasia margin. We propose that some sediment sequences directly underlying the prominent HARS (High Amplitude Reflector Sequence) formed well before the ridge separated from the Barents and Kara shelves and represent a prolongation of the North Kara Terrane, most likely part of the Neoproterozoic Timanide orogen. Towards Siberia along the Lomonosov Ridge, we interpret the HARS to be underlain by Upper Proterozoic-Lower Paleozoic metasedimentary material that is correlated to metamorphic complexes exposed on Bol'shevik Island. Northward, this unit descends and gives way to a foreland sedimentary basin complex of presumed Ordovician/Devonian age, which underwent strong deformation during the Triassic/Jurassic Novaya Zemlya orogeny. The transition zone between these units might mark a conjugate continuation of the Eurasian margin's Bol'shevik-Thrust Zone. A prominent erosional unconformity is observed over these strongly deformed foreland basins of the Eurasian and Lomonosov Ridge margins, and is conceivably related to vertical tectonics during breakup or a later basin-wide erosional event.
Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra
2018-02-01
Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.
Deciphering the tectonometamorphis history of the Anarak Metamorphic Complex, Central Iran
NASA Astrophysics Data System (ADS)
Zanchetta, Stefano; Malaspina, Nadia; Zanchi, Andrea; Martin, Silvana; Benciolini, Luca; Berra, Fabrizio; Javadi, Hamid Reza; Koohpeyma, Meysam; Ghasemi, Mohammad R.; Sheikholeslami, Mohammad Reza
2014-05-01
The Cimmerian orogeny shaped the southern margin of Eurasia during the Late Permian and the Triassic. Several microplates, detached from Gondwana in the Early Permian, migrated northward to be accreted to the Eurasia margin. In the reconstruction of such orogenic event Iran is a key area. The occurrence of several "ophiolites" belt of various age, from Paleozoic to Cretaceous, poses several questions on the possibility that a single rather than multiple Paleotethys sutures occur between Eurasia and Iran. In this scenario the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted to be part of microplate of Gondwanan affinity, a relic of an accretionary wedge developed at the Eurasia margin during the Paleothetys subduction or part of the Cimmerian suture zone, occurring in NE Iran, displaced to central Iran by counterclockwise rotation of the central Iranian blocks from the Triassic. Our field structural data, petrographic and geochemical data, carried out in the frame of the DARIUS PROGRAMME, indicate that the AMC is not a single coherent block, but it consists of several units (Morghab, Chah Gorbeh, Patyar, Palhavand Gneiss, Lakh Marble, Doshak and dismembered "ophiolites") which display different tectonometamorphic evolutions. The Morghab and Chah Gorbeh units share a common history and they preserve, as a peculiar feature within metabasites, a prograde metamorphism with sin- to post-deformation growth of blueschists facies assemblages on pre-existing greenschist facies mineralogical associations. LT-HP metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the southern limit of the Chah Gorbeh unit. Finally, evidence of LT-HP metamorphism also occur in the metabasites and possibly also in the serpentinites that form most of the "ophiolites" within the AMC. Structural analyses show that the Chah Gorbeh, Morghab units and the "ophiolites" have been tectonically coupled during at least two deformational phases that occurred at greenschist facies conditions and predate the LT-HP metamorphic overprint. Available geochronological data loosely constraints the subduction event in the Late Permian - Early Triassic times. Subsequent deformation events that occurred during the whole Mesozoic and the Cenozoic up to the Miocene and possibly later, resulted in folding, thrusting and faulting that dismembered the original tectonic contacts. Therefore, the correlations among deformation structures and metamorphic events in the different units are not straightforward. The other units of the AMC lack evidence of HP metamorphism, especially the Lakh Marble a large thrust sheet that occupies the uppermost structural position in the AMC. The contact with the underlying units is invariably tectonic, thus no original relationships have been preserved. So, if structural and petrographic data point out an accretionary wedge setting for the evolution of the Chah Gorbeh, Morghab and the "ophiolites", geodynamic significance and paleogeographic attribution of other units still remain controversial. In progress U-Pb dating of undeformed intrusive bodies and metamorphic minerals in the LT-HP rocks will soon help to better constrain the evolution of the ACM.
Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia
2003-09-22
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.
Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki
2008-01-01
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.
Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.
Burda, Jolanta; Klötzli, Urs
In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.
Atria, Ana María; Garland, Maria Teresa; Baggio, Ricardo
2014-01-01
The asymmetric unit of the title compound, C8H9NO2·H2O consists of an isolated 4-(ammoniomethyl)benzoate zwitterion derived from 4-aminomethylbenzoic acid through the migration of the acidic proton, together with a water molecule of crystallization that is disordered over three sites with occupancy ratios (0.50:0.35:0.15). In the crystal structure, N—H⋯O hydrogen bonds together with π–π stacking of the benzene rings [centroid–centroid distance = 3.8602 (18) Å] result in a strongly linked, compact three-dimensional structure. PMID:25484753
Superhard BC(3) in cubic diamond structure.
Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming
2015-01-09
We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.
Siddiqi, Zafar A; Shahid, M; Khalid, Mohd; Kumar, S
2009-06-01
Ternary complexes containing an alpha-diimine auxiliary ligand have been widely used as models for several mono and polynuclear metal enzymes. The present ternary complexes [M(IDA)(Phen)H(2)O] x xH(2)O (x = 2, 3 or 4) were prepared as novel antimicrobial agents employing reactions of Cu(OAc)(2) or MCl(2) (M = Co, Ni, Cr) with iminodiacetic acid (H(2)IDA) in the presence of 1,10-phenanthroline (Phen), whose chemical structure and bonding were elucidated by IR, FAB-Mass, (1)H, (13)C NMR, EPR spectral and elemental analyses. The antimicrobial activities against Escherichia coli (K-12), Bacillus subtilis (MTCC 121), Staphylococcus aureus (IOA-SA-22), Salmonella typhimurium (MTCC 98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei (isolates from Department of Microbiology, Faculty of Agricultural Science, AMU) were investigated and significant activities were obtained. The superoxide dismutase activity of the Cu(II) complex was assessed by NBT assay. The single crystal X-ray structure for [Cu(IDA)(Phen)H(2)O] x 2 H(2)O indicates a triclinic unit cell in P-1 space group with structural parameters, a = 6.745(5), b = 10.551(5), c = 11.414(5)A, alpha = 95.770(5), beta = 91.396(5), gamma = 92.518(5) degrees and presence of an extensive H-bonding and pi-pi stacking interactions which generate a supramolecular framework.
Caira, Mino R; Bourne, Susan A; Mzondo, Buntubonke
2017-05-23
The naturally occurring compound α-lipoic acid (ALA) is implicated in manifold critical biological roles and its potent antioxidant properties and potential for treatment of various diseases have led to its widespread use as a dietary supplement. However, shortcomings of poor aqueous solubility and low thermal stability have hampered its development as a medicinal agent, prompting the use of cyclodextrins (CDs) to address these problems. The paucity of published structural data on the nature of the interactions between ALA and CDs motivated the present study, which describes the synthesis and X-ray structural elucidation of crystalline inclusion complexes between the biologically relevant R-(+)-α-lipoic acid (RALA) and the host molecules permethylated α-CD (TMA) and permethylated β-CD (TMB). Single crystal X-ray diffraction of TMA·RALA·6H₂O and TMB·RALA revealed significantly different orientations of the RALA molecule within the TMA and TMB cavities, but in both cases the guest molecule is fully encapsulated by the respective parent host molecules and residues of CD molecules of neighboring complex units. While pure RALA melted at 46-48 °C, combined thermal analysis techniques indicated that on heating the respective complexes, the release of RALA occurred at significantly higher onset temperatures, in the range 150-170 °C.
DeStefano, Matthew R.; Lewis, Robert A.
2017-01-01
Copper(II) complexes of benzimidazole are known to exhibit biological activity that makes them of interest for chemotherapeutic and other pharmaceutical uses. The complex bis(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κ2 N 2,N 3}copper(II), has been prepared. The absorption spectrum has features attributed to intraligand and ligand-field transitions and the complex exhibits ligand-centered room-temperature luminescence in solution. The acetonitrile monosolvate, [Cu(C2H3O2)2(C20H18N4)]·C2H3N (1), and the ethanol hemisolvate, [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O (2), have been structurally characterized. Compound 2 has two copper(II) complexes in the asymmetric unit. In both 1 and 2, distorted square-planar N2O2 coordination geometries are observed and the Cu—N(Im) bond distance is slightly shorter than the Cu—N(py) bond distance. Intermolecular π–π interactions are found in 1 and 2. A weak C—H⋯π interaction is observed in 1. PMID:29152336
NASA Astrophysics Data System (ADS)
Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen
2017-12-01
This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.
Structural motifs of diiodine complexes with amides and thioamides.
Parigoridi, Ioanna-Efpraxia; Corban, Ghada J; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Kostakis, George; Psycharis, Vassilis; Raptopoulou, Catherine P; Kubicki, Maciej
2008-10-14
The reaction of 2-pyrimidone hydrochloride ([C(4)H(5)N(2)O](+)[Cl](-) or [PMOH(2)](+)[Cl](-)) with diiodine in a dichloromethane-methanol solution resulted in the formation of ([C(4)H(5)N(2)O](+))(2)[I(2)Cl(2)](2-) (1) complex. The compound was characterized by elemental analysis, FT-IR, DTA-TG and conductivity titrations. The crystal structure of 1 was also determined by X-ray diffraction at 294(1) K. Compound 1 is monoclinic, space group P2(1)/n, consisting of two cationic [PMOH(2)](+) species and a [I(2)Cl(2)](2-) counter dianion. The cation is in its keto form. Direct reaction of thiazolidine-2-thione (tzdtH), with diiodine in dichloromethane solution, on the other hand, led to the formation of a crystalline solid which contained two complexes of formulae [(tzdtH)(2)I](+)[I(3)](-).2I(2) (2) and [(tzdtH)I(2)](2).I(2) (2a) in a ratio of 90 to 10%. Complex 2a was characterized by X-ray analysis at 180(2) K. Compound is monoclinic, space group C2/c and contains two units of [(tzdtH)I(2)] "spoke" structures. Compound 1, as well as the known species iodonium salt [(tzdtH)(2)I](+)[I(3)](-).2I(2) (2) and the charge transfer (CT) iodine complexes of formulae [(bztzdtH)I(2)] (3) and [(bztzdtH)I(2)].I(2) (4) (bztzdtH = 2-mercaptobenzothiazole) with "spoke" and extended "spoke" structures respectively, were tested for their oxidizing activity towards 3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone.
Keating, Kevin S.; Humphris, Elisabeth L.; Pyle, Anna Marie
2015-01-01
Unlike proteins, the RNA backbone has numerous degrees of freedom (eight, if one counts the sugar pucker), making RNA modeling, structure building and prediction a multidimensional problem of exceptionally high complexity. And yet RNA tertiary structures are not infinite in their structural morphology; rather, they are built from a limited set of discrete units. In order to reduce the dimensionality of the RNA backbone in a physically reasonable way, a shorthand notation was created that reduced the RNA backbone torsion angles to two (η and θ, analogous to ϕ and ψ in proteins). When these torsion angles are calculated for nucleotides in a crystallographic database and plotted against one another, one obtains a plot analogous to a Ramachandran plot (the η/θ plot), with highly populated and unpopulated regions. Nucleotides that occupy proximal positions on the plot have identical structures and are found in the same units of tertiary structure. In this review, we describe the statistical validation of the η/θ formalism and the exploration of features within the η/θ plot. We also describe the application of the η/θ formalism in RNA motif discovery, structural comparison, RNA structure building and tertiary structure prediction. More than a tool, however, the η/θ formalism has provided new insights into RNA structure itself, revealing its fundamental components and the factors underlying RNA architectural form. PMID:21729350
Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.
2000-01-01
Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.
García-Martín, Susana; Morata-Orrantía, Ainhoa; Alario-Franco, Miguel A; Rodríguez-Carvajal, Juan; Amador, Ulises
2007-01-01
The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.
Current understanding of the correlation of lignin structure with biomass recalcitrance
Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.
2016-11-18
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement inmore » application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Furthermore, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.« less
Current understanding of the correlation of lignin structure with biomass recalcitrance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement inmore » application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass. Furthermore, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.« less
Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...
2015-07-30
Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less
Mini-review: Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance
NASA Astrophysics Data System (ADS)
Li, Mi; Pu, Yunqiao; Ragauskas, Arthur
2016-11-01
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresource to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and biomaterials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability— pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interaction and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.
Mädl, Eric; Balázs, Gábor; Peresypkina, Eugenia V; Scheer, Manfred
2016-06-27
The reduction of [Cp'''Ni(η(3) -P3 )] (1; Cp'''=η(5) -1,2,4-tBu3 C5 H2 ) with potassium produces the complex anion [(Cp'''Ni)2 (μ,η(2:2) -P8 )](2-) (2), which contains a realgar-like P8 unit. The anionic triple-decker sandwich complex [(Cp'''Ni)2 (μ,η(3:3) -P3 )](-) (3) with a cyclo-P3 middle deck is obtained when 1 is treated with NaNH2 as a nucleophile. Na[3] can subsequently be oxidized with AgOTf to the neutral triple-decker complex [(Cp'''Ni)2 (μ,η(3:3) -P3 )] (4). In contrast, 1 reacts with LiPPh2 to give the anionic compound [(Cp'''Ni)2 (μ,η(2:2) -P6 PPh2 )](-) (5), a complex containing a bicyclic P7 fragment capped by two Cp'''Ni units. Protonation of Li[5] with HBF4 leads to the neutral complex [(Cp'''Ni)2 (μ,η(2:2) -(HP6 PPh2 )] (6). Adding LiNMe2 to 1 results in [Cp'''Ni(η(2) -P3 NMe2 )](-) (7) becoming accessible, a complex which forms as a result of nucleophilic attack at the cyclo-P3 ring of 1. The complexes K2 [2], Na[3], 4, 6, and Li[7] were fully characterized and their structures determined by single-crystal X-ray diffraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis of agrin-LRP4-MuSK signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Yinong; Zhang, Bin; Gu, Shenyan
Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation ofmore » the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.« less
Argibay-Otero, Saray; Carballo, Rosa; Vázquez-López, Ezequiel M
2017-10-01
The asymmetric unit of the title compound, [ReCl(C 5 H 5 NO) 2 (CO) 3 ]·C 5 H 5 NO, contains one mol-ecule of the complex fac -[ReCl(4-pyOH) 2 (CO) 3 ] (where 4-pyOH represents 4-hy-droxy-pyridine) and one mol-ecule of pyridin-4(1 H )-one (4-HpyO). In the mol-ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa-hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol-ecules bridge between two mol-ecules of the complex using the O=C group as acceptor for two different HO- groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N-H groups of the 4-HpyO mol-ecule and the chloride ligands. The chains are further stabilized by π-stacking inter-actions.
Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.
2013-01-01
Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155
NASA Astrophysics Data System (ADS)
Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.
2015-04-01
Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone represents a zone of multiple fragmentation, fluid flow, crystallization and quartz dissolution and precipitation, and is regarded as key example of large-scale cyclic interaction of these processes. The geological evidence of interactions between processes implies that feedbacks and highly non-linear mechanical behaviour generated the complex meso- and microstructures. The fault zone rheology may also therefore have been complex.
Clarke, R V; Lester, D
1987-01-01
The rate of car exhaust suicides in the United States has declined following the introduction of emission controls in the mid-1960s, though not as much as the decline in CO emitted by cars. In Britain, where emission controls have not been introduced, the rate of these suicides, initially much lower than in the United States, has greatly increased since the beginning of the 1970s and is now about double that of the United States. This rise cannot be explained simply on the basis of an increase in the opportunities for suicide as represented by an increase in the number of cars but may be due to increased knowledge of the method. While these results are interpreted as generally supporting the potential for opportunity-reducing preventive measures, they also demonstrate that much more research is needed into the complex nature of the opportunity structure for suicide. PMID:2443595
Lung Structure and the Intrinsic Challenges of Gas Exchange
Hsia, Connie C.W.; Hyde, Dallas M.; Weibel, Ewald R.
2016-01-01
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. PMID:27065169
Mukherjee, Goutam; Pal, Arumay; Levy, Yaakov
2017-11-21
In prokaryotes, the RecA protein catalyzes the repair and strand exchange of double-stranded DNA. RecA binds to single-stranded DNA (ssDNA) and forms a presynaptic complex in which the protein polymerizes around the ssDNA to form a right-handed helical nucleoprotein filament structure. In the present work, the mechanism for the formation of the RecA-ssDNA filament structure is modeled using coarse-grained molecular dynamics simulations. Information from the X-ray structure was used to model the protein itself but not its interactions; the interactions between the protein and the ssDNA were modeled solely by electrostatic, aromatic, and repulsive energies. For the present study, the monomeric, dimeric, and trimeric units of RecA and 4, 8, and 11 NT-long ssDNA, respectively, were studied. Our results indicate that monomeric RecA is not sufficient for nucleoprotein filament formation; rather, dimeric RecA is the elementary binding unit, with higher multimeric units of RecA facilitating filament formation. Our results reveal that loop region flexibility at the primary binding site of RecA is essential for it to bind the incoming ssDNA, that the aromatic residues present in the loop region play an important role in ssDNA binding, and that ATP may play a role in guiding the ssDNA by changing the electrostatic potential of the RecA protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osiry, H.; Cano, A.; Reguera, L.
The pentacyanonitrosylferrate complex anion, [Fe(CN){sub 5}NO]{sup 2−}, forms an insoluble solid with Hg(I) ion, of formula unit Hg{sub 2}[Fe(CN){sub 5}NO]·2H{sub 2}O, whose crystal structure and related properties are unknown. This contribution reports the preparation of that compound by the precipitation method and its structural study from X-ray powder patterns complemented with spectroscopic information from IR, Raman, and UV–vis techniques. The crystal structure was solved ab initio and then refined using the Rietveld method. The solid crystallizes with a triclinic unit cell, in the P−1 space group, with cell parameters a=10.1202(12), b=10.1000(13), c=7.4704(11) Å; α=110.664(10), β=110.114(10), γ=104.724(8) °. Within the unitmore » cell, two formula units are accommodated (Z=2). It adopts a layered structure related with the coordination of the equatorial CN groups at their N end to the Hg atoms while the axial CN ligand remains unlinked. Within the layers neighboring Hg{sub 2}[Fe(CN){sub 5}NO] building units remain linked through four relatively strong Hg–Hg interactions, with an interatomic distance of 2.549(3) Å. The charge donation from the equatorial CN groups through their 5σ orbitals results into an increase for the electron density on the Hg atoms, which strengths the Hg–Hg bond. In the Raman spectrum, that metal–metal bond is detected as a stretching vibration band at 167 cm{sup −1}. The available free volume between neighboring layers accommodates two water molecules, which are stabilized within the framework through hydrogen bonds with the N end of the unlinked axial CN group. The removal of these weakly bonded water molecules results in structural disorder for the material 3D framework. - Graphical abstract: Assembling of Hg{sub 2}[Fe(CN){sub 5}NO] units through Hg–Hg interactions. - Highlights: • Homometallic Hg–Hg interactions in metal nitroprusside. • 2D structure supported on metal–metal interactions. • Crystal structure and related properties for mercury (I) nitroprusside. • IR and UV–vis spectral features for mercury (I) nitroprusside.« less
Molecular characterization of organic electronic films.
DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F
2011-01-18
Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Institutional Ethnography of Nurses' Support of Breastfeeding on the Night Shift.
Grassley, Jane S; Clark, Manda; Schleis, Joyce
2015-01-01
To describe nurses' support of breastfeeding on the night shift and to identify the interpersonal interactions and institutional structures that affect this support. Institutional ethnography. The mother/baby unit of a tertiary care hospital with 4200 births per year. Registered nurses (N = 16) who provided care on the night shift to mother/infant dyads in the immediate postpartum period. Data were collected using focus groups, individual and group interviews, and mother/baby unit observations. The focus groups were held before the night shift and had five participants. The nine individual and group interviews were conducted between 0100 and 0230 on the mother/baby unit. Three unit observations were conducted. Interviews were recorded, professionally transcribed, and analyzed using a content analysis method. Data analysis yielded three themes that described these nurses' support of breastfeeding on the night shift: competing priorities, incongruent expectations, and influential institutional structures. The need of visitors to see their new family members competed with the needs of mothers to rest and breastfeed their newborns. Helping breastfeeding dyads who experienced difficulties competed with providing care to other patients. Parents' expectations regarding newborn behavior were incongruent with the reality of newborn feeding and sleeping patterns. Institutional structures that affected the provision of breastfeeding support by nurses included hospital breastfeeding practices, staffing, and policies. Nurses' support of breastfeeding on the night shift encompasses a complex interplay of interpersonal interactions with new families and visitors regarding priorities and expectations and negotiating institutional structures such as feeding policies and staffing. © 2015 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
Archaean greenstone belts of Sierra Leone with comments on the stratigraphy and metallogeny
NASA Astrophysics Data System (ADS)
Umeji, A. C.
Four belts of weakly metamorphosed volcano-sedimentary material, of about 2700 Ma, are enclosed by older granulites, gneisses and migmatites in the eastern part, and (i) a basal ultramafic unit followed by (ii) mafic to feldspathic differentiate and then (iii) a terminal sedimentary formation has been recognized in all the four belts and their average ratio is ultramafic: mafic (greenstone): sedimentary unit (2:5:3). The belts are linear and tightly folded along N-S to NE-SW axis which is also the regional grain of the structures in the older basement complex that engulfs them. Structural and geochronological evidences suggest that the deformation of these volcano-sedimentary supracrustals began during the Liberian tectonism ( c. 2700 Ma) and culminated at the beginning of the Eburnean (2200 Ma). Diapiric rise of K-rich younger Aechaean granites which sharphy trangressed all the earlier rocks and their structural trends, marked the last geotectonic event in the Archaean of this part of West Africa. Chromite cumulate and asbestiform deposits characterize the layered ultramafic unit. whilst gold and associated base metal sulphides which were derived from the volcanic units became hydrothermally concentrated close to the contact between the volcanic units and the overlying sediments, and also in the fault zones. Iron ore deposits are restricted to the sedimentary units where they occur as banded iron formation. It is only in the huge metasedimetary piles of the Sula-Kangari belt that deposits of iron ore occur in commercially viable quantities. The patterns of distribution, deformation and mineralization in these greenstone belts appear to fit closely into island arc model of plate tectonic theory.
NASA Astrophysics Data System (ADS)
Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo
2017-10-01
The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.
Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.
2015-01-01
Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.
Scala, Raffaele
2009-04-01
Acute respiratory failure (ARF) is one of the most common and severe urgencies of the modern medicine which may require the application of mechanical ventilation and a careful monitoring of the patient's conditions. With the popularity of non-invasive ventilation and the interest of the pulmonologist for the care of the respiratory critical patient, in Italy there has been the spreading of Respiratory Intensive Care Units (RICU), which are as intermediate specialist structures in terms of intensity of care between the General Intensive Care Unit and the ordinary ward. In this article, the author analysed the cultural, scientific and organizational aspects of the central role played by the pulmonologist who's working in the RICU in the complex intra-hospital multi-disciplinary management of ARF.
PropBase Query Layer: a single portal to UK subsurface physical property databases
NASA Astrophysics Data System (ADS)
Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham
2013-04-01
Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.
Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B
2015-06-15
Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.
NASA Astrophysics Data System (ADS)
Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim
2016-10-01
In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.
NASA Astrophysics Data System (ADS)
Pescatore, Tullio; Renda, Pietro; Schiattarella, Marcello; Tramutoli, Mariano
1999-12-01
Stratigraphic studies and facies analysis integrated with a new geological and structural survey of the Meso-Cenozoic units outcropping in the Campania-Lucania Apennines, southern Italy, allowed us to restore the palaeogeographic pattern and the tectonic evolution of the chain during Oligo-Miocene times. The southern Apennines are a N150°-striking and NE-verging fold-and-thrust belt mainly derived from the deformation of the African-Apulian passive margin. Four wide belts with different features have been recognized in the chain area. From east to west the following units outcrop: (a) successions characterized by basinal to marginal facies, ranging in age from Cretaceous to Miocene, tectonically lying on Plio-Pleistocene foredeep deposits; (b) successions characterized by shallow-water, basinal and shelf-margin facies, ranging in age from middle Triassic to Miocene ('Lagonegro units'), overthrust on the previous ones; (c) Triassic to Miocene carbonate platform successions ('Apenninic platform units'), overthrust on the Lagonegro units; (d) Jurassic-Cretaceous to Miocene deep-water successions (ophiolite-bearing or 'internal' units and associated siliciclastic wedges), outcropping along the Tyrrhenian belt and the Calabria-Lucania boundary, overthrust on the Apenninic platform units. All these units tectonically lie on the buried Apulian platform which is covered, at least in the eastern sector of the chain, by Pliocene to Pleistocene foredeep deposits. Stratigraphic patterns of the Cretaceous to lower Miocene Lagonegro successions are coherent with the platform margin ones. Calcareous clastics of the Lagonegro basin are in fact supplied by an adjacent western platform, as inferred by several sedimentological evidences (slump and palaeocurrent directions and decreasing grain size towards the depocentre of the basin). Tectonic relationships among the different units of the chain — with particular emphasis on the Lagonegro and Apenninic platform units of the Lucanian segment — are shown by means of both regional and detailed geological cross-sections. The Lagonegro units constantly underlie the carbonate units originating from detachment and thrusting of the western platform and overlie the eastern (i.e. Apulian) platform. The Lagonegro units show a strong lateral variability of map-scale structures. Dome-and-basin folds are in fact largely observable in the Lucanian Apennine. Further, the belt is widely affected by Plio-Quaternary strike-slip and extensional faults. Yet, excluding the brittle deformation due to Quaternary faulting, the complexity of structural styles seems to result from the Neogene refolding of more ancient structures produced by Oligo-Miocene intraplate deformation. This hypothesis is supported by two independent lines of evidence: the first is the recognition of unconformities between the lower Miocene Numidian sandstone and the underlying Lagonegro successions, at least in the southwestern sectors; the second is that the internal (i.e. western) platform remains undeformed until the early Miocene. Both stratigraphic and structural data suggest an external position of the Meso-Cenozoic Lagonegro basin with regard to the coeval Apenninic platform.
The Internal Medicine of the 21st century: Organizational and operational standards.
Casariego-Vales, E; Zapatero-Gaviria, A; Elola-Somoza, F J
2017-12-01
The Spanish Society of Internal Medicine has developed a consensus document on the standards and recommendations that they consider essential to the organisation of internal medicine units for conducting their activities efficiently and with high quality. We defined 3 groups of key processes: the care of acutely ill adult patients, the comprehensive care of complex chronic patients and the examination of a patient with a difficult diagnosis and no organ-specific disease. As support processes, we identified the structure and operation of the Internal Medicine units. As strategic processes, we identified training and research. The main subprocesses are structured below, and we established the standards and recommendations for each of them. Lastly, we proposed resulting workloads. The prepared standards must be reviewed within a maximum of 4 years. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Empty tracks optimization based on Z-Map model
NASA Astrophysics Data System (ADS)
Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao
2017-12-01
For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.
Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Degli Esposti, Lorenzo; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto; Secchi, Andrea; Arduini, Arturo
2017-02-01
Tris-( N -phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light-activated processes. Here, we report on the synthesis, structural characterization, and spectroscopic, photophysical, and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4 ' -bipyridinium guest activates energy- and/or electron-transfer processes that lead to non-trivial luminescence changes.
[Provision of building maintenance services in healthcare facilities].
Amorim, Gláucia Maria; Quintão, Eliana Cardoso Vieira; Martelli Júnior, Hercílio; Bonan, Paulo Rogério Ferreti
2013-01-01
The scope of this paper was to evaluate the provision of building maintenance services in health units, by means of a descriptive, quantitative and cross-sectional study, considering the five types of facilities (Primary Health, Emergency, Specialty, Hospital and Mental Health Units). The research was approved by the Research Ethics Comittee of FHEMIG with the Terms of Agreement signed with the Unified Health System of Betim. Comparative analysis was conducted by checking the requirements of "Physical-Functional Structure Management" of the "Brazilian Hospital Accreditation Manual" of the National Accreditation Organization. Nonconformities were noted in the physical-functional management of the health centers, especially the primary health units. The assessment was important, considering that compliance with formal, technical and structural requirements, welfare activities, according to the service organization and appropriate to the profile and complexity, can collaborate to minimize the risks of users. To improve the quality of health care establishments, it is essential that managers, backed by "top management," prioritize financial, human and material resources in planning to ensure compliance with security requirements of users in buildings.
[3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products†
Ilardi, Elizabeth A.; Stivala, Craig E.
2014-01-01
Among the fundamental chemical transformations in organic synthesis, the [3,3]-sigmatropic rearrangement occupies a unique position as a powerful, reliable, and well-defined method for the stereoselective construction of carbon–carbon or carbon–heteroatom bonds. While many other reactions can unite two subunits and create a new bond, the strengths of sigmatropic rearrangements derive from their ability to enable structural reorganization with unmatched build-up of complexity. Recent applications that illustrate [3,3]-sigmatropic processes as a key concept in the synthesis of complex natural products are described in this tutorial review, covering literature from about 2001 through early 2009. PMID:19847347
2001-09-04
KODIAK ISLAND, Alaska -- At the Launch Service Structure, Kodiak Launch Complex (KLC), the fairing is lowered over the Kodiak Star spacecraft in preparation for launch. The first orbital launch to take place from KLC, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits
2001-09-05
KODIAK ISLAND, ALASKA - The Launch Service Structure, Kodiak Launch Complex (KLC), on Kodiak Island is viewed from a distance. Kodiak Star, the first launch to take place from KLC, is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5 p.m. to 7 p.m. p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program. KLC is the newest commercial launch complex in the United States, ideal for launch payloads requiring low-Earth polar or sun-synchronous orbits
Markopoulos, Georgios
2012-01-01
Summary This review describes the preparation, structural properties and the use of bisallenes in organic synthesis for the first time. All classes of compounds containing at least two allene moieties are considered, starting from simple conjugated bisallenes and ending with allenes in which the two cumulenic units are connected by complex polycyclic ring systems, heteroatoms and/or heteroatom-containing tethers. Preparatively the bisallenes are especially useful in isomerization and cycloaddition reactions of all kinds leading to the respective target molecules with high atom economy and often in high yield. Bisallenes are hence substrates for generating molecular complexity in a small number of steps (high step economy). PMID:23209534
NASA Astrophysics Data System (ADS)
Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.
2017-03-01
DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.